4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/memcontrol.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h>
50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h>
53 #include <linux/tty.h>
54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h>
57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h>
65 * Protected counters by write_lock_irq(&tasklist_lock)
67 unsigned long total_forks
; /* Handle normal Linux uptimes. */
68 int nr_threads
; /* The idle threads do not count.. */
70 int max_threads
; /* tunable limit on nr_threads */
72 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
74 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
76 int nr_processes(void)
81 for_each_online_cpu(cpu
)
82 total
+= per_cpu(process_counts
, cpu
);
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache
*task_struct_cachep
;
93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache
*signal_cachep
;
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache
*sighand_cachep
;
99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache
*files_cachep
;
102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache
*fs_cachep
;
105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache
*vm_area_cachep
;
108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache
*mm_cachep
;
111 void free_task(struct task_struct
*tsk
)
113 prop_local_destroy_single(&tsk
->dirties
);
114 free_thread_info(tsk
->stack
);
115 rt_mutex_debug_task_free(tsk
);
116 free_task_struct(tsk
);
118 EXPORT_SYMBOL(free_task
);
120 void __put_task_struct(struct task_struct
*tsk
)
122 WARN_ON(!tsk
->exit_state
);
123 WARN_ON(atomic_read(&tsk
->usage
));
124 WARN_ON(tsk
== current
);
126 security_task_free(tsk
);
128 put_group_info(tsk
->group_info
);
129 delayacct_tsk_free(tsk
);
131 if (!profile_handoff_task(tsk
))
135 void __init
fork_init(unsigned long mempages
)
137 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
138 #ifndef ARCH_MIN_TASKALIGN
139 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
141 /* create a slab on which task_structs can be allocated */
143 kmem_cache_create("task_struct", sizeof(struct task_struct
),
144 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
);
148 * The default maximum number of threads is set to a safe
149 * value: the thread structures can take up at most half
152 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
155 * we need to allow at least 20 threads to boot a system
160 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
161 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
162 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
163 init_task
.signal
->rlim
[RLIMIT_NPROC
];
166 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
168 struct task_struct
*tsk
;
169 struct thread_info
*ti
;
172 prepare_to_copy(orig
);
174 tsk
= alloc_task_struct();
178 ti
= alloc_thread_info(tsk
);
180 free_task_struct(tsk
);
187 err
= prop_local_init_single(&tsk
->dirties
);
189 free_thread_info(ti
);
190 free_task_struct(tsk
);
194 setup_thread_stack(tsk
, orig
);
196 #ifdef CONFIG_CC_STACKPROTECTOR
197 tsk
->stack_canary
= get_random_int();
200 /* One for us, one for whoever does the "release_task()" (usually parent) */
201 atomic_set(&tsk
->usage
,2);
202 atomic_set(&tsk
->fs_excl
, 0);
203 #ifdef CONFIG_BLK_DEV_IO_TRACE
206 tsk
->splice_pipe
= NULL
;
211 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
213 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
214 struct rb_node
**rb_link
, *rb_parent
;
216 unsigned long charge
;
217 struct mempolicy
*pol
;
219 down_write(&oldmm
->mmap_sem
);
220 flush_cache_dup_mm(oldmm
);
222 * Not linked in yet - no deadlock potential:
224 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
228 mm
->mmap_cache
= NULL
;
229 mm
->free_area_cache
= oldmm
->mmap_base
;
230 mm
->cached_hole_size
= ~0UL;
232 cpus_clear(mm
->cpu_vm_mask
);
234 rb_link
= &mm
->mm_rb
.rb_node
;
238 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
241 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
242 long pages
= vma_pages(mpnt
);
243 mm
->total_vm
-= pages
;
244 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
249 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
250 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
251 if (security_vm_enough_memory(len
))
255 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
259 pol
= mpol_copy(vma_policy(mpnt
));
260 retval
= PTR_ERR(pol
);
262 goto fail_nomem_policy
;
263 vma_set_policy(tmp
, pol
);
264 tmp
->vm_flags
&= ~VM_LOCKED
;
270 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
272 if (tmp
->vm_flags
& VM_DENYWRITE
)
273 atomic_dec(&inode
->i_writecount
);
275 /* insert tmp into the share list, just after mpnt */
276 spin_lock(&file
->f_mapping
->i_mmap_lock
);
277 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
278 flush_dcache_mmap_lock(file
->f_mapping
);
279 vma_prio_tree_add(tmp
, mpnt
);
280 flush_dcache_mmap_unlock(file
->f_mapping
);
281 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
285 * Link in the new vma and copy the page table entries.
288 pprev
= &tmp
->vm_next
;
290 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
291 rb_link
= &tmp
->vm_rb
.rb_right
;
292 rb_parent
= &tmp
->vm_rb
;
295 retval
= copy_page_range(mm
, oldmm
, mpnt
);
297 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
298 tmp
->vm_ops
->open(tmp
);
303 /* a new mm has just been created */
304 arch_dup_mmap(oldmm
, mm
);
307 up_write(&mm
->mmap_sem
);
309 up_write(&oldmm
->mmap_sem
);
312 kmem_cache_free(vm_area_cachep
, tmp
);
315 vm_unacct_memory(charge
);
319 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
321 mm
->pgd
= pgd_alloc(mm
);
322 if (unlikely(!mm
->pgd
))
327 static inline void mm_free_pgd(struct mm_struct
* mm
)
329 pgd_free(mm
, mm
->pgd
);
332 #define dup_mmap(mm, oldmm) (0)
333 #define mm_alloc_pgd(mm) (0)
334 #define mm_free_pgd(mm)
335 #endif /* CONFIG_MMU */
337 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
339 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
340 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
342 #include <linux/init_task.h>
344 static struct mm_struct
* mm_init(struct mm_struct
* mm
, struct task_struct
*p
)
346 atomic_set(&mm
->mm_users
, 1);
347 atomic_set(&mm
->mm_count
, 1);
348 init_rwsem(&mm
->mmap_sem
);
349 INIT_LIST_HEAD(&mm
->mmlist
);
350 mm
->flags
= (current
->mm
) ? current
->mm
->flags
351 : MMF_DUMP_FILTER_DEFAULT
;
352 mm
->core_waiters
= 0;
354 set_mm_counter(mm
, file_rss
, 0);
355 set_mm_counter(mm
, anon_rss
, 0);
356 spin_lock_init(&mm
->page_table_lock
);
357 rwlock_init(&mm
->ioctx_list_lock
);
358 mm
->ioctx_list
= NULL
;
359 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
360 mm
->cached_hole_size
= ~0UL;
361 mm_init_cgroup(mm
, p
);
363 if (likely(!mm_alloc_pgd(mm
))) {
374 * Allocate and initialize an mm_struct.
376 struct mm_struct
* mm_alloc(void)
378 struct mm_struct
* mm
;
382 memset(mm
, 0, sizeof(*mm
));
383 mm
= mm_init(mm
, current
);
389 * Called when the last reference to the mm
390 * is dropped: either by a lazy thread or by
391 * mmput. Free the page directory and the mm.
393 void __mmdrop(struct mm_struct
*mm
)
395 BUG_ON(mm
== &init_mm
);
400 EXPORT_SYMBOL_GPL(__mmdrop
);
403 * Decrement the use count and release all resources for an mm.
405 void mmput(struct mm_struct
*mm
)
409 if (atomic_dec_and_test(&mm
->mm_users
)) {
412 if (!list_empty(&mm
->mmlist
)) {
413 spin_lock(&mmlist_lock
);
414 list_del(&mm
->mmlist
);
415 spin_unlock(&mmlist_lock
);
422 EXPORT_SYMBOL_GPL(mmput
);
425 * get_task_mm - acquire a reference to the task's mm
427 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
428 * this kernel workthread has transiently adopted a user mm with use_mm,
429 * to do its AIO) is not set and if so returns a reference to it, after
430 * bumping up the use count. User must release the mm via mmput()
431 * after use. Typically used by /proc and ptrace.
433 struct mm_struct
*get_task_mm(struct task_struct
*task
)
435 struct mm_struct
*mm
;
440 if (task
->flags
& PF_BORROWED_MM
)
443 atomic_inc(&mm
->mm_users
);
448 EXPORT_SYMBOL_GPL(get_task_mm
);
450 /* Please note the differences between mmput and mm_release.
451 * mmput is called whenever we stop holding onto a mm_struct,
452 * error success whatever.
454 * mm_release is called after a mm_struct has been removed
455 * from the current process.
457 * This difference is important for error handling, when we
458 * only half set up a mm_struct for a new process and need to restore
459 * the old one. Because we mmput the new mm_struct before
460 * restoring the old one. . .
461 * Eric Biederman 10 January 1998
463 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
465 struct completion
*vfork_done
= tsk
->vfork_done
;
467 /* Get rid of any cached register state */
468 deactivate_mm(tsk
, mm
);
470 /* notify parent sleeping on vfork() */
472 tsk
->vfork_done
= NULL
;
473 complete(vfork_done
);
477 * If we're exiting normally, clear a user-space tid field if
478 * requested. We leave this alone when dying by signal, to leave
479 * the value intact in a core dump, and to save the unnecessary
480 * trouble otherwise. Userland only wants this done for a sys_exit.
482 if (tsk
->clear_child_tid
483 && !(tsk
->flags
& PF_SIGNALED
)
484 && atomic_read(&mm
->mm_users
) > 1) {
485 u32 __user
* tidptr
= tsk
->clear_child_tid
;
486 tsk
->clear_child_tid
= NULL
;
489 * We don't check the error code - if userspace has
490 * not set up a proper pointer then tough luck.
493 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
498 * Allocate a new mm structure and copy contents from the
499 * mm structure of the passed in task structure.
501 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
503 struct mm_struct
*mm
, *oldmm
= current
->mm
;
513 memcpy(mm
, oldmm
, sizeof(*mm
));
515 /* Initializing for Swap token stuff */
516 mm
->token_priority
= 0;
517 mm
->last_interval
= 0;
519 if (!mm_init(mm
, tsk
))
522 if (init_new_context(tsk
, mm
))
525 err
= dup_mmap(mm
, oldmm
);
529 mm
->hiwater_rss
= get_mm_rss(mm
);
530 mm
->hiwater_vm
= mm
->total_vm
;
542 * If init_new_context() failed, we cannot use mmput() to free the mm
543 * because it calls destroy_context()
550 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
552 struct mm_struct
* mm
, *oldmm
;
555 tsk
->min_flt
= tsk
->maj_flt
= 0;
556 tsk
->nvcsw
= tsk
->nivcsw
= 0;
559 tsk
->active_mm
= NULL
;
562 * Are we cloning a kernel thread?
564 * We need to steal a active VM for that..
570 if (clone_flags
& CLONE_VM
) {
571 atomic_inc(&oldmm
->mm_users
);
582 /* Initializing for Swap token stuff */
583 mm
->token_priority
= 0;
584 mm
->last_interval
= 0;
594 static struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
596 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
597 /* We don't need to lock fs - think why ;-) */
599 atomic_set(&fs
->count
, 1);
600 rwlock_init(&fs
->lock
);
601 fs
->umask
= old
->umask
;
602 read_lock(&old
->lock
);
603 fs
->root
= old
->root
;
604 path_get(&old
->root
);
607 if (old
->altroot
.dentry
) {
608 fs
->altroot
= old
->altroot
;
609 path_get(&old
->altroot
);
611 fs
->altroot
.mnt
= NULL
;
612 fs
->altroot
.dentry
= NULL
;
614 read_unlock(&old
->lock
);
619 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
621 return __copy_fs_struct(old
);
624 EXPORT_SYMBOL_GPL(copy_fs_struct
);
626 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
628 if (clone_flags
& CLONE_FS
) {
629 atomic_inc(¤t
->fs
->count
);
632 tsk
->fs
= __copy_fs_struct(current
->fs
);
638 static int count_open_files(struct fdtable
*fdt
)
640 int size
= fdt
->max_fds
;
643 /* Find the last open fd */
644 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
645 if (fdt
->open_fds
->fds_bits
[--i
])
648 i
= (i
+1) * 8 * sizeof(long);
652 static struct files_struct
*alloc_files(void)
654 struct files_struct
*newf
;
657 newf
= kmem_cache_alloc(files_cachep
, GFP_KERNEL
);
661 atomic_set(&newf
->count
, 1);
663 spin_lock_init(&newf
->file_lock
);
666 fdt
->max_fds
= NR_OPEN_DEFAULT
;
667 fdt
->close_on_exec
= (fd_set
*)&newf
->close_on_exec_init
;
668 fdt
->open_fds
= (fd_set
*)&newf
->open_fds_init
;
669 fdt
->fd
= &newf
->fd_array
[0];
670 INIT_RCU_HEAD(&fdt
->rcu
);
672 rcu_assign_pointer(newf
->fdt
, fdt
);
678 * Allocate a new files structure and copy contents from the
679 * passed in files structure.
680 * errorp will be valid only when the returned files_struct is NULL.
682 static struct files_struct
*dup_fd(struct files_struct
*oldf
, int *errorp
)
684 struct files_struct
*newf
;
685 struct file
**old_fds
, **new_fds
;
686 int open_files
, size
, i
;
687 struct fdtable
*old_fdt
, *new_fdt
;
690 newf
= alloc_files();
694 spin_lock(&oldf
->file_lock
);
695 old_fdt
= files_fdtable(oldf
);
696 new_fdt
= files_fdtable(newf
);
697 open_files
= count_open_files(old_fdt
);
700 * Check whether we need to allocate a larger fd array and fd set.
701 * Note: we're not a clone task, so the open count won't change.
703 if (open_files
> new_fdt
->max_fds
) {
704 new_fdt
->max_fds
= 0;
705 spin_unlock(&oldf
->file_lock
);
706 spin_lock(&newf
->file_lock
);
707 *errorp
= expand_files(newf
, open_files
-1);
708 spin_unlock(&newf
->file_lock
);
711 new_fdt
= files_fdtable(newf
);
713 * Reacquire the oldf lock and a pointer to its fd table
714 * who knows it may have a new bigger fd table. We need
715 * the latest pointer.
717 spin_lock(&oldf
->file_lock
);
718 old_fdt
= files_fdtable(oldf
);
721 old_fds
= old_fdt
->fd
;
722 new_fds
= new_fdt
->fd
;
724 memcpy(new_fdt
->open_fds
->fds_bits
,
725 old_fdt
->open_fds
->fds_bits
, open_files
/8);
726 memcpy(new_fdt
->close_on_exec
->fds_bits
,
727 old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
729 for (i
= open_files
; i
!= 0; i
--) {
730 struct file
*f
= *old_fds
++;
735 * The fd may be claimed in the fd bitmap but not yet
736 * instantiated in the files array if a sibling thread
737 * is partway through open(). So make sure that this
738 * fd is available to the new process.
740 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
742 rcu_assign_pointer(*new_fds
++, f
);
744 spin_unlock(&oldf
->file_lock
);
746 /* compute the remainder to be cleared */
747 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
749 /* This is long word aligned thus could use a optimized version */
750 memset(new_fds
, 0, size
);
752 if (new_fdt
->max_fds
> open_files
) {
753 int left
= (new_fdt
->max_fds
-open_files
)/8;
754 int start
= open_files
/ (8 * sizeof(unsigned long));
756 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
757 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
763 kmem_cache_free(files_cachep
, newf
);
768 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
770 struct files_struct
*oldf
, *newf
;
774 * A background process may not have any files ...
776 oldf
= current
->files
;
780 if (clone_flags
& CLONE_FILES
) {
781 atomic_inc(&oldf
->count
);
786 * Note: we may be using current for both targets (See exec.c)
787 * This works because we cache current->files (old) as oldf. Don't
791 newf
= dup_fd(oldf
, &error
);
801 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
804 struct io_context
*ioc
= current
->io_context
;
809 * Share io context with parent, if CLONE_IO is set
811 if (clone_flags
& CLONE_IO
) {
812 tsk
->io_context
= ioc_task_link(ioc
);
813 if (unlikely(!tsk
->io_context
))
815 } else if (ioprio_valid(ioc
->ioprio
)) {
816 tsk
->io_context
= alloc_io_context(GFP_KERNEL
, -1);
817 if (unlikely(!tsk
->io_context
))
820 tsk
->io_context
->ioprio
= ioc
->ioprio
;
827 * Helper to unshare the files of the current task.
828 * We don't want to expose copy_files internals to
829 * the exec layer of the kernel.
832 int unshare_files(void)
834 struct files_struct
*files
= current
->files
;
839 /* This can race but the race causes us to copy when we don't
840 need to and drop the copy */
841 if(atomic_read(&files
->count
) == 1)
843 atomic_inc(&files
->count
);
846 rc
= copy_files(0, current
);
848 current
->files
= files
;
852 EXPORT_SYMBOL(unshare_files
);
854 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
856 struct sighand_struct
*sig
;
858 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
859 atomic_inc(¤t
->sighand
->count
);
862 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
863 rcu_assign_pointer(tsk
->sighand
, sig
);
866 atomic_set(&sig
->count
, 1);
867 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
871 void __cleanup_sighand(struct sighand_struct
*sighand
)
873 if (atomic_dec_and_test(&sighand
->count
))
874 kmem_cache_free(sighand_cachep
, sighand
);
877 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
879 struct signal_struct
*sig
;
882 if (clone_flags
& CLONE_THREAD
) {
883 atomic_inc(¤t
->signal
->count
);
884 atomic_inc(¤t
->signal
->live
);
887 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
892 ret
= copy_thread_group_keys(tsk
);
894 kmem_cache_free(signal_cachep
, sig
);
898 atomic_set(&sig
->count
, 1);
899 atomic_set(&sig
->live
, 1);
900 init_waitqueue_head(&sig
->wait_chldexit
);
902 sig
->group_exit_code
= 0;
903 sig
->group_exit_task
= NULL
;
904 sig
->group_stop_count
= 0;
905 sig
->curr_target
= NULL
;
906 init_sigpending(&sig
->shared_pending
);
907 INIT_LIST_HEAD(&sig
->posix_timers
);
909 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
910 sig
->it_real_incr
.tv64
= 0;
911 sig
->real_timer
.function
= it_real_fn
;
913 sig
->it_virt_expires
= cputime_zero
;
914 sig
->it_virt_incr
= cputime_zero
;
915 sig
->it_prof_expires
= cputime_zero
;
916 sig
->it_prof_incr
= cputime_zero
;
918 sig
->leader
= 0; /* session leadership doesn't inherit */
919 sig
->tty_old_pgrp
= NULL
;
921 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
922 sig
->gtime
= cputime_zero
;
923 sig
->cgtime
= cputime_zero
;
924 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
925 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
926 sig
->inblock
= sig
->oublock
= sig
->cinblock
= sig
->coublock
= 0;
927 sig
->sum_sched_runtime
= 0;
928 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
929 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
930 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
931 taskstats_tgid_init(sig
);
933 task_lock(current
->group_leader
);
934 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
935 task_unlock(current
->group_leader
);
937 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
939 * New sole thread in the process gets an expiry time
940 * of the whole CPU time limit.
942 tsk
->it_prof_expires
=
943 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
945 acct_init_pacct(&sig
->pacct
);
952 void __cleanup_signal(struct signal_struct
*sig
)
954 exit_thread_group_keys(sig
);
955 kmem_cache_free(signal_cachep
, sig
);
958 static void cleanup_signal(struct task_struct
*tsk
)
960 struct signal_struct
*sig
= tsk
->signal
;
962 atomic_dec(&sig
->live
);
964 if (atomic_dec_and_test(&sig
->count
))
965 __cleanup_signal(sig
);
968 static void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
970 unsigned long new_flags
= p
->flags
;
972 new_flags
&= ~PF_SUPERPRIV
;
973 new_flags
|= PF_FORKNOEXEC
;
974 if (!(clone_flags
& CLONE_PTRACE
))
976 p
->flags
= new_flags
;
977 clear_freeze_flag(p
);
980 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
982 current
->clear_child_tid
= tidptr
;
984 return task_pid_vnr(current
);
987 static void rt_mutex_init_task(struct task_struct
*p
)
989 spin_lock_init(&p
->pi_lock
);
990 #ifdef CONFIG_RT_MUTEXES
991 plist_head_init(&p
->pi_waiters
, &p
->pi_lock
);
992 p
->pi_blocked_on
= NULL
;
997 * This creates a new process as a copy of the old one,
998 * but does not actually start it yet.
1000 * It copies the registers, and all the appropriate
1001 * parts of the process environment (as per the clone
1002 * flags). The actual kick-off is left to the caller.
1004 static struct task_struct
*copy_process(unsigned long clone_flags
,
1005 unsigned long stack_start
,
1006 struct pt_regs
*regs
,
1007 unsigned long stack_size
,
1008 int __user
*child_tidptr
,
1012 struct task_struct
*p
;
1013 int cgroup_callbacks_done
= 0;
1015 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1016 return ERR_PTR(-EINVAL
);
1019 * Thread groups must share signals as well, and detached threads
1020 * can only be started up within the thread group.
1022 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1023 return ERR_PTR(-EINVAL
);
1026 * Shared signal handlers imply shared VM. By way of the above,
1027 * thread groups also imply shared VM. Blocking this case allows
1028 * for various simplifications in other code.
1030 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1031 return ERR_PTR(-EINVAL
);
1033 retval
= security_task_create(clone_flags
);
1038 p
= dup_task_struct(current
);
1042 rt_mutex_init_task(p
);
1044 #ifdef CONFIG_TRACE_IRQFLAGS
1045 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1046 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1049 if (atomic_read(&p
->user
->processes
) >=
1050 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
1051 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
1052 p
->user
!= current
->nsproxy
->user_ns
->root_user
)
1056 atomic_inc(&p
->user
->__count
);
1057 atomic_inc(&p
->user
->processes
);
1058 get_group_info(p
->group_info
);
1061 * If multiple threads are within copy_process(), then this check
1062 * triggers too late. This doesn't hurt, the check is only there
1063 * to stop root fork bombs.
1065 if (nr_threads
>= max_threads
)
1066 goto bad_fork_cleanup_count
;
1068 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1069 goto bad_fork_cleanup_count
;
1071 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
1072 goto bad_fork_cleanup_put_domain
;
1075 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1076 copy_flags(clone_flags
, p
);
1077 INIT_LIST_HEAD(&p
->children
);
1078 INIT_LIST_HEAD(&p
->sibling
);
1079 #ifdef CONFIG_PREEMPT_RCU
1080 p
->rcu_read_lock_nesting
= 0;
1081 p
->rcu_flipctr_idx
= 0;
1082 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1083 p
->vfork_done
= NULL
;
1084 spin_lock_init(&p
->alloc_lock
);
1086 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
1087 init_sigpending(&p
->pending
);
1089 p
->utime
= cputime_zero
;
1090 p
->stime
= cputime_zero
;
1091 p
->gtime
= cputime_zero
;
1092 p
->utimescaled
= cputime_zero
;
1093 p
->stimescaled
= cputime_zero
;
1094 p
->prev_utime
= cputime_zero
;
1095 p
->prev_stime
= cputime_zero
;
1097 #ifdef CONFIG_DETECT_SOFTLOCKUP
1098 p
->last_switch_count
= 0;
1099 p
->last_switch_timestamp
= 0;
1102 #ifdef CONFIG_TASK_XACCT
1103 p
->rchar
= 0; /* I/O counter: bytes read */
1104 p
->wchar
= 0; /* I/O counter: bytes written */
1105 p
->syscr
= 0; /* I/O counter: read syscalls */
1106 p
->syscw
= 0; /* I/O counter: write syscalls */
1108 task_io_accounting_init(p
);
1109 acct_clear_integrals(p
);
1111 p
->it_virt_expires
= cputime_zero
;
1112 p
->it_prof_expires
= cputime_zero
;
1113 p
->it_sched_expires
= 0;
1114 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
1115 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
1116 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
1118 p
->lock_depth
= -1; /* -1 = no lock */
1119 do_posix_clock_monotonic_gettime(&p
->start_time
);
1120 p
->real_start_time
= p
->start_time
;
1121 monotonic_to_bootbased(&p
->real_start_time
);
1122 #ifdef CONFIG_SECURITY
1125 p
->cap_bset
= current
->cap_bset
;
1126 p
->io_context
= NULL
;
1127 p
->audit_context
= NULL
;
1130 p
->mempolicy
= mpol_copy(p
->mempolicy
);
1131 if (IS_ERR(p
->mempolicy
)) {
1132 retval
= PTR_ERR(p
->mempolicy
);
1133 p
->mempolicy
= NULL
;
1134 goto bad_fork_cleanup_cgroup
;
1136 mpol_fix_fork_child_flag(p
);
1138 #ifdef CONFIG_TRACE_IRQFLAGS
1140 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1141 p
->hardirqs_enabled
= 1;
1143 p
->hardirqs_enabled
= 0;
1145 p
->hardirq_enable_ip
= 0;
1146 p
->hardirq_enable_event
= 0;
1147 p
->hardirq_disable_ip
= _THIS_IP_
;
1148 p
->hardirq_disable_event
= 0;
1149 p
->softirqs_enabled
= 1;
1150 p
->softirq_enable_ip
= _THIS_IP_
;
1151 p
->softirq_enable_event
= 0;
1152 p
->softirq_disable_ip
= 0;
1153 p
->softirq_disable_event
= 0;
1154 p
->hardirq_context
= 0;
1155 p
->softirq_context
= 0;
1157 #ifdef CONFIG_LOCKDEP
1158 p
->lockdep_depth
= 0; /* no locks held yet */
1159 p
->curr_chain_key
= 0;
1160 p
->lockdep_recursion
= 0;
1163 #ifdef CONFIG_DEBUG_MUTEXES
1164 p
->blocked_on
= NULL
; /* not blocked yet */
1167 /* Perform scheduler related setup. Assign this task to a CPU. */
1168 sched_fork(p
, clone_flags
);
1170 if ((retval
= security_task_alloc(p
)))
1171 goto bad_fork_cleanup_policy
;
1172 if ((retval
= audit_alloc(p
)))
1173 goto bad_fork_cleanup_security
;
1174 /* copy all the process information */
1175 if ((retval
= copy_semundo(clone_flags
, p
)))
1176 goto bad_fork_cleanup_audit
;
1177 if ((retval
= copy_files(clone_flags
, p
)))
1178 goto bad_fork_cleanup_semundo
;
1179 if ((retval
= copy_fs(clone_flags
, p
)))
1180 goto bad_fork_cleanup_files
;
1181 if ((retval
= copy_sighand(clone_flags
, p
)))
1182 goto bad_fork_cleanup_fs
;
1183 if ((retval
= copy_signal(clone_flags
, p
)))
1184 goto bad_fork_cleanup_sighand
;
1185 if ((retval
= copy_mm(clone_flags
, p
)))
1186 goto bad_fork_cleanup_signal
;
1187 if ((retval
= copy_keys(clone_flags
, p
)))
1188 goto bad_fork_cleanup_mm
;
1189 if ((retval
= copy_namespaces(clone_flags
, p
)))
1190 goto bad_fork_cleanup_keys
;
1191 if ((retval
= copy_io(clone_flags
, p
)))
1192 goto bad_fork_cleanup_namespaces
;
1193 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1195 goto bad_fork_cleanup_io
;
1197 if (pid
!= &init_struct_pid
) {
1199 pid
= alloc_pid(task_active_pid_ns(p
));
1201 goto bad_fork_cleanup_io
;
1203 if (clone_flags
& CLONE_NEWPID
) {
1204 retval
= pid_ns_prepare_proc(task_active_pid_ns(p
));
1206 goto bad_fork_free_pid
;
1210 p
->pid
= pid_nr(pid
);
1212 if (clone_flags
& CLONE_THREAD
)
1213 p
->tgid
= current
->tgid
;
1215 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1217 * Clear TID on mm_release()?
1219 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1221 p
->robust_list
= NULL
;
1222 #ifdef CONFIG_COMPAT
1223 p
->compat_robust_list
= NULL
;
1225 INIT_LIST_HEAD(&p
->pi_state_list
);
1226 p
->pi_state_cache
= NULL
;
1229 * sigaltstack should be cleared when sharing the same VM
1231 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1232 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1235 * Syscall tracing should be turned off in the child regardless
1238 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1239 #ifdef TIF_SYSCALL_EMU
1240 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1242 clear_all_latency_tracing(p
);
1244 /* Our parent execution domain becomes current domain
1245 These must match for thread signalling to apply */
1246 p
->parent_exec_id
= p
->self_exec_id
;
1248 /* ok, now we should be set up.. */
1249 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1250 p
->pdeath_signal
= 0;
1254 * Ok, make it visible to the rest of the system.
1255 * We dont wake it up yet.
1257 p
->group_leader
= p
;
1258 INIT_LIST_HEAD(&p
->thread_group
);
1259 INIT_LIST_HEAD(&p
->ptrace_children
);
1260 INIT_LIST_HEAD(&p
->ptrace_list
);
1262 /* Now that the task is set up, run cgroup callbacks if
1263 * necessary. We need to run them before the task is visible
1264 * on the tasklist. */
1265 cgroup_fork_callbacks(p
);
1266 cgroup_callbacks_done
= 1;
1268 /* Need tasklist lock for parent etc handling! */
1269 write_lock_irq(&tasklist_lock
);
1272 * The task hasn't been attached yet, so its cpus_allowed mask will
1273 * not be changed, nor will its assigned CPU.
1275 * The cpus_allowed mask of the parent may have changed after it was
1276 * copied first time - so re-copy it here, then check the child's CPU
1277 * to ensure it is on a valid CPU (and if not, just force it back to
1278 * parent's CPU). This avoids alot of nasty races.
1280 p
->cpus_allowed
= current
->cpus_allowed
;
1281 p
->rt
.nr_cpus_allowed
= current
->rt
.nr_cpus_allowed
;
1282 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1283 !cpu_online(task_cpu(p
))))
1284 set_task_cpu(p
, smp_processor_id());
1286 /* CLONE_PARENT re-uses the old parent */
1287 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1288 p
->real_parent
= current
->real_parent
;
1290 p
->real_parent
= current
;
1291 p
->parent
= p
->real_parent
;
1293 spin_lock(¤t
->sighand
->siglock
);
1296 * Process group and session signals need to be delivered to just the
1297 * parent before the fork or both the parent and the child after the
1298 * fork. Restart if a signal comes in before we add the new process to
1299 * it's process group.
1300 * A fatal signal pending means that current will exit, so the new
1301 * thread can't slip out of an OOM kill (or normal SIGKILL).
1303 recalc_sigpending();
1304 if (signal_pending(current
)) {
1305 spin_unlock(¤t
->sighand
->siglock
);
1306 write_unlock_irq(&tasklist_lock
);
1307 retval
= -ERESTARTNOINTR
;
1308 goto bad_fork_free_pid
;
1311 if (clone_flags
& CLONE_THREAD
) {
1312 p
->group_leader
= current
->group_leader
;
1313 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1315 if (!cputime_eq(current
->signal
->it_virt_expires
,
1317 !cputime_eq(current
->signal
->it_prof_expires
,
1319 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1320 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1321 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1322 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1324 * Have child wake up on its first tick to check
1325 * for process CPU timers.
1327 p
->it_prof_expires
= jiffies_to_cputime(1);
1331 if (likely(p
->pid
)) {
1333 if (unlikely(p
->ptrace
& PT_PTRACED
))
1334 __ptrace_link(p
, current
->parent
);
1336 if (thread_group_leader(p
)) {
1337 if (clone_flags
& CLONE_NEWPID
)
1338 p
->nsproxy
->pid_ns
->child_reaper
= p
;
1340 p
->signal
->leader_pid
= pid
;
1341 p
->signal
->tty
= current
->signal
->tty
;
1342 set_task_pgrp(p
, task_pgrp_nr(current
));
1343 set_task_session(p
, task_session_nr(current
));
1344 attach_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1345 attach_pid(p
, PIDTYPE_SID
, task_session(current
));
1346 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1347 __get_cpu_var(process_counts
)++;
1349 attach_pid(p
, PIDTYPE_PID
, pid
);
1354 spin_unlock(¤t
->sighand
->siglock
);
1355 write_unlock_irq(&tasklist_lock
);
1356 proc_fork_connector(p
);
1357 cgroup_post_fork(p
);
1361 if (pid
!= &init_struct_pid
)
1363 bad_fork_cleanup_io
:
1364 put_io_context(p
->io_context
);
1365 bad_fork_cleanup_namespaces
:
1366 exit_task_namespaces(p
);
1367 bad_fork_cleanup_keys
:
1369 bad_fork_cleanup_mm
:
1372 bad_fork_cleanup_signal
:
1374 bad_fork_cleanup_sighand
:
1375 __cleanup_sighand(p
->sighand
);
1376 bad_fork_cleanup_fs
:
1377 exit_fs(p
); /* blocking */
1378 bad_fork_cleanup_files
:
1379 exit_files(p
); /* blocking */
1380 bad_fork_cleanup_semundo
:
1382 bad_fork_cleanup_audit
:
1384 bad_fork_cleanup_security
:
1385 security_task_free(p
);
1386 bad_fork_cleanup_policy
:
1388 mpol_free(p
->mempolicy
);
1389 bad_fork_cleanup_cgroup
:
1391 cgroup_exit(p
, cgroup_callbacks_done
);
1392 delayacct_tsk_free(p
);
1394 module_put(p
->binfmt
->module
);
1395 bad_fork_cleanup_put_domain
:
1396 module_put(task_thread_info(p
)->exec_domain
->module
);
1397 bad_fork_cleanup_count
:
1398 put_group_info(p
->group_info
);
1399 atomic_dec(&p
->user
->processes
);
1404 return ERR_PTR(retval
);
1407 noinline
struct pt_regs
* __cpuinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1409 memset(regs
, 0, sizeof(struct pt_regs
));
1413 struct task_struct
* __cpuinit
fork_idle(int cpu
)
1415 struct task_struct
*task
;
1416 struct pt_regs regs
;
1418 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
,
1421 init_idle(task
, cpu
);
1426 static int fork_traceflag(unsigned clone_flags
)
1428 if (clone_flags
& CLONE_UNTRACED
)
1430 else if (clone_flags
& CLONE_VFORK
) {
1431 if (current
->ptrace
& PT_TRACE_VFORK
)
1432 return PTRACE_EVENT_VFORK
;
1433 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1434 if (current
->ptrace
& PT_TRACE_CLONE
)
1435 return PTRACE_EVENT_CLONE
;
1436 } else if (current
->ptrace
& PT_TRACE_FORK
)
1437 return PTRACE_EVENT_FORK
;
1443 * Ok, this is the main fork-routine.
1445 * It copies the process, and if successful kick-starts
1446 * it and waits for it to finish using the VM if required.
1448 long do_fork(unsigned long clone_flags
,
1449 unsigned long stack_start
,
1450 struct pt_regs
*regs
,
1451 unsigned long stack_size
,
1452 int __user
*parent_tidptr
,
1453 int __user
*child_tidptr
)
1455 struct task_struct
*p
;
1460 * We hope to recycle these flags after 2.6.26
1462 if (unlikely(clone_flags
& CLONE_STOPPED
)) {
1463 static int __read_mostly count
= 100;
1465 if (count
> 0 && printk_ratelimit()) {
1466 char comm
[TASK_COMM_LEN
];
1469 printk(KERN_INFO
"fork(): process `%s' used deprecated "
1470 "clone flags 0x%lx\n",
1471 get_task_comm(comm
, current
),
1472 clone_flags
& CLONE_STOPPED
);
1476 if (unlikely(current
->ptrace
)) {
1477 trace
= fork_traceflag (clone_flags
);
1479 clone_flags
|= CLONE_PTRACE
;
1482 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
,
1483 child_tidptr
, NULL
);
1485 * Do this prior waking up the new thread - the thread pointer
1486 * might get invalid after that point, if the thread exits quickly.
1489 struct completion vfork
;
1491 nr
= task_pid_vnr(p
);
1493 if (clone_flags
& CLONE_PARENT_SETTID
)
1494 put_user(nr
, parent_tidptr
);
1496 if (clone_flags
& CLONE_VFORK
) {
1497 p
->vfork_done
= &vfork
;
1498 init_completion(&vfork
);
1501 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1503 * We'll start up with an immediate SIGSTOP.
1505 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1506 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1509 if (!(clone_flags
& CLONE_STOPPED
))
1510 wake_up_new_task(p
, clone_flags
);
1512 __set_task_state(p
, TASK_STOPPED
);
1514 if (unlikely (trace
)) {
1515 current
->ptrace_message
= nr
;
1516 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1519 if (clone_flags
& CLONE_VFORK
) {
1520 freezer_do_not_count();
1521 wait_for_completion(&vfork
);
1523 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
)) {
1524 current
->ptrace_message
= nr
;
1525 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1534 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1535 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1538 static void sighand_ctor(struct kmem_cache
*cachep
, void *data
)
1540 struct sighand_struct
*sighand
= data
;
1542 spin_lock_init(&sighand
->siglock
);
1543 init_waitqueue_head(&sighand
->signalfd_wqh
);
1546 void __init
proc_caches_init(void)
1548 sighand_cachep
= kmem_cache_create("sighand_cache",
1549 sizeof(struct sighand_struct
), 0,
1550 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
,
1552 signal_cachep
= kmem_cache_create("signal_cache",
1553 sizeof(struct signal_struct
), 0,
1554 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1555 files_cachep
= kmem_cache_create("files_cache",
1556 sizeof(struct files_struct
), 0,
1557 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1558 fs_cachep
= kmem_cache_create("fs_cache",
1559 sizeof(struct fs_struct
), 0,
1560 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1561 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1562 sizeof(struct vm_area_struct
), 0,
1564 mm_cachep
= kmem_cache_create("mm_struct",
1565 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1566 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1570 * Check constraints on flags passed to the unshare system call and
1571 * force unsharing of additional process context as appropriate.
1573 static void check_unshare_flags(unsigned long *flags_ptr
)
1576 * If unsharing a thread from a thread group, must also
1579 if (*flags_ptr
& CLONE_THREAD
)
1580 *flags_ptr
|= CLONE_VM
;
1583 * If unsharing vm, must also unshare signal handlers.
1585 if (*flags_ptr
& CLONE_VM
)
1586 *flags_ptr
|= CLONE_SIGHAND
;
1589 * If unsharing signal handlers and the task was created
1590 * using CLONE_THREAD, then must unshare the thread
1592 if ((*flags_ptr
& CLONE_SIGHAND
) &&
1593 (atomic_read(¤t
->signal
->count
) > 1))
1594 *flags_ptr
|= CLONE_THREAD
;
1597 * If unsharing namespace, must also unshare filesystem information.
1599 if (*flags_ptr
& CLONE_NEWNS
)
1600 *flags_ptr
|= CLONE_FS
;
1604 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1606 static int unshare_thread(unsigned long unshare_flags
)
1608 if (unshare_flags
& CLONE_THREAD
)
1615 * Unshare the filesystem structure if it is being shared
1617 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1619 struct fs_struct
*fs
= current
->fs
;
1621 if ((unshare_flags
& CLONE_FS
) &&
1622 (fs
&& atomic_read(&fs
->count
) > 1)) {
1623 *new_fsp
= __copy_fs_struct(current
->fs
);
1632 * Unsharing of sighand is not supported yet
1634 static int unshare_sighand(unsigned long unshare_flags
, struct sighand_struct
**new_sighp
)
1636 struct sighand_struct
*sigh
= current
->sighand
;
1638 if ((unshare_flags
& CLONE_SIGHAND
) && atomic_read(&sigh
->count
) > 1)
1645 * Unshare vm if it is being shared
1647 static int unshare_vm(unsigned long unshare_flags
, struct mm_struct
**new_mmp
)
1649 struct mm_struct
*mm
= current
->mm
;
1651 if ((unshare_flags
& CLONE_VM
) &&
1652 (mm
&& atomic_read(&mm
->mm_users
) > 1)) {
1660 * Unshare file descriptor table if it is being shared
1662 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1664 struct files_struct
*fd
= current
->files
;
1667 if ((unshare_flags
& CLONE_FILES
) &&
1668 (fd
&& atomic_read(&fd
->count
) > 1)) {
1669 *new_fdp
= dup_fd(fd
, &error
);
1678 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1681 static int unshare_semundo(unsigned long unshare_flags
, struct sem_undo_list
**new_ulistp
)
1683 if (unshare_flags
& CLONE_SYSVSEM
)
1690 * unshare allows a process to 'unshare' part of the process
1691 * context which was originally shared using clone. copy_*
1692 * functions used by do_fork() cannot be used here directly
1693 * because they modify an inactive task_struct that is being
1694 * constructed. Here we are modifying the current, active,
1697 asmlinkage
long sys_unshare(unsigned long unshare_flags
)
1700 struct fs_struct
*fs
, *new_fs
= NULL
;
1701 struct sighand_struct
*new_sigh
= NULL
;
1702 struct mm_struct
*mm
, *new_mm
= NULL
, *active_mm
= NULL
;
1703 struct files_struct
*fd
, *new_fd
= NULL
;
1704 struct sem_undo_list
*new_ulist
= NULL
;
1705 struct nsproxy
*new_nsproxy
= NULL
;
1707 check_unshare_flags(&unshare_flags
);
1709 /* Return -EINVAL for all unsupported flags */
1711 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1712 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1713 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWUSER
|
1715 goto bad_unshare_out
;
1717 if ((err
= unshare_thread(unshare_flags
)))
1718 goto bad_unshare_out
;
1719 if ((err
= unshare_fs(unshare_flags
, &new_fs
)))
1720 goto bad_unshare_cleanup_thread
;
1721 if ((err
= unshare_sighand(unshare_flags
, &new_sigh
)))
1722 goto bad_unshare_cleanup_fs
;
1723 if ((err
= unshare_vm(unshare_flags
, &new_mm
)))
1724 goto bad_unshare_cleanup_sigh
;
1725 if ((err
= unshare_fd(unshare_flags
, &new_fd
)))
1726 goto bad_unshare_cleanup_vm
;
1727 if ((err
= unshare_semundo(unshare_flags
, &new_ulist
)))
1728 goto bad_unshare_cleanup_fd
;
1729 if ((err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
1731 goto bad_unshare_cleanup_semundo
;
1733 if (new_fs
|| new_mm
|| new_fd
|| new_ulist
|| new_nsproxy
) {
1736 switch_task_namespaces(current
, new_nsproxy
);
1744 current
->fs
= new_fs
;
1750 active_mm
= current
->active_mm
;
1751 current
->mm
= new_mm
;
1752 current
->active_mm
= new_mm
;
1753 activate_mm(active_mm
, new_mm
);
1758 fd
= current
->files
;
1759 current
->files
= new_fd
;
1763 task_unlock(current
);
1767 put_nsproxy(new_nsproxy
);
1769 bad_unshare_cleanup_semundo
:
1770 bad_unshare_cleanup_fd
:
1772 put_files_struct(new_fd
);
1774 bad_unshare_cleanup_vm
:
1778 bad_unshare_cleanup_sigh
:
1780 if (atomic_dec_and_test(&new_sigh
->count
))
1781 kmem_cache_free(sighand_cachep
, new_sigh
);
1783 bad_unshare_cleanup_fs
:
1785 put_fs_struct(new_fs
);
1787 bad_unshare_cleanup_thread
: