2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
8 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/compiler.h>
17 #include <linux/rbtree.h>
18 #include <linux/interrupt.h>
21 * See Documentation/block/as-iosched.txt
25 * max time before a read is submitted.
27 #define default_read_expire (HZ / 8)
30 * ditto for writes, these limits are not hard, even
31 * if the disk is capable of satisfying them.
33 #define default_write_expire (HZ / 4)
36 * read_batch_expire describes how long we will allow a stream of reads to
37 * persist before looking to see whether it is time to switch over to writes.
39 #define default_read_batch_expire (HZ / 2)
42 * write_batch_expire describes how long we want a stream of writes to run for.
43 * This is not a hard limit, but a target we set for the auto-tuning thingy.
44 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
45 * a short amount of time...
47 #define default_write_batch_expire (HZ / 8)
50 * max time we may wait to anticipate a read (default around 6ms)
52 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
55 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
56 * however huge values tend to interfere and not decay fast enough. A program
57 * might be in a non-io phase of operation. Waiting on user input for example,
58 * or doing a lengthy computation. A small penalty can be justified there, and
59 * will still catch out those processes that constantly have large thinktimes.
61 #define MAX_THINKTIME (HZ/50UL)
63 /* Bits in as_io_context.state */
65 AS_TASK_RUNNING
=0, /* Process has not exited */
66 AS_TASK_IOSTARTED
, /* Process has started some IO */
67 AS_TASK_IORUNNING
, /* Process has completed some IO */
70 enum anticipation_status
{
71 ANTIC_OFF
=0, /* Not anticipating (normal operation) */
72 ANTIC_WAIT_REQ
, /* The last read has not yet completed */
73 ANTIC_WAIT_NEXT
, /* Currently anticipating a request vs
74 last read (which has completed) */
75 ANTIC_FINISHED
, /* Anticipating but have found a candidate
84 struct request_queue
*q
; /* the "owner" queue */
87 * requests (as_rq s) are present on both sort_list and fifo_list
89 struct rb_root sort_list
[2];
90 struct list_head fifo_list
[2];
92 struct request
*next_rq
[2]; /* next in sort order */
93 sector_t last_sector
[2]; /* last SYNC & ASYNC sectors */
95 unsigned long exit_prob
; /* probability a task will exit while
97 unsigned long exit_no_coop
; /* probablility an exited task will
98 not be part of a later cooperating
100 unsigned long new_ttime_total
; /* mean thinktime on new proc */
101 unsigned long new_ttime_mean
;
102 u64 new_seek_total
; /* mean seek on new proc */
103 sector_t new_seek_mean
;
105 unsigned long current_batch_expires
;
106 unsigned long last_check_fifo
[2];
107 int changed_batch
; /* 1: waiting for old batch to end */
108 int new_batch
; /* 1: waiting on first read complete */
109 int batch_data_dir
; /* current batch SYNC / ASYNC */
110 int write_batch_count
; /* max # of reqs in a write batch */
111 int current_write_count
; /* how many requests left this batch */
112 int write_batch_idled
; /* has the write batch gone idle? */
114 enum anticipation_status antic_status
;
115 unsigned long antic_start
; /* jiffies: when it started */
116 struct timer_list antic_timer
; /* anticipatory scheduling timer */
117 struct work_struct antic_work
; /* Deferred unplugging */
118 struct io_context
*io_context
; /* Identify the expected process */
119 int ioc_finished
; /* IO associated with io_context is finished */
123 * settings that change how the i/o scheduler behaves
125 unsigned long fifo_expire
[2];
126 unsigned long batch_expire
[2];
127 unsigned long antic_expire
;
134 AS_RQ_NEW
=0, /* New - not referenced and not on any lists */
135 AS_RQ_QUEUED
, /* In the request queue. It belongs to the
137 AS_RQ_DISPATCHED
, /* On the dispatch list. It belongs to the
139 AS_RQ_PRESCHED
, /* Debug poisoning for requests being used */
142 AS_RQ_POSTSCHED
, /* when they shouldn't be */
145 #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private)
146 #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2)
147 #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
149 static DEFINE_PER_CPU(unsigned long, as_ioc_count
);
150 static struct completion
*ioc_gone
;
151 static DEFINE_SPINLOCK(ioc_gone_lock
);
153 static void as_move_to_dispatch(struct as_data
*ad
, struct request
*rq
);
154 static void as_antic_stop(struct as_data
*ad
);
157 * IO Context helper functions
160 /* Called to deallocate the as_io_context */
161 static void free_as_io_context(struct as_io_context
*aic
)
164 elv_ioc_count_dec(as_ioc_count
);
167 * AS scheduler is exiting, grab exit lock and check
168 * the pending io context count. If it hits zero,
169 * complete ioc_gone and set it back to NULL.
171 spin_lock(&ioc_gone_lock
);
172 if (ioc_gone
&& !elv_ioc_count_read(as_ioc_count
)) {
176 spin_unlock(&ioc_gone_lock
);
180 static void as_trim(struct io_context
*ioc
)
182 spin_lock_irq(&ioc
->lock
);
184 free_as_io_context(ioc
->aic
);
186 spin_unlock_irq(&ioc
->lock
);
189 /* Called when the task exits */
190 static void exit_as_io_context(struct as_io_context
*aic
)
192 WARN_ON(!test_bit(AS_TASK_RUNNING
, &aic
->state
));
193 clear_bit(AS_TASK_RUNNING
, &aic
->state
);
196 static struct as_io_context
*alloc_as_io_context(void)
198 struct as_io_context
*ret
;
200 ret
= kmalloc(sizeof(*ret
), GFP_ATOMIC
);
202 ret
->dtor
= free_as_io_context
;
203 ret
->exit
= exit_as_io_context
;
204 ret
->state
= 1 << AS_TASK_RUNNING
;
205 atomic_set(&ret
->nr_queued
, 0);
206 atomic_set(&ret
->nr_dispatched
, 0);
207 spin_lock_init(&ret
->lock
);
208 ret
->ttime_total
= 0;
209 ret
->ttime_samples
= 0;
212 ret
->seek_samples
= 0;
214 elv_ioc_count_inc(as_ioc_count
);
221 * If the current task has no AS IO context then create one and initialise it.
222 * Then take a ref on the task's io context and return it.
224 static struct io_context
*as_get_io_context(int node
)
226 struct io_context
*ioc
= get_io_context(GFP_ATOMIC
, node
);
227 if (ioc
&& !ioc
->aic
) {
228 ioc
->aic
= alloc_as_io_context();
237 static void as_put_io_context(struct request
*rq
)
239 struct as_io_context
*aic
;
241 if (unlikely(!RQ_IOC(rq
)))
244 aic
= RQ_IOC(rq
)->aic
;
246 if (rq_is_sync(rq
) && aic
) {
249 spin_lock_irqsave(&aic
->lock
, flags
);
250 set_bit(AS_TASK_IORUNNING
, &aic
->state
);
251 aic
->last_end_request
= jiffies
;
252 spin_unlock_irqrestore(&aic
->lock
, flags
);
255 put_io_context(RQ_IOC(rq
));
259 * rb tree support functions
261 #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))])
263 static void as_add_rq_rb(struct as_data
*ad
, struct request
*rq
)
265 struct request
*alias
;
267 while ((unlikely(alias
= elv_rb_add(RQ_RB_ROOT(ad
, rq
), rq
)))) {
268 as_move_to_dispatch(ad
, alias
);
273 static inline void as_del_rq_rb(struct as_data
*ad
, struct request
*rq
)
275 elv_rb_del(RQ_RB_ROOT(ad
, rq
), rq
);
279 * IO Scheduler proper
282 #define MAXBACK (1024 * 1024) /*
283 * Maximum distance the disk will go backward
287 #define BACK_PENALTY 2
290 * as_choose_req selects the preferred one of two requests of the same data_dir
291 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
293 static struct request
*
294 as_choose_req(struct as_data
*ad
, struct request
*rq1
, struct request
*rq2
)
297 sector_t last
, s1
, s2
, d1
, d2
;
298 int r1_wrap
=0, r2_wrap
=0; /* requests are behind the disk head */
299 const sector_t maxback
= MAXBACK
;
301 if (rq1
== NULL
|| rq1
== rq2
)
306 data_dir
= rq_is_sync(rq1
);
308 last
= ad
->last_sector
[data_dir
];
309 s1
= blk_rq_pos(rq1
);
310 s2
= blk_rq_pos(rq2
);
312 BUG_ON(data_dir
!= rq_is_sync(rq2
));
315 * Strict one way elevator _except_ in the case where we allow
316 * short backward seeks which are biased as twice the cost of a
317 * similar forward seek.
321 else if (s1
+maxback
>= last
)
322 d1
= (last
- s1
)*BACK_PENALTY
;
325 d1
= 0; /* shut up, gcc */
330 else if (s2
+maxback
>= last
)
331 d2
= (last
- s2
)*BACK_PENALTY
;
337 /* Found required data */
338 if (!r1_wrap
&& r2_wrap
)
340 else if (!r2_wrap
&& r1_wrap
)
342 else if (r1_wrap
&& r2_wrap
) {
343 /* both behind the head */
350 /* Both requests in front of the head */
364 * as_find_next_rq finds the next request after @prev in elevator order.
365 * this with as_choose_req form the basis for how the scheduler chooses
366 * what request to process next. Anticipation works on top of this.
368 static struct request
*
369 as_find_next_rq(struct as_data
*ad
, struct request
*last
)
371 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
372 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
373 struct request
*next
= NULL
, *prev
= NULL
;
375 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
378 prev
= rb_entry_rq(rbprev
);
381 next
= rb_entry_rq(rbnext
);
383 const int data_dir
= rq_is_sync(last
);
385 rbnext
= rb_first(&ad
->sort_list
[data_dir
]);
386 if (rbnext
&& rbnext
!= &last
->rb_node
)
387 next
= rb_entry_rq(rbnext
);
390 return as_choose_req(ad
, next
, prev
);
394 * anticipatory scheduling functions follow
398 * as_antic_expired tells us when we have anticipated too long.
399 * The funny "absolute difference" math on the elapsed time is to handle
400 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
402 static int as_antic_expired(struct as_data
*ad
)
406 delta_jif
= jiffies
- ad
->antic_start
;
407 if (unlikely(delta_jif
< 0))
408 delta_jif
= -delta_jif
;
409 if (delta_jif
< ad
->antic_expire
)
416 * as_antic_waitnext starts anticipating that a nice request will soon be
417 * submitted. See also as_antic_waitreq
419 static void as_antic_waitnext(struct as_data
*ad
)
421 unsigned long timeout
;
423 BUG_ON(ad
->antic_status
!= ANTIC_OFF
424 && ad
->antic_status
!= ANTIC_WAIT_REQ
);
426 timeout
= ad
->antic_start
+ ad
->antic_expire
;
428 mod_timer(&ad
->antic_timer
, timeout
);
430 ad
->antic_status
= ANTIC_WAIT_NEXT
;
434 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
435 * until the request that we're anticipating on has finished. This means we
436 * are timing from when the candidate process wakes up hopefully.
438 static void as_antic_waitreq(struct as_data
*ad
)
440 BUG_ON(ad
->antic_status
== ANTIC_FINISHED
);
441 if (ad
->antic_status
== ANTIC_OFF
) {
442 if (!ad
->io_context
|| ad
->ioc_finished
)
443 as_antic_waitnext(ad
);
445 ad
->antic_status
= ANTIC_WAIT_REQ
;
450 * This is called directly by the functions in this file to stop anticipation.
451 * We kill the timer and schedule a call to the request_fn asap.
453 static void as_antic_stop(struct as_data
*ad
)
455 int status
= ad
->antic_status
;
457 if (status
== ANTIC_WAIT_REQ
|| status
== ANTIC_WAIT_NEXT
) {
458 if (status
== ANTIC_WAIT_NEXT
)
459 del_timer(&ad
->antic_timer
);
460 ad
->antic_status
= ANTIC_FINISHED
;
461 /* see as_work_handler */
462 kblockd_schedule_work(ad
->q
, &ad
->antic_work
);
467 * as_antic_timeout is the timer function set by as_antic_waitnext.
469 static void as_antic_timeout(unsigned long data
)
471 struct request_queue
*q
= (struct request_queue
*)data
;
472 struct as_data
*ad
= q
->elevator
->elevator_data
;
475 spin_lock_irqsave(q
->queue_lock
, flags
);
476 if (ad
->antic_status
== ANTIC_WAIT_REQ
477 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
478 struct as_io_context
*aic
;
479 spin_lock(&ad
->io_context
->lock
);
480 aic
= ad
->io_context
->aic
;
482 ad
->antic_status
= ANTIC_FINISHED
;
483 kblockd_schedule_work(q
, &ad
->antic_work
);
485 if (aic
->ttime_samples
== 0) {
486 /* process anticipated on has exited or timed out*/
487 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
489 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
490 /* process not "saved" by a cooperating request */
491 ad
->exit_no_coop
= (7*ad
->exit_no_coop
+ 256)/8;
493 spin_unlock(&ad
->io_context
->lock
);
495 spin_unlock_irqrestore(q
->queue_lock
, flags
);
498 static void as_update_thinktime(struct as_data
*ad
, struct as_io_context
*aic
,
501 /* fixed point: 1.0 == 1<<8 */
502 if (aic
->ttime_samples
== 0) {
503 ad
->new_ttime_total
= (7*ad
->new_ttime_total
+ 256*ttime
) / 8;
504 ad
->new_ttime_mean
= ad
->new_ttime_total
/ 256;
506 ad
->exit_prob
= (7*ad
->exit_prob
)/8;
508 aic
->ttime_samples
= (7*aic
->ttime_samples
+ 256) / 8;
509 aic
->ttime_total
= (7*aic
->ttime_total
+ 256*ttime
) / 8;
510 aic
->ttime_mean
= (aic
->ttime_total
+ 128) / aic
->ttime_samples
;
513 static void as_update_seekdist(struct as_data
*ad
, struct as_io_context
*aic
,
518 if (aic
->seek_samples
== 0) {
519 ad
->new_seek_total
= (7*ad
->new_seek_total
+ 256*(u64
)sdist
)/8;
520 ad
->new_seek_mean
= ad
->new_seek_total
/ 256;
524 * Don't allow the seek distance to get too large from the
525 * odd fragment, pagein, etc
527 if (aic
->seek_samples
<= 60) /* second&third seek */
528 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*1024);
530 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*64);
532 aic
->seek_samples
= (7*aic
->seek_samples
+ 256) / 8;
533 aic
->seek_total
= (7*aic
->seek_total
+ (u64
)256*sdist
) / 8;
534 total
= aic
->seek_total
+ (aic
->seek_samples
/2);
535 do_div(total
, aic
->seek_samples
);
536 aic
->seek_mean
= (sector_t
)total
;
540 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
541 * updates @aic->ttime_mean based on that. It is called when a new
544 static void as_update_iohist(struct as_data
*ad
, struct as_io_context
*aic
,
547 int data_dir
= rq_is_sync(rq
);
548 unsigned long thinktime
= 0;
554 if (data_dir
== BLK_RW_SYNC
) {
555 unsigned long in_flight
= atomic_read(&aic
->nr_queued
)
556 + atomic_read(&aic
->nr_dispatched
);
557 spin_lock(&aic
->lock
);
558 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
) ||
559 test_bit(AS_TASK_IOSTARTED
, &aic
->state
)) {
560 /* Calculate read -> read thinktime */
561 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
)
563 thinktime
= jiffies
- aic
->last_end_request
;
564 thinktime
= min(thinktime
, MAX_THINKTIME
-1);
566 as_update_thinktime(ad
, aic
, thinktime
);
568 /* Calculate read -> read seek distance */
569 if (aic
->last_request_pos
< blk_rq_pos(rq
))
570 seek_dist
= blk_rq_pos(rq
) -
571 aic
->last_request_pos
;
573 seek_dist
= aic
->last_request_pos
-
575 as_update_seekdist(ad
, aic
, seek_dist
);
577 aic
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
578 set_bit(AS_TASK_IOSTARTED
, &aic
->state
);
579 spin_unlock(&aic
->lock
);
584 * as_close_req decides if one request is considered "close" to the
585 * previous one issued.
587 static int as_close_req(struct as_data
*ad
, struct as_io_context
*aic
,
590 unsigned long delay
; /* jiffies */
591 sector_t last
= ad
->last_sector
[ad
->batch_data_dir
];
592 sector_t next
= blk_rq_pos(rq
);
593 sector_t delta
; /* acceptable close offset (in sectors) */
596 if (ad
->antic_status
== ANTIC_OFF
|| !ad
->ioc_finished
)
599 delay
= jiffies
- ad
->antic_start
;
603 else if (delay
<= (20 * HZ
/ 1000) && delay
<= ad
->antic_expire
)
604 delta
= 8192 << delay
;
608 if ((last
<= next
+ (delta
>>1)) && (next
<= last
+ delta
))
616 if (aic
->seek_samples
== 0) {
618 * Process has just started IO. Use past statistics to
619 * gauge success possibility
621 if (ad
->new_seek_mean
> s
) {
622 /* this request is better than what we're expecting */
627 if (aic
->seek_mean
> s
) {
628 /* this request is better than what we're expecting */
637 * as_can_break_anticipation returns true if we have been anticipating this
640 * It also returns true if the process against which we are anticipating
641 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
642 * dispatch it ASAP, because we know that application will not be submitting
645 * If the task which has submitted the request has exited, break anticipation.
647 * If this task has queued some other IO, do not enter enticipation.
649 static int as_can_break_anticipation(struct as_data
*ad
, struct request
*rq
)
651 struct io_context
*ioc
;
652 struct as_io_context
*aic
;
654 ioc
= ad
->io_context
;
656 spin_lock(&ioc
->lock
);
658 if (rq
&& ioc
== RQ_IOC(rq
)) {
659 /* request from same process */
660 spin_unlock(&ioc
->lock
);
664 if (ad
->ioc_finished
&& as_antic_expired(ad
)) {
666 * In this situation status should really be FINISHED,
667 * however the timer hasn't had the chance to run yet.
669 spin_unlock(&ioc
->lock
);
675 spin_unlock(&ioc
->lock
);
679 if (atomic_read(&aic
->nr_queued
) > 0) {
680 /* process has more requests queued */
681 spin_unlock(&ioc
->lock
);
685 if (atomic_read(&aic
->nr_dispatched
) > 0) {
686 /* process has more requests dispatched */
687 spin_unlock(&ioc
->lock
);
691 if (rq
&& rq_is_sync(rq
) && as_close_req(ad
, aic
, rq
)) {
693 * Found a close request that is not one of ours.
695 * This makes close requests from another process update
696 * our IO history. Is generally useful when there are
697 * two or more cooperating processes working in the same
700 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
701 if (aic
->ttime_samples
== 0)
702 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
704 ad
->exit_no_coop
= (7*ad
->exit_no_coop
)/8;
707 as_update_iohist(ad
, aic
, rq
);
708 spin_unlock(&ioc
->lock
);
712 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
713 /* process anticipated on has exited */
714 if (aic
->ttime_samples
== 0)
715 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
717 if (ad
->exit_no_coop
> 128) {
718 spin_unlock(&ioc
->lock
);
723 if (aic
->ttime_samples
== 0) {
724 if (ad
->new_ttime_mean
> ad
->antic_expire
) {
725 spin_unlock(&ioc
->lock
);
728 if (ad
->exit_prob
* ad
->exit_no_coop
> 128*256) {
729 spin_unlock(&ioc
->lock
);
732 } else if (aic
->ttime_mean
> ad
->antic_expire
) {
733 /* the process thinks too much between requests */
734 spin_unlock(&ioc
->lock
);
737 spin_unlock(&ioc
->lock
);
742 * as_can_anticipate indicates whether we should either run rq
743 * or keep anticipating a better request.
745 static int as_can_anticipate(struct as_data
*ad
, struct request
*rq
)
747 #if 0 /* disable for now, we need to check tag level as well */
749 * SSD device without seek penalty, disable idling
751 if (blk_queue_nonrot(ad
->q
)) axman
757 * Last request submitted was a write
761 if (ad
->antic_status
== ANTIC_FINISHED
)
763 * Don't restart if we have just finished. Run the next request
767 if (as_can_break_anticipation(ad
, rq
))
769 * This request is a good candidate. Don't keep anticipating,
775 * OK from here, we haven't finished, and don't have a decent request!
776 * Status is either ANTIC_OFF so start waiting,
777 * ANTIC_WAIT_REQ so continue waiting for request to finish
778 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
785 * as_update_rq must be called whenever a request (rq) is added to
786 * the sort_list. This function keeps caches up to date, and checks if the
787 * request might be one we are "anticipating"
789 static void as_update_rq(struct as_data
*ad
, struct request
*rq
)
791 const int data_dir
= rq_is_sync(rq
);
793 /* keep the next_rq cache up to date */
794 ad
->next_rq
[data_dir
] = as_choose_req(ad
, rq
, ad
->next_rq
[data_dir
]);
797 * have we been anticipating this request?
798 * or does it come from the same process as the one we are anticipating
801 if (ad
->antic_status
== ANTIC_WAIT_REQ
802 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
803 if (as_can_break_anticipation(ad
, rq
))
809 * Gathers timings and resizes the write batch automatically
811 static void update_write_batch(struct as_data
*ad
)
813 unsigned long batch
= ad
->batch_expire
[BLK_RW_ASYNC
];
816 write_time
= (jiffies
- ad
->current_batch_expires
) + batch
;
820 if (write_time
> batch
&& !ad
->write_batch_idled
) {
821 if (write_time
> batch
* 3)
822 ad
->write_batch_count
/= 2;
824 ad
->write_batch_count
--;
825 } else if (write_time
< batch
&& ad
->current_write_count
== 0) {
826 if (batch
> write_time
* 3)
827 ad
->write_batch_count
*= 2;
829 ad
->write_batch_count
++;
832 if (ad
->write_batch_count
< 1)
833 ad
->write_batch_count
= 1;
837 * as_completed_request is to be called when a request has completed and
838 * returned something to the requesting process, be it an error or data.
840 static void as_completed_request(struct request_queue
*q
, struct request
*rq
)
842 struct as_data
*ad
= q
->elevator
->elevator_data
;
844 WARN_ON(!list_empty(&rq
->queuelist
));
846 if (RQ_STATE(rq
) != AS_RQ_REMOVED
) {
847 WARN(1, "rq->state %d\n", RQ_STATE(rq
));
851 if (ad
->changed_batch
&& ad
->nr_dispatched
== 1) {
852 ad
->current_batch_expires
= jiffies
+
853 ad
->batch_expire
[ad
->batch_data_dir
];
854 kblockd_schedule_work(q
, &ad
->antic_work
);
855 ad
->changed_batch
= 0;
857 if (ad
->batch_data_dir
== BLK_RW_SYNC
)
860 WARN_ON(ad
->nr_dispatched
== 0);
864 * Start counting the batch from when a request of that direction is
865 * actually serviced. This should help devices with big TCQ windows
866 * and writeback caches
868 if (ad
->new_batch
&& ad
->batch_data_dir
== rq_is_sync(rq
)) {
869 update_write_batch(ad
);
870 ad
->current_batch_expires
= jiffies
+
871 ad
->batch_expire
[BLK_RW_SYNC
];
875 if (ad
->io_context
== RQ_IOC(rq
) && ad
->io_context
) {
876 ad
->antic_start
= jiffies
;
877 ad
->ioc_finished
= 1;
878 if (ad
->antic_status
== ANTIC_WAIT_REQ
) {
880 * We were waiting on this request, now anticipate
883 as_antic_waitnext(ad
);
887 as_put_io_context(rq
);
889 RQ_SET_STATE(rq
, AS_RQ_POSTSCHED
);
893 * as_remove_queued_request removes a request from the pre dispatch queue
894 * without updating refcounts. It is expected the caller will drop the
895 * reference unless it replaces the request at somepart of the elevator
896 * (ie. the dispatch queue)
898 static void as_remove_queued_request(struct request_queue
*q
,
901 const int data_dir
= rq_is_sync(rq
);
902 struct as_data
*ad
= q
->elevator
->elevator_data
;
903 struct io_context
*ioc
;
905 WARN_ON(RQ_STATE(rq
) != AS_RQ_QUEUED
);
908 if (ioc
&& ioc
->aic
) {
909 BUG_ON(!atomic_read(&ioc
->aic
->nr_queued
));
910 atomic_dec(&ioc
->aic
->nr_queued
);
914 * Update the "next_rq" cache if we are about to remove its
917 if (ad
->next_rq
[data_dir
] == rq
)
918 ad
->next_rq
[data_dir
] = as_find_next_rq(ad
, rq
);
921 as_del_rq_rb(ad
, rq
);
925 * as_fifo_expired returns 0 if there are no expired requests on the fifo,
926 * 1 otherwise. It is ratelimited so that we only perform the check once per
927 * `fifo_expire' interval. Otherwise a large number of expired requests
928 * would create a hopeless seekstorm.
930 * See as_antic_expired comment.
932 static int as_fifo_expired(struct as_data
*ad
, int adir
)
937 delta_jif
= jiffies
- ad
->last_check_fifo
[adir
];
938 if (unlikely(delta_jif
< 0))
939 delta_jif
= -delta_jif
;
940 if (delta_jif
< ad
->fifo_expire
[adir
])
943 ad
->last_check_fifo
[adir
] = jiffies
;
945 if (list_empty(&ad
->fifo_list
[adir
]))
948 rq
= rq_entry_fifo(ad
->fifo_list
[adir
].next
);
950 return time_after(jiffies
, rq_fifo_time(rq
));
954 * as_batch_expired returns true if the current batch has expired. A batch
955 * is a set of reads or a set of writes.
957 static inline int as_batch_expired(struct as_data
*ad
)
959 if (ad
->changed_batch
|| ad
->new_batch
)
962 if (ad
->batch_data_dir
== BLK_RW_SYNC
)
963 /* TODO! add a check so a complete fifo gets written? */
964 return time_after(jiffies
, ad
->current_batch_expires
);
966 return time_after(jiffies
, ad
->current_batch_expires
)
967 || ad
->current_write_count
== 0;
971 * move an entry to dispatch queue
973 static void as_move_to_dispatch(struct as_data
*ad
, struct request
*rq
)
975 const int data_dir
= rq_is_sync(rq
);
977 BUG_ON(RB_EMPTY_NODE(&rq
->rb_node
));
980 ad
->antic_status
= ANTIC_OFF
;
983 * This has to be set in order to be correctly updated by
986 ad
->last_sector
[data_dir
] = blk_rq_pos(rq
) + blk_rq_sectors(rq
);
988 if (data_dir
== BLK_RW_SYNC
) {
989 struct io_context
*ioc
= RQ_IOC(rq
);
990 /* In case we have to anticipate after this */
991 copy_io_context(&ad
->io_context
, &ioc
);
993 if (ad
->io_context
) {
994 put_io_context(ad
->io_context
);
995 ad
->io_context
= NULL
;
998 if (ad
->current_write_count
!= 0)
999 ad
->current_write_count
--;
1001 ad
->ioc_finished
= 0;
1003 ad
->next_rq
[data_dir
] = as_find_next_rq(ad
, rq
);
1006 * take it off the sort and fifo list, add to dispatch queue
1008 as_remove_queued_request(ad
->q
, rq
);
1009 WARN_ON(RQ_STATE(rq
) != AS_RQ_QUEUED
);
1011 elv_dispatch_sort(ad
->q
, rq
);
1013 RQ_SET_STATE(rq
, AS_RQ_DISPATCHED
);
1014 if (RQ_IOC(rq
) && RQ_IOC(rq
)->aic
)
1015 atomic_inc(&RQ_IOC(rq
)->aic
->nr_dispatched
);
1016 ad
->nr_dispatched
++;
1020 * as_dispatch_request selects the best request according to
1021 * read/write expire, batch expire, etc, and moves it to the dispatch
1022 * queue. Returns 1 if a request was found, 0 otherwise.
1024 static int as_dispatch_request(struct request_queue
*q
, int force
)
1026 struct as_data
*ad
= q
->elevator
->elevator_data
;
1027 const int reads
= !list_empty(&ad
->fifo_list
[BLK_RW_SYNC
]);
1028 const int writes
= !list_empty(&ad
->fifo_list
[BLK_RW_ASYNC
]);
1031 if (unlikely(force
)) {
1033 * Forced dispatch, accounting is useless. Reset
1034 * accounting states and dump fifo_lists. Note that
1035 * batch_data_dir is reset to BLK_RW_SYNC to avoid
1036 * screwing write batch accounting as write batch
1037 * accounting occurs on W->R transition.
1041 ad
->batch_data_dir
= BLK_RW_SYNC
;
1042 ad
->changed_batch
= 0;
1045 while (ad
->next_rq
[BLK_RW_SYNC
]) {
1046 as_move_to_dispatch(ad
, ad
->next_rq
[BLK_RW_SYNC
]);
1049 ad
->last_check_fifo
[BLK_RW_SYNC
] = jiffies
;
1051 while (ad
->next_rq
[BLK_RW_ASYNC
]) {
1052 as_move_to_dispatch(ad
, ad
->next_rq
[BLK_RW_ASYNC
]);
1055 ad
->last_check_fifo
[BLK_RW_ASYNC
] = jiffies
;
1060 /* Signal that the write batch was uncontended, so we can't time it */
1061 if (ad
->batch_data_dir
== BLK_RW_ASYNC
&& !reads
) {
1062 if (ad
->current_write_count
== 0 || !writes
)
1063 ad
->write_batch_idled
= 1;
1066 if (!(reads
|| writes
)
1067 || ad
->antic_status
== ANTIC_WAIT_REQ
1068 || ad
->antic_status
== ANTIC_WAIT_NEXT
1069 || ad
->changed_batch
)
1072 if (!(reads
&& writes
&& as_batch_expired(ad
))) {
1074 * batch is still running or no reads or no writes
1076 rq
= ad
->next_rq
[ad
->batch_data_dir
];
1078 if (ad
->batch_data_dir
== BLK_RW_SYNC
&& ad
->antic_expire
) {
1079 if (as_fifo_expired(ad
, BLK_RW_SYNC
))
1082 if (as_can_anticipate(ad
, rq
)) {
1083 as_antic_waitreq(ad
);
1089 /* we have a "next request" */
1090 if (reads
&& !writes
)
1091 ad
->current_batch_expires
=
1092 jiffies
+ ad
->batch_expire
[BLK_RW_SYNC
];
1093 goto dispatch_request
;
1098 * at this point we are not running a batch. select the appropriate
1099 * data direction (read / write)
1103 BUG_ON(RB_EMPTY_ROOT(&ad
->sort_list
[BLK_RW_SYNC
]));
1105 if (writes
&& ad
->batch_data_dir
== BLK_RW_SYNC
)
1107 * Last batch was a read, switch to writes
1109 goto dispatch_writes
;
1111 if (ad
->batch_data_dir
== BLK_RW_ASYNC
) {
1112 WARN_ON(ad
->new_batch
);
1113 ad
->changed_batch
= 1;
1115 ad
->batch_data_dir
= BLK_RW_SYNC
;
1116 rq
= rq_entry_fifo(ad
->fifo_list
[BLK_RW_SYNC
].next
);
1117 ad
->last_check_fifo
[ad
->batch_data_dir
] = jiffies
;
1118 goto dispatch_request
;
1122 * the last batch was a read
1127 BUG_ON(RB_EMPTY_ROOT(&ad
->sort_list
[BLK_RW_ASYNC
]));
1129 if (ad
->batch_data_dir
== BLK_RW_SYNC
) {
1130 ad
->changed_batch
= 1;
1133 * new_batch might be 1 when the queue runs out of
1134 * reads. A subsequent submission of a write might
1135 * cause a change of batch before the read is finished.
1139 ad
->batch_data_dir
= BLK_RW_ASYNC
;
1140 ad
->current_write_count
= ad
->write_batch_count
;
1141 ad
->write_batch_idled
= 0;
1142 rq
= rq_entry_fifo(ad
->fifo_list
[BLK_RW_ASYNC
].next
);
1143 ad
->last_check_fifo
[BLK_RW_ASYNC
] = jiffies
;
1144 goto dispatch_request
;
1152 * If a request has expired, service it.
1155 if (as_fifo_expired(ad
, ad
->batch_data_dir
)) {
1157 rq
= rq_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1160 if (ad
->changed_batch
) {
1161 WARN_ON(ad
->new_batch
);
1163 if (ad
->nr_dispatched
)
1166 if (ad
->batch_data_dir
== BLK_RW_ASYNC
)
1167 ad
->current_batch_expires
= jiffies
+
1168 ad
->batch_expire
[BLK_RW_ASYNC
];
1172 ad
->changed_batch
= 0;
1176 * rq is the selected appropriate request.
1178 as_move_to_dispatch(ad
, rq
);
1184 * add rq to rbtree and fifo
1186 static void as_add_request(struct request_queue
*q
, struct request
*rq
)
1188 struct as_data
*ad
= q
->elevator
->elevator_data
;
1191 RQ_SET_STATE(rq
, AS_RQ_NEW
);
1193 data_dir
= rq_is_sync(rq
);
1195 rq
->elevator_private
= as_get_io_context(q
->node
);
1198 as_update_iohist(ad
, RQ_IOC(rq
)->aic
, rq
);
1199 atomic_inc(&RQ_IOC(rq
)->aic
->nr_queued
);
1202 as_add_rq_rb(ad
, rq
);
1205 * set expire time and add to fifo list
1207 rq_set_fifo_time(rq
, jiffies
+ ad
->fifo_expire
[data_dir
]);
1208 list_add_tail(&rq
->queuelist
, &ad
->fifo_list
[data_dir
]);
1210 as_update_rq(ad
, rq
); /* keep state machine up to date */
1211 RQ_SET_STATE(rq
, AS_RQ_QUEUED
);
1214 static void as_activate_request(struct request_queue
*q
, struct request
*rq
)
1216 WARN_ON(RQ_STATE(rq
) != AS_RQ_DISPATCHED
);
1217 RQ_SET_STATE(rq
, AS_RQ_REMOVED
);
1218 if (RQ_IOC(rq
) && RQ_IOC(rq
)->aic
)
1219 atomic_dec(&RQ_IOC(rq
)->aic
->nr_dispatched
);
1222 static void as_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1224 WARN_ON(RQ_STATE(rq
) != AS_RQ_REMOVED
);
1225 RQ_SET_STATE(rq
, AS_RQ_DISPATCHED
);
1226 if (RQ_IOC(rq
) && RQ_IOC(rq
)->aic
)
1227 atomic_inc(&RQ_IOC(rq
)->aic
->nr_dispatched
);
1231 * as_queue_empty tells us if there are requests left in the device. It may
1232 * not be the case that a driver can get the next request even if the queue
1233 * is not empty - it is used in the block layer to check for plugging and
1234 * merging opportunities
1236 static int as_queue_empty(struct request_queue
*q
)
1238 struct as_data
*ad
= q
->elevator
->elevator_data
;
1240 return list_empty(&ad
->fifo_list
[BLK_RW_ASYNC
])
1241 && list_empty(&ad
->fifo_list
[BLK_RW_SYNC
]);
1245 as_merge(struct request_queue
*q
, struct request
**req
, struct bio
*bio
)
1247 struct as_data
*ad
= q
->elevator
->elevator_data
;
1248 sector_t rb_key
= bio
->bi_sector
+ bio_sectors(bio
);
1249 struct request
*__rq
;
1252 * check for front merge
1254 __rq
= elv_rb_find(&ad
->sort_list
[bio_data_dir(bio
)], rb_key
);
1255 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1257 return ELEVATOR_FRONT_MERGE
;
1260 return ELEVATOR_NO_MERGE
;
1263 static void as_merged_request(struct request_queue
*q
, struct request
*req
,
1266 struct as_data
*ad
= q
->elevator
->elevator_data
;
1269 * if the merge was a front merge, we need to reposition request
1271 if (type
== ELEVATOR_FRONT_MERGE
) {
1272 as_del_rq_rb(ad
, req
);
1273 as_add_rq_rb(ad
, req
);
1275 * Note! At this stage of this and the next function, our next
1276 * request may not be optimal - eg the request may have "grown"
1277 * behind the disk head. We currently don't bother adjusting.
1282 static void as_merged_requests(struct request_queue
*q
, struct request
*req
,
1283 struct request
*next
)
1286 * if next expires before rq, assign its expire time to arq
1287 * and move into next position (next will be deleted) in fifo
1289 if (!list_empty(&req
->queuelist
) && !list_empty(&next
->queuelist
)) {
1290 if (time_before(rq_fifo_time(next
), rq_fifo_time(req
))) {
1291 list_move(&req
->queuelist
, &next
->queuelist
);
1292 rq_set_fifo_time(req
, rq_fifo_time(next
));
1297 * kill knowledge of next, this one is a goner
1299 as_remove_queued_request(q
, next
);
1300 as_put_io_context(next
);
1302 RQ_SET_STATE(next
, AS_RQ_MERGED
);
1306 * This is executed in a "deferred" process context, by kblockd. It calls the
1307 * driver's request_fn so the driver can submit that request.
1309 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1310 * state before calling, and don't rely on any state over calls.
1312 * FIXME! dispatch queue is not a queue at all!
1314 static void as_work_handler(struct work_struct
*work
)
1316 struct as_data
*ad
= container_of(work
, struct as_data
, antic_work
);
1318 blk_run_queue(ad
->q
);
1321 static int as_may_queue(struct request_queue
*q
, int rw
)
1323 int ret
= ELV_MQUEUE_MAY
;
1324 struct as_data
*ad
= q
->elevator
->elevator_data
;
1325 struct io_context
*ioc
;
1326 if (ad
->antic_status
== ANTIC_WAIT_REQ
||
1327 ad
->antic_status
== ANTIC_WAIT_NEXT
) {
1328 ioc
= as_get_io_context(q
->node
);
1329 if (ad
->io_context
== ioc
)
1330 ret
= ELV_MQUEUE_MUST
;
1331 put_io_context(ioc
);
1337 static void as_exit_queue(struct elevator_queue
*e
)
1339 struct as_data
*ad
= e
->elevator_data
;
1341 del_timer_sync(&ad
->antic_timer
);
1342 cancel_work_sync(&ad
->antic_work
);
1344 BUG_ON(!list_empty(&ad
->fifo_list
[BLK_RW_SYNC
]));
1345 BUG_ON(!list_empty(&ad
->fifo_list
[BLK_RW_ASYNC
]));
1347 put_io_context(ad
->io_context
);
1352 * initialize elevator private data (as_data).
1354 static void *as_init_queue(struct request_queue
*q
)
1358 ad
= kmalloc_node(sizeof(*ad
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
1362 ad
->q
= q
; /* Identify what queue the data belongs to */
1364 /* anticipatory scheduling helpers */
1365 ad
->antic_timer
.function
= as_antic_timeout
;
1366 ad
->antic_timer
.data
= (unsigned long)q
;
1367 init_timer(&ad
->antic_timer
);
1368 INIT_WORK(&ad
->antic_work
, as_work_handler
);
1370 INIT_LIST_HEAD(&ad
->fifo_list
[BLK_RW_SYNC
]);
1371 INIT_LIST_HEAD(&ad
->fifo_list
[BLK_RW_ASYNC
]);
1372 ad
->sort_list
[BLK_RW_SYNC
] = RB_ROOT
;
1373 ad
->sort_list
[BLK_RW_ASYNC
] = RB_ROOT
;
1374 ad
->fifo_expire
[BLK_RW_SYNC
] = default_read_expire
;
1375 ad
->fifo_expire
[BLK_RW_ASYNC
] = default_write_expire
;
1376 ad
->antic_expire
= default_antic_expire
;
1377 ad
->batch_expire
[BLK_RW_SYNC
] = default_read_batch_expire
;
1378 ad
->batch_expire
[BLK_RW_ASYNC
] = default_write_batch_expire
;
1380 ad
->current_batch_expires
= jiffies
+ ad
->batch_expire
[BLK_RW_SYNC
];
1381 ad
->write_batch_count
= ad
->batch_expire
[BLK_RW_ASYNC
] / 10;
1382 if (ad
->write_batch_count
< 2)
1383 ad
->write_batch_count
= 2;
1393 as_var_show(unsigned int var
, char *page
)
1395 return sprintf(page
, "%d\n", var
);
1399 as_var_store(unsigned long *var
, const char *page
, size_t count
)
1401 char *p
= (char *) page
;
1403 *var
= simple_strtoul(p
, &p
, 10);
1407 static ssize_t
est_time_show(struct elevator_queue
*e
, char *page
)
1409 struct as_data
*ad
= e
->elevator_data
;
1412 pos
+= sprintf(page
+pos
, "%lu %% exit probability\n",
1413 100*ad
->exit_prob
/256);
1414 pos
+= sprintf(page
+pos
, "%lu %% probability of exiting without a "
1415 "cooperating process submitting IO\n",
1416 100*ad
->exit_no_coop
/256);
1417 pos
+= sprintf(page
+pos
, "%lu ms new thinktime\n", ad
->new_ttime_mean
);
1418 pos
+= sprintf(page
+pos
, "%llu sectors new seek distance\n",
1419 (unsigned long long)ad
->new_seek_mean
);
1424 #define SHOW_FUNCTION(__FUNC, __VAR) \
1425 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1427 struct as_data *ad = e->elevator_data; \
1428 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1430 SHOW_FUNCTION(as_read_expire_show
, ad
->fifo_expire
[BLK_RW_SYNC
]);
1431 SHOW_FUNCTION(as_write_expire_show
, ad
->fifo_expire
[BLK_RW_ASYNC
]);
1432 SHOW_FUNCTION(as_antic_expire_show
, ad
->antic_expire
);
1433 SHOW_FUNCTION(as_read_batch_expire_show
, ad
->batch_expire
[BLK_RW_SYNC
]);
1434 SHOW_FUNCTION(as_write_batch_expire_show
, ad
->batch_expire
[BLK_RW_ASYNC
]);
1435 #undef SHOW_FUNCTION
1437 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1438 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1440 struct as_data *ad = e->elevator_data; \
1441 int ret = as_var_store(__PTR, (page), count); \
1442 if (*(__PTR) < (MIN)) \
1444 else if (*(__PTR) > (MAX)) \
1446 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1449 STORE_FUNCTION(as_read_expire_store
, &ad
->fifo_expire
[BLK_RW_SYNC
], 0, INT_MAX
);
1450 STORE_FUNCTION(as_write_expire_store
,
1451 &ad
->fifo_expire
[BLK_RW_ASYNC
], 0, INT_MAX
);
1452 STORE_FUNCTION(as_antic_expire_store
, &ad
->antic_expire
, 0, INT_MAX
);
1453 STORE_FUNCTION(as_read_batch_expire_store
,
1454 &ad
->batch_expire
[BLK_RW_SYNC
], 0, INT_MAX
);
1455 STORE_FUNCTION(as_write_batch_expire_store
,
1456 &ad
->batch_expire
[BLK_RW_ASYNC
], 0, INT_MAX
);
1457 #undef STORE_FUNCTION
1459 #define AS_ATTR(name) \
1460 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1462 static struct elv_fs_entry as_attrs
[] = {
1463 __ATTR_RO(est_time
),
1464 AS_ATTR(read_expire
),
1465 AS_ATTR(write_expire
),
1466 AS_ATTR(antic_expire
),
1467 AS_ATTR(read_batch_expire
),
1468 AS_ATTR(write_batch_expire
),
1472 static struct elevator_type iosched_as
= {
1474 .elevator_merge_fn
= as_merge
,
1475 .elevator_merged_fn
= as_merged_request
,
1476 .elevator_merge_req_fn
= as_merged_requests
,
1477 .elevator_dispatch_fn
= as_dispatch_request
,
1478 .elevator_add_req_fn
= as_add_request
,
1479 .elevator_activate_req_fn
= as_activate_request
,
1480 .elevator_deactivate_req_fn
= as_deactivate_request
,
1481 .elevator_queue_empty_fn
= as_queue_empty
,
1482 .elevator_completed_req_fn
= as_completed_request
,
1483 .elevator_former_req_fn
= elv_rb_former_request
,
1484 .elevator_latter_req_fn
= elv_rb_latter_request
,
1485 .elevator_may_queue_fn
= as_may_queue
,
1486 .elevator_init_fn
= as_init_queue
,
1487 .elevator_exit_fn
= as_exit_queue
,
1491 .elevator_attrs
= as_attrs
,
1492 .elevator_name
= "anticipatory",
1493 .elevator_owner
= THIS_MODULE
,
1496 static int __init
as_init(void)
1498 elv_register(&iosched_as
);
1503 static void __exit
as_exit(void)
1505 DECLARE_COMPLETION_ONSTACK(all_gone
);
1506 elv_unregister(&iosched_as
);
1507 ioc_gone
= &all_gone
;
1508 /* ioc_gone's update must be visible before reading ioc_count */
1510 if (elv_ioc_count_read(as_ioc_count
))
1511 wait_for_completion(&all_gone
);
1515 module_init(as_init
);
1516 module_exit(as_exit
);
1518 MODULE_AUTHOR("Nick Piggin");
1519 MODULE_LICENSE("GPL");
1520 MODULE_DESCRIPTION("anticipatory IO scheduler");