4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
33 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
39 static inline __attribute__((format(printf
, 1, 2)))
40 void no_printk(const char *fmt
, ...)
45 #define kenter(FMT, ...) \
46 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #define kenter(FMT, ...) \
53 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
62 unsigned long max_mapnr
;
63 unsigned long num_physpages
;
64 unsigned long highest_memmap_pfn
;
65 struct percpu_counter vm_committed_as
;
66 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
67 int sysctl_overcommit_ratio
= 50; /* default is 50% */
68 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
69 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
70 int heap_stack_gap
= 0;
72 atomic_long_t mmap_pages_allocated
;
74 EXPORT_SYMBOL(mem_map
);
75 EXPORT_SYMBOL(num_physpages
);
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache
*vm_region_jar
;
79 struct rb_root nommu_region_tree
= RB_ROOT
;
80 DECLARE_RWSEM(nommu_region_sem
);
82 struct vm_operations_struct generic_file_vm_ops
= {
86 * Handle all mappings that got truncated by a "truncate()"
89 * NOTE! We have to be ready to update the memory sharing
90 * between the file and the memory map for a potential last
91 * incomplete page. Ugly, but necessary.
93 int vmtruncate(struct inode
*inode
, loff_t offset
)
95 struct address_space
*mapping
= inode
->i_mapping
;
98 if (inode
->i_size
< offset
)
100 i_size_write(inode
, offset
);
102 truncate_inode_pages(mapping
, offset
);
106 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
107 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
109 if (offset
> inode
->i_sb
->s_maxbytes
)
111 i_size_write(inode
, offset
);
114 if (inode
->i_op
->truncate
)
115 inode
->i_op
->truncate(inode
);
118 send_sig(SIGXFSZ
, current
, 0);
123 EXPORT_SYMBOL(vmtruncate
);
126 * Return the total memory allocated for this pointer, not
127 * just what the caller asked for.
129 * Doesn't have to be accurate, i.e. may have races.
131 unsigned int kobjsize(const void *objp
)
136 * If the object we have should not have ksize performed on it,
139 if (!objp
|| !virt_addr_valid(objp
))
142 page
= virt_to_head_page(objp
);
145 * If the allocator sets PageSlab, we know the pointer came from
152 * If it's not a compound page, see if we have a matching VMA
153 * region. This test is intentionally done in reverse order,
154 * so if there's no VMA, we still fall through and hand back
155 * PAGE_SIZE for 0-order pages.
157 if (!PageCompound(page
)) {
158 struct vm_area_struct
*vma
;
160 vma
= find_vma(current
->mm
, (unsigned long)objp
);
162 return vma
->vm_end
- vma
->vm_start
;
166 * The ksize() function is only guaranteed to work for pointers
167 * returned by kmalloc(). So handle arbitrary pointers here.
169 return PAGE_SIZE
<< compound_order(page
);
172 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
173 unsigned long start
, int nr_pages
, unsigned int foll_flags
,
174 struct page
**pages
, struct vm_area_struct
**vmas
)
176 struct vm_area_struct
*vma
;
177 unsigned long vm_flags
;
180 /* calculate required read or write permissions.
181 * If FOLL_FORCE is set, we only require the "MAY" flags.
183 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
184 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
185 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
186 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
188 for (i
= 0; i
< nr_pages
; i
++) {
189 vma
= find_vma(mm
, start
);
191 goto finish_or_fault
;
193 /* protect what we can, including chardevs */
194 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
195 !(vm_flags
& vma
->vm_flags
))
196 goto finish_or_fault
;
199 pages
[i
] = virt_to_page(start
);
201 page_cache_get(pages
[i
]);
211 return i
? : -EFAULT
;
215 * get a list of pages in an address range belonging to the specified process
216 * and indicate the VMA that covers each page
217 * - this is potentially dodgy as we may end incrementing the page count of a
218 * slab page or a secondary page from a compound page
219 * - don't permit access to VMAs that don't support it, such as I/O mappings
221 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
222 unsigned long start
, int nr_pages
, int write
, int force
,
223 struct page
**pages
, struct vm_area_struct
**vmas
)
232 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
234 EXPORT_SYMBOL(get_user_pages
);
237 * follow_pfn - look up PFN at a user virtual address
238 * @vma: memory mapping
239 * @address: user virtual address
240 * @pfn: location to store found PFN
242 * Only IO mappings and raw PFN mappings are allowed.
244 * Returns zero and the pfn at @pfn on success, -ve otherwise.
246 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
249 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
252 *pfn
= address
>> PAGE_SHIFT
;
255 EXPORT_SYMBOL(follow_pfn
);
257 DEFINE_RWLOCK(vmlist_lock
);
258 struct vm_struct
*vmlist
;
260 void vfree(const void *addr
)
264 EXPORT_SYMBOL(vfree
);
266 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
269 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
270 * returns only a logical address.
272 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
274 EXPORT_SYMBOL(__vmalloc
);
276 void *vmalloc_user(unsigned long size
)
280 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
283 struct vm_area_struct
*vma
;
285 down_write(¤t
->mm
->mmap_sem
);
286 vma
= find_vma(current
->mm
, (unsigned long)ret
);
288 vma
->vm_flags
|= VM_USERMAP
;
289 up_write(¤t
->mm
->mmap_sem
);
294 EXPORT_SYMBOL(vmalloc_user
);
296 struct page
*vmalloc_to_page(const void *addr
)
298 return virt_to_page(addr
);
300 EXPORT_SYMBOL(vmalloc_to_page
);
302 unsigned long vmalloc_to_pfn(const void *addr
)
304 return page_to_pfn(virt_to_page(addr
));
306 EXPORT_SYMBOL(vmalloc_to_pfn
);
308 long vread(char *buf
, char *addr
, unsigned long count
)
310 memcpy(buf
, addr
, count
);
314 long vwrite(char *buf
, char *addr
, unsigned long count
)
316 /* Don't allow overflow */
317 if ((unsigned long) addr
+ count
< count
)
318 count
= -(unsigned long) addr
;
320 memcpy(addr
, buf
, count
);
325 * vmalloc - allocate virtually continguos memory
327 * @size: allocation size
329 * Allocate enough pages to cover @size from the page level
330 * allocator and map them into continguos kernel virtual space.
332 * For tight control over page level allocator and protection flags
333 * use __vmalloc() instead.
335 void *vmalloc(unsigned long size
)
337 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
339 EXPORT_SYMBOL(vmalloc
);
341 void *vmalloc_node(unsigned long size
, int node
)
343 return vmalloc(size
);
345 EXPORT_SYMBOL(vmalloc_node
);
347 #ifndef PAGE_KERNEL_EXEC
348 # define PAGE_KERNEL_EXEC PAGE_KERNEL
352 * vmalloc_exec - allocate virtually contiguous, executable memory
353 * @size: allocation size
355 * Kernel-internal function to allocate enough pages to cover @size
356 * the page level allocator and map them into contiguous and
357 * executable kernel virtual space.
359 * For tight control over page level allocator and protection flags
360 * use __vmalloc() instead.
363 void *vmalloc_exec(unsigned long size
)
365 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
369 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
370 * @size: allocation size
372 * Allocate enough 32bit PA addressable pages to cover @size from the
373 * page level allocator and map them into continguos kernel virtual space.
375 void *vmalloc_32(unsigned long size
)
377 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
379 EXPORT_SYMBOL(vmalloc_32
);
382 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
383 * @size: allocation size
385 * The resulting memory area is 32bit addressable and zeroed so it can be
386 * mapped to userspace without leaking data.
388 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
389 * remap_vmalloc_range() are permissible.
391 void *vmalloc_32_user(unsigned long size
)
394 * We'll have to sort out the ZONE_DMA bits for 64-bit,
395 * but for now this can simply use vmalloc_user() directly.
397 return vmalloc_user(size
);
399 EXPORT_SYMBOL(vmalloc_32_user
);
401 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
408 void vunmap(const void *addr
)
412 EXPORT_SYMBOL(vunmap
);
414 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
419 EXPORT_SYMBOL(vm_map_ram
);
421 void vm_unmap_ram(const void *mem
, unsigned int count
)
425 EXPORT_SYMBOL(vm_unmap_ram
);
427 void vm_unmap_aliases(void)
430 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
433 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
436 void __attribute__((weak
)) vmalloc_sync_all(void)
440 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
445 EXPORT_SYMBOL(vm_insert_page
);
448 * sys_brk() for the most part doesn't need the global kernel
449 * lock, except when an application is doing something nasty
450 * like trying to un-brk an area that has already been mapped
451 * to a regular file. in this case, the unmapping will need
452 * to invoke file system routines that need the global lock.
454 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
456 struct mm_struct
*mm
= current
->mm
;
458 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
465 * Always allow shrinking brk
467 if (brk
<= mm
->brk
) {
473 * Ok, looks good - let it rip.
475 return mm
->brk
= brk
;
479 * initialise the VMA and region record slabs
481 void __init
mmap_init(void)
485 ret
= percpu_counter_init(&vm_committed_as
, 0);
487 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
491 * validate the region tree
492 * - the caller must hold the region lock
494 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
495 static noinline
void validate_nommu_regions(void)
497 struct vm_region
*region
, *last
;
498 struct rb_node
*p
, *lastp
;
500 lastp
= rb_first(&nommu_region_tree
);
504 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
505 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
506 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
508 while ((p
= rb_next(lastp
))) {
509 region
= rb_entry(p
, struct vm_region
, vm_rb
);
510 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
512 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
513 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
514 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
520 static void validate_nommu_regions(void)
526 * add a region into the global tree
528 static void add_nommu_region(struct vm_region
*region
)
530 struct vm_region
*pregion
;
531 struct rb_node
**p
, *parent
;
533 validate_nommu_regions();
536 p
= &nommu_region_tree
.rb_node
;
539 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
540 if (region
->vm_start
< pregion
->vm_start
)
542 else if (region
->vm_start
> pregion
->vm_start
)
544 else if (pregion
== region
)
550 rb_link_node(®ion
->vm_rb
, parent
, p
);
551 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
553 validate_nommu_regions();
557 * delete a region from the global tree
559 static void delete_nommu_region(struct vm_region
*region
)
561 BUG_ON(!nommu_region_tree
.rb_node
);
563 validate_nommu_regions();
564 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
565 validate_nommu_regions();
569 * free a contiguous series of pages
571 static void free_page_series(unsigned long from
, unsigned long to
)
573 for (; from
< to
; from
+= PAGE_SIZE
) {
574 struct page
*page
= virt_to_page(from
);
576 kdebug("- free %lx", from
);
577 atomic_long_dec(&mmap_pages_allocated
);
578 if (page_count(page
) != 1)
579 kdebug("free page %p: refcount not one: %d",
580 page
, page_count(page
));
586 * release a reference to a region
587 * - the caller must hold the region semaphore for writing, which this releases
588 * - the region may not have been added to the tree yet, in which case vm_top
589 * will equal vm_start
591 static void __put_nommu_region(struct vm_region
*region
)
592 __releases(nommu_region_sem
)
594 kenter("%p{%d}", region
, atomic_read(®ion
->vm_usage
));
596 BUG_ON(!nommu_region_tree
.rb_node
);
598 if (atomic_dec_and_test(®ion
->vm_usage
)) {
599 if (region
->vm_top
> region
->vm_start
)
600 delete_nommu_region(region
);
601 up_write(&nommu_region_sem
);
604 fput(region
->vm_file
);
606 /* IO memory and memory shared directly out of the pagecache
607 * from ramfs/tmpfs mustn't be released here */
608 if (region
->vm_flags
& VM_MAPPED_COPY
) {
609 kdebug("free series");
610 free_page_series(region
->vm_start
, region
->vm_top
);
612 kmem_cache_free(vm_region_jar
, region
);
614 up_write(&nommu_region_sem
);
619 * release a reference to a region
621 static void put_nommu_region(struct vm_region
*region
)
623 down_write(&nommu_region_sem
);
624 __put_nommu_region(region
);
628 * update protection on a vma
630 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
633 struct mm_struct
*mm
= vma
->vm_mm
;
634 long start
= vma
->vm_start
& PAGE_MASK
;
635 while (start
< vma
->vm_end
) {
636 protect_page(mm
, start
, flags
);
639 update_protections(mm
);
644 * add a VMA into a process's mm_struct in the appropriate place in the list
645 * and tree and add to the address space's page tree also if not an anonymous
647 * - should be called with mm->mmap_sem held writelocked
649 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
651 struct vm_area_struct
*pvma
, **pp
;
652 struct address_space
*mapping
;
653 struct rb_node
**p
, *parent
;
657 BUG_ON(!vma
->vm_region
);
662 protect_vma(vma
, vma
->vm_flags
);
664 /* add the VMA to the mapping */
666 mapping
= vma
->vm_file
->f_mapping
;
668 flush_dcache_mmap_lock(mapping
);
669 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
670 flush_dcache_mmap_unlock(mapping
);
673 /* add the VMA to the tree */
675 p
= &mm
->mm_rb
.rb_node
;
678 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
680 /* sort by: start addr, end addr, VMA struct addr in that order
681 * (the latter is necessary as we may get identical VMAs) */
682 if (vma
->vm_start
< pvma
->vm_start
)
684 else if (vma
->vm_start
> pvma
->vm_start
)
686 else if (vma
->vm_end
< pvma
->vm_end
)
688 else if (vma
->vm_end
> pvma
->vm_end
)
698 rb_link_node(&vma
->vm_rb
, parent
, p
);
699 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
701 /* add VMA to the VMA list also */
702 for (pp
= &mm
->mmap
; (pvma
= *pp
); pp
= &(*pp
)->vm_next
) {
703 if (pvma
->vm_start
> vma
->vm_start
)
705 if (pvma
->vm_start
< vma
->vm_start
)
707 if (pvma
->vm_end
< vma
->vm_end
)
716 * delete a VMA from its owning mm_struct and address space
718 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
720 struct vm_area_struct
**pp
;
721 struct address_space
*mapping
;
722 struct mm_struct
*mm
= vma
->vm_mm
;
729 if (mm
->mmap_cache
== vma
)
730 mm
->mmap_cache
= NULL
;
732 /* remove the VMA from the mapping */
734 mapping
= vma
->vm_file
->f_mapping
;
736 flush_dcache_mmap_lock(mapping
);
737 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
738 flush_dcache_mmap_unlock(mapping
);
741 /* remove from the MM's tree and list */
742 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
743 for (pp
= &mm
->mmap
; *pp
; pp
= &(*pp
)->vm_next
) {
754 * destroy a VMA record
756 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
759 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
760 vma
->vm_ops
->close(vma
);
763 if (vma
->vm_flags
& VM_EXECUTABLE
)
764 removed_exe_file_vma(mm
);
766 put_nommu_region(vma
->vm_region
);
767 kmem_cache_free(vm_area_cachep
, vma
);
771 * look up the first VMA in which addr resides, NULL if none
772 * - should be called with mm->mmap_sem at least held readlocked
774 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
776 struct vm_area_struct
*vma
;
777 struct rb_node
*n
= mm
->mm_rb
.rb_node
;
779 /* check the cache first */
780 vma
= mm
->mmap_cache
;
781 if (vma
&& vma
->vm_start
<= addr
&& vma
->vm_end
> addr
)
784 /* trawl the tree (there may be multiple mappings in which addr
786 for (n
= rb_first(&mm
->mm_rb
); n
; n
= rb_next(n
)) {
787 vma
= rb_entry(n
, struct vm_area_struct
, vm_rb
);
788 if (vma
->vm_start
> addr
)
790 if (vma
->vm_end
> addr
) {
791 mm
->mmap_cache
= vma
;
798 EXPORT_SYMBOL(find_vma
);
802 * - we don't extend stack VMAs under NOMMU conditions
804 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
806 return find_vma(mm
, addr
);
810 * expand a stack to a given address
811 * - not supported under NOMMU conditions
813 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
819 * look up the first VMA exactly that exactly matches addr
820 * - should be called with mm->mmap_sem at least held readlocked
822 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
826 struct vm_area_struct
*vma
;
827 struct rb_node
*n
= mm
->mm_rb
.rb_node
;
828 unsigned long end
= addr
+ len
;
830 /* check the cache first */
831 vma
= mm
->mmap_cache
;
832 if (vma
&& vma
->vm_start
== addr
&& vma
->vm_end
== end
)
835 /* trawl the tree (there may be multiple mappings in which addr
837 for (n
= rb_first(&mm
->mm_rb
); n
; n
= rb_next(n
)) {
838 vma
= rb_entry(n
, struct vm_area_struct
, vm_rb
);
839 if (vma
->vm_start
< addr
)
841 if (vma
->vm_start
> addr
)
843 if (vma
->vm_end
== end
) {
844 mm
->mmap_cache
= vma
;
853 * determine whether a mapping should be permitted and, if so, what sort of
854 * mapping we're capable of supporting
856 static int validate_mmap_request(struct file
*file
,
862 unsigned long *_capabilities
)
864 unsigned long capabilities
, rlen
;
865 unsigned long reqprot
= prot
;
868 /* do the simple checks first */
869 if (flags
& MAP_FIXED
|| addr
) {
871 "%d: Can't do fixed-address/overlay mmap of RAM\n",
876 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
877 (flags
& MAP_TYPE
) != MAP_SHARED
)
883 /* Careful about overflows.. */
884 rlen
= PAGE_ALIGN(len
);
885 if (!rlen
|| rlen
> TASK_SIZE
)
888 /* offset overflow? */
889 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
893 /* validate file mapping requests */
894 struct address_space
*mapping
;
896 /* files must support mmap */
897 if (!file
->f_op
|| !file
->f_op
->mmap
)
900 /* work out if what we've got could possibly be shared
901 * - we support chardevs that provide their own "memory"
902 * - we support files/blockdevs that are memory backed
904 mapping
= file
->f_mapping
;
906 mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
909 if (mapping
&& mapping
->backing_dev_info
)
910 capabilities
= mapping
->backing_dev_info
->capabilities
;
913 /* no explicit capabilities set, so assume some
915 switch (file
->f_path
.dentry
->d_inode
->i_mode
& S_IFMT
) {
918 capabilities
= BDI_CAP_MAP_COPY
;
933 /* eliminate any capabilities that we can't support on this
935 if (!file
->f_op
->get_unmapped_area
)
936 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
937 if (!file
->f_op
->read
)
938 capabilities
&= ~BDI_CAP_MAP_COPY
;
940 /* The file shall have been opened with read permission. */
941 if (!(file
->f_mode
& FMODE_READ
))
944 if (flags
& MAP_SHARED
) {
945 /* do checks for writing, appending and locking */
946 if ((prot
& PROT_WRITE
) &&
947 !(file
->f_mode
& FMODE_WRITE
))
950 if (IS_APPEND(file
->f_path
.dentry
->d_inode
) &&
951 (file
->f_mode
& FMODE_WRITE
))
954 if (locks_verify_locked(file
->f_path
.dentry
->d_inode
))
957 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
960 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
961 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
962 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
964 printk("MAP_SHARED not completely supported on !MMU\n");
968 /* we mustn't privatise shared mappings */
969 capabilities
&= ~BDI_CAP_MAP_COPY
;
972 /* we're going to read the file into private memory we
974 if (!(capabilities
& BDI_CAP_MAP_COPY
))
977 /* we don't permit a private writable mapping to be
978 * shared with the backing device */
979 if (prot
& PROT_WRITE
)
980 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
983 /* handle executable mappings and implied executable
985 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
986 if (prot
& PROT_EXEC
)
989 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
990 /* handle implication of PROT_EXEC by PROT_READ */
991 if (current
->personality
& READ_IMPLIES_EXEC
) {
992 if (capabilities
& BDI_CAP_EXEC_MAP
)
996 else if ((prot
& PROT_READ
) &&
997 (prot
& PROT_EXEC
) &&
998 !(capabilities
& BDI_CAP_EXEC_MAP
)
1000 /* backing file is not executable, try to copy */
1001 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1005 /* anonymous mappings are always memory backed and can be
1008 capabilities
= BDI_CAP_MAP_COPY
;
1010 /* handle PROT_EXEC implication by PROT_READ */
1011 if ((prot
& PROT_READ
) &&
1012 (current
->personality
& READ_IMPLIES_EXEC
))
1016 /* allow the security API to have its say */
1017 ret
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1022 *_capabilities
= capabilities
;
1027 * we've determined that we can make the mapping, now translate what we
1028 * now know into VMA flags
1030 static unsigned long determine_vm_flags(struct file
*file
,
1032 unsigned long flags
,
1033 unsigned long capabilities
)
1035 unsigned long vm_flags
;
1037 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1038 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1039 /* vm_flags |= mm->def_flags; */
1041 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1042 /* attempt to share read-only copies of mapped file chunks */
1043 if (file
&& !(prot
& PROT_WRITE
))
1044 vm_flags
|= VM_MAYSHARE
;
1047 /* overlay a shareable mapping on the backing device or inode
1048 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1050 if (flags
& MAP_SHARED
)
1051 vm_flags
|= VM_MAYSHARE
| VM_SHARED
;
1052 else if ((((vm_flags
& capabilities
) ^ vm_flags
) & BDI_CAP_VMFLAGS
) == 0)
1053 vm_flags
|= VM_MAYSHARE
;
1056 /* refuse to let anyone share private mappings with this process if
1057 * it's being traced - otherwise breakpoints set in it may interfere
1058 * with another untraced process
1060 if ((flags
& MAP_PRIVATE
) && tracehook_expect_breakpoints(current
))
1061 vm_flags
&= ~VM_MAYSHARE
;
1067 * set up a shared mapping on a file (the driver or filesystem provides and
1070 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1074 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1076 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1082 /* getting an ENOSYS error indicates that direct mmap isn't
1083 * possible (as opposed to tried but failed) so we'll fall
1084 * through to making a private copy of the data and mapping
1090 * set up a private mapping or an anonymous shared mapping
1092 static int do_mmap_private(struct vm_area_struct
*vma
,
1093 struct vm_region
*region
,
1097 unsigned long total
, point
, n
, rlen
;
1101 /* invoke the file's mapping function so that it can keep track of
1102 * shared mappings on devices or memory
1103 * - VM_MAYSHARE will be set if it may attempt to share
1106 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1108 /* shouldn't return success if we're not sharing */
1109 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1110 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1116 /* getting an ENOSYS error indicates that direct mmap isn't
1117 * possible (as opposed to tried but failed) so we'll try to
1118 * make a private copy of the data and map that instead */
1121 rlen
= PAGE_ALIGN(len
);
1123 /* allocate some memory to hold the mapping
1124 * - note that this may not return a page-aligned address if the object
1125 * we're allocating is smaller than a page
1127 order
= get_order(rlen
);
1128 kdebug("alloc order %d for %lx", order
, len
);
1130 pages
= alloc_pages(GFP_KERNEL
, order
);
1135 atomic_long_add(total
, &mmap_pages_allocated
);
1137 point
= rlen
>> PAGE_SHIFT
;
1139 /* we allocated a power-of-2 sized page set, so we may want to trim off
1141 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1142 while (total
> point
) {
1143 order
= ilog2(total
- point
);
1145 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1146 atomic_long_sub(n
, &mmap_pages_allocated
);
1148 set_page_refcounted(pages
+ total
);
1149 __free_pages(pages
+ total
, order
);
1153 for (point
= 1; point
< total
; point
++)
1154 set_page_refcounted(&pages
[point
]);
1156 base
= page_address(pages
);
1157 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1158 region
->vm_start
= (unsigned long) base
;
1159 region
->vm_end
= region
->vm_start
+ rlen
;
1160 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1162 vma
->vm_start
= region
->vm_start
;
1163 vma
->vm_end
= region
->vm_start
+ len
;
1166 /* read the contents of a file into the copy */
1167 mm_segment_t old_fs
;
1170 fpos
= vma
->vm_pgoff
;
1171 fpos
<<= PAGE_SHIFT
;
1175 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, rlen
, &fpos
);
1181 /* clear the last little bit */
1183 memset(base
+ ret
, 0, rlen
- ret
);
1186 /* if it's an anonymous mapping, then just clear it */
1187 memset(base
, 0, rlen
);
1193 free_page_series(region
->vm_start
, region
->vm_end
);
1194 region
->vm_start
= vma
->vm_start
= 0;
1195 region
->vm_end
= vma
->vm_end
= 0;
1200 printk("Allocation of length %lu from process %d (%s) failed\n",
1201 len
, current
->pid
, current
->comm
);
1207 * handle mapping creation for uClinux
1209 unsigned long do_mmap_pgoff(struct file
*file
,
1213 unsigned long flags
,
1214 unsigned long pgoff
)
1216 struct vm_area_struct
*vma
;
1217 struct vm_region
*region
;
1219 unsigned long capabilities
, vm_flags
, result
;
1222 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1224 if (!(flags
& MAP_FIXED
))
1225 addr
= round_hint_to_min(addr
);
1227 /* decide whether we should attempt the mapping, and if so what sort of
1229 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1232 kleave(" = %d [val]", ret
);
1236 /* we've determined that we can make the mapping, now translate what we
1237 * now know into VMA flags */
1238 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1240 /* we're going to need to record the mapping */
1241 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1243 goto error_getting_region
;
1245 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1247 goto error_getting_vma
;
1249 atomic_set(®ion
->vm_usage
, 1);
1250 region
->vm_flags
= vm_flags
;
1251 region
->vm_pgoff
= pgoff
;
1253 INIT_LIST_HEAD(&vma
->anon_vma_node
);
1254 vma
->vm_flags
= vm_flags
;
1255 vma
->vm_pgoff
= pgoff
;
1258 region
->vm_file
= file
;
1260 vma
->vm_file
= file
;
1262 if (vm_flags
& VM_EXECUTABLE
) {
1263 added_exe_file_vma(current
->mm
);
1264 vma
->vm_mm
= current
->mm
;
1268 down_write(&nommu_region_sem
);
1270 /* if we want to share, we need to check for regions created by other
1271 * mmap() calls that overlap with our proposed mapping
1272 * - we can only share with a superset match on most regular files
1273 * - shared mappings on character devices and memory backed files are
1274 * permitted to overlap inexactly as far as we are concerned for in
1275 * these cases, sharing is handled in the driver or filesystem rather
1278 if (vm_flags
& VM_MAYSHARE
) {
1279 struct vm_region
*pregion
;
1280 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1282 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1283 pgend
= pgoff
+ pglen
;
1285 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1286 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1288 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1291 /* search for overlapping mappings on the same file */
1292 if (pregion
->vm_file
->f_path
.dentry
->d_inode
!=
1293 file
->f_path
.dentry
->d_inode
)
1296 if (pregion
->vm_pgoff
>= pgend
)
1299 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1300 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1301 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1302 if (pgoff
>= rpgend
)
1305 /* handle inexactly overlapping matches between
1307 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1308 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1309 /* new mapping is not a subset of the region */
1310 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1311 goto sharing_violation
;
1315 /* we've found a region we can share */
1316 atomic_inc(&pregion
->vm_usage
);
1317 vma
->vm_region
= pregion
;
1318 start
= pregion
->vm_start
;
1319 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1320 vma
->vm_start
= start
;
1321 vma
->vm_end
= start
+ len
;
1323 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1324 kdebug("share copy");
1325 vma
->vm_flags
|= VM_MAPPED_COPY
;
1327 kdebug("share mmap");
1328 ret
= do_mmap_shared_file(vma
);
1330 vma
->vm_region
= NULL
;
1333 atomic_dec(&pregion
->vm_usage
);
1335 goto error_just_free
;
1338 fput(region
->vm_file
);
1339 kmem_cache_free(vm_region_jar
, region
);
1345 /* obtain the address at which to make a shared mapping
1346 * - this is the hook for quasi-memory character devices to
1347 * tell us the location of a shared mapping
1349 if (file
&& file
->f_op
->get_unmapped_area
) {
1350 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1352 if (IS_ERR((void *) addr
)) {
1354 if (ret
!= (unsigned long) -ENOSYS
)
1355 goto error_just_free
;
1357 /* the driver refused to tell us where to site
1358 * the mapping so we'll have to attempt to copy
1360 ret
= (unsigned long) -ENODEV
;
1361 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1362 goto error_just_free
;
1364 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1366 vma
->vm_start
= region
->vm_start
= addr
;
1367 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1372 vma
->vm_region
= region
;
1373 add_nommu_region(region
);
1375 /* set up the mapping */
1376 if (file
&& vma
->vm_flags
& VM_SHARED
)
1377 ret
= do_mmap_shared_file(vma
);
1379 ret
= do_mmap_private(vma
, region
, len
);
1381 goto error_put_region
;
1383 /* okay... we have a mapping; now we have to register it */
1384 result
= vma
->vm_start
;
1386 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1389 add_vma_to_mm(current
->mm
, vma
);
1391 up_write(&nommu_region_sem
);
1393 if (prot
& PROT_EXEC
)
1394 flush_icache_range(result
, result
+ len
);
1396 kleave(" = %lx", result
);
1400 __put_nommu_region(region
);
1404 if (vma
->vm_flags
& VM_EXECUTABLE
)
1405 removed_exe_file_vma(vma
->vm_mm
);
1407 kmem_cache_free(vm_area_cachep
, vma
);
1409 kleave(" = %d [pr]", ret
);
1413 up_write(&nommu_region_sem
);
1415 fput(region
->vm_file
);
1416 kmem_cache_free(vm_region_jar
, region
);
1418 if (vma
->vm_flags
& VM_EXECUTABLE
)
1419 removed_exe_file_vma(vma
->vm_mm
);
1420 kmem_cache_free(vm_area_cachep
, vma
);
1421 kleave(" = %d", ret
);
1425 up_write(&nommu_region_sem
);
1426 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1431 kmem_cache_free(vm_region_jar
, region
);
1432 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1433 " from process %d failed\n",
1438 error_getting_region
:
1439 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1440 " from process %d failed\n",
1445 EXPORT_SYMBOL(do_mmap_pgoff
);
1448 * split a vma into two pieces at address 'addr', a new vma is allocated either
1449 * for the first part or the tail.
1451 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1452 unsigned long addr
, int new_below
)
1454 struct vm_area_struct
*new;
1455 struct vm_region
*region
;
1456 unsigned long npages
;
1460 /* we're only permitted to split anonymous regions that have a single
1463 atomic_read(&vma
->vm_region
->vm_usage
) != 1)
1466 if (mm
->map_count
>= sysctl_max_map_count
)
1469 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1473 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1475 kmem_cache_free(vm_region_jar
, region
);
1479 /* most fields are the same, copy all, and then fixup */
1481 *region
= *vma
->vm_region
;
1482 new->vm_region
= region
;
1484 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1487 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1489 region
->vm_start
= new->vm_start
= addr
;
1490 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1493 if (new->vm_ops
&& new->vm_ops
->open
)
1494 new->vm_ops
->open(new);
1496 delete_vma_from_mm(vma
);
1497 down_write(&nommu_region_sem
);
1498 delete_nommu_region(vma
->vm_region
);
1500 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1501 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1503 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1504 vma
->vm_region
->vm_top
= addr
;
1506 add_nommu_region(vma
->vm_region
);
1507 add_nommu_region(new->vm_region
);
1508 up_write(&nommu_region_sem
);
1509 add_vma_to_mm(mm
, vma
);
1510 add_vma_to_mm(mm
, new);
1515 * shrink a VMA by removing the specified chunk from either the beginning or
1518 static int shrink_vma(struct mm_struct
*mm
,
1519 struct vm_area_struct
*vma
,
1520 unsigned long from
, unsigned long to
)
1522 struct vm_region
*region
;
1526 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1528 delete_vma_from_mm(vma
);
1529 if (from
> vma
->vm_start
)
1533 add_vma_to_mm(mm
, vma
);
1535 /* cut the backing region down to size */
1536 region
= vma
->vm_region
;
1537 BUG_ON(atomic_read(®ion
->vm_usage
) != 1);
1539 down_write(&nommu_region_sem
);
1540 delete_nommu_region(region
);
1541 if (from
> region
->vm_start
) {
1542 to
= region
->vm_top
;
1543 region
->vm_top
= region
->vm_end
= from
;
1545 region
->vm_start
= to
;
1547 add_nommu_region(region
);
1548 up_write(&nommu_region_sem
);
1550 free_page_series(from
, to
);
1556 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1557 * VMA, though it need not cover the whole VMA
1559 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1561 struct vm_area_struct
*vma
;
1563 unsigned long end
= start
+ len
;
1566 kenter(",%lx,%zx", start
, len
);
1571 /* find the first potentially overlapping VMA */
1572 vma
= find_vma(mm
, start
);
1574 static int limit
= 0;
1577 "munmap of memory not mmapped by process %d"
1578 " (%s): 0x%lx-0x%lx\n",
1579 current
->pid
, current
->comm
,
1580 start
, start
+ len
- 1);
1586 /* we're allowed to split an anonymous VMA but not a file-backed one */
1589 if (start
> vma
->vm_start
) {
1590 kleave(" = -EINVAL [miss]");
1593 if (end
== vma
->vm_end
)
1594 goto erase_whole_vma
;
1595 rb
= rb_next(&vma
->vm_rb
);
1596 vma
= rb_entry(rb
, struct vm_area_struct
, vm_rb
);
1598 kleave(" = -EINVAL [split file]");
1601 /* the chunk must be a subset of the VMA found */
1602 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1603 goto erase_whole_vma
;
1604 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1605 kleave(" = -EINVAL [superset]");
1608 if (start
& ~PAGE_MASK
) {
1609 kleave(" = -EINVAL [unaligned start]");
1612 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1613 kleave(" = -EINVAL [unaligned split]");
1616 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1617 ret
= split_vma(mm
, vma
, start
, 1);
1619 kleave(" = %d [split]", ret
);
1623 return shrink_vma(mm
, vma
, start
, end
);
1627 delete_vma_from_mm(vma
);
1628 delete_vma(mm
, vma
);
1632 EXPORT_SYMBOL(do_munmap
);
1634 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1637 struct mm_struct
*mm
= current
->mm
;
1639 down_write(&mm
->mmap_sem
);
1640 ret
= do_munmap(mm
, addr
, len
);
1641 up_write(&mm
->mmap_sem
);
1646 * release all the mappings made in a process's VM space
1648 void exit_mmap(struct mm_struct
*mm
)
1650 struct vm_area_struct
*vma
;
1659 while ((vma
= mm
->mmap
)) {
1660 mm
->mmap
= vma
->vm_next
;
1661 delete_vma_from_mm(vma
);
1662 delete_vma(mm
, vma
);
1668 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1674 * expand (or shrink) an existing mapping, potentially moving it at the same
1675 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1677 * under NOMMU conditions, we only permit changing a mapping's size, and only
1678 * as long as it stays within the region allocated by do_mmap_private() and the
1679 * block is not shareable
1681 * MREMAP_FIXED is not supported under NOMMU conditions
1683 unsigned long do_mremap(unsigned long addr
,
1684 unsigned long old_len
, unsigned long new_len
,
1685 unsigned long flags
, unsigned long new_addr
)
1687 struct vm_area_struct
*vma
;
1689 /* insanity checks first */
1690 if (old_len
== 0 || new_len
== 0)
1691 return (unsigned long) -EINVAL
;
1693 if (addr
& ~PAGE_MASK
)
1696 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1697 return (unsigned long) -EINVAL
;
1699 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1701 return (unsigned long) -EINVAL
;
1703 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1704 return (unsigned long) -EFAULT
;
1706 if (vma
->vm_flags
& VM_MAYSHARE
)
1707 return (unsigned long) -EPERM
;
1709 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1710 return (unsigned long) -ENOMEM
;
1712 /* all checks complete - do it */
1713 vma
->vm_end
= vma
->vm_start
+ new_len
;
1714 return vma
->vm_start
;
1716 EXPORT_SYMBOL(do_mremap
);
1718 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1719 unsigned long, new_len
, unsigned long, flags
,
1720 unsigned long, new_addr
)
1724 down_write(¤t
->mm
->mmap_sem
);
1725 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1726 up_write(¤t
->mm
->mmap_sem
);
1730 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1731 unsigned int foll_flags
)
1736 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long from
,
1737 unsigned long to
, unsigned long size
, pgprot_t prot
)
1739 vma
->vm_start
= vma
->vm_pgoff
<< PAGE_SHIFT
;
1742 EXPORT_SYMBOL(remap_pfn_range
);
1744 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1745 unsigned long pgoff
)
1747 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1749 if (!(vma
->vm_flags
& VM_USERMAP
))
1752 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1753 vma
->vm_end
= vma
->vm_start
+ size
;
1757 EXPORT_SYMBOL(remap_vmalloc_range
);
1759 void swap_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1763 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1764 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1769 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1773 void unmap_mapping_range(struct address_space
*mapping
,
1774 loff_t
const holebegin
, loff_t
const holelen
,
1778 EXPORT_SYMBOL(unmap_mapping_range
);
1781 * ask for an unmapped area at which to create a mapping on a file
1783 unsigned long get_unmapped_area(struct file
*file
, unsigned long addr
,
1784 unsigned long len
, unsigned long pgoff
,
1785 unsigned long flags
)
1787 unsigned long (*get_area
)(struct file
*, unsigned long, unsigned long,
1788 unsigned long, unsigned long);
1790 get_area
= current
->mm
->get_unmapped_area
;
1791 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1792 get_area
= file
->f_op
->get_unmapped_area
;
1797 return get_area(file
, addr
, len
, pgoff
, flags
);
1799 EXPORT_SYMBOL(get_unmapped_area
);
1802 * Check that a process has enough memory to allocate a new virtual
1803 * mapping. 0 means there is enough memory for the allocation to
1804 * succeed and -ENOMEM implies there is not.
1806 * We currently support three overcommit policies, which are set via the
1807 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1809 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1810 * Additional code 2002 Jul 20 by Robert Love.
1812 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1814 * Note this is a helper function intended to be used by LSMs which
1815 * wish to use this logic.
1817 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1819 unsigned long free
, allowed
;
1821 vm_acct_memory(pages
);
1824 * Sometimes we want to use more memory than we have
1826 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1829 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1832 free
= global_page_state(NR_FILE_PAGES
);
1833 free
+= nr_swap_pages
;
1836 * Any slabs which are created with the
1837 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1838 * which are reclaimable, under pressure. The dentry
1839 * cache and most inode caches should fall into this
1841 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1844 * Leave the last 3% for root
1853 * nr_free_pages() is very expensive on large systems,
1854 * only call if we're about to fail.
1856 n
= nr_free_pages();
1859 * Leave reserved pages. The pages are not for anonymous pages.
1861 if (n
<= totalreserve_pages
)
1864 n
-= totalreserve_pages
;
1867 * Leave the last 3% for root
1879 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1881 * Leave the last 3% for root
1884 allowed
-= allowed
/ 32;
1885 allowed
+= total_swap_pages
;
1887 /* Don't let a single process grow too big:
1888 leave 3% of the size of this process for other processes */
1890 allowed
-= mm
->total_vm
/ 32;
1892 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1896 vm_unacct_memory(pages
);
1901 int in_gate_area_no_task(unsigned long addr
)
1906 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1911 EXPORT_SYMBOL(filemap_fault
);
1914 * Access another process' address space.
1915 * - source/target buffer must be kernel space
1917 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
1919 struct vm_area_struct
*vma
;
1920 struct mm_struct
*mm
;
1922 if (addr
+ len
< addr
)
1925 mm
= get_task_mm(tsk
);
1929 down_read(&mm
->mmap_sem
);
1931 /* the access must start within one of the target process's mappings */
1932 vma
= find_vma(mm
, addr
);
1934 /* don't overrun this mapping */
1935 if (addr
+ len
>= vma
->vm_end
)
1936 len
= vma
->vm_end
- addr
;
1938 /* only read or write mappings where it is permitted */
1939 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
1940 len
-= copy_to_user((void *) addr
, buf
, len
);
1941 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
1942 len
-= copy_from_user(buf
, (void *) addr
, len
);
1949 up_read(&mm
->mmap_sem
);