Staging: sxg: Fix to load card on low memory machines
[linux-2.6/linux-2.6-openrd.git] / drivers / staging / sxg / sxg.c
blob74c19b40eed1eef3cab45e095d8d6ea11a8fbec8
1 /**************************************************************************
3 * Copyright (C) 2000-2008 Alacritech, Inc. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer in the documentation and/or other materials provided
14 * with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ALACRITECH, INC. OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as representing
31 * official policies, either expressed or implied, of Alacritech, Inc.
33 * Parts developed by LinSysSoft Sahara team
35 **************************************************************************/
38 * FILENAME: sxg.c
40 * The SXG driver for Alacritech's 10Gbe products.
42 * NOTE: This is the standard, non-accelerated version of Alacritech's
43 * IS-NIC driver.
46 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/errno.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/ioport.h>
52 #include <linux/slab.h>
53 #include <linux/interrupt.h>
54 #include <linux/timer.h>
55 #include <linux/pci.h>
56 #include <linux/spinlock.h>
57 #include <linux/init.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/ethtool.h>
61 #include <linux/skbuff.h>
62 #include <linux/delay.h>
63 #include <linux/types.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/mii.h>
66 #include <linux/ip.h>
67 #include <linux/in.h>
68 #include <linux/tcp.h>
69 #include <linux/ipv6.h>
71 #define SLIC_GET_STATS_ENABLED 0
72 #define LINUX_FREES_ADAPTER_RESOURCES 1
73 #define SXG_OFFLOAD_IP_CHECKSUM 0
74 #define SXG_POWER_MANAGEMENT_ENABLED 0
75 #define VPCI 0
76 #define ATK_DEBUG 1
78 #include "sxg_os.h"
79 #include "sxghw.h"
80 #include "sxghif.h"
81 #include "sxg.h"
82 #include "sxgdbg.h"
84 #include "sxgphycode.h"
85 #define SXG_UCODE_DBG 0 /* Turn on for debugging */
86 #ifdef SXG_UCODE_DBG
87 #include "saharadbgdownload.c"
88 #include "saharadbgdownloadB.c"
89 #else
90 #include "saharadownload.c"
91 #include "saharadownloadB.c"
92 #endif
94 static int sxg_allocate_buffer_memory(struct adapter_t *adapter, u32 Size,
95 enum sxg_buffer_type BufferType);
96 static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
97 void *RcvBlock,
98 dma_addr_t PhysicalAddress,
99 u32 Length);
100 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
101 struct sxg_scatter_gather *SxgSgl,
102 dma_addr_t PhysicalAddress,
103 u32 Length);
105 static void sxg_mcast_init_crc32(void);
106 static int sxg_entry_open(struct net_device *dev);
107 static int sxg_second_open(struct net_device * dev);
108 static int sxg_entry_halt(struct net_device *dev);
109 static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110 static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev);
111 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb);
112 static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
113 struct sxg_scatter_gather *SxgSgl);
115 static void sxg_handle_interrupt(struct adapter_t *adapter);
116 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId);
117 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId);
118 static void sxg_complete_slow_send(struct adapter_t *adapter, int irq_context);
119 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
120 struct sxg_event *Event);
121 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus);
122 /* See if we need sxg_mac_filter() in future. If not remove it
123 static bool sxg_mac_filter(struct adapter_t *adapter,
124 struct ether_header *EtherHdr, ushort length);
126 static struct net_device_stats *sxg_get_stats(struct net_device * dev);
127 void sxg_free_resources(struct adapter_t *adapter);
128 void sxg_free_rcvblocks(struct adapter_t *adapter);
129 void sxg_free_sgl_buffers(struct adapter_t *adapter);
130 void sxg_unmap_resources(struct adapter_t *adapter);
131 void sxg_free_mcast_addrs(struct adapter_t *adapter);
132 void sxg_collect_statistics(struct adapter_t *adapter);
134 #define XXXTODO 0
136 static int sxg_mac_set_address(struct net_device *dev, void *ptr);
137 static void sxg_mcast_set_list(struct net_device *dev);
139 static int sxg_adapter_set_hwaddr(struct adapter_t *adapter);
141 static void sxg_unmap_mmio_space(struct adapter_t *adapter);
143 static int sxg_initialize_adapter(struct adapter_t *adapter);
144 static void sxg_stock_rcv_buffers(struct adapter_t *adapter);
145 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
146 unsigned char Index);
147 static int sxg_initialize_link(struct adapter_t *adapter);
148 static int sxg_phy_init(struct adapter_t *adapter);
149 static void sxg_link_event(struct adapter_t *adapter);
150 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter);
151 static void sxg_link_state(struct adapter_t *adapter,
152 enum SXG_LINK_STATE LinkState);
153 static int sxg_write_mdio_reg(struct adapter_t *adapter,
154 u32 DevAddr, u32 RegAddr, u32 Value);
155 static int sxg_read_mdio_reg(struct adapter_t *adapter,
156 u32 DevAddr, u32 RegAddr, u32 *pValue);
158 static unsigned int sxg_first_init = 1;
159 static char *sxg_banner =
160 "Alacritech SLIC Technology(tm) Server and Storage \
161 10Gbe Accelerator (Non-Accelerated)\n";
163 static int sxg_debug = 1;
164 static int debug = -1;
165 static struct net_device *head_netdevice = NULL;
167 static struct sxgbase_driver sxg_global = {
168 .dynamic_intagg = 1,
170 static int intagg_delay = 100;
171 static u32 dynamic_intagg = 0;
173 char sxg_driver_name[] = "sxg_nic";
174 #define DRV_AUTHOR "Alacritech, Inc. Engineering"
175 #define DRV_DESCRIPTION \
176 "Alacritech SLIC Techonology(tm) Non-Accelerated 10Gbe Driver"
177 #define DRV_COPYRIGHT \
178 "Copyright 2000-2008 Alacritech, Inc. All rights reserved."
180 MODULE_AUTHOR(DRV_AUTHOR);
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_LICENSE("GPL");
184 module_param(dynamic_intagg, int, 0);
185 MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting");
186 module_param(intagg_delay, int, 0);
187 MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay");
189 static struct pci_device_id sxg_pci_tbl[] __devinitdata = {
190 {PCI_DEVICE(SXG_VENDOR_ID, SXG_DEVICE_ID)},
191 {0,}
194 MODULE_DEVICE_TABLE(pci, sxg_pci_tbl);
196 static inline void sxg_reg32_write(void __iomem *reg, u32 value, bool flush)
198 writel(value, reg);
199 if (flush)
200 mb();
203 static inline void sxg_reg64_write(struct adapter_t *adapter, void __iomem *reg,
204 u64 value, u32 cpu)
206 u32 value_high = (u32) (value >> 32);
207 u32 value_low = (u32) (value & 0x00000000FFFFFFFF);
208 unsigned long flags;
210 spin_lock_irqsave(&adapter->Bit64RegLock, flags);
211 writel(value_high, (void __iomem *)(&adapter->UcodeRegs[cpu].Upper));
212 writel(value_low, reg);
213 spin_unlock_irqrestore(&adapter->Bit64RegLock, flags);
216 static void sxg_init_driver(void)
218 if (sxg_first_init) {
219 DBG_ERROR("sxg: %s sxg_first_init set jiffies[%lx]\n",
220 __func__, jiffies);
221 sxg_first_init = 0;
222 spin_lock_init(&sxg_global.driver_lock);
226 static void sxg_dbg_macaddrs(struct adapter_t *adapter)
228 DBG_ERROR(" (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
229 adapter->netdev->name, adapter->currmacaddr[0],
230 adapter->currmacaddr[1], adapter->currmacaddr[2],
231 adapter->currmacaddr[3], adapter->currmacaddr[4],
232 adapter->currmacaddr[5]);
233 DBG_ERROR(" (%s) mac %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
234 adapter->netdev->name, adapter->macaddr[0],
235 adapter->macaddr[1], adapter->macaddr[2],
236 adapter->macaddr[3], adapter->macaddr[4],
237 adapter->macaddr[5]);
238 return;
241 /* SXG Globals */
242 static struct sxg_driver SxgDriver;
244 #ifdef ATKDBG
245 static struct sxg_trace_buffer LSxgTraceBuffer;
246 #endif /* ATKDBG */
247 static struct sxg_trace_buffer *SxgTraceBuffer = NULL;
250 * sxg_download_microcode
252 * Download Microcode to Sahara adapter
254 * Arguments -
255 * adapter - A pointer to our adapter structure
256 * UcodeSel - microcode file selection
258 * Return
259 * int
261 static bool sxg_download_microcode(struct adapter_t *adapter,
262 enum SXG_UCODE_SEL UcodeSel)
264 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
265 u32 Section;
266 u32 ThisSectionSize;
267 u32 *Instruction = NULL;
268 u32 BaseAddress, AddressOffset, Address;
269 /* u32 Failure; */
270 u32 ValueRead;
271 u32 i;
272 u32 numSections = 0;
273 u32 sectionSize[16];
274 u32 sectionStart[16];
276 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DnldUcod",
277 adapter, 0, 0, 0);
278 DBG_ERROR("sxg: %s ENTER\n", __func__);
280 switch (UcodeSel) {
281 case SXG_UCODE_SAHARA: /* Sahara operational ucode */
282 numSections = SNumSections;
283 for (i = 0; i < numSections; i++) {
284 sectionSize[i] = SSectionSize[i];
285 sectionStart[i] = SSectionStart[i];
287 break;
288 default:
289 printk(KERN_ERR KBUILD_MODNAME
290 ": Woah, big error with the microcode!\n");
291 break;
294 DBG_ERROR("sxg: RESET THE CARD\n");
295 /* First, reset the card */
296 WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
299 * Download each section of the microcode as specified in
300 * its download file. The *download.c file is generated using
301 * the saharaobjtoc facility which converts the metastep .obj
302 * file to a .c file which contains a two dimentional array.
304 for (Section = 0; Section < numSections; Section++) {
305 DBG_ERROR("sxg: SECTION # %d\n", Section);
306 switch (UcodeSel) {
307 case SXG_UCODE_SAHARA:
308 Instruction = (u32 *) & SaharaUCode[Section][0];
309 break;
310 default:
311 ASSERT(0);
312 break;
314 BaseAddress = sectionStart[Section];
315 /* Size in instructions */
316 ThisSectionSize = sectionSize[Section] / 12;
317 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
318 AddressOffset++) {
319 Address = BaseAddress + AddressOffset;
320 ASSERT((Address & ~MICROCODE_ADDRESS_MASK) == 0);
321 /* Write instruction bits 31 - 0 */
322 WRITE_REG(HwRegs->UcodeDataLow, *Instruction, FLUSH);
323 /* Write instruction bits 63-32 */
324 WRITE_REG(HwRegs->UcodeDataMiddle, *(Instruction + 1),
325 FLUSH);
326 /* Write instruction bits 95-64 */
327 WRITE_REG(HwRegs->UcodeDataHigh, *(Instruction + 2),
328 FLUSH);
329 /* Write instruction address with the WRITE bit set */
330 WRITE_REG(HwRegs->UcodeAddr,
331 (Address | MICROCODE_ADDRESS_WRITE), FLUSH);
333 * Sahara bug in the ucode download logic - the write to DataLow
334 * for the next instruction could get corrupted. To avoid this,
335 * write to DataLow again for this instruction (which may get
336 * corrupted, but it doesn't matter), then increment the address
337 * and write the data for the next instruction to DataLow. That
338 * write should succeed.
340 WRITE_REG(HwRegs->UcodeDataLow, *Instruction, TRUE);
341 /* Advance 3 u32S to start of next instruction */
342 Instruction += 3;
346 * Now repeat the entire operation reading the instruction back and
347 * checking for parity errors
349 for (Section = 0; Section < numSections; Section++) {
350 DBG_ERROR("sxg: check SECTION # %d\n", Section);
351 switch (UcodeSel) {
352 case SXG_UCODE_SAHARA:
353 Instruction = (u32 *) & SaharaUCode[Section][0];
354 break;
355 default:
356 ASSERT(0);
357 break;
359 BaseAddress = sectionStart[Section];
360 /* Size in instructions */
361 ThisSectionSize = sectionSize[Section] / 12;
362 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
363 AddressOffset++) {
364 Address = BaseAddress + AddressOffset;
365 /* Write the address with the READ bit set */
366 WRITE_REG(HwRegs->UcodeAddr,
367 (Address | MICROCODE_ADDRESS_READ), FLUSH);
368 /* Read it back and check parity bit. */
369 READ_REG(HwRegs->UcodeAddr, ValueRead);
370 if (ValueRead & MICROCODE_ADDRESS_PARITY) {
371 DBG_ERROR("sxg: %s PARITY ERROR\n",
372 __func__);
374 return FALSE; /* Parity error */
376 ASSERT((ValueRead & MICROCODE_ADDRESS_MASK) == Address);
377 /* Read the instruction back and compare */
378 READ_REG(HwRegs->UcodeDataLow, ValueRead);
379 if (ValueRead != *Instruction) {
380 DBG_ERROR("sxg: %s MISCOMPARE LOW\n",
381 __func__);
382 return FALSE; /* Miscompare */
384 READ_REG(HwRegs->UcodeDataMiddle, ValueRead);
385 if (ValueRead != *(Instruction + 1)) {
386 DBG_ERROR("sxg: %s MISCOMPARE MIDDLE\n",
387 __func__);
388 return FALSE; /* Miscompare */
390 READ_REG(HwRegs->UcodeDataHigh, ValueRead);
391 if (ValueRead != *(Instruction + 2)) {
392 DBG_ERROR("sxg: %s MISCOMPARE HIGH\n",
393 __func__);
394 return FALSE; /* Miscompare */
396 /* Advance 3 u32S to start of next instruction */
397 Instruction += 3;
401 /* Everything OK, Go. */
402 WRITE_REG(HwRegs->UcodeAddr, MICROCODE_ADDRESS_GO, FLUSH);
405 * Poll the CardUp register to wait for microcode to initialize
406 * Give up after 10,000 attemps (500ms).
408 for (i = 0; i < 10000; i++) {
409 udelay(50);
410 READ_REG(adapter->UcodeRegs[0].CardUp, ValueRead);
411 if (ValueRead == 0xCAFE) {
412 DBG_ERROR("sxg: %s BOO YA 0xCAFE\n", __func__);
413 break;
416 if (i == 10000) {
417 DBG_ERROR("sxg: %s TIMEOUT\n", __func__);
419 return FALSE; /* Timeout */
422 * Now write the LoadSync register. This is used to
423 * synchronize with the card so it can scribble on the memory
424 * that contained 0xCAFE from the "CardUp" step above
426 if (UcodeSel == SXG_UCODE_SAHARA) {
427 WRITE_REG(adapter->UcodeRegs[0].LoadSync, 0, FLUSH);
430 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDnldUcd",
431 adapter, 0, 0, 0);
432 DBG_ERROR("sxg: %s EXIT\n", __func__);
434 return (TRUE);
438 * sxg_allocate_resources - Allocate memory and locks
440 * Arguments -
441 * adapter - A pointer to our adapter structure
443 * Return - int
445 static int sxg_allocate_resources(struct adapter_t *adapter)
447 int status;
448 u32 i;
449 u32 RssIds, IsrCount;
450 /* struct sxg_xmt_ring *XmtRing; */
451 /* struct sxg_rcv_ring *RcvRing; */
453 DBG_ERROR("%s ENTER\n", __func__);
455 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocRes",
456 adapter, 0, 0, 0);
458 /* Windows tells us how many CPUs it plans to use for */
459 /* RSS */
460 RssIds = SXG_RSS_CPU_COUNT(adapter);
461 IsrCount = adapter->MsiEnabled ? RssIds : 1;
463 DBG_ERROR("%s Setup the spinlocks\n", __func__);
465 /* Allocate spinlocks and initialize listheads first. */
466 spin_lock_init(&adapter->RcvQLock);
467 spin_lock_init(&adapter->SglQLock);
468 spin_lock_init(&adapter->XmtZeroLock);
469 spin_lock_init(&adapter->Bit64RegLock);
470 spin_lock_init(&adapter->AdapterLock);
471 atomic_set(&adapter->pending_allocations, 0);
473 DBG_ERROR("%s Setup the lists\n", __func__);
475 InitializeListHead(&adapter->FreeRcvBuffers);
476 InitializeListHead(&adapter->FreeRcvBlocks);
477 InitializeListHead(&adapter->AllRcvBlocks);
478 InitializeListHead(&adapter->FreeSglBuffers);
479 InitializeListHead(&adapter->AllSglBuffers);
482 * Mark these basic allocations done. This flags essentially
483 * tells the SxgFreeResources routine that it can grab spinlocks
484 * and reference listheads.
486 adapter->BasicAllocations = TRUE;
488 * Main allocation loop. Start with the maximum supported by
489 * the microcode and back off if memory allocation
490 * fails. If we hit a minimum, fail.
493 for (;;) {
494 DBG_ERROR("%s Allocate XmtRings size[%x]\n", __func__,
495 (unsigned int)(sizeof(struct sxg_xmt_ring) * 1));
498 * Start with big items first - receive and transmit rings.
499 * At the moment I'm going to keep the ring size fixed and
500 * adjust the TCBs if we fail. Later we might
501 * consider reducing the ring size as well..
503 adapter->XmtRings = pci_alloc_consistent(adapter->pcidev,
504 sizeof(struct sxg_xmt_ring) *
506 &adapter->PXmtRings);
507 DBG_ERROR("%s XmtRings[%p]\n", __func__, adapter->XmtRings);
509 if (!adapter->XmtRings) {
510 goto per_tcb_allocation_failed;
512 memset(adapter->XmtRings, 0, sizeof(struct sxg_xmt_ring) * 1);
514 DBG_ERROR("%s Allocate RcvRings size[%x]\n", __func__,
515 (unsigned int)(sizeof(struct sxg_rcv_ring) * 1));
516 adapter->RcvRings =
517 pci_alloc_consistent(adapter->pcidev,
518 sizeof(struct sxg_rcv_ring) * 1,
519 &adapter->PRcvRings);
520 DBG_ERROR("%s RcvRings[%p]\n", __func__, adapter->RcvRings);
521 if (!adapter->RcvRings) {
522 goto per_tcb_allocation_failed;
524 memset(adapter->RcvRings, 0, sizeof(struct sxg_rcv_ring) * 1);
525 adapter->ucode_stats = kzalloc(sizeof(struct sxg_ucode_stats), GFP_ATOMIC);
526 adapter->pucode_stats = pci_map_single(adapter->pcidev,
527 adapter->ucode_stats,
528 sizeof(struct sxg_ucode_stats),
529 PCI_DMA_FROMDEVICE);
530 // memset(adapter->ucode_stats, 0, sizeof(struct sxg_ucode_stats));
531 break;
533 per_tcb_allocation_failed:
534 /* an allocation failed. Free any successful allocations. */
535 if (adapter->XmtRings) {
536 pci_free_consistent(adapter->pcidev,
537 sizeof(struct sxg_xmt_ring) * 1,
538 adapter->XmtRings,
539 adapter->PXmtRings);
540 adapter->XmtRings = NULL;
542 if (adapter->RcvRings) {
543 pci_free_consistent(adapter->pcidev,
544 sizeof(struct sxg_rcv_ring) * 1,
545 adapter->RcvRings,
546 adapter->PRcvRings);
547 adapter->RcvRings = NULL;
549 /* Loop around and try again.... */
550 if (adapter->ucode_stats) {
551 pci_unmap_single(adapter->pcidev,
552 sizeof(struct sxg_ucode_stats),
553 adapter->pucode_stats, PCI_DMA_FROMDEVICE);
554 adapter->ucode_stats = NULL;
559 DBG_ERROR("%s Initialize RCV ZERO and XMT ZERO rings\n", __func__);
560 /* Initialize rcv zero and xmt zero rings */
561 SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
562 SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
564 /* Sanity check receive data structure format */
565 /* ASSERT((adapter->ReceiveBufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
566 (adapter->ReceiveBufferSize == SXG_RCV_JUMBO_BUFFER_SIZE)); */
567 ASSERT(sizeof(struct sxg_rcv_descriptor_block) ==
568 SXG_RCV_DESCRIPTOR_BLOCK_SIZE);
571 * Allocate receive data buffers. We allocate a block of buffers and
572 * a corresponding descriptor block at once. See sxghw.h:SXG_RCV_BLOCK
574 for (i = 0; i < SXG_INITIAL_RCV_DATA_BUFFERS;
575 i += SXG_RCV_DESCRIPTORS_PER_BLOCK) {
576 status = sxg_allocate_buffer_memory(adapter,
577 SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
578 SXG_BUFFER_TYPE_RCV);
579 if (status != STATUS_SUCCESS)
580 return status;
583 * NBL resource allocation can fail in the 'AllocateComplete' routine,
584 * which doesn't return status. Make sure we got the number of buffers
585 * we requested
587 if (adapter->FreeRcvBufferCount < SXG_INITIAL_RCV_DATA_BUFFERS) {
588 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF6",
589 adapter, adapter->FreeRcvBufferCount, SXG_MAX_ENTRIES,
591 return (STATUS_RESOURCES);
594 DBG_ERROR("%s Allocate EventRings size[%x]\n", __func__,
595 (unsigned int)(sizeof(struct sxg_event_ring) * RssIds));
597 /* Allocate event queues. */
598 adapter->EventRings = pci_alloc_consistent(adapter->pcidev,
599 sizeof(struct sxg_event_ring) *
600 RssIds,
601 &adapter->PEventRings);
603 if (!adapter->EventRings) {
604 /* Caller will call SxgFreeAdapter to clean up above
605 * allocations */
606 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF8",
607 adapter, SXG_MAX_ENTRIES, 0, 0);
608 status = STATUS_RESOURCES;
609 goto per_tcb_allocation_failed;
611 memset(adapter->EventRings, 0, sizeof(struct sxg_event_ring) * RssIds);
613 DBG_ERROR("%s Allocate ISR size[%x]\n", __func__, IsrCount);
614 /* Allocate ISR */
615 adapter->Isr = pci_alloc_consistent(adapter->pcidev,
616 IsrCount, &adapter->PIsr);
617 if (!adapter->Isr) {
618 /* Caller will call SxgFreeAdapter to clean up above
619 * allocations */
620 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF9",
621 adapter, SXG_MAX_ENTRIES, 0, 0);
622 status = STATUS_RESOURCES;
623 goto per_tcb_allocation_failed;
625 memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
627 DBG_ERROR("%s Allocate shared XMT ring zero index location size[%x]\n",
628 __func__, (unsigned int)sizeof(u32));
630 /* Allocate shared XMT ring zero index location */
631 adapter->XmtRingZeroIndex = pci_alloc_consistent(adapter->pcidev,
632 sizeof(u32),
633 &adapter->
634 PXmtRingZeroIndex);
635 if (!adapter->XmtRingZeroIndex) {
636 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF10",
637 adapter, SXG_MAX_ENTRIES, 0, 0);
638 status = STATUS_RESOURCES;
639 goto per_tcb_allocation_failed;
641 memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
643 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlcResS",
644 adapter, SXG_MAX_ENTRIES, 0, 0);
646 return status;
650 * sxg_config_pci -
652 * Set up PCI Configuration space
654 * Arguments -
655 * pcidev - A pointer to our adapter structure
657 static void sxg_config_pci(struct pci_dev *pcidev)
659 u16 pci_command;
660 u16 new_command;
662 pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
663 DBG_ERROR("sxg: %s PCI command[%4.4x]\n", __func__, pci_command);
664 /* Set the command register */
665 new_command = pci_command | (
666 /* Memory Space Enable */
667 PCI_COMMAND_MEMORY |
668 /* Bus master enable */
669 PCI_COMMAND_MASTER |
670 /* Memory write and invalidate */
671 PCI_COMMAND_INVALIDATE |
672 /* Parity error response */
673 PCI_COMMAND_PARITY |
674 /* System ERR */
675 PCI_COMMAND_SERR |
676 /* Fast back-to-back */
677 PCI_COMMAND_FAST_BACK);
678 if (pci_command != new_command) {
679 DBG_ERROR("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n",
680 __func__, pci_command, new_command);
681 pci_write_config_word(pcidev, PCI_COMMAND, new_command);
686 * sxg_read_config
687 * @adapter : Pointer to the adapter structure for the card
688 * This function will read the configuration data from EEPROM/FLASH
690 static inline int sxg_read_config(struct adapter_t *adapter)
692 /* struct sxg_config data; */
693 struct sw_cfg_data *data;
694 dma_addr_t p_addr;
695 unsigned long status;
696 unsigned long i;
698 data = pci_alloc_consistent(adapter->pcidev,
699 sizeof(struct sw_cfg_data), &p_addr);
700 if(!data) {
702 * We cant get even this much memory. Raise a hell
703 * Get out of here
705 printk(KERN_ERR"%s : Could not allocate memory for reading \
706 EEPROM\n", __FUNCTION__);
707 return -ENOMEM;
710 WRITE_REG(adapter->UcodeRegs[0].ConfigStat, SXG_CFG_TIMEOUT, TRUE);
712 WRITE_REG64(adapter, adapter->UcodeRegs[0].Config, p_addr, 0);
713 for(i=0; i<1000; i++) {
714 READ_REG(adapter->UcodeRegs[0].ConfigStat, status);
715 if (status != SXG_CFG_TIMEOUT)
716 break;
717 mdelay(1); /* Do we really need this */
720 switch(status) {
721 /* Config read from EEPROM succeeded */
722 case SXG_CFG_LOAD_EEPROM:
723 /* Config read from Flash succeeded */
724 case SXG_CFG_LOAD_FLASH:
725 /* Copy the MAC address to adapter structure */
726 /* TODO: We are not doing the remaining part : FRU,
727 * etc
729 memcpy(adapter->macaddr, data->MacAddr[0].MacAddr,
730 sizeof(struct sxg_config_mac));
731 break;
732 case SXG_CFG_TIMEOUT:
733 case SXG_CFG_LOAD_INVALID:
734 case SXG_CFG_LOAD_ERROR:
735 default: /* Fix default handler later */
736 printk(KERN_WARNING"%s : We could not read the config \
737 word. Status = %ld\n", __FUNCTION__, status);
738 break;
740 pci_free_consistent(adapter->pcidev, sizeof(struct sw_cfg_data), data,
741 p_addr);
742 if (adapter->netdev) {
743 memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
744 memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
746 printk("LINSYS : These are the new MAC address\n");
747 sxg_dbg_macaddrs(adapter);
749 return status;
752 static int sxg_entry_probe(struct pci_dev *pcidev,
753 const struct pci_device_id *pci_tbl_entry)
755 static int did_version = 0;
756 int err;
757 struct net_device *netdev;
758 struct adapter_t *adapter;
759 void __iomem *memmapped_ioaddr;
760 u32 status = 0;
761 ulong mmio_start = 0;
762 ulong mmio_len = 0;
764 DBG_ERROR("sxg: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n",
765 __func__, jiffies, smp_processor_id());
767 /* Initialize trace buffer */
768 #ifdef ATKDBG
769 SxgTraceBuffer = &LSxgTraceBuffer;
770 SXG_TRACE_INIT(SxgTraceBuffer, TRACE_NOISY);
771 #endif
773 sxg_global.dynamic_intagg = dynamic_intagg;
775 err = pci_enable_device(pcidev);
777 DBG_ERROR("Call pci_enable_device(%p) status[%x]\n", pcidev, err);
778 if (err) {
779 return err;
782 if (sxg_debug > 0 && did_version++ == 0) {
783 printk(KERN_INFO "%s\n", sxg_banner);
784 printk(KERN_INFO "%s\n", SXG_DRV_VERSION);
787 if (!(err = pci_set_dma_mask(pcidev, DMA_64BIT_MASK))) {
788 DBG_ERROR("pci_set_dma_mask(DMA_64BIT_MASK) successful\n");
789 } else {
790 if ((err = pci_set_dma_mask(pcidev, DMA_32BIT_MASK))) {
791 DBG_ERROR
792 ("No usable DMA configuration, aborting err[%x]\n",
793 err);
794 return err;
796 DBG_ERROR("pci_set_dma_mask(DMA_32BIT_MASK) successful\n");
799 DBG_ERROR("Call pci_request_regions\n");
801 err = pci_request_regions(pcidev, sxg_driver_name);
802 if (err) {
803 DBG_ERROR("pci_request_regions FAILED err[%x]\n", err);
804 return err;
807 DBG_ERROR("call pci_set_master\n");
808 pci_set_master(pcidev);
810 DBG_ERROR("call alloc_etherdev\n");
811 netdev = alloc_etherdev(sizeof(struct adapter_t));
812 if (!netdev) {
813 err = -ENOMEM;
814 goto err_out_exit_sxg_probe;
816 DBG_ERROR("alloc_etherdev for slic netdev[%p]\n", netdev);
818 SET_NETDEV_DEV(netdev, &pcidev->dev);
820 pci_set_drvdata(pcidev, netdev);
821 adapter = netdev_priv(netdev);
822 adapter->netdev = netdev;
823 adapter->pcidev = pcidev;
825 mmio_start = pci_resource_start(pcidev, 0);
826 mmio_len = pci_resource_len(pcidev, 0);
828 DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
829 mmio_start, mmio_len);
831 memmapped_ioaddr = ioremap(mmio_start, mmio_len);
832 DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
833 memmapped_ioaddr);
834 if (!memmapped_ioaddr) {
835 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
836 __func__, mmio_len, mmio_start);
837 goto err_out_free_mmio_region_0;
840 DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, start[%lx] \
841 len[%lx], IRQ %d.\n", __func__, memmapped_ioaddr, mmio_start,
842 mmio_len, pcidev->irq);
844 adapter->HwRegs = (void *)memmapped_ioaddr;
845 adapter->base_addr = memmapped_ioaddr;
847 mmio_start = pci_resource_start(pcidev, 2);
848 mmio_len = pci_resource_len(pcidev, 2);
850 DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
851 mmio_start, mmio_len);
853 memmapped_ioaddr = ioremap(mmio_start, mmio_len);
854 DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
855 memmapped_ioaddr);
856 if (!memmapped_ioaddr) {
857 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
858 __func__, mmio_len, mmio_start);
859 goto err_out_free_mmio_region_2;
862 DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, "
863 "start[%lx] len[%lx], IRQ %d.\n", __func__,
864 memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq);
866 adapter->UcodeRegs = (void *)memmapped_ioaddr;
868 adapter->State = SXG_STATE_INITIALIZING;
870 * Maintain a list of all adapters anchored by
871 * the global SxgDriver structure.
873 adapter->Next = SxgDriver.Adapters;
874 SxgDriver.Adapters = adapter;
875 adapter->AdapterID = ++SxgDriver.AdapterID;
877 /* Initialize CRC table used to determine multicast hash */
878 sxg_mcast_init_crc32();
880 adapter->JumboEnabled = FALSE;
881 adapter->RssEnabled = FALSE;
882 if (adapter->JumboEnabled) {
883 adapter->FrameSize = JUMBOMAXFRAME;
884 adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
885 } else {
886 adapter->FrameSize = ETHERMAXFRAME;
887 adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
891 * status = SXG_READ_EEPROM(adapter);
892 * if (!status) {
893 * goto sxg_init_bad;
897 DBG_ERROR("sxg: %s ENTER sxg_config_pci\n", __func__);
898 sxg_config_pci(pcidev);
899 DBG_ERROR("sxg: %s EXIT sxg_config_pci\n", __func__);
901 DBG_ERROR("sxg: %s ENTER sxg_init_driver\n", __func__);
902 sxg_init_driver();
903 DBG_ERROR("sxg: %s EXIT sxg_init_driver\n", __func__);
905 adapter->vendid = pci_tbl_entry->vendor;
906 adapter->devid = pci_tbl_entry->device;
907 adapter->subsysid = pci_tbl_entry->subdevice;
908 adapter->slotnumber = ((pcidev->devfn >> 3) & 0x1F);
909 adapter->functionnumber = (pcidev->devfn & 0x7);
910 adapter->memorylength = pci_resource_len(pcidev, 0);
911 adapter->irq = pcidev->irq;
912 adapter->next_netdevice = head_netdevice;
913 head_netdevice = netdev;
914 adapter->port = 0; /*adapter->functionnumber; */
916 /* Allocate memory and other resources */
917 DBG_ERROR("sxg: %s ENTER sxg_allocate_resources\n", __func__);
918 status = sxg_allocate_resources(adapter);
919 DBG_ERROR("sxg: %s EXIT sxg_allocate_resources status %x\n",
920 __func__, status);
921 if (status != STATUS_SUCCESS) {
922 goto err_out_unmap;
925 DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __func__);
926 if (sxg_download_microcode(adapter, SXG_UCODE_SAHARA)) {
927 DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
928 __func__);
929 sxg_read_config(adapter);
930 status = sxg_adapter_set_hwaddr(adapter);
931 } else {
932 adapter->state = ADAPT_FAIL;
933 adapter->linkstate = LINK_DOWN;
934 DBG_ERROR("sxg_download_microcode FAILED status[%x]\n", status);
937 netdev->base_addr = (unsigned long)adapter->base_addr;
938 netdev->irq = adapter->irq;
939 netdev->open = sxg_entry_open;
940 netdev->stop = sxg_entry_halt;
941 netdev->hard_start_xmit = sxg_send_packets;
942 netdev->do_ioctl = sxg_ioctl;
943 #if XXXTODO
944 netdev->set_mac_address = sxg_mac_set_address;
945 #endif
946 netdev->get_stats = sxg_get_stats;
947 netdev->set_multicast_list = sxg_mcast_set_list;
948 SET_ETHTOOL_OPS(netdev, &sxg_nic_ethtool_ops);
950 strcpy(netdev->name, "eth%d");
951 /* strcpy(netdev->name, pci_name(pcidev)); */
952 if ((err = register_netdev(netdev))) {
953 DBG_ERROR("Cannot register net device, aborting. %s\n",
954 netdev->name);
955 goto err_out_unmap;
958 DBG_ERROR
959 ("sxg: %s addr 0x%lx, irq %d, MAC addr \
960 %02X:%02X:%02X:%02X:%02X:%02X\n",
961 netdev->name, netdev->base_addr, pcidev->irq, netdev->dev_addr[0],
962 netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3],
963 netdev->dev_addr[4], netdev->dev_addr[5]);
965 /* sxg_init_bad: */
966 ASSERT(status == FALSE);
967 /* sxg_free_adapter(adapter); */
969 DBG_ERROR("sxg: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __func__,
970 status, jiffies, smp_processor_id());
971 return status;
973 err_out_unmap:
974 sxg_free_resources(adapter);
976 err_out_free_mmio_region_2:
978 mmio_start = pci_resource_start(pcidev, 2);
979 mmio_len = pci_resource_len(pcidev, 2);
980 release_mem_region(mmio_start, mmio_len);
982 err_out_free_mmio_region_0:
984 mmio_start = pci_resource_start(pcidev, 0);
985 mmio_len = pci_resource_len(pcidev, 0);
987 release_mem_region(mmio_start, mmio_len);
989 err_out_exit_sxg_probe:
991 DBG_ERROR("%s EXIT jiffies[%lx] cpu %d\n", __func__, jiffies,
992 smp_processor_id());
994 pci_disable_device(pcidev);
995 DBG_ERROR("sxg: %s deallocate device\n", __FUNCTION__);
996 kfree(netdev);
997 printk("Exit %s, Sxg driver loading failed..\n", __FUNCTION__);
999 return -ENODEV;
1003 * LINE BASE Interrupt routines..
1005 * sxg_disable_interrupt
1007 * DisableInterrupt Handler
1009 * Arguments:
1011 * adapter: Our adapter structure
1013 * Return Value:
1014 * None.
1016 static void sxg_disable_interrupt(struct adapter_t *adapter)
1018 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DisIntr",
1019 adapter, adapter->InterruptsEnabled, 0, 0);
1020 /* For now, RSS is disabled with line based interrupts */
1021 ASSERT(adapter->RssEnabled == FALSE);
1022 ASSERT(adapter->MsiEnabled == FALSE);
1023 /* Turn off interrupts by writing to the icr register. */
1024 WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_DISABLE), TRUE);
1026 adapter->InterruptsEnabled = 0;
1028 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDisIntr",
1029 adapter, adapter->InterruptsEnabled, 0, 0);
1033 * sxg_enable_interrupt
1035 * EnableInterrupt Handler
1037 * Arguments:
1039 * adapter: Our adapter structure
1041 * Return Value:
1042 * None.
1044 static void sxg_enable_interrupt(struct adapter_t *adapter)
1046 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "EnIntr",
1047 adapter, adapter->InterruptsEnabled, 0, 0);
1048 /* For now, RSS is disabled with line based interrupts */
1049 ASSERT(adapter->RssEnabled == FALSE);
1050 ASSERT(adapter->MsiEnabled == FALSE);
1051 /* Turn on interrupts by writing to the icr register. */
1052 WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_ENABLE), TRUE);
1054 adapter->InterruptsEnabled = 1;
1056 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XEnIntr",
1057 adapter, 0, 0, 0);
1061 * sxg_isr - Process an line-based interrupt
1063 * Arguments:
1064 * Context - Our adapter structure
1065 * QueueDefault - Output parameter to queue to default CPU
1066 * TargetCpus - Output bitmap to schedule DPC's
1068 * Return Value: TRUE if our interrupt
1070 static irqreturn_t sxg_isr(int irq, void *dev_id)
1072 struct net_device *dev = (struct net_device *) dev_id;
1073 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1075 if(adapter->state != ADAPT_UP)
1076 return IRQ_NONE;
1077 adapter->Stats.NumInts++;
1078 if (adapter->Isr[0] == 0) {
1080 * The SLIC driver used to experience a number of spurious
1081 * interrupts due to the delay associated with the masking of
1082 * the interrupt (we'd bounce back in here). If we see that
1083 * again with Sahara,add a READ_REG of the Icr register after
1084 * the WRITE_REG below.
1086 adapter->Stats.FalseInts++;
1087 return IRQ_NONE;
1090 * Move the Isr contents and clear the value in
1091 * shared memory, and mask interrupts
1093 adapter->IsrCopy[0] = adapter->Isr[0];
1094 adapter->Isr[0] = 0;
1095 WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_MASK), TRUE);
1096 /* ASSERT(adapter->IsrDpcsPending == 0); */
1097 #if XXXTODO /* RSS Stuff */
1099 * If RSS is enabled and the ISR specifies SXG_ISR_EVENT, then
1100 * schedule DPC's based on event queues.
1102 if (adapter->RssEnabled && (adapter->IsrCopy[0] & SXG_ISR_EVENT)) {
1103 for (i = 0;
1104 i < adapter->RssSystemInfo->ProcessorInfo.RssCpuCount;
1105 i++) {
1106 struct sxg_event_ring *EventRing =
1107 &adapter->EventRings[i];
1108 struct sxg_event *Event =
1109 &EventRing->Ring[adapter->NextEvent[i]];
1110 unsigned char Cpu =
1111 adapter->RssSystemInfo->RssIdToCpu[i];
1112 if (Event->Status & EVENT_STATUS_VALID) {
1113 adapter->IsrDpcsPending++;
1114 CpuMask |= (1 << Cpu);
1119 * Now, either schedule the CPUs specified by the CpuMask,
1120 * or queue default
1122 if (CpuMask) {
1123 *QueueDefault = FALSE;
1124 } else {
1125 adapter->IsrDpcsPending = 1;
1126 *QueueDefault = TRUE;
1128 *TargetCpus = CpuMask;
1129 #endif
1130 /* There are no DPCs in Linux, so call the handler now */
1131 sxg_handle_interrupt(adapter);
1133 return IRQ_HANDLED;
1136 static void sxg_handle_interrupt(struct adapter_t *adapter)
1138 /* unsigned char RssId = 0; */
1139 u32 NewIsr;
1141 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "HndlIntr",
1142 adapter, adapter->IsrCopy[0], 0, 0);
1143 /* For now, RSS is disabled with line based interrupts */
1144 ASSERT(adapter->RssEnabled == FALSE);
1145 ASSERT(adapter->MsiEnabled == FALSE);
1146 ASSERT(adapter->IsrCopy[0]);
1148 /* Always process the event queue. */
1149 sxg_process_event_queue(adapter,
1150 (adapter->RssEnabled ? /*RssId */ 0 : 0));
1152 #if XXXTODO /* RSS stuff */
1153 if (--adapter->IsrDpcsPending) {
1154 /* We're done. */
1155 ASSERT(adapter->RssEnabled);
1156 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DPCsPend",
1157 adapter, 0, 0, 0);
1158 return;
1160 #endif
1161 /* Last (or only) DPC processes the ISR and clears the interrupt. */
1162 NewIsr = sxg_process_isr(adapter, 0);
1163 /* Reenable interrupts */
1164 adapter->IsrCopy[0] = 0;
1165 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ClearIsr",
1166 adapter, NewIsr, 0, 0);
1168 WRITE_REG(adapter->UcodeRegs[0].Isr, NewIsr, TRUE);
1170 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XHndlInt",
1171 adapter, 0, 0, 0);
1175 * sxg_process_isr - Process an interrupt. Called from the line-based and
1176 * message based interrupt DPC routines
1178 * Arguments:
1179 * adapter - Our adapter structure
1180 * Queue - The ISR that needs processing
1182 * Return Value:
1183 * None
1185 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId)
1187 u32 Isr = adapter->IsrCopy[MessageId];
1188 u32 NewIsr = 0;
1190 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ProcIsr",
1191 adapter, Isr, 0, 0);
1193 /* Error */
1194 if (Isr & SXG_ISR_ERR) {
1195 if (Isr & SXG_ISR_PDQF) {
1196 adapter->Stats.PdqFull++;
1197 DBG_ERROR("%s: SXG_ISR_ERR PDQF!!\n", __func__);
1199 /* No host buffer */
1200 if (Isr & SXG_ISR_RMISS) {
1202 * There is a bunch of code in the SLIC driver which
1203 * attempts to process more receive events per DPC
1204 * if we start to fall behind. We'll probablyd
1205 * need to do something similar here, but hold
1206 * off for now. I don't want to make the code more
1207 * complicated than strictly needed.
1209 adapter->stats.rx_missed_errors++;
1210 if (adapter->stats.rx_missed_errors< 5) {
1211 DBG_ERROR("%s: SXG_ISR_ERR RMISS!!\n",
1212 __func__);
1215 /* Card crash */
1216 if (Isr & SXG_ISR_DEAD) {
1218 * Set aside the crash info and set the adapter state
1219 * to RESET
1221 adapter->CrashCpu = (unsigned char)
1222 ((Isr & SXG_ISR_CPU) >> SXG_ISR_CPU_SHIFT);
1223 adapter->CrashLocation = (ushort) (Isr & SXG_ISR_CRASH);
1224 adapter->Dead = TRUE;
1225 DBG_ERROR("%s: ISR_DEAD %x, CPU: %d\n", __func__,
1226 adapter->CrashLocation, adapter->CrashCpu);
1228 /* Event ring full */
1229 if (Isr & SXG_ISR_ERFULL) {
1231 * Same issue as RMISS, really. This means the
1232 * host is falling behind the card. Need to increase
1233 * event ring size, process more events per interrupt,
1234 * and/or reduce/remove interrupt aggregation.
1236 adapter->Stats.EventRingFull++;
1237 DBG_ERROR("%s: SXG_ISR_ERR EVENT RING FULL!!\n",
1238 __func__);
1240 /* Transmit drop - no DRAM buffers or XMT error */
1241 if (Isr & SXG_ISR_XDROP) {
1242 DBG_ERROR("%s: SXG_ISR_ERR XDROP!!\n", __func__);
1245 /* Slowpath send completions */
1246 if (Isr & SXG_ISR_SPSEND) {
1247 sxg_complete_slow_send(adapter, 1);
1249 /* Dump */
1250 if (Isr & SXG_ISR_UPC) {
1251 /* Maybe change when debug is added.. */
1252 // ASSERT(adapter->DumpCmdRunning);
1253 adapter->DumpCmdRunning = FALSE;
1255 /* Link event */
1256 if (Isr & SXG_ISR_LINK) {
1257 sxg_link_event(adapter);
1259 /* Debug - breakpoint hit */
1260 if (Isr & SXG_ISR_BREAK) {
1262 * At the moment AGDB isn't written to support interactive
1263 * debug sessions. When it is, this interrupt will be used to
1264 * signal AGDB that it has hit a breakpoint. For now, ASSERT.
1266 ASSERT(0);
1268 /* Heartbeat response */
1269 if (Isr & SXG_ISR_PING) {
1270 adapter->PingOutstanding = FALSE;
1272 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XProcIsr",
1273 adapter, Isr, NewIsr, 0);
1275 return (NewIsr);
1279 * sxg_process_event_queue - Process our event queue
1281 * Arguments:
1282 * - adapter - Adapter structure
1283 * - RssId - The event queue requiring processing
1285 * Return Value:
1286 * None.
1288 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId)
1290 struct sxg_event_ring *EventRing = &adapter->EventRings[RssId];
1291 struct sxg_event *Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1292 u32 EventsProcessed = 0, Batches = 0;
1293 struct sk_buff *skb;
1294 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1295 struct sk_buff *prev_skb = NULL;
1296 struct sk_buff *IndicationList[SXG_RCV_ARRAYSIZE];
1297 u32 Index;
1298 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
1299 #endif
1300 u32 ReturnStatus = 0;
1302 ASSERT((adapter->State == SXG_STATE_RUNNING) ||
1303 (adapter->State == SXG_STATE_PAUSING) ||
1304 (adapter->State == SXG_STATE_PAUSED) ||
1305 (adapter->State == SXG_STATE_HALTING));
1307 * We may still have unprocessed events on the queue if
1308 * the card crashed. Don't process them.
1310 if (adapter->Dead) {
1311 return (0);
1314 * In theory there should only be a single processor that
1315 * accesses this queue, and only at interrupt-DPC time. So/
1316 * we shouldn't need a lock for any of this.
1318 while (Event->Status & EVENT_STATUS_VALID) {
1319 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "Event",
1320 Event, Event->Code, Event->Status,
1321 adapter->NextEvent);
1322 switch (Event->Code) {
1323 case EVENT_CODE_BUFFERS:
1324 /* struct sxg_ring_info Head & Tail == unsigned char */
1325 ASSERT(!(Event->CommandIndex & 0xFF00));
1326 sxg_complete_descriptor_blocks(adapter,
1327 Event->CommandIndex);
1328 break;
1329 case EVENT_CODE_SLOWRCV:
1330 --adapter->RcvBuffersOnCard;
1331 if ((skb = sxg_slow_receive(adapter, Event))) {
1332 u32 rx_bytes;
1333 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1334 /* Add it to our indication list */
1335 SXG_ADD_RCV_PACKET(adapter, skb, prev_skb,
1336 IndicationList, num_skbs);
1338 * Linux, we just pass up each skb to the
1339 * protocol above at this point, there is no
1340 * capability of an indication list.
1342 #else
1343 /* CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE); */
1344 /* (rcvbuf->length & IRHDDR_FLEN_MSK); */
1345 rx_bytes = Event->Length;
1346 adapter->stats.rx_packets++;
1347 adapter->stats.rx_bytes += rx_bytes;
1348 #if SXG_OFFLOAD_IP_CHECKSUM
1349 skb->ip_summed = CHECKSUM_UNNECESSARY;
1350 #endif
1351 skb->dev = adapter->netdev;
1352 netif_rx(skb);
1353 #endif
1355 break;
1356 default:
1357 DBG_ERROR("%s: ERROR Invalid EventCode %d\n",
1358 __func__, Event->Code);
1359 /* ASSERT(0); */
1362 * See if we need to restock card receive buffers.
1363 * There are two things to note here:
1364 * First - This test is not SMP safe. The
1365 * adapter->BuffersOnCard field is protected via atomic
1366 * interlocked calls, but we do not protect it with respect
1367 * to these tests. The only way to do that is with a lock,
1368 * and I don't want to grab a lock every time we adjust the
1369 * BuffersOnCard count. Instead, we allow the buffer
1370 * replenishment to be off once in a while. The worst that
1371 * can happen is the card is given on more-or-less descriptor
1372 * block than the arbitrary value we've chosen. No big deal
1373 * In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard
1374 * is adjusted.
1375 * Second - We expect this test to rarely
1376 * evaluate to true. We attempt to refill descriptor blocks
1377 * as they are returned to us (sxg_complete_descriptor_blocks)
1378 * so The only time this should evaluate to true is when
1379 * sxg_complete_descriptor_blocks failed to allocate
1380 * receive buffers.
1382 if (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
1383 sxg_stock_rcv_buffers(adapter);
1386 * It's more efficient to just set this to zero.
1387 * But clearing the top bit saves potential debug info...
1389 Event->Status &= ~EVENT_STATUS_VALID;
1390 /* Advance to the next event */
1391 SXG_ADVANCE_INDEX(adapter->NextEvent[RssId], EVENT_RING_SIZE);
1392 Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1393 EventsProcessed++;
1394 if (EventsProcessed == EVENT_RING_BATCH) {
1395 /* Release a batch of events back to the card */
1396 WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1397 EVENT_RING_BATCH, FALSE);
1398 EventsProcessed = 0;
1400 * If we've processed our batch limit, break out of the
1401 * loop and return SXG_ISR_EVENT to arrange for us to
1402 * be called again
1404 if (Batches++ == EVENT_BATCH_LIMIT) {
1405 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1406 TRACE_NOISY, "EvtLimit", Batches,
1407 adapter->NextEvent, 0, 0);
1408 ReturnStatus = SXG_ISR_EVENT;
1409 break;
1413 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1414 /* Indicate any received dumb-nic frames */
1415 SXG_INDICATE_PACKETS(adapter, IndicationList, num_skbs);
1416 #endif
1417 /* Release events back to the card. */
1418 if (EventsProcessed) {
1419 WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1420 EventsProcessed, FALSE);
1422 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XPrcEvnt",
1423 Batches, EventsProcessed, adapter->NextEvent, num_skbs);
1425 return (ReturnStatus);
1429 * sxg_complete_slow_send - Complete slowpath or dumb-nic sends
1431 * Arguments -
1432 * adapter - A pointer to our adapter structure
1433 * irq_context - An integer to denote if we are in interrupt context
1434 * Return
1435 * None
1437 static void sxg_complete_slow_send(struct adapter_t *adapter, int irq_context)
1439 struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
1440 struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
1441 u32 *ContextType;
1442 struct sxg_cmd *XmtCmd;
1443 unsigned long flags = 0;
1444 unsigned long sgl_flags = 0;
1445 unsigned int processed_count = 0;
1448 * NOTE - This lock is dropped and regrabbed in this loop.
1449 * This means two different processors can both be running/
1450 * through this loop. Be *very* careful.
1452 if(irq_context) {
1453 if(!spin_trylock(&adapter->XmtZeroLock))
1454 goto lock_busy;
1456 else
1457 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
1459 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnds",
1460 adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1462 while ((XmtRingInfo->Tail != *adapter->XmtRingZeroIndex)
1463 && processed_count++ < SXG_COMPLETE_SLOW_SEND_LIMIT) {
1465 * Locate the current Cmd (ring descriptor entry), and
1466 * associated SGL, and advance the tail
1468 SXG_RETURN_CMD(XmtRing, XmtRingInfo, XmtCmd, ContextType);
1469 ASSERT(ContextType);
1470 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1471 XmtRingInfo->Head, XmtRingInfo->Tail, XmtCmd, 0);
1472 /* Clear the SGL field. */
1473 XmtCmd->Sgl = 0;
1475 switch (*ContextType) {
1476 case SXG_SGL_DUMB:
1478 struct sk_buff *skb;
1479 struct sxg_scatter_gather *SxgSgl =
1480 (struct sxg_scatter_gather *)ContextType;
1481 dma64_addr_t FirstSgeAddress;
1482 u32 FirstSgeLength;
1484 /* Dumb-nic send. Command context is the dumb-nic SGL */
1485 skb = (struct sk_buff *)ContextType;
1486 skb = SxgSgl->DumbPacket;
1487 FirstSgeAddress = XmtCmd->Buffer.FirstSgeAddress;
1488 FirstSgeLength = XmtCmd->Buffer.FirstSgeLength;
1489 /* Complete the send */
1490 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1491 TRACE_IMPORTANT, "DmSndCmp", skb, 0,
1492 0, 0);
1493 ASSERT(adapter->Stats.XmtQLen);
1495 * Now drop the lock and complete the send
1496 * back to Microsoft. We need to drop the lock
1497 * because Microsoft can come back with a
1498 * chimney send, which results in a double trip
1499 * in SxgTcpOuput
1501 if(irq_context)
1502 spin_unlock(&adapter->XmtZeroLock);
1503 else
1504 spin_unlock_irqrestore(
1505 &adapter->XmtZeroLock, flags);
1507 SxgSgl->DumbPacket = NULL;
1508 SXG_COMPLETE_DUMB_SEND(adapter, skb,
1509 FirstSgeAddress,
1510 FirstSgeLength);
1511 SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL,
1512 irq_context);
1513 /* and reacquire.. */
1514 if(irq_context) {
1515 if(!spin_trylock(&adapter->XmtZeroLock))
1516 goto lock_busy;
1518 else
1519 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
1521 break;
1522 default:
1523 ASSERT(0);
1526 if(irq_context)
1527 spin_unlock(&adapter->XmtZeroLock);
1528 else
1529 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
1530 lock_busy:
1531 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1532 adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1536 * sxg_slow_receive
1538 * Arguments -
1539 * adapter - A pointer to our adapter structure
1540 * Event - Receive event
1542 * Return - skb
1544 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
1545 struct sxg_event *Event)
1547 u32 BufferSize = adapter->ReceiveBufferSize;
1548 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
1549 struct sk_buff *Packet;
1550 static int read_counter = 0;
1552 RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *) Event->HostHandle;
1553 if(read_counter++ & 0x100)
1555 sxg_collect_statistics(adapter);
1556 read_counter = 0;
1558 ASSERT(RcvDataBufferHdr);
1559 ASSERT(RcvDataBufferHdr->State == SXG_BUFFER_ONCARD);
1560 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "SlowRcv", Event,
1561 RcvDataBufferHdr, RcvDataBufferHdr->State,
1562 /*RcvDataBufferHdr->VirtualAddress*/ 0);
1563 /* Drop rcv frames in non-running state */
1564 switch (adapter->State) {
1565 case SXG_STATE_RUNNING:
1566 break;
1567 case SXG_STATE_PAUSING:
1568 case SXG_STATE_PAUSED:
1569 case SXG_STATE_HALTING:
1570 goto drop;
1571 default:
1572 ASSERT(0);
1573 goto drop;
1577 * memcpy(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1578 * RcvDataBufferHdr->VirtualAddress, Event->Length);
1581 /* Change buffer state to UPSTREAM */
1582 RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
1583 if (Event->Status & EVENT_STATUS_RCVERR) {
1584 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvError",
1585 Event, Event->Status, Event->HostHandle, 0);
1586 /* XXXTODO - Remove this print later */
1587 DBG_ERROR("SXG: Receive error %x\n", *(u32 *)
1588 SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr));
1589 sxg_process_rcv_error(adapter, *(u32 *)
1590 SXG_RECEIVE_DATA_LOCATION
1591 (RcvDataBufferHdr));
1592 goto drop;
1594 #if XXXTODO /* VLAN stuff */
1595 /* If there's a VLAN tag, extract it and validate it */
1596 if (((struct ether_header *)
1597 (SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)))->EtherType
1598 == ETHERTYPE_VLAN) {
1599 if (SxgExtractVlanHeader(adapter, RcvDataBufferHdr, Event) !=
1600 STATUS_SUCCESS) {
1601 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY,
1602 "BadVlan", Event,
1603 SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1604 Event->Length, 0);
1605 goto drop;
1608 #endif
1609 /* Dumb-nic frame. See if it passes our mac filter and update stats */
1612 * ASK if (!sxg_mac_filter(adapter,
1613 * SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1614 * Event->Length)) {
1615 * SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvFiltr",
1616 * Event, SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1617 * Event->Length, 0);
1618 * goto drop;
1622 Packet = RcvDataBufferHdr->SxgDumbRcvPacket;
1623 SXG_ADJUST_RCV_PACKET(Packet, RcvDataBufferHdr, Event);
1624 Packet->protocol = eth_type_trans(Packet, adapter->netdev);
1626 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumbRcv",
1627 RcvDataBufferHdr, Packet, Event->Length, 0);
1628 /* Lastly adjust the receive packet length. */
1629 RcvDataBufferHdr->SxgDumbRcvPacket = NULL;
1630 RcvDataBufferHdr->PhysicalAddress = (dma_addr_t)NULL;
1631 SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
1632 if (RcvDataBufferHdr->skb)
1634 spin_lock(&adapter->RcvQLock);
1635 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
1636 // adapter->RcvBuffersOnCard ++;
1637 spin_unlock(&adapter->RcvQLock);
1639 return (Packet);
1641 drop:
1642 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DropRcv",
1643 RcvDataBufferHdr, Event->Length, 0, 0);
1644 adapter->stats.rx_dropped++;
1645 // adapter->Stats.RcvDiscards++;
1646 spin_lock(&adapter->RcvQLock);
1647 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
1648 spin_unlock(&adapter->RcvQLock);
1649 return (NULL);
1653 * sxg_process_rcv_error - process receive error and update
1654 * stats
1656 * Arguments:
1657 * adapter - Adapter structure
1658 * ErrorStatus - 4-byte receive error status
1660 * Return Value : None
1662 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus)
1664 u32 Error;
1666 adapter->stats.rx_errors++;
1668 if (ErrorStatus & SXG_RCV_STATUS_TRANSPORT_ERROR) {
1669 Error = ErrorStatus & SXG_RCV_STATUS_TRANSPORT_MASK;
1670 switch (Error) {
1671 case SXG_RCV_STATUS_TRANSPORT_CSUM:
1672 adapter->Stats.TransportCsum++;
1673 break;
1674 case SXG_RCV_STATUS_TRANSPORT_UFLOW:
1675 adapter->Stats.TransportUflow++;
1676 break;
1677 case SXG_RCV_STATUS_TRANSPORT_HDRLEN:
1678 adapter->Stats.TransportHdrLen++;
1679 break;
1682 if (ErrorStatus & SXG_RCV_STATUS_NETWORK_ERROR) {
1683 Error = ErrorStatus & SXG_RCV_STATUS_NETWORK_MASK;
1684 switch (Error) {
1685 case SXG_RCV_STATUS_NETWORK_CSUM:
1686 adapter->Stats.NetworkCsum++;
1687 break;
1688 case SXG_RCV_STATUS_NETWORK_UFLOW:
1689 adapter->Stats.NetworkUflow++;
1690 break;
1691 case SXG_RCV_STATUS_NETWORK_HDRLEN:
1692 adapter->Stats.NetworkHdrLen++;
1693 break;
1696 if (ErrorStatus & SXG_RCV_STATUS_PARITY) {
1697 adapter->Stats.Parity++;
1699 if (ErrorStatus & SXG_RCV_STATUS_LINK_ERROR) {
1700 Error = ErrorStatus & SXG_RCV_STATUS_LINK_MASK;
1701 switch (Error) {
1702 case SXG_RCV_STATUS_LINK_PARITY:
1703 adapter->Stats.LinkParity++;
1704 break;
1705 case SXG_RCV_STATUS_LINK_EARLY:
1706 adapter->Stats.LinkEarly++;
1707 break;
1708 case SXG_RCV_STATUS_LINK_BUFOFLOW:
1709 adapter->Stats.LinkBufOflow++;
1710 break;
1711 case SXG_RCV_STATUS_LINK_CODE:
1712 adapter->Stats.LinkCode++;
1713 break;
1714 case SXG_RCV_STATUS_LINK_DRIBBLE:
1715 adapter->Stats.LinkDribble++;
1716 break;
1717 case SXG_RCV_STATUS_LINK_CRC:
1718 adapter->Stats.LinkCrc++;
1719 break;
1720 case SXG_RCV_STATUS_LINK_OFLOW:
1721 adapter->Stats.LinkOflow++;
1722 break;
1723 case SXG_RCV_STATUS_LINK_UFLOW:
1724 adapter->Stats.LinkUflow++;
1725 break;
1730 #if 0 /* Find out if this code will be needed in future */
1732 * sxg_mac_filter
1734 * Arguments:
1735 * adapter - Adapter structure
1736 * pether - Ethernet header
1737 * length - Frame length
1739 * Return Value : TRUE if the frame is to be allowed
1741 static bool sxg_mac_filter(struct adapter_t *adapter,
1742 struct ether_header *EtherHdr, ushort length)
1744 bool EqualAddr;
1746 if (SXG_MULTICAST_PACKET(EtherHdr)) {
1747 if (SXG_BROADCAST_PACKET(EtherHdr)) {
1748 /* broadcast */
1749 if (adapter->MacFilter & MAC_BCAST) {
1750 adapter->Stats.DumbRcvBcastPkts++;
1751 adapter->Stats.DumbRcvBcastBytes += length;
1752 adapter->Stats.DumbRcvPkts++;
1753 adapter->Stats.DumbRcvBytes += length;
1754 return (TRUE);
1756 } else {
1757 /* multicast */
1758 if (adapter->MacFilter & MAC_ALLMCAST) {
1759 adapter->Stats.DumbRcvMcastPkts++;
1760 adapter->Stats.DumbRcvMcastBytes += length;
1761 adapter->Stats.DumbRcvPkts++;
1762 adapter->Stats.DumbRcvBytes += length;
1763 return (TRUE);
1765 if (adapter->MacFilter & MAC_MCAST) {
1766 struct sxg_multicast_address *MulticastAddrs =
1767 adapter->MulticastAddrs;
1768 while (MulticastAddrs) {
1769 ETHER_EQ_ADDR(MulticastAddrs->Address,
1770 EtherHdr->ether_dhost,
1771 EqualAddr);
1772 if (EqualAddr) {
1773 adapter->Stats.
1774 DumbRcvMcastPkts++;
1775 adapter->Stats.
1776 DumbRcvMcastBytes += length;
1777 adapter->Stats.DumbRcvPkts++;
1778 adapter->Stats.DumbRcvBytes +=
1779 length;
1780 return (TRUE);
1782 MulticastAddrs = MulticastAddrs->Next;
1786 } else if (adapter->MacFilter & MAC_DIRECTED) {
1788 * Not broadcast or multicast. Must be directed at us or
1789 * the card is in promiscuous mode. Either way, consider it
1790 * ours if MAC_DIRECTED is set
1792 adapter->Stats.DumbRcvUcastPkts++;
1793 adapter->Stats.DumbRcvUcastBytes += length;
1794 adapter->Stats.DumbRcvPkts++;
1795 adapter->Stats.DumbRcvBytes += length;
1796 return (TRUE);
1798 if (adapter->MacFilter & MAC_PROMISC) {
1799 /* Whatever it is, keep it. */
1800 adapter->Stats.DumbRcvPkts++;
1801 adapter->Stats.DumbRcvBytes += length;
1802 return (TRUE);
1804 adapter->Stats.RcvDiscards++;
1805 return (FALSE);
1807 #endif
1808 static int sxg_register_interrupt(struct adapter_t *adapter)
1810 if (!adapter->intrregistered) {
1811 int retval;
1813 DBG_ERROR
1814 ("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x] %x\n",
1815 __func__, adapter, adapter->netdev->irq, NR_IRQS);
1817 spin_unlock_irqrestore(&sxg_global.driver_lock,
1818 sxg_global.flags);
1820 retval = request_irq(adapter->netdev->irq,
1821 &sxg_isr,
1822 IRQF_SHARED,
1823 adapter->netdev->name, adapter->netdev);
1825 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
1827 if (retval) {
1828 DBG_ERROR("sxg: request_irq (%s) FAILED [%x]\n",
1829 adapter->netdev->name, retval);
1830 return (retval);
1832 adapter->intrregistered = 1;
1833 adapter->IntRegistered = TRUE;
1834 /* Disable RSS with line-based interrupts */
1835 adapter->MsiEnabled = FALSE;
1836 adapter->RssEnabled = FALSE;
1837 DBG_ERROR("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x]\n",
1838 __func__, adapter, adapter->netdev->irq);
1840 return (STATUS_SUCCESS);
1843 static void sxg_deregister_interrupt(struct adapter_t *adapter)
1845 DBG_ERROR("sxg: %s ENTER adapter[%p]\n", __func__, adapter);
1846 #if XXXTODO
1847 slic_init_cleanup(adapter);
1848 #endif
1849 memset(&adapter->stats, 0, sizeof(struct net_device_stats));
1850 adapter->error_interrupts = 0;
1851 adapter->rcv_interrupts = 0;
1852 adapter->xmit_interrupts = 0;
1853 adapter->linkevent_interrupts = 0;
1854 adapter->upr_interrupts = 0;
1855 adapter->num_isrs = 0;
1856 adapter->xmit_completes = 0;
1857 adapter->rcv_broadcasts = 0;
1858 adapter->rcv_multicasts = 0;
1859 adapter->rcv_unicasts = 0;
1860 DBG_ERROR("sxg: %s EXIT\n", __func__);
1864 * sxg_if_init
1866 * Perform initialization of our slic interface.
1869 static int sxg_if_init(struct adapter_t *adapter)
1871 struct net_device *dev = adapter->netdev;
1872 int status = 0;
1874 DBG_ERROR("sxg: %s (%s) ENTER states[%d:%d] flags[%x]\n",
1875 __func__, adapter->netdev->name,
1876 adapter->state,
1877 adapter->linkstate, dev->flags);
1879 /* adapter should be down at this point */
1880 if (adapter->state != ADAPT_DOWN) {
1881 DBG_ERROR("sxg_if_init adapter->state != ADAPT_DOWN\n");
1882 return (-EIO);
1884 ASSERT(adapter->linkstate == LINK_DOWN);
1886 adapter->devflags_prev = dev->flags;
1887 adapter->macopts = MAC_DIRECTED;
1888 if (dev->flags) {
1889 DBG_ERROR("sxg: %s (%s) Set MAC options: ", __func__,
1890 adapter->netdev->name);
1891 if (dev->flags & IFF_BROADCAST) {
1892 adapter->macopts |= MAC_BCAST;
1893 DBG_ERROR("BCAST ");
1895 if (dev->flags & IFF_PROMISC) {
1896 adapter->macopts |= MAC_PROMISC;
1897 DBG_ERROR("PROMISC ");
1899 if (dev->flags & IFF_ALLMULTI) {
1900 adapter->macopts |= MAC_ALLMCAST;
1901 DBG_ERROR("ALL_MCAST ");
1903 if (dev->flags & IFF_MULTICAST) {
1904 adapter->macopts |= MAC_MCAST;
1905 DBG_ERROR("MCAST ");
1907 DBG_ERROR("\n");
1909 status = sxg_register_interrupt(adapter);
1910 if (status != STATUS_SUCCESS) {
1911 DBG_ERROR("sxg_if_init: sxg_register_interrupt FAILED %x\n",
1912 status);
1913 sxg_deregister_interrupt(adapter);
1914 return (status);
1917 adapter->state = ADAPT_UP;
1919 /* clear any pending events, then enable interrupts */
1920 DBG_ERROR("sxg: %s ENABLE interrupts(slic)\n", __func__);
1922 return (STATUS_SUCCESS);
1925 static int sxg_entry_open(struct net_device *dev)
1927 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1928 int status;
1929 static int turn;
1931 if (turn) {
1932 sxg_second_open(adapter->netdev);
1934 return STATUS_SUCCESS;
1937 turn++;
1939 ASSERT(adapter);
1940 DBG_ERROR("sxg: %s adapter->activated[%d]\n", __func__,
1941 adapter->activated);
1942 DBG_ERROR
1943 ("sxg: %s (%s): [jiffies[%lx] cpu %d] dev[%p] adapt[%p] port[%d]\n",
1944 __func__, adapter->netdev->name, jiffies, smp_processor_id(),
1945 adapter->netdev, adapter, adapter->port);
1947 netif_stop_queue(adapter->netdev);
1949 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
1950 if (!adapter->activated) {
1951 sxg_global.num_sxg_ports_active++;
1952 adapter->activated = 1;
1954 /* Initialize the adapter */
1955 DBG_ERROR("sxg: %s ENTER sxg_initialize_adapter\n", __func__);
1956 status = sxg_initialize_adapter(adapter);
1957 DBG_ERROR("sxg: %s EXIT sxg_initialize_adapter status[%x]\n",
1958 __func__, status);
1960 if (status == STATUS_SUCCESS) {
1961 DBG_ERROR("sxg: %s ENTER sxg_if_init\n", __func__);
1962 status = sxg_if_init(adapter);
1963 DBG_ERROR("sxg: %s EXIT sxg_if_init status[%x]\n", __func__,
1964 status);
1967 if (status != STATUS_SUCCESS) {
1968 if (adapter->activated) {
1969 sxg_global.num_sxg_ports_active--;
1970 adapter->activated = 0;
1972 spin_unlock_irqrestore(&sxg_global.driver_lock,
1973 sxg_global.flags);
1974 return (status);
1976 DBG_ERROR("sxg: %s ENABLE ALL INTERRUPTS\n", __func__);
1978 /* Enable interrupts */
1979 SXG_ENABLE_ALL_INTERRUPTS(adapter);
1981 DBG_ERROR("sxg: %s EXIT\n", __func__);
1983 spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
1984 return STATUS_SUCCESS;
1987 int sxg_second_open(struct net_device * dev)
1989 struct adapter_t *adapter = (struct adapter_t*) netdev_priv(dev);
1991 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
1992 netif_start_queue(adapter->netdev);
1993 adapter->state = ADAPT_UP;
1994 adapter->linkstate = LINK_UP;
1996 /* Re-enable interrupts */
1997 SXG_ENABLE_ALL_INTERRUPTS(adapter);
1999 netif_carrier_on(dev);
2000 spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2001 sxg_register_interrupt(adapter);
2002 return (STATUS_SUCCESS);
2006 static void __devexit sxg_entry_remove(struct pci_dev *pcidev)
2008 u32 mmio_start = 0;
2009 u32 mmio_len = 0;
2011 struct net_device *dev = pci_get_drvdata(pcidev);
2012 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2014 flush_scheduled_work();
2016 /* Deallocate Resources */
2017 unregister_netdev(dev);
2018 sxg_free_resources(adapter);
2020 ASSERT(adapter);
2022 mmio_start = pci_resource_start(pcidev, 0);
2023 mmio_len = pci_resource_len(pcidev, 0);
2025 DBG_ERROR("sxg: %s rel_region(0) start[%x] len[%x]\n", __FUNCTION__,
2026 mmio_start, mmio_len);
2027 release_mem_region(mmio_start, mmio_len);
2029 mmio_start = pci_resource_start(pcidev, 2);
2030 mmio_len = pci_resource_len(pcidev, 2);
2032 DBG_ERROR("sxg: %s rel_region(2) start[%x] len[%x]\n", __FUNCTION__,
2033 mmio_start, mmio_len);
2034 release_mem_region(mmio_start, mmio_len);
2036 pci_disable_device(pcidev);
2038 DBG_ERROR("sxg: %s deallocate device\n", __func__);
2039 kfree(dev);
2040 DBG_ERROR("sxg: %s EXIT\n", __func__);
2043 static int sxg_entry_halt(struct net_device *dev)
2045 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2047 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2048 DBG_ERROR("sxg: %s (%s) ENTER\n", __func__, dev->name);
2050 netif_stop_queue(adapter->netdev);
2051 adapter->state = ADAPT_DOWN;
2052 adapter->linkstate = LINK_DOWN;
2053 adapter->devflags_prev = 0;
2054 DBG_ERROR("sxg: %s (%s) set adapter[%p] state to ADAPT_DOWN(%d)\n",
2055 __func__, dev->name, adapter, adapter->state);
2057 DBG_ERROR("sxg: %s (%s) EXIT\n", __func__, dev->name);
2058 DBG_ERROR("sxg: %s EXIT\n", __func__);
2060 /* Disable interrupts */
2061 SXG_DISABLE_ALL_INTERRUPTS(adapter);
2063 netif_carrier_off(dev);
2064 spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2066 sxg_deregister_interrupt(adapter);
2067 return (STATUS_SUCCESS);
2070 static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2072 ASSERT(rq);
2073 /* DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __func__, cmd, rq, dev);*/
2074 switch (cmd) {
2075 case SIOCSLICSETINTAGG:
2077 /* struct adapter_t *adapter = (struct adapter_t *)
2078 * netdev_priv(dev);
2080 u32 data[7];
2081 u32 intagg;
2083 if (copy_from_user(data, rq->ifr_data, 28)) {
2084 DBG_ERROR("copy_from_user FAILED getting \
2085 initial params\n");
2086 return -EFAULT;
2088 intagg = data[0];
2089 printk(KERN_EMERG
2090 "%s: set interrupt aggregation to %d\n",
2091 __func__, intagg);
2092 return 0;
2095 default:
2096 /* DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __func__, cmd); */
2097 return -EOPNOTSUPP;
2099 return 0;
2102 #define NORMAL_ETHFRAME 0
2105 * sxg_send_packets - Send a skb packet
2107 * Arguments:
2108 * skb - The packet to send
2109 * dev - Our linux net device that refs our adapter
2111 * Return:
2112 * 0 regardless of outcome XXXTODO refer to e1000 driver
2114 static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev)
2116 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2117 u32 status = STATUS_SUCCESS;
2120 * DBG_ERROR("sxg: %s ENTER sxg_send_packets skb[%p]\n", __FUNCTION__,
2121 * skb);
2123 printk("ASK:sxg_send_packets: skb[%p]\n", skb);
2125 /* Check the adapter state */
2126 switch (adapter->State) {
2127 case SXG_STATE_INITIALIZING:
2128 case SXG_STATE_HALTED:
2129 case SXG_STATE_SHUTDOWN:
2130 ASSERT(0); /* unexpected */
2131 /* fall through */
2132 case SXG_STATE_RESETTING:
2133 case SXG_STATE_SLEEP:
2134 case SXG_STATE_BOOTDIAG:
2135 case SXG_STATE_DIAG:
2136 case SXG_STATE_HALTING:
2137 status = STATUS_FAILURE;
2138 break;
2139 case SXG_STATE_RUNNING:
2140 if (adapter->LinkState != SXG_LINK_UP) {
2141 status = STATUS_FAILURE;
2143 break;
2144 default:
2145 ASSERT(0);
2146 status = STATUS_FAILURE;
2148 if (status != STATUS_SUCCESS) {
2149 goto xmit_fail;
2151 /* send a packet */
2152 status = sxg_transmit_packet(adapter, skb);
2153 if (status == STATUS_SUCCESS) {
2154 goto xmit_done;
2157 xmit_fail:
2158 /* reject & complete all the packets if they cant be sent */
2159 if (status != STATUS_SUCCESS) {
2160 #if XXXTODO
2161 /* sxg_send_packets_fail(adapter, skb, status); */
2162 #else
2163 SXG_DROP_DUMB_SEND(adapter, skb);
2164 adapter->stats.tx_dropped++;
2165 return NETDEV_TX_BUSY;
2166 #endif
2168 DBG_ERROR("sxg: %s EXIT sxg_send_packets status[%x]\n", __func__,
2169 status);
2171 xmit_done:
2172 return NETDEV_TX_OK;
2176 * sxg_transmit_packet
2178 * This function transmits a single packet.
2180 * Arguments -
2181 * adapter - Pointer to our adapter structure
2182 * skb - The packet to be sent
2184 * Return - STATUS of send
2186 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb)
2188 struct sxg_x64_sgl *pSgl;
2189 struct sxg_scatter_gather *SxgSgl;
2190 unsigned long sgl_flags;
2191 /* void *SglBuffer; */
2192 /* u32 SglBufferLength; */
2195 * The vast majority of work is done in the shared
2196 * sxg_dumb_sgl routine.
2198 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSend",
2199 adapter, skb, 0, 0);
2201 /* Allocate a SGL buffer */
2202 SXG_GET_SGL_BUFFER(adapter, SxgSgl, 0);
2203 if (!SxgSgl) {
2204 adapter->Stats.NoSglBuf++;
2205 adapter->stats.tx_errors++;
2206 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "SndPktF1",
2207 adapter, skb, 0, 0);
2208 return (STATUS_RESOURCES);
2210 ASSERT(SxgSgl->adapter == adapter);
2211 /*SglBuffer = SXG_SGL_BUFFER(SxgSgl);
2212 SglBufferLength = SXG_SGL_BUF_SIZE; */
2213 SxgSgl->VlanTag.VlanTci = 0;
2214 SxgSgl->VlanTag.VlanTpid = 0;
2215 SxgSgl->Type = SXG_SGL_DUMB;
2216 SxgSgl->DumbPacket = skb;
2217 pSgl = NULL;
2219 /* Call the common sxg_dumb_sgl routine to complete the send. */
2220 return (sxg_dumb_sgl(pSgl, SxgSgl));
2224 * sxg_dumb_sgl
2226 * Arguments:
2227 * pSgl -
2228 * SxgSgl - struct sxg_scatter_gather
2230 * Return Value:
2231 * Status of send operation.
2233 static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
2234 struct sxg_scatter_gather *SxgSgl)
2236 struct adapter_t *adapter = SxgSgl->adapter;
2237 struct sk_buff *skb = SxgSgl->DumbPacket;
2238 /* For now, all dumb-nic sends go on RSS queue zero */
2239 struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
2240 struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
2241 struct sxg_cmd *XmtCmd = NULL;
2242 /* u32 Index = 0; */
2243 u32 DataLength = skb->len;
2244 /* unsigned int BufLen; */
2245 /* u32 SglOffset; */
2246 u64 phys_addr;
2247 unsigned long flags;
2248 unsigned long queue_id=0;
2250 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSgl",
2251 pSgl, SxgSgl, 0, 0);
2253 /* Set aside a pointer to the sgl */
2254 SxgSgl->pSgl = pSgl;
2256 /* Sanity check that our SGL format is as we expect. */
2257 ASSERT(sizeof(struct sxg_x64_sge) == sizeof(struct sxg_x64_sge));
2258 /* Shouldn't be a vlan tag on this frame */
2259 ASSERT(SxgSgl->VlanTag.VlanTci == 0);
2260 ASSERT(SxgSgl->VlanTag.VlanTpid == 0);
2263 * From here below we work with the SGL placed in our
2264 * buffer.
2267 SxgSgl->Sgl.NumberOfElements = 1;
2269 * Set ucode Queue ID based on bottom bits of destination TCP port.
2270 * This Queue ID splits slowpath/dumb-nic packet processing across
2271 * multiple threads on the card to improve performance. It is split
2272 * using the TCP port to avoid out-of-order packets that can result
2273 * from multithreaded processing. We use the destination port because
2274 * we expect to be run on a server, so in nearly all cases the local
2275 * port is likely to be constant (well-known server port) and the
2276 * remote port is likely to be random. The exception to this is iSCSI,
2277 * in which case we use the sport instead. Note
2278 * that original attempt at XOR'ing source and dest port resulted in
2279 * poor balance on NTTTCP/iometer applications since they tend to
2280 * line up (even-even, odd-odd..).
2283 if (skb->protocol == htons(ETH_P_IP)) {
2284 struct iphdr *ip;
2286 ip = ip_hdr(skb);
2287 if ((ip->protocol == IPPROTO_TCP)&&(DataLength >= sizeof(
2288 struct tcphdr))){
2289 queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
2290 (ntohs (tcp_hdr(skb)->source) &
2291 SXG_LARGE_SEND_QUEUE_MASK):
2292 (ntohs(tcp_hdr(skb)->dest) &
2293 SXG_LARGE_SEND_QUEUE_MASK));
2295 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2296 if ( (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) && (DataLength >=
2297 sizeof(struct tcphdr)) ) {
2298 queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
2299 (ntohs (tcp_hdr(skb)->source) &
2300 SXG_LARGE_SEND_QUEUE_MASK):
2301 (ntohs(tcp_hdr(skb)->dest) &
2302 SXG_LARGE_SEND_QUEUE_MASK));
2306 /* Grab the spinlock and acquire a command */
2307 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2308 SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2309 if (XmtCmd == NULL) {
2311 * Call sxg_complete_slow_send to see if we can
2312 * free up any XmtRingZero entries and then try again
2315 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2316 sxg_complete_slow_send(adapter, 0);
2317 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2318 SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2319 if (XmtCmd == NULL) {
2320 adapter->Stats.XmtZeroFull++;
2321 goto abortcmd;
2324 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbCmd",
2325 XmtCmd, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
2326 /* Update stats */
2327 adapter->stats.tx_packets++;
2328 adapter->stats.tx_bytes += DataLength;
2329 #if XXXTODO /* Stats stuff */
2330 if (SXG_MULTICAST_PACKET(EtherHdr)) {
2331 if (SXG_BROADCAST_PACKET(EtherHdr)) {
2332 adapter->Stats.DumbXmtBcastPkts++;
2333 adapter->Stats.DumbXmtBcastBytes += DataLength;
2334 } else {
2335 adapter->Stats.DumbXmtMcastPkts++;
2336 adapter->Stats.DumbXmtMcastBytes += DataLength;
2338 } else {
2339 adapter->Stats.DumbXmtUcastPkts++;
2340 adapter->Stats.DumbXmtUcastBytes += DataLength;
2342 #endif
2344 * Fill in the command
2345 * Copy out the first SGE to the command and adjust for offset
2347 phys_addr = pci_map_single(adapter->pcidev, skb->data, skb->len,
2348 PCI_DMA_TODEVICE);
2349 memset(XmtCmd, '\0', sizeof(*XmtCmd));
2350 XmtCmd->Buffer.FirstSgeAddress = phys_addr;
2351 XmtCmd->Buffer.FirstSgeLength = DataLength;
2352 XmtCmd->Buffer.SgeOffset = 0;
2353 XmtCmd->Buffer.TotalLength = DataLength;
2354 XmtCmd->SgEntries = 1;
2355 XmtCmd->Flags = 0;
2357 * Advance transmit cmd descripter by 1.
2358 * NOTE - See comments in SxgTcpOutput where we write
2359 * to the XmtCmd register regarding CPU ID values and/or
2360 * multiple commands.
2361 * Top 16 bits specify queue_id. See comments about queue_id above
2363 /* Four queues at the moment */
2364 ASSERT((queue_id & ~SXG_LARGE_SEND_QUEUE_MASK) == 0);
2365 WRITE_REG(adapter->UcodeRegs[0].XmtCmd, ((queue_id << 16) | 1), TRUE);
2366 adapter->Stats.XmtQLen++; /* Stats within lock */
2367 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2368 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDumSgl2",
2369 XmtCmd, pSgl, SxgSgl, 0);
2370 return STATUS_SUCCESS;
2372 abortcmd:
2374 * NOTE - Only jump to this label AFTER grabbing the
2375 * XmtZeroLock, and DO NOT DROP IT between the
2376 * command allocation and the following abort.
2378 if (XmtCmd) {
2379 SXG_ABORT_CMD(XmtRingInfo);
2381 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2384 * failsgl:
2385 * Jump to this label if failure occurs before the
2386 * XmtZeroLock is grabbed
2388 adapter->stats.tx_errors++;
2389 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumSGFal",
2390 pSgl, SxgSgl, XmtRingInfo->Head, XmtRingInfo->Tail);
2391 /* SxgSgl->DumbPacket is the skb */
2392 // SXG_COMPLETE_DUMB_SEND(adapter, SxgSgl->DumbPacket);
2394 return STATUS_FAILURE;
2398 * Link management functions
2400 * sxg_initialize_link - Initialize the link stuff
2402 * Arguments -
2403 * adapter - A pointer to our adapter structure
2405 * Return
2406 * status
2408 static int sxg_initialize_link(struct adapter_t *adapter)
2410 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2411 u32 Value;
2412 u32 ConfigData;
2413 u32 MaxFrame;
2414 int status;
2416 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitLink",
2417 adapter, 0, 0, 0);
2419 /* Reset PHY and XGXS module */
2420 WRITE_REG(HwRegs->LinkStatus, LS_SERDES_POWER_DOWN, TRUE);
2422 /* Reset transmit configuration register */
2423 WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_RESET, TRUE);
2425 /* Reset receive configuration register */
2426 WRITE_REG(HwRegs->RcvConfig, RCV_CONFIG_RESET, TRUE);
2428 /* Reset all MAC modules */
2429 WRITE_REG(HwRegs->MacConfig0, AXGMAC_CFG0_SUB_RESET, TRUE);
2432 * Link address 0
2433 * XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f)
2434 * is stored with the first nibble (0a) in the byte 0
2435 * of the Mac address. Possibly reverse?
2437 Value = *(u32 *) adapter->macaddr;
2438 WRITE_REG(HwRegs->LinkAddress0Low, Value, TRUE);
2439 /* also write the MAC address to the MAC. Endian is reversed. */
2440 WRITE_REG(HwRegs->MacAddressLow, ntohl(Value), TRUE);
2441 Value = (*(u16 *) & adapter->macaddr[4] & 0x0000FFFF);
2442 WRITE_REG(HwRegs->LinkAddress0High, Value | LINK_ADDRESS_ENABLE, TRUE);
2443 /* endian swap for the MAC (put high bytes in bits [31:16], swapped) */
2444 Value = ntohl(Value);
2445 WRITE_REG(HwRegs->MacAddressHigh, Value, TRUE);
2446 /* Link address 1 */
2447 WRITE_REG(HwRegs->LinkAddress1Low, 0, TRUE);
2448 WRITE_REG(HwRegs->LinkAddress1High, 0, TRUE);
2449 /* Link address 2 */
2450 WRITE_REG(HwRegs->LinkAddress2Low, 0, TRUE);
2451 WRITE_REG(HwRegs->LinkAddress2High, 0, TRUE);
2452 /* Link address 3 */
2453 WRITE_REG(HwRegs->LinkAddress3Low, 0, TRUE);
2454 WRITE_REG(HwRegs->LinkAddress3High, 0, TRUE);
2456 /* Enable MAC modules */
2457 WRITE_REG(HwRegs->MacConfig0, 0, TRUE);
2459 /* Configure MAC */
2460 WRITE_REG(HwRegs->MacConfig1, (
2461 /* Allow sending of pause */
2462 AXGMAC_CFG1_XMT_PAUSE |
2463 /* Enable XMT */
2464 AXGMAC_CFG1_XMT_EN |
2465 /* Enable detection of pause */
2466 AXGMAC_CFG1_RCV_PAUSE |
2467 /* Enable receive */
2468 AXGMAC_CFG1_RCV_EN |
2469 /* short frame detection */
2470 AXGMAC_CFG1_SHORT_ASSERT |
2471 /* Verify frame length */
2472 AXGMAC_CFG1_CHECK_LEN |
2473 /* Generate FCS */
2474 AXGMAC_CFG1_GEN_FCS |
2475 /* Pad frames to 64 bytes */
2476 AXGMAC_CFG1_PAD_64),
2477 TRUE);
2479 /* Set AXGMAC max frame length if jumbo. Not needed for standard MTU */
2480 if (adapter->JumboEnabled) {
2481 WRITE_REG(HwRegs->MacMaxFrameLen, AXGMAC_MAXFRAME_JUMBO, TRUE);
2484 * AMIIM Configuration Register -
2485 * The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion
2486 * (bottom bits) of this register is used to determine the MDC frequency
2487 * as specified in the A-XGMAC Design Document. This value must not be
2488 * zero. The following value (62 or 0x3E) is based on our MAC transmit
2489 * clock frequency (MTCLK) of 312.5 MHz. Given a maximum MDIO clock
2490 * frequency of 2.5 MHz (see the PHY spec), we get:
2491 * 312.5/(2*(X+1)) < 2.5 ==> X = 62.
2492 * This value happens to be the default value for this register, so we
2493 * really don't have to do this.
2495 WRITE_REG(HwRegs->MacAmiimConfig, 0x0000003E, TRUE);
2497 /* Power up and enable PHY and XAUI/XGXS/Serdes logic */
2498 WRITE_REG(HwRegs->LinkStatus,
2499 (LS_PHY_CLR_RESET |
2500 LS_XGXS_ENABLE |
2501 LS_XGXS_CTL | LS_PHY_CLK_EN | LS_ATTN_ALARM), TRUE);
2502 DBG_ERROR("After Power Up and enable PHY in sxg_initialize_link\n");
2505 * Per information given by Aeluros, wait 100 ms after removing reset.
2506 * It's not enough to wait for the self-clearing reset bit in reg 0 to
2507 * clear.
2509 mdelay(100);
2511 /* Verify the PHY has come up by checking that the Reset bit has
2512 * cleared.
2514 status = sxg_read_mdio_reg(adapter,
2515 MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2516 PHY_PMA_CONTROL1, /* PMA/PMD control register */
2517 &Value);
2518 DBG_ERROR("After sxg_read_mdio_reg Value[%x] fail=%x\n", Value,
2519 (Value & PMA_CONTROL1_RESET));
2520 if (status != STATUS_SUCCESS)
2521 return (STATUS_FAILURE);
2522 if (Value & PMA_CONTROL1_RESET) /* reset complete if bit is 0 */
2523 return (STATUS_FAILURE);
2525 /* The SERDES should be initialized by now - confirm */
2526 READ_REG(HwRegs->LinkStatus, Value);
2527 if (Value & LS_SERDES_DOWN) /* verify SERDES is initialized */
2528 return (STATUS_FAILURE);
2530 /* The XAUI link should also be up - confirm */
2531 if (!(Value & LS_XAUI_LINK_UP)) /* verify XAUI link is up */
2532 return (STATUS_FAILURE);
2534 /* Initialize the PHY */
2535 status = sxg_phy_init(adapter);
2536 if (status != STATUS_SUCCESS)
2537 return (STATUS_FAILURE);
2539 /* Enable the Link Alarm */
2541 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
2542 * LASI_CONTROL - LASI control register
2543 * LASI_CTL_LS_ALARM_ENABLE - enable link alarm bit
2545 status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2546 LASI_CONTROL,
2547 LASI_CTL_LS_ALARM_ENABLE);
2548 if (status != STATUS_SUCCESS)
2549 return (STATUS_FAILURE);
2551 /* XXXTODO - temporary - verify bit is set */
2553 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
2554 * LASI_CONTROL - LASI control register
2556 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2557 LASI_CONTROL,
2558 &Value);
2560 if (status != STATUS_SUCCESS)
2561 return (STATUS_FAILURE);
2562 if (!(Value & LASI_CTL_LS_ALARM_ENABLE)) {
2563 DBG_ERROR("Error! LASI Control Alarm Enable bit not set!\n");
2565 /* Enable receive */
2566 MaxFrame = adapter->JumboEnabled ? JUMBOMAXFRAME : ETHERMAXFRAME;
2567 ConfigData = (RCV_CONFIG_ENABLE |
2568 RCV_CONFIG_ENPARSE |
2569 RCV_CONFIG_RCVBAD |
2570 RCV_CONFIG_RCVPAUSE |
2571 RCV_CONFIG_TZIPV6 |
2572 RCV_CONFIG_TZIPV4 |
2573 RCV_CONFIG_HASH_16 |
2574 RCV_CONFIG_SOCKET | RCV_CONFIG_BUFSIZE(MaxFrame));
2575 WRITE_REG(HwRegs->RcvConfig, ConfigData, TRUE);
2577 WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_ENABLE, TRUE);
2579 /* Mark the link as down. We'll get a link event when it comes up. */
2580 sxg_link_state(adapter, SXG_LINK_DOWN);
2582 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInitLnk",
2583 adapter, 0, 0, 0);
2584 return (STATUS_SUCCESS);
2588 * sxg_phy_init - Initialize the PHY
2590 * Arguments -
2591 * adapter - A pointer to our adapter structure
2593 * Return
2594 * status
2596 static int sxg_phy_init(struct adapter_t *adapter)
2598 u32 Value;
2599 struct phy_ucode *p;
2600 int status;
2602 DBG_ERROR("ENTER %s\n", __func__);
2604 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
2605 * 0xC205 - PHY ID register (?)
2606 * &Value - XXXTODO - add def
2608 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2609 0xC205,
2610 &Value);
2611 if (status != STATUS_SUCCESS)
2612 return (STATUS_FAILURE);
2614 if (Value == 0x0012) {
2615 /* 0x0012 == AEL2005C PHY(?) - XXXTODO - add def */
2616 DBG_ERROR("AEL2005C PHY detected. Downloading PHY \
2617 microcode.\n");
2619 /* Initialize AEL2005C PHY and download PHY microcode */
2620 for (p = PhyUcode; p->Addr != 0xFFFF; p++) {
2621 if (p->Addr == 0) {
2622 /* if address == 0, data == sleep time in ms */
2623 mdelay(p->Data);
2624 } else {
2625 /* write the given data to the specified address */
2626 status = sxg_write_mdio_reg(adapter,
2627 MIIM_DEV_PHY_PMA,
2628 /* PHY address */
2629 p->Addr,
2630 /* PHY data */
2631 p->Data);
2632 if (status != STATUS_SUCCESS)
2633 return (STATUS_FAILURE);
2637 DBG_ERROR("EXIT %s\n", __func__);
2639 return (STATUS_SUCCESS);
2643 * sxg_link_event - Process a link event notification from the card
2645 * Arguments -
2646 * adapter - A pointer to our adapter structure
2648 * Return
2649 * None
2651 static void sxg_link_event(struct adapter_t *adapter)
2653 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2654 struct net_device *netdev = adapter->netdev;
2655 enum SXG_LINK_STATE LinkState;
2656 int status;
2657 u32 Value;
2659 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "LinkEvnt",
2660 adapter, 0, 0, 0);
2661 DBG_ERROR("ENTER %s\n", __func__);
2663 /* Check the Link Status register. We should have a Link Alarm. */
2664 READ_REG(HwRegs->LinkStatus, Value);
2665 if (Value & LS_LINK_ALARM) {
2667 * We got a Link Status alarm. First, pause to let the
2668 * link state settle (it can bounce a number of times)
2670 mdelay(10);
2672 /* Now clear the alarm by reading the LASI status register. */
2673 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module */
2674 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2675 /* LASI status register */
2676 LASI_STATUS,
2677 &Value);
2678 if (status != STATUS_SUCCESS) {
2679 DBG_ERROR("Error reading LASI Status MDIO register!\n");
2680 sxg_link_state(adapter, SXG_LINK_DOWN);
2681 /* ASSERT(0); */
2683 ASSERT(Value & LASI_STATUS_LS_ALARM);
2685 /* Now get and set the link state */
2686 LinkState = sxg_get_link_state(adapter);
2687 sxg_link_state(adapter, LinkState);
2688 DBG_ERROR("SXG: Link Alarm occurred. Link is %s\n",
2689 ((LinkState == SXG_LINK_UP) ? "UP" : "DOWN"));
2690 if (LinkState == SXG_LINK_UP)
2691 netif_carrier_on(netdev);
2692 else
2693 netif_carrier_off(netdev);
2694 } else {
2696 * XXXTODO - Assuming Link Attention is only being generated
2697 * for the Link Alarm pin (and not for a XAUI Link Status change)
2698 * , then it's impossible to get here. Yet we've gotten here
2699 * twice (under extreme conditions - bouncing the link up and
2700 * down many times a second). Needs further investigation.
2702 DBG_ERROR("SXG: sxg_link_event: Can't get here!\n");
2703 DBG_ERROR("SXG: Link Status == 0x%08X.\n", Value);
2704 /* ASSERT(0); */
2706 DBG_ERROR("EXIT %s\n", __func__);
2711 * sxg_get_link_state - Determine if the link is up or down
2713 * Arguments -
2714 * adapter - A pointer to our adapter structure
2716 * Return
2717 * Link State
2719 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter)
2721 int status;
2722 u32 Value;
2724 DBG_ERROR("ENTER %s\n", __func__);
2726 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "GetLink",
2727 adapter, 0, 0, 0);
2730 * Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if
2731 * the following 3 bits (from 3 different MDIO registers) are all true.
2734 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module */
2735 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2736 /* PMA/PMD Receive Signal Detect register */
2737 PHY_PMA_RCV_DET,
2738 &Value);
2739 if (status != STATUS_SUCCESS)
2740 goto bad;
2742 /* If PMA/PMD receive signal detect is 0, then the link is down */
2743 if (!(Value & PMA_RCV_DETECT))
2744 return (SXG_LINK_DOWN);
2746 /* MIIM_DEV_PHY_PCS - PHY PCS module */
2747 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PCS,
2748 /* PCS 10GBASE-R Status 1 register */
2749 PHY_PCS_10G_STATUS1,
2750 &Value);
2751 if (status != STATUS_SUCCESS)
2752 goto bad;
2754 /* If PCS is not locked to receive blocks, then the link is down */
2755 if (!(Value & PCS_10B_BLOCK_LOCK))
2756 return (SXG_LINK_DOWN);
2758 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_XS,/* PHY XS module */
2759 /* XS Lane Status register */
2760 PHY_XS_LANE_STATUS,
2761 &Value);
2762 if (status != STATUS_SUCCESS)
2763 goto bad;
2765 /* If XS transmit lanes are not aligned, then the link is down */
2766 if (!(Value & XS_LANE_ALIGN))
2767 return (SXG_LINK_DOWN);
2769 /* All 3 bits are true, so the link is up */
2770 DBG_ERROR("EXIT %s\n", __func__);
2772 return (SXG_LINK_UP);
2774 bad:
2775 /* An error occurred reading an MDIO register. This shouldn't happen. */
2776 DBG_ERROR("Error reading an MDIO register!\n");
2777 ASSERT(0);
2778 return (SXG_LINK_DOWN);
2781 static void sxg_indicate_link_state(struct adapter_t *adapter,
2782 enum SXG_LINK_STATE LinkState)
2784 if (adapter->LinkState == SXG_LINK_UP) {
2785 DBG_ERROR("%s: LINK now UP, call netif_start_queue\n",
2786 __func__);
2787 netif_start_queue(adapter->netdev);
2788 } else {
2789 DBG_ERROR("%s: LINK now DOWN, call netif_stop_queue\n",
2790 __func__);
2791 netif_stop_queue(adapter->netdev);
2796 * sxg_link_state - Set the link state and if necessary, indicate.
2797 * This routine the central point of processing for all link state changes.
2798 * Nothing else in the driver should alter the link state or perform
2799 * link state indications
2801 * Arguments -
2802 * adapter - A pointer to our adapter structure
2803 * LinkState - The link state
2805 * Return
2806 * None
2808 static void sxg_link_state(struct adapter_t *adapter,
2809 enum SXG_LINK_STATE LinkState)
2811 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "LnkINDCT",
2812 adapter, LinkState, adapter->LinkState, adapter->State);
2814 DBG_ERROR("ENTER %s\n", __func__);
2817 * Hold the adapter lock during this routine. Maybe move
2818 * the lock to the caller.
2820 /* IMP TODO : Check if we can survive without taking this lock */
2821 // spin_lock(&adapter->AdapterLock);
2822 if (LinkState == adapter->LinkState) {
2823 /* Nothing changed.. */
2824 // spin_unlock(&adapter->AdapterLock);
2825 DBG_ERROR("EXIT #0 %s. Link status = %d\n",
2826 __func__, LinkState);
2827 return;
2829 /* Save the adapter state */
2830 adapter->LinkState = LinkState;
2832 /* Drop the lock and indicate link state */
2833 // spin_unlock(&adapter->AdapterLock);
2834 DBG_ERROR("EXIT #1 %s\n", __func__);
2836 sxg_indicate_link_state(adapter, LinkState);
2840 * sxg_write_mdio_reg - Write to a register on the MDIO bus
2842 * Arguments -
2843 * adapter - A pointer to our adapter structure
2844 * DevAddr - MDIO device number being addressed
2845 * RegAddr - register address for the specified MDIO device
2846 * Value - value to write to the MDIO register
2848 * Return
2849 * status
2851 static int sxg_write_mdio_reg(struct adapter_t *adapter,
2852 u32 DevAddr, u32 RegAddr, u32 Value)
2854 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2855 /* Address operation (written to MIIM field reg) */
2856 u32 AddrOp;
2857 /* Write operation (written to MIIM field reg) */
2858 u32 WriteOp;
2859 u32 Cmd;/* Command (written to MIIM command reg) */
2860 u32 ValueRead;
2861 u32 Timeout;
2863 /* DBG_ERROR("ENTER %s\n", __func__); */
2865 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
2866 adapter, 0, 0, 0);
2868 /* Ensure values don't exceed field width */
2869 DevAddr &= 0x001F; /* 5-bit field */
2870 RegAddr &= 0xFFFF; /* 16-bit field */
2871 Value &= 0xFFFF; /* 16-bit field */
2873 /* Set MIIM field register bits for an MIIM address operation */
2874 AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2875 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2876 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2877 (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
2879 /* Set MIIM field register bits for an MIIM write operation */
2880 WriteOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2881 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2882 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2883 (MIIM_OP_WRITE << AXGMAC_AMIIM_FIELD_OP_SHIFT) | Value;
2885 /* Set MIIM command register bits to execute an MIIM command */
2886 Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
2888 /* Reset the command register command bit (in case it's not 0) */
2889 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
2891 /* MIIM write to set the address of the specified MDIO register */
2892 WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
2894 /* Write to MIIM Command Register to execute to address operation */
2895 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
2897 /* Poll AMIIM Indicator register to wait for completion */
2898 Timeout = SXG_LINK_TIMEOUT;
2899 do {
2900 udelay(100); /* Timeout in 100us units */
2901 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
2902 if (--Timeout == 0) {
2903 return (STATUS_FAILURE);
2905 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
2907 /* Reset the command register command bit */
2908 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
2910 /* MIIM write to set up an MDIO write operation */
2911 WRITE_REG(HwRegs->MacAmiimField, WriteOp, TRUE);
2913 /* Write to MIIM Command Register to execute the write operation */
2914 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
2916 /* Poll AMIIM Indicator register to wait for completion */
2917 Timeout = SXG_LINK_TIMEOUT;
2918 do {
2919 udelay(100); /* Timeout in 100us units */
2920 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
2921 if (--Timeout == 0) {
2922 return (STATUS_FAILURE);
2924 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
2926 /* DBG_ERROR("EXIT %s\n", __func__); */
2928 return (STATUS_SUCCESS);
2932 * sxg_read_mdio_reg - Read a register on the MDIO bus
2934 * Arguments -
2935 * adapter - A pointer to our adapter structure
2936 * DevAddr - MDIO device number being addressed
2937 * RegAddr - register address for the specified MDIO device
2938 * pValue - pointer to where to put data read from the MDIO register
2940 * Return
2941 * status
2943 static int sxg_read_mdio_reg(struct adapter_t *adapter,
2944 u32 DevAddr, u32 RegAddr, u32 *pValue)
2946 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2947 u32 AddrOp; /* Address operation (written to MIIM field reg) */
2948 u32 ReadOp; /* Read operation (written to MIIM field reg) */
2949 u32 Cmd; /* Command (written to MIIM command reg) */
2950 u32 ValueRead;
2951 u32 Timeout;
2953 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
2954 adapter, 0, 0, 0);
2955 DBG_ERROR("ENTER %s\n", __FUNCTION__);
2957 /* Ensure values don't exceed field width */
2958 DevAddr &= 0x001F; /* 5-bit field */
2959 RegAddr &= 0xFFFF; /* 16-bit field */
2961 /* Set MIIM field register bits for an MIIM address operation */
2962 AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2963 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2964 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2965 (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
2967 /* Set MIIM field register bits for an MIIM read operation */
2968 ReadOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2969 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2970 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2971 (MIIM_OP_READ << AXGMAC_AMIIM_FIELD_OP_SHIFT);
2973 /* Set MIIM command register bits to execute an MIIM command */
2974 Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
2976 /* Reset the command register command bit (in case it's not 0) */
2977 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
2979 /* MIIM write to set the address of the specified MDIO register */
2980 WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
2982 /* Write to MIIM Command Register to execute to address operation */
2983 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
2985 /* Poll AMIIM Indicator register to wait for completion */
2986 Timeout = SXG_LINK_TIMEOUT;
2987 do {
2988 udelay(100); /* Timeout in 100us units */
2989 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
2990 if (--Timeout == 0) {
2991 DBG_ERROR("EXIT %s with STATUS_FAILURE 1\n", __FUNCTION__);
2993 return (STATUS_FAILURE);
2995 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
2997 /* Reset the command register command bit */
2998 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3000 /* MIIM write to set up an MDIO register read operation */
3001 WRITE_REG(HwRegs->MacAmiimField, ReadOp, TRUE);
3003 /* Write to MIIM Command Register to execute the read operation */
3004 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3006 /* Poll AMIIM Indicator register to wait for completion */
3007 Timeout = SXG_LINK_TIMEOUT;
3008 do {
3009 udelay(100); /* Timeout in 100us units */
3010 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3011 if (--Timeout == 0) {
3012 DBG_ERROR("EXIT %s with STATUS_FAILURE 2\n", __FUNCTION__);
3014 return (STATUS_FAILURE);
3016 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3018 /* Read the MDIO register data back from the field register */
3019 READ_REG(HwRegs->MacAmiimField, *pValue);
3020 *pValue &= 0xFFFF; /* data is in the lower 16 bits */
3022 DBG_ERROR("EXIT %s\n", __FUNCTION__);
3024 return (STATUS_SUCCESS);
3028 * Functions to obtain the CRC corresponding to the destination mac address.
3029 * This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using
3030 * the polynomial:
3031 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5
3032 * + x^4 + x^2 + x^1.
3034 * After the CRC for the 6 bytes is generated (but before the value is
3035 * complemented), we must then transpose the value and return bits 30-23.
3037 static u32 sxg_crc_table[256];/* Table of CRC's for all possible byte values */
3038 static u32 sxg_crc_init; /* Is table initialized */
3040 /* Contruct the CRC32 table */
3041 static void sxg_mcast_init_crc32(void)
3043 u32 c; /* CRC shit reg */
3044 u32 e = 0; /* Poly X-or pattern */
3045 int i; /* counter */
3046 int k; /* byte being shifted into crc */
3048 static int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
3050 for (i = 0; i < sizeof(p) / sizeof(int); i++) {
3051 e |= 1L << (31 - p[i]);
3054 for (i = 1; i < 256; i++) {
3055 c = i;
3056 for (k = 8; k; k--) {
3057 c = c & 1 ? (c >> 1) ^ e : c >> 1;
3059 sxg_crc_table[i] = c;
3064 * Return the MAC hast as described above.
3066 static unsigned char sxg_mcast_get_mac_hash(char *macaddr)
3068 u32 crc;
3069 char *p;
3070 int i;
3071 unsigned char machash = 0;
3073 if (!sxg_crc_init) {
3074 sxg_mcast_init_crc32();
3075 sxg_crc_init = 1;
3078 crc = 0xFFFFFFFF; /* Preload shift register, per crc-32 spec */
3079 for (i = 0, p = macaddr; i < 6; ++p, ++i) {
3080 crc = (crc >> 8) ^ sxg_crc_table[(crc ^ *p) & 0xFF];
3083 /* Return bits 1-8, transposed */
3084 for (i = 1; i < 9; i++) {
3085 machash |= (((crc >> i) & 1) << (8 - i));
3088 return (machash);
3091 static void sxg_mcast_set_mask(struct adapter_t *adapter)
3093 struct sxg_ucode_regs *sxg_regs = adapter->UcodeRegs;
3095 DBG_ERROR("%s ENTER (%s) macopts[%x] mask[%llx]\n", __func__,
3096 adapter->netdev->name, (unsigned int)adapter->MacFilter,
3097 adapter->MulticastMask);
3099 if (adapter->MacFilter & (MAC_ALLMCAST | MAC_PROMISC)) {
3101 * Turn on all multicast addresses. We have to do this for
3102 * promiscuous mode as well as ALLMCAST mode. It saves the
3103 * Microcode from having keep state about the MAC configuration
3105 /* DBG_ERROR("sxg: %s macopts = MAC_ALLMCAST | MAC_PROMISC\n
3106 * SLUT MODE!!!\n",__func__);
3108 WRITE_REG(sxg_regs->McastLow, 0xFFFFFFFF, FLUSH);
3109 WRITE_REG(sxg_regs->McastHigh, 0xFFFFFFFF, FLUSH);
3110 /* DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high \
3111 * 0xFFFFFFFF\n",__func__, adapter->netdev->name);
3114 } else {
3116 * Commit our multicast mast to the SLIC by writing to the
3117 * multicast address mask registers
3119 DBG_ERROR("%s (%s) WRITE mcastlow[%lx] mcasthigh[%lx]\n",
3120 __func__, adapter->netdev->name,
3121 ((ulong) (adapter->MulticastMask & 0xFFFFFFFF)),
3122 ((ulong)
3123 ((adapter->MulticastMask >> 32) & 0xFFFFFFFF)));
3125 WRITE_REG(sxg_regs->McastLow,
3126 (u32) (adapter->MulticastMask & 0xFFFFFFFF), FLUSH);
3127 WRITE_REG(sxg_regs->McastHigh,
3128 (u32) ((adapter->
3129 MulticastMask >> 32) & 0xFFFFFFFF), FLUSH);
3134 * Allocate a mcast_address structure to hold the multicast address.
3135 * Link it in.
3137 static int sxg_mcast_add_list(struct adapter_t *adapter, char *address)
3139 struct mcast_address *mcaddr, *mlist;
3140 bool equaladdr;
3142 /* Check to see if it already exists */
3143 mlist = adapter->mcastaddrs;
3144 while (mlist) {
3145 ETHER_EQ_ADDR(mlist->address, address, equaladdr);
3146 if (equaladdr) {
3147 return (STATUS_SUCCESS);
3149 mlist = mlist->next;
3152 /* Doesn't already exist. Allocate a structure to hold it */
3153 mcaddr = kmalloc(sizeof(struct mcast_address), GFP_ATOMIC);
3154 if (mcaddr == NULL)
3155 return 1;
3157 memcpy(mcaddr->address, address, 6);
3159 mcaddr->next = adapter->mcastaddrs;
3160 adapter->mcastaddrs = mcaddr;
3162 return (STATUS_SUCCESS);
3165 static void sxg_mcast_set_bit(struct adapter_t *adapter, char *address)
3167 unsigned char crcpoly;
3169 /* Get the CRC polynomial for the mac address */
3170 crcpoly = sxg_mcast_get_mac_hash(address);
3173 * We only have space on the SLIC for 64 entries. Lop
3174 * off the top two bits. (2^6 = 64)
3176 crcpoly &= 0x3F;
3178 /* OR in the new bit into our 64 bit mask. */
3179 adapter->MulticastMask |= (u64) 1 << crcpoly;
3182 static void sxg_mcast_set_list(struct net_device *dev)
3184 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
3186 ASSERT(adapter);
3187 if (dev->flags & IFF_PROMISC) {
3188 adapter->MacFilter |= MAC_PROMISC;
3190 //XXX handle other flags as well
3191 sxg_mcast_set_mask(adapter);
3194 static void sxg_unmap_mmio_space(struct adapter_t *adapter)
3196 #if LINUX_FREES_ADAPTER_RESOURCES
3198 * if (adapter->Regs) {
3199 * iounmap(adapter->Regs);
3201 * adapter->slic_regs = NULL;
3203 #endif
3206 void sxg_free_sgl_buffers(struct adapter_t *adapter)
3208 struct list_entry *ple;
3209 struct sxg_scatter_gather *Sgl;
3211 while(!(IsListEmpty(&adapter->AllSglBuffers))) {
3212 ple = RemoveHeadList(&adapter->AllSglBuffers);
3213 Sgl = container_of(ple, struct sxg_scatter_gather, AllList);
3214 kfree(Sgl);
3215 adapter->AllSglBufferCount--;
3219 void sxg_free_rcvblocks(struct adapter_t *adapter)
3221 u32 i;
3222 void *temp_RcvBlock;
3223 struct list_entry *ple;
3224 struct sxg_rcv_block_hdr *RcvBlockHdr;
3225 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
3226 ASSERT((adapter->state == SXG_STATE_INITIALIZING) ||
3227 (adapter->state == SXG_STATE_HALTING));
3228 while(!(IsListEmpty(&adapter->AllRcvBlocks))) {
3230 ple = RemoveHeadList(&adapter->AllRcvBlocks);
3231 RcvBlockHdr = container_of(ple, struct sxg_rcv_block_hdr, AllList);
3233 if(RcvBlockHdr->VirtualAddress) {
3234 temp_RcvBlock = RcvBlockHdr->VirtualAddress;
3236 for(i=0; i< SXG_RCV_DESCRIPTORS_PER_BLOCK;
3237 i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3238 RcvDataBufferHdr =
3239 (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3240 SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
3244 pci_free_consistent(adapter->pcidev,
3245 SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
3246 RcvBlockHdr->VirtualAddress,
3247 RcvBlockHdr->PhysicalAddress);
3248 adapter->AllRcvBlockCount--;
3250 ASSERT(adapter->AllRcvBlockCount == 0);
3251 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
3252 adapter, 0, 0, 0);
3254 void sxg_free_mcast_addrs(struct adapter_t *adapter)
3256 struct sxg_multicast_address *address;
3257 while(adapter->MulticastAddrs) {
3258 address = adapter->MulticastAddrs;
3259 adapter->MulticastAddrs = address->Next;
3260 kfree(address);
3263 adapter->MulticastMask= 0;
3266 void sxg_unmap_resources(struct adapter_t *adapter)
3268 if(adapter->HwRegs) {
3269 iounmap((void *)adapter->HwRegs);
3271 if(adapter->UcodeRegs) {
3272 iounmap((void *)adapter->UcodeRegs);
3275 ASSERT(adapter->AllRcvBlockCount == 0);
3276 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
3277 adapter, 0, 0, 0);
3283 * sxg_free_resources - Free everything allocated in SxgAllocateResources
3285 * Arguments -
3286 * adapter - A pointer to our adapter structure
3288 * Return
3289 * none
3291 void sxg_free_resources(struct adapter_t *adapter)
3293 u32 RssIds, IsrCount;
3294 struct net_device *netdev = adapter->netdev;
3295 RssIds = SXG_RSS_CPU_COUNT(adapter);
3296 IsrCount = adapter->MsiEnabled ? RssIds : 1;
3298 if (adapter->BasicAllocations == FALSE) {
3300 * No allocations have been made, including spinlocks,
3301 * or listhead initializations. Return.
3303 return;
3306 /* Free Irq */
3307 free_irq(adapter->netdev->irq, netdev);
3309 if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
3310 sxg_free_rcvblocks(adapter);
3312 if (!(IsListEmpty(&adapter->AllSglBuffers))) {
3313 sxg_free_sgl_buffers(adapter);
3316 if (adapter->XmtRingZeroIndex) {
3317 pci_free_consistent(adapter->pcidev,
3318 sizeof(u32),
3319 adapter->XmtRingZeroIndex,
3320 adapter->PXmtRingZeroIndex);
3322 if (adapter->Isr) {
3323 pci_free_consistent(adapter->pcidev,
3324 sizeof(u32) * IsrCount,
3325 adapter->Isr, adapter->PIsr);
3328 if (adapter->EventRings) {
3329 pci_free_consistent(adapter->pcidev,
3330 sizeof(struct sxg_event_ring) * RssIds,
3331 adapter->EventRings, adapter->PEventRings);
3333 if (adapter->RcvRings) {
3334 pci_free_consistent(adapter->pcidev,
3335 sizeof(struct sxg_rcv_ring) * 1,
3336 adapter->RcvRings,
3337 adapter->PRcvRings);
3338 adapter->RcvRings = NULL;
3341 if(adapter->XmtRings) {
3342 pci_free_consistent(adapter->pcidev,
3343 sizeof(struct sxg_xmt_ring) * 1,
3344 adapter->XmtRings,
3345 adapter->PXmtRings);
3346 adapter->XmtRings = NULL;
3349 if (adapter->ucode_stats) {
3350 pci_unmap_single(adapter->pcidev,
3351 sizeof(struct sxg_ucode_stats),
3352 adapter->pucode_stats, PCI_DMA_FROMDEVICE);
3353 adapter->ucode_stats = NULL;
3357 /* Unmap register spaces */
3358 sxg_unmap_resources(adapter);
3360 sxg_free_mcast_addrs(adapter);
3362 adapter->BasicAllocations = FALSE;
3367 * sxg_allocate_complete -
3369 * This routine is called when a memory allocation has completed.
3371 * Arguments -
3372 * struct adapter_t * - Our adapter structure
3373 * VirtualAddress - Memory virtual address
3374 * PhysicalAddress - Memory physical address
3375 * Length - Length of memory allocated (or 0)
3376 * Context - The type of buffer allocated
3378 * Return
3379 * None.
3381 static int sxg_allocate_complete(struct adapter_t *adapter,
3382 void *VirtualAddress,
3383 dma_addr_t PhysicalAddress,
3384 u32 Length, enum sxg_buffer_type Context)
3386 int status = 0;
3387 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocCmp",
3388 adapter, VirtualAddress, Length, Context);
3389 ASSERT(atomic_read(&adapter->pending_allocations));
3390 atomic_dec(&adapter->pending_allocations);
3392 switch (Context) {
3394 case SXG_BUFFER_TYPE_RCV:
3395 status = sxg_allocate_rcvblock_complete(adapter,
3396 VirtualAddress,
3397 PhysicalAddress, Length);
3398 break;
3399 case SXG_BUFFER_TYPE_SGL:
3400 sxg_allocate_sgl_buffer_complete(adapter, (struct sxg_scatter_gather *)
3401 VirtualAddress,
3402 PhysicalAddress, Length);
3403 break;
3405 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocCmp",
3406 adapter, VirtualAddress, Length, Context);
3408 return status;
3412 * sxg_allocate_buffer_memory - Shared memory allocation routine used for
3413 * synchronous and asynchronous buffer allocations
3415 * Arguments -
3416 * adapter - A pointer to our adapter structure
3417 * Size - block size to allocate
3418 * BufferType - Type of buffer to allocate
3420 * Return
3421 * int
3423 static int sxg_allocate_buffer_memory(struct adapter_t *adapter,
3424 u32 Size, enum sxg_buffer_type BufferType)
3426 int status;
3427 void *Buffer;
3428 dma_addr_t pBuffer;
3430 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocMem",
3431 adapter, Size, BufferType, 0);
3433 * Grab the adapter lock and check the state. If we're in anything other
3434 * than INITIALIZING or RUNNING state, fail. This is to prevent
3435 * allocations in an improper driver state
3438 atomic_inc(&adapter->pending_allocations);
3440 if(BufferType != SXG_BUFFER_TYPE_SGL)
3441 Buffer = pci_alloc_consistent(adapter->pcidev, Size, &pBuffer);
3442 else {
3443 Buffer = kzalloc(Size, GFP_ATOMIC);
3444 pBuffer = (dma_addr_t)NULL;
3446 if (Buffer == NULL) {
3448 * Decrement the AllocationsPending count while holding
3449 * the lock. Pause processing relies on this
3451 atomic_dec(&adapter->pending_allocations);
3452 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlcMemF1",
3453 adapter, Size, BufferType, 0);
3454 return (STATUS_RESOURCES);
3456 status = sxg_allocate_complete(adapter, Buffer, pBuffer, Size, BufferType);
3458 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocMem",
3459 adapter, Size, BufferType, status);
3460 return status;
3464 * sxg_allocate_rcvblock_complete - Complete a receive descriptor
3465 * block allocation
3467 * Arguments -
3468 * adapter - A pointer to our adapter structure
3469 * RcvBlock - receive block virtual address
3470 * PhysicalAddress - Physical address
3471 * Length - Memory length
3473 * Return
3475 static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
3476 void *RcvBlock,
3477 dma_addr_t PhysicalAddress,
3478 u32 Length)
3480 u32 i;
3481 u32 BufferSize = adapter->ReceiveBufferSize;
3482 u64 Paddr;
3483 void *temp_RcvBlock;
3484 struct sxg_rcv_block_hdr *RcvBlockHdr;
3485 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
3486 struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
3487 struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
3489 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlRcvBlk",
3490 adapter, RcvBlock, Length, 0);
3491 if (RcvBlock == NULL) {
3492 goto fail;
3494 memset(RcvBlock, 0, Length);
3495 ASSERT((BufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
3496 (BufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
3497 ASSERT(Length == SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE));
3499 * First, initialize the contained pool of receive data buffers.
3500 * This initialization requires NBL/NB/MDL allocations, if any of them
3501 * fail, free the block and return without queueing the shared memory
3503 //RcvDataBuffer = RcvBlock;
3504 temp_RcvBlock = RcvBlock;
3505 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3506 i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3507 RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *)
3508 temp_RcvBlock;
3509 /* For FREE macro assertion */
3510 RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
3511 SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
3512 if (RcvDataBufferHdr->SxgDumbRcvPacket == NULL)
3513 goto fail;
3518 * Place this entire block of memory on the AllRcvBlocks queue so it
3519 * can be free later
3522 RcvBlockHdr = (struct sxg_rcv_block_hdr *) ((unsigned char *)RcvBlock +
3523 SXG_RCV_BLOCK_HDR_OFFSET(SXG_RCV_DATA_HDR_SIZE));
3524 RcvBlockHdr->VirtualAddress = RcvBlock;
3525 RcvBlockHdr->PhysicalAddress = PhysicalAddress;
3526 spin_lock(&adapter->RcvQLock);
3527 adapter->AllRcvBlockCount++;
3528 InsertTailList(&adapter->AllRcvBlocks, &RcvBlockHdr->AllList);
3529 spin_unlock(&adapter->RcvQLock);
3531 /* Now free the contained receive data buffers that we
3532 * initialized above */
3533 temp_RcvBlock = RcvBlock;
3534 for (i = 0, Paddr = PhysicalAddress;
3535 i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3536 i++, Paddr += SXG_RCV_DATA_HDR_SIZE,
3537 temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3538 RcvDataBufferHdr =
3539 (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3540 spin_lock(&adapter->RcvQLock);
3541 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
3542 spin_unlock(&adapter->RcvQLock);
3545 /* Locate the descriptor block and put it on a separate free queue */
3546 RcvDescriptorBlock =
3547 (struct sxg_rcv_descriptor_block *) ((unsigned char *)RcvBlock +
3548 SXG_RCV_DESCRIPTOR_BLOCK_OFFSET
3549 (SXG_RCV_DATA_HDR_SIZE));
3550 RcvDescriptorBlockHdr =
3551 (struct sxg_rcv_descriptor_block_hdr *) ((unsigned char *)RcvBlock +
3552 SXG_RCV_DESCRIPTOR_BLOCK_HDR_OFFSET
3553 (SXG_RCV_DATA_HDR_SIZE));
3554 RcvDescriptorBlockHdr->VirtualAddress = RcvDescriptorBlock;
3555 RcvDescriptorBlockHdr->PhysicalAddress = Paddr;
3556 spin_lock(&adapter->RcvQLock);
3557 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter, RcvDescriptorBlockHdr);
3558 spin_unlock(&adapter->RcvQLock);
3559 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlRBlk",
3560 adapter, RcvBlock, Length, 0);
3561 return STATUS_SUCCESS;
3562 fail:
3563 /* Free any allocated resources */
3564 if (RcvBlock) {
3565 temp_RcvBlock = RcvBlock;
3566 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3567 i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3568 RcvDataBufferHdr =
3569 (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3570 SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
3572 pci_free_consistent(adapter->pcidev,
3573 Length, RcvBlock, PhysicalAddress);
3575 DBG_ERROR("%s: OUT OF RESOURCES\n", __func__);
3576 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "RcvAFail",
3577 adapter, adapter->FreeRcvBufferCount,
3578 adapter->FreeRcvBlockCount, adapter->AllRcvBlockCount);
3579 adapter->Stats.NoMem++;
3580 /* As allocation failed, free all previously allocated blocks..*/
3581 //sxg_free_rcvblocks(adapter);
3583 return STATUS_RESOURCES;
3587 * sxg_allocate_sgl_buffer_complete - Complete a SGL buffer allocation
3589 * Arguments -
3590 * adapter - A pointer to our adapter structure
3591 * SxgSgl - struct sxg_scatter_gather buffer
3592 * PhysicalAddress - Physical address
3593 * Length - Memory length
3595 * Return
3597 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
3598 struct sxg_scatter_gather *SxgSgl,
3599 dma_addr_t PhysicalAddress,
3600 u32 Length)
3602 unsigned long sgl_flags;
3603 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlSglCmp",
3604 adapter, SxgSgl, Length, 0);
3605 if(!in_irq())
3606 spin_lock_irqsave(&adapter->SglQLock, sgl_flags);
3607 else
3608 spin_lock(&adapter->SglQLock);
3609 adapter->AllSglBufferCount++;
3610 /* PhysicalAddress; */
3611 SxgSgl->PhysicalAddress = PhysicalAddress;
3612 /* Initialize backpointer once */
3613 SxgSgl->adapter = adapter;
3614 InsertTailList(&adapter->AllSglBuffers, &SxgSgl->AllList);
3615 if(!in_irq())
3616 spin_unlock_irqrestore(&adapter->SglQLock, sgl_flags);
3617 else
3618 spin_unlock(&adapter->SglQLock);
3619 SxgSgl->State = SXG_BUFFER_BUSY;
3620 SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL, in_irq());
3621 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlSgl",
3622 adapter, SxgSgl, Length, 0);
3626 static int sxg_adapter_set_hwaddr(struct adapter_t *adapter)
3629 * DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] \
3630 * funct#[%d]\n", __func__, card->config_set,
3631 * adapter->port, adapter->physport, adapter->functionnumber);
3633 * sxg_dbg_macaddrs(adapter);
3635 /* DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n",
3636 * __FUNCTION__);
3639 /* sxg_dbg_macaddrs(adapter); */
3641 struct net_device * dev = adapter->netdev;
3642 if(!dev)
3644 printk("sxg: Dev is Null\n");
3647 DBG_ERROR("%s ENTER (%s)\n", __FUNCTION__, adapter->netdev->name);
3649 if (netif_running(dev)) {
3650 return -EBUSY;
3652 if (!adapter) {
3653 return -EBUSY;
3656 if (!(adapter->currmacaddr[0] ||
3657 adapter->currmacaddr[1] ||
3658 adapter->currmacaddr[2] ||
3659 adapter->currmacaddr[3] ||
3660 adapter->currmacaddr[4] || adapter->currmacaddr[5])) {
3661 memcpy(adapter->currmacaddr, adapter->macaddr, 6);
3663 if (adapter->netdev) {
3664 memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
3665 memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
3667 /* DBG_ERROR ("%s EXIT port %d\n", __func__, adapter->port); */
3668 sxg_dbg_macaddrs(adapter);
3670 return 0;
3673 #if XXXTODO
3674 static int sxg_mac_set_address(struct net_device *dev, void *ptr)
3676 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
3677 struct sockaddr *addr = ptr;
3679 DBG_ERROR("%s ENTER (%s)\n", __func__, adapter->netdev->name);
3681 if (netif_running(dev)) {
3682 return -EBUSY;
3684 if (!adapter) {
3685 return -EBUSY;
3687 DBG_ERROR("sxg: %s (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
3688 __func__, adapter->netdev->name, adapter->currmacaddr[0],
3689 adapter->currmacaddr[1], adapter->currmacaddr[2],
3690 adapter->currmacaddr[3], adapter->currmacaddr[4],
3691 adapter->currmacaddr[5]);
3692 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3693 memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len);
3694 DBG_ERROR("sxg: %s (%s) new %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
3695 __func__, adapter->netdev->name, adapter->currmacaddr[0],
3696 adapter->currmacaddr[1], adapter->currmacaddr[2],
3697 adapter->currmacaddr[3], adapter->currmacaddr[4],
3698 adapter->currmacaddr[5]);
3700 sxg_config_set(adapter, TRUE);
3701 return 0;
3703 #endif
3706 * SXG DRIVER FUNCTIONS (below)
3708 * sxg_initialize_adapter - Initialize adapter
3710 * Arguments -
3711 * adapter - A pointer to our adapter structure
3713 * Return - int
3715 static int sxg_initialize_adapter(struct adapter_t *adapter)
3717 u32 RssIds, IsrCount;
3718 u32 i;
3719 int status;
3721 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitAdpt",
3722 adapter, 0, 0, 0);
3724 RssIds = 1; /* XXXTODO SXG_RSS_CPU_COUNT(adapter); */
3725 IsrCount = adapter->MsiEnabled ? RssIds : 1;
3728 * Sanity check SXG_UCODE_REGS structure definition to
3729 * make sure the length is correct
3731 ASSERT(sizeof(struct sxg_ucode_regs) == SXG_REGISTER_SIZE_PER_CPU);
3733 /* Disable interrupts */
3734 SXG_DISABLE_ALL_INTERRUPTS(adapter);
3736 /* Set MTU */
3737 ASSERT((adapter->FrameSize == ETHERMAXFRAME) ||
3738 (adapter->FrameSize == JUMBOMAXFRAME));
3739 WRITE_REG(adapter->UcodeRegs[0].LinkMtu, adapter->FrameSize, TRUE);
3741 /* Set event ring base address and size */
3742 WRITE_REG64(adapter,
3743 adapter->UcodeRegs[0].EventBase, adapter->PEventRings, 0);
3744 WRITE_REG(adapter->UcodeRegs[0].EventSize, EVENT_RING_SIZE, TRUE);
3746 /* Per-ISR initialization */
3747 for (i = 0; i < IsrCount; i++) {
3748 u64 Addr;
3749 /* Set interrupt status pointer */
3750 Addr = adapter->PIsr + (i * sizeof(u32));
3751 WRITE_REG64(adapter, adapter->UcodeRegs[i].Isp, Addr, i);
3754 /* XMT ring zero index */
3755 WRITE_REG64(adapter,
3756 adapter->UcodeRegs[0].SPSendIndex,
3757 adapter->PXmtRingZeroIndex, 0);
3759 /* Per-RSS initialization */
3760 for (i = 0; i < RssIds; i++) {
3761 /* Release all event ring entries to the Microcode */
3762 WRITE_REG(adapter->UcodeRegs[i].EventRelease, EVENT_RING_SIZE,
3763 TRUE);
3766 /* Transmit ring base and size */
3767 WRITE_REG64(adapter,
3768 adapter->UcodeRegs[0].XmtBase, adapter->PXmtRings, 0);
3769 WRITE_REG(adapter->UcodeRegs[0].XmtSize, SXG_XMT_RING_SIZE, TRUE);
3771 /* Receive ring base and size */
3772 WRITE_REG64(adapter,
3773 adapter->UcodeRegs[0].RcvBase, adapter->PRcvRings, 0);
3774 WRITE_REG(adapter->UcodeRegs[0].RcvSize, SXG_RCV_RING_SIZE, TRUE);
3776 /* Populate the card with receive buffers */
3777 sxg_stock_rcv_buffers(adapter);
3780 * Initialize checksum offload capabilities. At the moment we always
3781 * enable IP and TCP receive checksums on the card. Depending on the
3782 * checksum configuration specified by the user, we can choose to
3783 * report or ignore the checksum information provided by the card.
3785 WRITE_REG(adapter->UcodeRegs[0].ReceiveChecksum,
3786 SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED, TRUE);
3788 /* Initialize the MAC, XAUI */
3789 DBG_ERROR("sxg: %s ENTER sxg_initialize_link\n", __func__);
3790 status = sxg_initialize_link(adapter);
3791 DBG_ERROR("sxg: %s EXIT sxg_initialize_link status[%x]\n", __func__,
3792 status);
3793 if (status != STATUS_SUCCESS) {
3794 return (status);
3797 * Initialize Dead to FALSE.
3798 * SlicCheckForHang or SlicDumpThread will take it from here.
3800 adapter->Dead = FALSE;
3801 adapter->PingOutstanding = FALSE;
3802 adapter->State = SXG_STATE_RUNNING;
3804 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInit",
3805 adapter, 0, 0, 0);
3806 return (STATUS_SUCCESS);
3810 * sxg_fill_descriptor_block - Populate a descriptor block and give it to
3811 * the card. The caller should hold the RcvQLock
3813 * Arguments -
3814 * adapter - A pointer to our adapter structure
3815 * RcvDescriptorBlockHdr - Descriptor block to fill
3817 * Return
3818 * status
3820 static int sxg_fill_descriptor_block(struct adapter_t *adapter,
3821 struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr)
3823 u32 i;
3824 struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
3825 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
3826 struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
3827 struct sxg_cmd *RingDescriptorCmd;
3828 struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
3830 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "FilBlk",
3831 adapter, adapter->RcvBuffersOnCard,
3832 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3834 ASSERT(RcvDescriptorBlockHdr);
3837 * If we don't have the resources to fill the descriptor block,
3838 * return failure
3840 if ((adapter->FreeRcvBufferCount < SXG_RCV_DESCRIPTORS_PER_BLOCK) ||
3841 SXG_RING_FULL(RcvRingInfo)) {
3842 adapter->Stats.NoMem++;
3843 return (STATUS_FAILURE);
3845 /* Get a ring descriptor command */
3846 SXG_GET_CMD(RingZero,
3847 RcvRingInfo, RingDescriptorCmd, RcvDescriptorBlockHdr);
3848 ASSERT(RingDescriptorCmd);
3849 RcvDescriptorBlockHdr->State = SXG_BUFFER_ONCARD;
3850 RcvDescriptorBlock = (struct sxg_rcv_descriptor_block *)
3851 RcvDescriptorBlockHdr->VirtualAddress;
3853 /* Fill in the descriptor block */
3854 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK; i++) {
3855 SXG_GET_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
3856 ASSERT(RcvDataBufferHdr);
3857 // ASSERT(RcvDataBufferHdr->SxgDumbRcvPacket);
3858 if (!RcvDataBufferHdr->SxgDumbRcvPacket) {
3859 SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr,
3860 adapter->ReceiveBufferSize);
3861 if(RcvDataBufferHdr->skb)
3862 RcvDataBufferHdr->SxgDumbRcvPacket =
3863 RcvDataBufferHdr->skb;
3864 else
3865 goto no_memory;
3867 SXG_REINIATIALIZE_PACKET(RcvDataBufferHdr->SxgDumbRcvPacket);
3868 RcvDataBufferHdr->State = SXG_BUFFER_ONCARD;
3869 RcvDescriptorBlock->Descriptors[i].VirtualAddress =
3870 (void *)RcvDataBufferHdr;
3872 RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
3873 RcvDataBufferHdr->PhysicalAddress;
3875 /* Add the descriptor block to receive descriptor ring 0 */
3876 RingDescriptorCmd->Sgl = RcvDescriptorBlockHdr->PhysicalAddress;
3879 * RcvBuffersOnCard is not protected via the receive lock (see
3880 * sxg_process_event_queue) We don't want to grap a lock every time a
3881 * buffer is returned to us, so we use atomic interlocked functions
3882 * instead.
3884 adapter->RcvBuffersOnCard += SXG_RCV_DESCRIPTORS_PER_BLOCK;
3886 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DscBlk",
3887 RcvDescriptorBlockHdr,
3888 RingDescriptorCmd, RcvRingInfo->Head, RcvRingInfo->Tail);
3890 WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 1, true);
3891 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlk",
3892 adapter, adapter->RcvBuffersOnCard,
3893 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3894 return (STATUS_SUCCESS);
3895 no_memory:
3896 return (-ENOMEM);
3900 * sxg_stock_rcv_buffers - Stock the card with receive buffers
3902 * Arguments -
3903 * adapter - A pointer to our adapter structure
3905 * Return
3906 * None
3908 static void sxg_stock_rcv_buffers(struct adapter_t *adapter)
3910 struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
3912 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "StockBuf",
3913 adapter, adapter->RcvBuffersOnCard,
3914 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3916 * First, see if we've got less than our minimum threshold of
3917 * receive buffers, there isn't an allocation in progress, and
3918 * we haven't exceeded our maximum.. get another block of buffers
3919 * None of this needs to be SMP safe. It's round numbers.
3921 if ((adapter->FreeRcvBufferCount < SXG_MIN_RCV_DATA_BUFFERS) &&
3922 (adapter->AllRcvBlockCount < SXG_MAX_RCV_BLOCKS) &&
3923 (atomic_read(&adapter->pending_allocations) == 0)) {
3924 sxg_allocate_buffer_memory(adapter,
3925 SXG_RCV_BLOCK_SIZE
3926 (SXG_RCV_DATA_HDR_SIZE),
3927 SXG_BUFFER_TYPE_RCV);
3929 /* Now grab the RcvQLock lock and proceed */
3930 spin_lock(&adapter->RcvQLock);
3931 while (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
3932 struct list_entry *_ple;
3934 /* Get a descriptor block */
3935 RcvDescriptorBlockHdr = NULL;
3936 if (adapter->FreeRcvBlockCount) {
3937 _ple = RemoveHeadList(&adapter->FreeRcvBlocks);
3938 RcvDescriptorBlockHdr =
3939 container_of(_ple, struct sxg_rcv_descriptor_block_hdr,
3940 FreeList);
3941 adapter->FreeRcvBlockCount--;
3942 RcvDescriptorBlockHdr->State = SXG_BUFFER_BUSY;
3945 if (RcvDescriptorBlockHdr == NULL) {
3946 /* Bail out.. */
3947 adapter->Stats.NoMem++;
3948 break;
3950 /* Fill in the descriptor block and give it to the card */
3951 if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
3952 STATUS_FAILURE) {
3953 /* Free the descriptor block */
3954 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
3955 RcvDescriptorBlockHdr);
3956 break;
3959 spin_unlock(&adapter->RcvQLock);
3960 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlks",
3961 adapter, adapter->RcvBuffersOnCard,
3962 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3966 * sxg_complete_descriptor_blocks - Return descriptor blocks that have been
3967 * completed by the microcode
3969 * Arguments -
3970 * adapter - A pointer to our adapter structure
3971 * Index - Where the microcode is up to
3973 * Return
3974 * None
3976 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
3977 unsigned char Index)
3979 struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
3980 struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
3981 struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
3982 struct sxg_cmd *RingDescriptorCmd;
3984 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlks",
3985 adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
3987 /* Now grab the RcvQLock lock and proceed */
3988 spin_lock(&adapter->RcvQLock);
3989 ASSERT(Index != RcvRingInfo->Tail);
3990 while (sxg_ring_get_forward_diff(RcvRingInfo, Index,
3991 RcvRingInfo->Tail) > 3) {
3993 * Locate the current Cmd (ring descriptor entry), and
3994 * associated receive descriptor block, and advance
3995 * the tail
3997 SXG_RETURN_CMD(RingZero,
3998 RcvRingInfo,
3999 RingDescriptorCmd, RcvDescriptorBlockHdr);
4000 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlk",
4001 RcvRingInfo->Head, RcvRingInfo->Tail,
4002 RingDescriptorCmd, RcvDescriptorBlockHdr);
4004 /* Clear the SGL field */
4005 RingDescriptorCmd->Sgl = 0;
4007 * Attempt to refill it and hand it right back to the
4008 * card. If we fail to refill it, free the descriptor block
4009 * header. The card will be restocked later via the
4010 * RcvBuffersOnCard test
4012 if (sxg_fill_descriptor_block(adapter,
4013 RcvDescriptorBlockHdr) == STATUS_FAILURE)
4014 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
4015 RcvDescriptorBlockHdr);
4017 spin_unlock(&adapter->RcvQLock);
4018 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XCRBlks",
4019 adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
4023 * Read the statistics which the card has been maintaining.
4025 void sxg_collect_statistics(struct adapter_t *adapter)
4027 if(adapter->ucode_stats)
4028 WRITE_REG64(adapter, adapter->UcodeRegs[0].GetUcodeStats,
4029 adapter->pucode_stats, 0);
4030 adapter->stats.rx_fifo_errors = adapter->ucode_stats->ERDrops;
4031 adapter->stats.rx_over_errors = adapter->ucode_stats->NBDrops;
4032 adapter->stats.tx_fifo_errors = adapter->ucode_stats->XDrops;
4035 static struct net_device_stats *sxg_get_stats(struct net_device * dev)
4037 struct adapter_t *adapter = netdev_priv(dev);
4039 sxg_collect_statistics(adapter);
4040 return (&adapter->stats);
4043 static struct pci_driver sxg_driver = {
4044 .name = sxg_driver_name,
4045 .id_table = sxg_pci_tbl,
4046 .probe = sxg_entry_probe,
4047 .remove = sxg_entry_remove,
4048 #if SXG_POWER_MANAGEMENT_ENABLED
4049 .suspend = sxgpm_suspend,
4050 .resume = sxgpm_resume,
4051 #endif
4052 /* .shutdown = slic_shutdown, MOOK_INVESTIGATE */
4055 static int __init sxg_module_init(void)
4057 sxg_init_driver();
4059 if (debug >= 0)
4060 sxg_debug = debug;
4062 return pci_register_driver(&sxg_driver);
4065 static void __exit sxg_module_cleanup(void)
4067 pci_unregister_driver(&sxg_driver);
4070 module_init(sxg_module_init);
4071 module_exit(sxg_module_cleanup);