Fix FRV minimum slab/kmalloc alignment
[linux-2.6/linux-2.6-openrd.git] / arch / sh / kernel / setup.c
blobbca2bbc575dbe034e7c0ded352c437997ee8308d
1 /*
2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
8 */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/elf.h>
32 #include <asm/sections.h>
33 #include <asm/irq.h>
34 #include <asm/setup.h>
35 #include <asm/clock.h>
36 #include <asm/mmu_context.h>
39 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
40 * This value will be used at the very early stage of serial setup.
41 * The bigger value means no problem.
43 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
44 [0] = {
45 .type = CPU_SH_NONE,
46 .loops_per_jiffy = 10000000,
49 EXPORT_SYMBOL(cpu_data);
52 * The machine vector. First entry in .machvec.init, or clobbered by
53 * sh_mv= on the command line, prior to .machvec.init teardown.
55 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
56 EXPORT_SYMBOL(sh_mv);
58 #ifdef CONFIG_VT
59 struct screen_info screen_info;
60 #endif
62 extern int root_mountflags;
64 #define RAMDISK_IMAGE_START_MASK 0x07FF
65 #define RAMDISK_PROMPT_FLAG 0x8000
66 #define RAMDISK_LOAD_FLAG 0x4000
68 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
70 static struct resource code_resource = {
71 .name = "Kernel code",
72 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
75 static struct resource data_resource = {
76 .name = "Kernel data",
77 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
80 static struct resource bss_resource = {
81 .name = "Kernel bss",
82 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
85 unsigned long memory_start;
86 EXPORT_SYMBOL(memory_start);
87 unsigned long memory_end = 0;
88 EXPORT_SYMBOL(memory_end);
90 static struct resource mem_resources[MAX_NUMNODES];
92 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
94 static int __init early_parse_mem(char *p)
96 unsigned long size;
98 memory_start = (unsigned long)__va(__MEMORY_START);
99 size = memparse(p, &p);
101 if (size > __MEMORY_SIZE) {
102 static char msg[] __initdata = KERN_ERR
103 "Using mem= to increase the size of kernel memory "
104 "is not allowed.\n"
105 " Recompile the kernel with the correct value for "
106 "CONFIG_MEMORY_SIZE.\n";
107 printk(msg);
108 return 0;
111 memory_end = memory_start + size;
113 return 0;
115 early_param("mem", early_parse_mem);
118 * Register fully available low RAM pages with the bootmem allocator.
120 static void __init register_bootmem_low_pages(void)
122 unsigned long curr_pfn, last_pfn, pages;
125 * We are rounding up the start address of usable memory:
127 curr_pfn = PFN_UP(__MEMORY_START);
130 * ... and at the end of the usable range downwards:
132 last_pfn = PFN_DOWN(__pa(memory_end));
134 if (last_pfn > max_low_pfn)
135 last_pfn = max_low_pfn;
137 pages = last_pfn - curr_pfn;
138 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
141 #ifdef CONFIG_KEXEC
142 static void __init reserve_crashkernel(void)
144 unsigned long long free_mem;
145 unsigned long long crash_size, crash_base;
146 int ret;
148 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
150 ret = parse_crashkernel(boot_command_line, free_mem,
151 &crash_size, &crash_base);
152 if (ret == 0 && crash_size) {
153 if (crash_base <= 0) {
154 printk(KERN_INFO "crashkernel reservation failed - "
155 "you have to specify a base address\n");
156 return;
159 if (reserve_bootmem(crash_base, crash_size,
160 BOOTMEM_EXCLUSIVE) < 0) {
161 printk(KERN_INFO "crashkernel reservation failed - "
162 "memory is in use\n");
163 return;
166 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
167 "for crashkernel (System RAM: %ldMB)\n",
168 (unsigned long)(crash_size >> 20),
169 (unsigned long)(crash_base >> 20),
170 (unsigned long)(free_mem >> 20));
171 crashk_res.start = crash_base;
172 crashk_res.end = crash_base + crash_size - 1;
175 #else
176 static inline void __init reserve_crashkernel(void)
178 #endif
180 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
181 unsigned long end_pfn)
183 struct resource *res = &mem_resources[nid];
185 WARN_ON(res->name); /* max one active range per node for now */
187 res->name = "System RAM";
188 res->start = start_pfn << PAGE_SHIFT;
189 res->end = (end_pfn << PAGE_SHIFT) - 1;
190 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
191 if (request_resource(&iomem_resource, res)) {
192 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
193 start_pfn, end_pfn);
194 return;
198 * We don't know which RAM region contains kernel data,
199 * so we try it repeatedly and let the resource manager
200 * test it.
202 request_resource(res, &code_resource);
203 request_resource(res, &data_resource);
204 request_resource(res, &bss_resource);
206 #ifdef CONFIG_KEXEC
207 if (crashk_res.start != crashk_res.end)
208 request_resource(res, &crashk_res);
209 #endif
211 add_active_range(nid, start_pfn, end_pfn);
214 void __init setup_bootmem_allocator(unsigned long free_pfn)
216 unsigned long bootmap_size;
219 * Find a proper area for the bootmem bitmap. After this
220 * bootstrap step all allocations (until the page allocator
221 * is intact) must be done via bootmem_alloc().
223 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
224 min_low_pfn, max_low_pfn);
226 __add_active_range(0, min_low_pfn, max_low_pfn);
227 register_bootmem_low_pages();
229 node_set_online(0);
232 * Reserve the kernel text and
233 * Reserve the bootmem bitmap. We do this in two steps (first step
234 * was init_bootmem()), because this catches the (definitely buggy)
235 * case of us accidentally initializing the bootmem allocator with
236 * an invalid RAM area.
238 reserve_bootmem(__MEMORY_START+PAGE_SIZE,
239 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
240 BOOTMEM_DEFAULT);
243 * reserve physical page 0 - it's a special BIOS page on many boxes,
244 * enabling clean reboots, SMP operation, laptop functions.
246 reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
248 sparse_memory_present_with_active_regions(0);
250 #ifdef CONFIG_BLK_DEV_INITRD
251 ROOT_DEV = Root_RAM0;
253 if (LOADER_TYPE && INITRD_START) {
254 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
255 reserve_bootmem(INITRD_START + __MEMORY_START,
256 INITRD_SIZE, BOOTMEM_DEFAULT);
257 initrd_start = INITRD_START + PAGE_OFFSET +
258 __MEMORY_START;
259 initrd_end = initrd_start + INITRD_SIZE;
260 } else {
261 printk("initrd extends beyond end of memory "
262 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
263 INITRD_START + INITRD_SIZE,
264 max_low_pfn << PAGE_SHIFT);
265 initrd_start = 0;
268 #endif
270 reserve_crashkernel();
273 #ifndef CONFIG_NEED_MULTIPLE_NODES
274 static void __init setup_memory(void)
276 unsigned long start_pfn;
279 * Partially used pages are not usable - thus
280 * we are rounding upwards:
282 start_pfn = PFN_UP(__pa(_end));
283 setup_bootmem_allocator(start_pfn);
285 #else
286 extern void __init setup_memory(void);
287 #endif
289 void __init setup_arch(char **cmdline_p)
291 enable_mmu();
293 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
295 printk(KERN_NOTICE "Boot params:\n"
296 "... MOUNT_ROOT_RDONLY - %08lx\n"
297 "... RAMDISK_FLAGS - %08lx\n"
298 "... ORIG_ROOT_DEV - %08lx\n"
299 "... LOADER_TYPE - %08lx\n"
300 "... INITRD_START - %08lx\n"
301 "... INITRD_SIZE - %08lx\n",
302 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
303 ORIG_ROOT_DEV, LOADER_TYPE,
304 INITRD_START, INITRD_SIZE);
306 #ifdef CONFIG_BLK_DEV_RAM
307 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
308 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
309 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
310 #endif
312 if (!MOUNT_ROOT_RDONLY)
313 root_mountflags &= ~MS_RDONLY;
314 init_mm.start_code = (unsigned long) _text;
315 init_mm.end_code = (unsigned long) _etext;
316 init_mm.end_data = (unsigned long) _edata;
317 init_mm.brk = (unsigned long) _end;
319 code_resource.start = virt_to_phys(_text);
320 code_resource.end = virt_to_phys(_etext)-1;
321 data_resource.start = virt_to_phys(_etext);
322 data_resource.end = virt_to_phys(_edata)-1;
323 bss_resource.start = virt_to_phys(__bss_start);
324 bss_resource.end = virt_to_phys(_ebss)-1;
326 memory_start = (unsigned long)__va(__MEMORY_START);
327 if (!memory_end)
328 memory_end = memory_start + __MEMORY_SIZE;
330 #ifdef CONFIG_CMDLINE_BOOL
331 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
332 #else
333 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
334 #endif
336 /* Save unparsed command line copy for /proc/cmdline */
337 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
338 *cmdline_p = command_line;
340 parse_early_param();
342 sh_mv_setup();
345 * Find the highest page frame number we have available
347 max_pfn = PFN_DOWN(__pa(memory_end));
350 * Determine low and high memory ranges:
352 max_low_pfn = max_pfn;
353 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
355 nodes_clear(node_online_map);
357 /* Setup bootmem with available RAM */
358 setup_memory();
359 sparse_init();
361 #ifdef CONFIG_DUMMY_CONSOLE
362 conswitchp = &dummy_con;
363 #endif
365 /* Perform the machine specific initialisation */
366 if (likely(sh_mv.mv_setup))
367 sh_mv.mv_setup(cmdline_p);
369 paging_init();
371 #ifdef CONFIG_SMP
372 plat_smp_setup();
373 #endif
376 static const char *cpu_name[] = {
377 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
378 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
379 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
380 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
381 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
382 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
383 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
384 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
385 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
386 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
387 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
388 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
389 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
390 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
391 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
392 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
393 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
394 [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown"
397 const char *get_cpu_subtype(struct sh_cpuinfo *c)
399 return cpu_name[c->type];
402 #ifdef CONFIG_PROC_FS
403 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
404 static const char *cpu_flags[] = {
405 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
406 "ptea", "llsc", "l2", "op32", NULL
409 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
411 unsigned long i;
413 seq_printf(m, "cpu flags\t:");
415 if (!c->flags) {
416 seq_printf(m, " %s\n", cpu_flags[0]);
417 return;
420 for (i = 0; cpu_flags[i]; i++)
421 if ((c->flags & (1 << i)))
422 seq_printf(m, " %s", cpu_flags[i+1]);
424 seq_printf(m, "\n");
427 static void show_cacheinfo(struct seq_file *m, const char *type,
428 struct cache_info info)
430 unsigned int cache_size;
432 cache_size = info.ways * info.sets * info.linesz;
434 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
435 type, cache_size >> 10, info.ways);
439 * Get CPU information for use by the procfs.
441 static int show_cpuinfo(struct seq_file *m, void *v)
443 struct sh_cpuinfo *c = v;
444 unsigned int cpu = c - cpu_data;
446 if (!cpu_online(cpu))
447 return 0;
449 if (cpu == 0)
450 seq_printf(m, "machine\t\t: %s\n", get_system_type());
452 seq_printf(m, "processor\t: %d\n", cpu);
453 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
454 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
456 show_cpuflags(m, c);
458 seq_printf(m, "cache type\t: ");
461 * Check for what type of cache we have, we support both the
462 * unified cache on the SH-2 and SH-3, as well as the harvard
463 * style cache on the SH-4.
465 if (c->icache.flags & SH_CACHE_COMBINED) {
466 seq_printf(m, "unified\n");
467 show_cacheinfo(m, "cache", c->icache);
468 } else {
469 seq_printf(m, "split (harvard)\n");
470 show_cacheinfo(m, "icache", c->icache);
471 show_cacheinfo(m, "dcache", c->dcache);
474 /* Optional secondary cache */
475 if (c->flags & CPU_HAS_L2_CACHE)
476 show_cacheinfo(m, "scache", c->scache);
478 seq_printf(m, "bogomips\t: %lu.%02lu\n",
479 c->loops_per_jiffy/(500000/HZ),
480 (c->loops_per_jiffy/(5000/HZ)) % 100);
482 return 0;
485 static void *c_start(struct seq_file *m, loff_t *pos)
487 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
489 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
491 ++*pos;
492 return c_start(m, pos);
494 static void c_stop(struct seq_file *m, void *v)
497 const struct seq_operations cpuinfo_op = {
498 .start = c_start,
499 .next = c_next,
500 .stop = c_stop,
501 .show = show_cpuinfo,
503 #endif /* CONFIG_PROC_FS */
505 struct dentry *sh_debugfs_root;
507 static int __init sh_debugfs_init(void)
509 sh_debugfs_root = debugfs_create_dir("sh", NULL);
510 if (IS_ERR(sh_debugfs_root))
511 return PTR_ERR(sh_debugfs_root);
513 return 0;
515 arch_initcall(sh_debugfs_init);