2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
14 unsigned long blk_max_low_pfn
;
15 EXPORT_SYMBOL(blk_max_low_pfn
);
17 unsigned long blk_max_pfn
;
20 * blk_queue_prep_rq - set a prepare_request function for queue
22 * @pfn: prepare_request function
24 * It's possible for a queue to register a prepare_request callback which
25 * is invoked before the request is handed to the request_fn. The goal of
26 * the function is to prepare a request for I/O, it can be used to build a
27 * cdb from the request data for instance.
30 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
34 EXPORT_SYMBOL(blk_queue_prep_rq
);
37 * blk_queue_set_discard - set a discard_sectors function for queue
39 * @dfn: prepare_discard function
41 * It's possible for a queue to register a discard callback which is used
42 * to transform a discard request into the appropriate type for the
43 * hardware. If none is registered, then discard requests are failed
47 void blk_queue_set_discard(struct request_queue
*q
, prepare_discard_fn
*dfn
)
49 q
->prepare_discard_fn
= dfn
;
51 EXPORT_SYMBOL(blk_queue_set_discard
);
54 * blk_queue_merge_bvec - set a merge_bvec function for queue
56 * @mbfn: merge_bvec_fn
58 * Usually queues have static limitations on the max sectors or segments that
59 * we can put in a request. Stacking drivers may have some settings that
60 * are dynamic, and thus we have to query the queue whether it is ok to
61 * add a new bio_vec to a bio at a given offset or not. If the block device
62 * has such limitations, it needs to register a merge_bvec_fn to control
63 * the size of bio's sent to it. Note that a block device *must* allow a
64 * single page to be added to an empty bio. The block device driver may want
65 * to use the bio_split() function to deal with these bio's. By default
66 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
69 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
71 q
->merge_bvec_fn
= mbfn
;
73 EXPORT_SYMBOL(blk_queue_merge_bvec
);
75 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
77 q
->softirq_done_fn
= fn
;
79 EXPORT_SYMBOL(blk_queue_softirq_done
);
81 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
83 q
->rq_timeout
= timeout
;
85 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
87 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
89 q
->rq_timed_out_fn
= fn
;
91 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
93 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
97 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
100 * blk_set_default_limits - reset limits to default values
101 * @lim: the queue_limits structure to reset
104 * Returns a queue_limit struct to its default state. Can be used by
105 * stacking drivers like DM that stage table swaps and reuse an
106 * existing device queue.
108 void blk_set_default_limits(struct queue_limits
*lim
)
110 lim
->max_phys_segments
= MAX_PHYS_SEGMENTS
;
111 lim
->max_hw_segments
= MAX_HW_SEGMENTS
;
112 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
113 lim
->max_segment_size
= MAX_SEGMENT_SIZE
;
114 lim
->max_sectors
= lim
->max_hw_sectors
= SAFE_MAX_SECTORS
;
115 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
116 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
117 lim
->alignment_offset
= 0;
122 EXPORT_SYMBOL(blk_set_default_limits
);
125 * blk_queue_make_request - define an alternate make_request function for a device
126 * @q: the request queue for the device to be affected
127 * @mfn: the alternate make_request function
130 * The normal way for &struct bios to be passed to a device
131 * driver is for them to be collected into requests on a request
132 * queue, and then to allow the device driver to select requests
133 * off that queue when it is ready. This works well for many block
134 * devices. However some block devices (typically virtual devices
135 * such as md or lvm) do not benefit from the processing on the
136 * request queue, and are served best by having the requests passed
137 * directly to them. This can be achieved by providing a function
138 * to blk_queue_make_request().
141 * The driver that does this *must* be able to deal appropriately
142 * with buffers in "highmemory". This can be accomplished by either calling
143 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
144 * blk_queue_bounce() to create a buffer in normal memory.
146 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
151 q
->nr_requests
= BLKDEV_MAX_RQ
;
153 q
->make_request_fn
= mfn
;
154 blk_queue_dma_alignment(q
, 511);
155 blk_queue_congestion_threshold(q
);
156 q
->nr_batching
= BLK_BATCH_REQ
;
158 q
->unplug_thresh
= 4; /* hmm */
159 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
160 if (q
->unplug_delay
== 0)
163 q
->unplug_timer
.function
= blk_unplug_timeout
;
164 q
->unplug_timer
.data
= (unsigned long)q
;
166 blk_set_default_limits(&q
->limits
);
169 * If the caller didn't supply a lock, fall back to our embedded
173 q
->queue_lock
= &q
->__queue_lock
;
176 * by default assume old behaviour and bounce for any highmem page
178 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
180 EXPORT_SYMBOL(blk_queue_make_request
);
183 * blk_queue_bounce_limit - set bounce buffer limit for queue
184 * @q: the request queue for the device
185 * @dma_mask: the maximum address the device can handle
188 * Different hardware can have different requirements as to what pages
189 * it can do I/O directly to. A low level driver can call
190 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
191 * buffers for doing I/O to pages residing above @dma_mask.
193 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_mask
)
195 unsigned long b_pfn
= dma_mask
>> PAGE_SHIFT
;
198 q
->bounce_gfp
= GFP_NOIO
;
199 #if BITS_PER_LONG == 64
201 * Assume anything <= 4GB can be handled by IOMMU. Actually
202 * some IOMMUs can handle everything, but I don't know of a
203 * way to test this here.
205 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
207 q
->limits
.bounce_pfn
= max_low_pfn
;
209 if (b_pfn
< blk_max_low_pfn
)
211 q
->limits
.bounce_pfn
= b_pfn
;
214 init_emergency_isa_pool();
215 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
216 q
->limits
.bounce_pfn
= b_pfn
;
219 EXPORT_SYMBOL(blk_queue_bounce_limit
);
222 * blk_queue_max_sectors - set max sectors for a request for this queue
223 * @q: the request queue for the device
224 * @max_sectors: max sectors in the usual 512b unit
227 * Enables a low level driver to set an upper limit on the size of
230 void blk_queue_max_sectors(struct request_queue
*q
, unsigned int max_sectors
)
232 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
233 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
234 printk(KERN_INFO
"%s: set to minimum %d\n",
235 __func__
, max_sectors
);
238 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
239 q
->limits
.max_hw_sectors
= q
->limits
.max_sectors
= max_sectors
;
241 q
->limits
.max_sectors
= BLK_DEF_MAX_SECTORS
;
242 q
->limits
.max_hw_sectors
= max_sectors
;
245 EXPORT_SYMBOL(blk_queue_max_sectors
);
247 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_sectors
)
249 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
250 q
->limits
.max_hw_sectors
= BLK_DEF_MAX_SECTORS
;
252 q
->limits
.max_hw_sectors
= max_sectors
;
254 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
257 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
258 * @q: the request queue for the device
259 * @max_segments: max number of segments
262 * Enables a low level driver to set an upper limit on the number of
263 * physical data segments in a request. This would be the largest sized
264 * scatter list the driver could handle.
266 void blk_queue_max_phys_segments(struct request_queue
*q
,
267 unsigned short max_segments
)
271 printk(KERN_INFO
"%s: set to minimum %d\n",
272 __func__
, max_segments
);
275 q
->limits
.max_phys_segments
= max_segments
;
277 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
280 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
281 * @q: the request queue for the device
282 * @max_segments: max number of segments
285 * Enables a low level driver to set an upper limit on the number of
286 * hw data segments in a request. This would be the largest number of
287 * address/length pairs the host adapter can actually give at once
290 void blk_queue_max_hw_segments(struct request_queue
*q
,
291 unsigned short max_segments
)
295 printk(KERN_INFO
"%s: set to minimum %d\n",
296 __func__
, max_segments
);
299 q
->limits
.max_hw_segments
= max_segments
;
301 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
304 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
305 * @q: the request queue for the device
306 * @max_size: max size of segment in bytes
309 * Enables a low level driver to set an upper limit on the size of a
312 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
314 if (max_size
< PAGE_CACHE_SIZE
) {
315 max_size
= PAGE_CACHE_SIZE
;
316 printk(KERN_INFO
"%s: set to minimum %d\n",
320 q
->limits
.max_segment_size
= max_size
;
322 EXPORT_SYMBOL(blk_queue_max_segment_size
);
325 * blk_queue_logical_block_size - set logical block size for the queue
326 * @q: the request queue for the device
327 * @size: the logical block size, in bytes
330 * This should be set to the lowest possible block size that the
331 * storage device can address. The default of 512 covers most
334 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
336 q
->limits
.logical_block_size
= size
;
338 if (q
->limits
.physical_block_size
< size
)
339 q
->limits
.physical_block_size
= size
;
341 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
342 q
->limits
.io_min
= q
->limits
.physical_block_size
;
344 EXPORT_SYMBOL(blk_queue_logical_block_size
);
347 * blk_queue_physical_block_size - set physical block size for the queue
348 * @q: the request queue for the device
349 * @size: the physical block size, in bytes
352 * This should be set to the lowest possible sector size that the
353 * hardware can operate on without reverting to read-modify-write
356 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned short size
)
358 q
->limits
.physical_block_size
= size
;
360 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
361 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
363 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
364 q
->limits
.io_min
= q
->limits
.physical_block_size
;
366 EXPORT_SYMBOL(blk_queue_physical_block_size
);
369 * blk_queue_alignment_offset - set physical block alignment offset
370 * @q: the request queue for the device
371 * @offset: alignment offset in bytes
374 * Some devices are naturally misaligned to compensate for things like
375 * the legacy DOS partition table 63-sector offset. Low-level drivers
376 * should call this function for devices whose first sector is not
379 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
381 q
->limits
.alignment_offset
=
382 offset
& (q
->limits
.physical_block_size
- 1);
383 q
->limits
.misaligned
= 0;
385 EXPORT_SYMBOL(blk_queue_alignment_offset
);
388 * blk_limits_io_min - set minimum request size for a device
389 * @limits: the queue limits
390 * @min: smallest I/O size in bytes
393 * Some devices have an internal block size bigger than the reported
394 * hardware sector size. This function can be used to signal the
395 * smallest I/O the device can perform without incurring a performance
398 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
400 limits
->io_min
= min
;
402 if (limits
->io_min
< limits
->logical_block_size
)
403 limits
->io_min
= limits
->logical_block_size
;
405 if (limits
->io_min
< limits
->physical_block_size
)
406 limits
->io_min
= limits
->physical_block_size
;
408 EXPORT_SYMBOL(blk_limits_io_min
);
411 * blk_queue_io_min - set minimum request size for the queue
412 * @q: the request queue for the device
413 * @min: smallest I/O size in bytes
416 * Storage devices may report a granularity or preferred minimum I/O
417 * size which is the smallest request the device can perform without
418 * incurring a performance penalty. For disk drives this is often the
419 * physical block size. For RAID arrays it is often the stripe chunk
420 * size. A properly aligned multiple of minimum_io_size is the
421 * preferred request size for workloads where a high number of I/O
422 * operations is desired.
424 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
426 blk_limits_io_min(&q
->limits
, min
);
428 EXPORT_SYMBOL(blk_queue_io_min
);
431 * blk_limits_io_opt - set optimal request size for a device
432 * @limits: the queue limits
433 * @opt: smallest I/O size in bytes
436 * Storage devices may report an optimal I/O size, which is the
437 * device's preferred unit for sustained I/O. This is rarely reported
438 * for disk drives. For RAID arrays it is usually the stripe width or
439 * the internal track size. A properly aligned multiple of
440 * optimal_io_size is the preferred request size for workloads where
441 * sustained throughput is desired.
443 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
445 limits
->io_opt
= opt
;
447 EXPORT_SYMBOL(blk_limits_io_opt
);
450 * blk_queue_io_opt - set optimal request size for the queue
451 * @q: the request queue for the device
452 * @opt: optimal request size in bytes
455 * Storage devices may report an optimal I/O size, which is the
456 * device's preferred unit for sustained I/O. This is rarely reported
457 * for disk drives. For RAID arrays it is usually the stripe width or
458 * the internal track size. A properly aligned multiple of
459 * optimal_io_size is the preferred request size for workloads where
460 * sustained throughput is desired.
462 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
464 blk_limits_io_opt(&q
->limits
, opt
);
466 EXPORT_SYMBOL(blk_queue_io_opt
);
469 * Returns the minimum that is _not_ zero, unless both are zero.
471 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
474 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
475 * @t: the stacking driver (top)
476 * @b: the underlying device (bottom)
478 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
480 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
484 else if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
)) {
486 spin_lock_irqsave(t
->queue_lock
, flags
);
487 queue_flag_clear(QUEUE_FLAG_CLUSTER
, t
);
488 spin_unlock_irqrestore(t
->queue_lock
, flags
);
491 EXPORT_SYMBOL(blk_queue_stack_limits
);
494 * blk_stack_limits - adjust queue_limits for stacked devices
495 * @t: the stacking driver limits (top)
496 * @b: the underlying queue limits (bottom)
497 * @offset: offset to beginning of data within component device
500 * Merges two queue_limit structs. Returns 0 if alignment didn't
501 * change. Returns -1 if adding the bottom device caused
504 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
507 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
508 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
509 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
511 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
512 b
->seg_boundary_mask
);
514 t
->max_phys_segments
= min_not_zero(t
->max_phys_segments
,
515 b
->max_phys_segments
);
517 t
->max_hw_segments
= min_not_zero(t
->max_hw_segments
,
520 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
521 b
->max_segment_size
);
523 t
->logical_block_size
= max(t
->logical_block_size
,
524 b
->logical_block_size
);
526 t
->physical_block_size
= max(t
->physical_block_size
,
527 b
->physical_block_size
);
529 t
->io_min
= max(t
->io_min
, b
->io_min
);
530 t
->no_cluster
|= b
->no_cluster
;
532 /* Bottom device offset aligned? */
534 (offset
& (b
->physical_block_size
- 1)) != b
->alignment_offset
) {
539 /* If top has no alignment offset, inherit from bottom */
540 if (!t
->alignment_offset
)
541 t
->alignment_offset
=
542 b
->alignment_offset
& (b
->physical_block_size
- 1);
544 /* Top device aligned on logical block boundary? */
545 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
550 /* Find lcm() of optimal I/O size */
551 if (t
->io_opt
&& b
->io_opt
)
552 t
->io_opt
= (t
->io_opt
* b
->io_opt
) / gcd(t
->io_opt
, b
->io_opt
);
554 t
->io_opt
= b
->io_opt
;
556 /* Verify that optimal I/O size is a multiple of io_min */
557 if (t
->io_min
&& t
->io_opt
% t
->io_min
)
562 EXPORT_SYMBOL(blk_stack_limits
);
565 * disk_stack_limits - adjust queue limits for stacked drivers
566 * @disk: MD/DM gendisk (top)
567 * @bdev: the underlying block device (bottom)
568 * @offset: offset to beginning of data within component device
571 * Merges the limits for two queues. Returns 0 if alignment
572 * didn't change. Returns -1 if adding the bottom device caused
575 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
578 struct request_queue
*t
= disk
->queue
;
579 struct request_queue
*b
= bdev_get_queue(bdev
);
581 offset
+= get_start_sect(bdev
) << 9;
583 if (blk_stack_limits(&t
->limits
, &b
->limits
, offset
) < 0) {
584 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
586 disk_name(disk
, 0, top
);
587 bdevname(bdev
, bottom
);
589 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
595 else if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
)) {
598 spin_lock_irqsave(t
->queue_lock
, flags
);
599 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
600 queue_flag_clear(QUEUE_FLAG_CLUSTER
, t
);
601 spin_unlock_irqrestore(t
->queue_lock
, flags
);
604 EXPORT_SYMBOL(disk_stack_limits
);
607 * blk_queue_dma_pad - set pad mask
608 * @q: the request queue for the device
613 * Appending pad buffer to a request modifies the last entry of a
614 * scatter list such that it includes the pad buffer.
616 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
618 q
->dma_pad_mask
= mask
;
620 EXPORT_SYMBOL(blk_queue_dma_pad
);
623 * blk_queue_update_dma_pad - update pad mask
624 * @q: the request queue for the device
627 * Update dma pad mask.
629 * Appending pad buffer to a request modifies the last entry of a
630 * scatter list such that it includes the pad buffer.
632 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
634 if (mask
> q
->dma_pad_mask
)
635 q
->dma_pad_mask
= mask
;
637 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
640 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
641 * @q: the request queue for the device
642 * @dma_drain_needed: fn which returns non-zero if drain is necessary
643 * @buf: physically contiguous buffer
644 * @size: size of the buffer in bytes
646 * Some devices have excess DMA problems and can't simply discard (or
647 * zero fill) the unwanted piece of the transfer. They have to have a
648 * real area of memory to transfer it into. The use case for this is
649 * ATAPI devices in DMA mode. If the packet command causes a transfer
650 * bigger than the transfer size some HBAs will lock up if there
651 * aren't DMA elements to contain the excess transfer. What this API
652 * does is adjust the queue so that the buf is always appended
653 * silently to the scatterlist.
655 * Note: This routine adjusts max_hw_segments to make room for
656 * appending the drain buffer. If you call
657 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
658 * calling this routine, you must set the limit to one fewer than your
659 * device can support otherwise there won't be room for the drain
662 int blk_queue_dma_drain(struct request_queue
*q
,
663 dma_drain_needed_fn
*dma_drain_needed
,
664 void *buf
, unsigned int size
)
666 if (queue_max_hw_segments(q
) < 2 || queue_max_phys_segments(q
) < 2)
668 /* make room for appending the drain */
669 blk_queue_max_hw_segments(q
, queue_max_hw_segments(q
) - 1);
670 blk_queue_max_phys_segments(q
, queue_max_phys_segments(q
) - 1);
671 q
->dma_drain_needed
= dma_drain_needed
;
672 q
->dma_drain_buffer
= buf
;
673 q
->dma_drain_size
= size
;
677 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
680 * blk_queue_segment_boundary - set boundary rules for segment merging
681 * @q: the request queue for the device
682 * @mask: the memory boundary mask
684 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
686 if (mask
< PAGE_CACHE_SIZE
- 1) {
687 mask
= PAGE_CACHE_SIZE
- 1;
688 printk(KERN_INFO
"%s: set to minimum %lx\n",
692 q
->limits
.seg_boundary_mask
= mask
;
694 EXPORT_SYMBOL(blk_queue_segment_boundary
);
697 * blk_queue_dma_alignment - set dma length and memory alignment
698 * @q: the request queue for the device
699 * @mask: alignment mask
702 * set required memory and length alignment for direct dma transactions.
703 * this is used when building direct io requests for the queue.
706 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
708 q
->dma_alignment
= mask
;
710 EXPORT_SYMBOL(blk_queue_dma_alignment
);
713 * blk_queue_update_dma_alignment - update dma length and memory alignment
714 * @q: the request queue for the device
715 * @mask: alignment mask
718 * update required memory and length alignment for direct dma transactions.
719 * If the requested alignment is larger than the current alignment, then
720 * the current queue alignment is updated to the new value, otherwise it
721 * is left alone. The design of this is to allow multiple objects
722 * (driver, device, transport etc) to set their respective
723 * alignments without having them interfere.
726 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
728 BUG_ON(mask
> PAGE_SIZE
);
730 if (mask
> q
->dma_alignment
)
731 q
->dma_alignment
= mask
;
733 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
735 static int __init
blk_settings_init(void)
737 blk_max_low_pfn
= max_low_pfn
- 1;
738 blk_max_pfn
= max_pfn
- 1;
741 subsys_initcall(blk_settings_init
);