2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/swap.h>
32 static struct vfsmount
*shm_mnt
;
36 * This virtual memory filesystem is heavily based on the ramfs. It
37 * extends ramfs by the ability to use swap and honor resource limits
38 * which makes it a completely usable filesystem.
41 #include <linux/xattr.h>
42 #include <linux/exportfs.h>
43 #include <linux/generic_acl.h>
44 #include <linux/mman.h>
45 #include <linux/pagemap.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/backing-dev.h>
49 #include <linux/shmem_fs.h>
50 #include <linux/writeback.h>
51 #include <linux/vfs.h>
52 #include <linux/blkdev.h>
53 #include <linux/security.h>
54 #include <linux/swapops.h>
55 #include <linux/mempolicy.h>
56 #include <linux/namei.h>
57 #include <linux/ctype.h>
58 #include <linux/migrate.h>
59 #include <linux/highmem.h>
60 #include <linux/seq_file.h>
61 #include <linux/magic.h>
63 #include <asm/uaccess.h>
64 #include <asm/div64.h>
65 #include <asm/pgtable.h>
67 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
68 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
69 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
71 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
72 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
77 #define SHMEM_PAGEIN VM_READ
78 #define SHMEM_TRUNCATE VM_WRITE
80 /* Definition to limit shmem_truncate's steps between cond_rescheds */
81 #define LATENCY_LIMIT 64
83 /* Pretend that each entry is of this size in directory's i_size */
84 #define BOGO_DIRENT_SIZE 20
86 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
88 SGP_READ
, /* don't exceed i_size, don't allocate page */
89 SGP_CACHE
, /* don't exceed i_size, may allocate page */
90 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
91 SGP_WRITE
, /* may exceed i_size, may allocate page */
95 static unsigned long shmem_default_max_blocks(void)
97 return totalram_pages
/ 2;
100 static unsigned long shmem_default_max_inodes(void)
102 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
106 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
107 struct page
**pagep
, enum sgp_type sgp
, int *type
);
109 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
112 * The above definition of ENTRIES_PER_PAGE, and the use of
113 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
114 * might be reconsidered if it ever diverges from PAGE_SIZE.
116 * Mobility flags are masked out as swap vectors cannot move
118 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
119 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
122 static inline void shmem_dir_free(struct page
*page
)
124 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
127 static struct page
**shmem_dir_map(struct page
*page
)
129 return (struct page
**)kmap_atomic(page
, KM_USER0
);
132 static inline void shmem_dir_unmap(struct page
**dir
)
134 kunmap_atomic(dir
, KM_USER0
);
137 static swp_entry_t
*shmem_swp_map(struct page
*page
)
139 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
142 static inline void shmem_swp_balance_unmap(void)
145 * When passing a pointer to an i_direct entry, to code which
146 * also handles indirect entries and so will shmem_swp_unmap,
147 * we must arrange for the preempt count to remain in balance.
148 * What kmap_atomic of a lowmem page does depends on config
149 * and architecture, so pretend to kmap_atomic some lowmem page.
151 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
154 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
156 kunmap_atomic(entry
, KM_USER1
);
159 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
161 return sb
->s_fs_info
;
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
170 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
172 return (flags
& VM_NORESERVE
) ?
173 0 : security_vm_enough_memory_kern(VM_ACCT(size
));
176 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
178 if (!(flags
& VM_NORESERVE
))
179 vm_unacct_memory(VM_ACCT(size
));
183 * ... whereas tmpfs objects are accounted incrementally as
184 * pages are allocated, in order to allow huge sparse files.
185 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
186 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
188 static inline int shmem_acct_block(unsigned long flags
)
190 return (flags
& VM_NORESERVE
) ?
191 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
194 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
196 if (flags
& VM_NORESERVE
)
197 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
200 static const struct super_operations shmem_ops
;
201 static const struct address_space_operations shmem_aops
;
202 static const struct file_operations shmem_file_operations
;
203 static const struct inode_operations shmem_inode_operations
;
204 static const struct inode_operations shmem_dir_inode_operations
;
205 static const struct inode_operations shmem_special_inode_operations
;
206 static struct vm_operations_struct shmem_vm_ops
;
208 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
209 .ra_pages
= 0, /* No readahead */
210 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
211 .unplug_io_fn
= default_unplug_io_fn
,
214 static LIST_HEAD(shmem_swaplist
);
215 static DEFINE_MUTEX(shmem_swaplist_mutex
);
217 static void shmem_free_blocks(struct inode
*inode
, long pages
)
219 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
220 if (sbinfo
->max_blocks
) {
221 spin_lock(&sbinfo
->stat_lock
);
222 sbinfo
->free_blocks
+= pages
;
223 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
224 spin_unlock(&sbinfo
->stat_lock
);
228 static int shmem_reserve_inode(struct super_block
*sb
)
230 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
231 if (sbinfo
->max_inodes
) {
232 spin_lock(&sbinfo
->stat_lock
);
233 if (!sbinfo
->free_inodes
) {
234 spin_unlock(&sbinfo
->stat_lock
);
237 sbinfo
->free_inodes
--;
238 spin_unlock(&sbinfo
->stat_lock
);
243 static void shmem_free_inode(struct super_block
*sb
)
245 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
246 if (sbinfo
->max_inodes
) {
247 spin_lock(&sbinfo
->stat_lock
);
248 sbinfo
->free_inodes
++;
249 spin_unlock(&sbinfo
->stat_lock
);
254 * shmem_recalc_inode - recalculate the size of an inode
255 * @inode: inode to recalc
257 * We have to calculate the free blocks since the mm can drop
258 * undirtied hole pages behind our back.
260 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
261 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
263 * It has to be called with the spinlock held.
265 static void shmem_recalc_inode(struct inode
*inode
)
267 struct shmem_inode_info
*info
= SHMEM_I(inode
);
270 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
272 info
->alloced
-= freed
;
273 shmem_unacct_blocks(info
->flags
, freed
);
274 shmem_free_blocks(inode
, freed
);
279 * shmem_swp_entry - find the swap vector position in the info structure
280 * @info: info structure for the inode
281 * @index: index of the page to find
282 * @page: optional page to add to the structure. Has to be preset to
285 * If there is no space allocated yet it will return NULL when
286 * page is NULL, else it will use the page for the needed block,
287 * setting it to NULL on return to indicate that it has been used.
289 * The swap vector is organized the following way:
291 * There are SHMEM_NR_DIRECT entries directly stored in the
292 * shmem_inode_info structure. So small files do not need an addional
295 * For pages with index > SHMEM_NR_DIRECT there is the pointer
296 * i_indirect which points to a page which holds in the first half
297 * doubly indirect blocks, in the second half triple indirect blocks:
299 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
300 * following layout (for SHMEM_NR_DIRECT == 16):
302 * i_indirect -> dir --> 16-19
315 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
317 unsigned long offset
;
321 if (index
< SHMEM_NR_DIRECT
) {
322 shmem_swp_balance_unmap();
323 return info
->i_direct
+index
;
325 if (!info
->i_indirect
) {
327 info
->i_indirect
= *page
;
330 return NULL
; /* need another page */
333 index
-= SHMEM_NR_DIRECT
;
334 offset
= index
% ENTRIES_PER_PAGE
;
335 index
/= ENTRIES_PER_PAGE
;
336 dir
= shmem_dir_map(info
->i_indirect
);
338 if (index
>= ENTRIES_PER_PAGE
/2) {
339 index
-= ENTRIES_PER_PAGE
/2;
340 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
341 index
%= ENTRIES_PER_PAGE
;
348 shmem_dir_unmap(dir
);
349 return NULL
; /* need another page */
351 shmem_dir_unmap(dir
);
352 dir
= shmem_dir_map(subdir
);
358 if (!page
|| !(subdir
= *page
)) {
359 shmem_dir_unmap(dir
);
360 return NULL
; /* need a page */
365 shmem_dir_unmap(dir
);
366 return shmem_swp_map(subdir
) + offset
;
369 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
371 long incdec
= value
? 1: -1;
374 info
->swapped
+= incdec
;
375 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
376 struct page
*page
= kmap_atomic_to_page(entry
);
377 set_page_private(page
, page_private(page
) + incdec
);
382 * shmem_swp_alloc - get the position of the swap entry for the page.
383 * @info: info structure for the inode
384 * @index: index of the page to find
385 * @sgp: check and recheck i_size? skip allocation?
387 * If the entry does not exist, allocate it.
389 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
391 struct inode
*inode
= &info
->vfs_inode
;
392 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
393 struct page
*page
= NULL
;
396 if (sgp
!= SGP_WRITE
&&
397 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
398 return ERR_PTR(-EINVAL
);
400 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
402 return shmem_swp_map(ZERO_PAGE(0));
404 * Test free_blocks against 1 not 0, since we have 1 data
405 * page (and perhaps indirect index pages) yet to allocate:
406 * a waste to allocate index if we cannot allocate data.
408 if (sbinfo
->max_blocks
) {
409 spin_lock(&sbinfo
->stat_lock
);
410 if (sbinfo
->free_blocks
<= 1) {
411 spin_unlock(&sbinfo
->stat_lock
);
412 return ERR_PTR(-ENOSPC
);
414 sbinfo
->free_blocks
--;
415 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
416 spin_unlock(&sbinfo
->stat_lock
);
419 spin_unlock(&info
->lock
);
420 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
422 set_page_private(page
, 0);
423 spin_lock(&info
->lock
);
426 shmem_free_blocks(inode
, 1);
427 return ERR_PTR(-ENOMEM
);
429 if (sgp
!= SGP_WRITE
&&
430 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
431 entry
= ERR_PTR(-EINVAL
);
434 if (info
->next_index
<= index
)
435 info
->next_index
= index
+ 1;
438 /* another task gave its page, or truncated the file */
439 shmem_free_blocks(inode
, 1);
440 shmem_dir_free(page
);
442 if (info
->next_index
<= index
&& !IS_ERR(entry
))
443 info
->next_index
= index
+ 1;
448 * shmem_free_swp - free some swap entries in a directory
449 * @dir: pointer to the directory
450 * @edir: pointer after last entry of the directory
451 * @punch_lock: pointer to spinlock when needed for the holepunch case
453 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
454 spinlock_t
*punch_lock
)
456 spinlock_t
*punch_unlock
= NULL
;
460 for (ptr
= dir
; ptr
< edir
; ptr
++) {
462 if (unlikely(punch_lock
)) {
463 punch_unlock
= punch_lock
;
465 spin_lock(punch_unlock
);
469 free_swap_and_cache(*ptr
);
470 *ptr
= (swp_entry_t
){0};
475 spin_unlock(punch_unlock
);
479 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
480 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
485 ptr
= shmem_swp_map(subdir
);
486 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
487 int size
= limit
- offset
;
488 if (size
> LATENCY_LIMIT
)
489 size
= LATENCY_LIMIT
;
490 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
492 if (need_resched()) {
493 shmem_swp_unmap(ptr
);
495 shmem_dir_unmap(*dir
);
499 ptr
= shmem_swp_map(subdir
);
502 shmem_swp_unmap(ptr
);
506 static void shmem_free_pages(struct list_head
*next
)
512 page
= container_of(next
, struct page
, lru
);
514 shmem_dir_free(page
);
516 if (freed
>= LATENCY_LIMIT
) {
523 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
525 struct shmem_inode_info
*info
= SHMEM_I(inode
);
530 unsigned long diroff
;
536 LIST_HEAD(pages_to_free
);
537 long nr_pages_to_free
= 0;
538 long nr_swaps_freed
= 0;
542 spinlock_t
*needs_lock
;
543 spinlock_t
*punch_lock
;
544 unsigned long upper_limit
;
546 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
547 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
548 if (idx
>= info
->next_index
)
551 spin_lock(&info
->lock
);
552 info
->flags
|= SHMEM_TRUNCATE
;
553 if (likely(end
== (loff_t
) -1)) {
554 limit
= info
->next_index
;
555 upper_limit
= SHMEM_MAX_INDEX
;
556 info
->next_index
= idx
;
560 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
561 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
563 upper_limit
= SHMEM_MAX_INDEX
;
565 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
568 needs_lock
= &info
->lock
;
572 topdir
= info
->i_indirect
;
573 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
574 info
->i_indirect
= NULL
;
576 list_add(&topdir
->lru
, &pages_to_free
);
578 spin_unlock(&info
->lock
);
580 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
581 ptr
= info
->i_direct
;
583 if (size
> SHMEM_NR_DIRECT
)
584 size
= SHMEM_NR_DIRECT
;
585 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
589 * If there are no indirect blocks or we are punching a hole
590 * below indirect blocks, nothing to be done.
592 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
596 * The truncation case has already dropped info->lock, and we're safe
597 * because i_size and next_index have already been lowered, preventing
598 * access beyond. But in the punch_hole case, we still need to take
599 * the lock when updating the swap directory, because there might be
600 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
601 * shmem_writepage. However, whenever we find we can remove a whole
602 * directory page (not at the misaligned start or end of the range),
603 * we first NULLify its pointer in the level above, and then have no
604 * need to take the lock when updating its contents: needs_lock and
605 * punch_lock (either pointing to info->lock or NULL) manage this.
608 upper_limit
-= SHMEM_NR_DIRECT
;
609 limit
-= SHMEM_NR_DIRECT
;
610 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
611 offset
= idx
% ENTRIES_PER_PAGE
;
614 dir
= shmem_dir_map(topdir
);
615 stage
= ENTRIES_PER_PAGEPAGE
/2;
616 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
618 diroff
= idx
/ENTRIES_PER_PAGE
;
620 dir
+= ENTRIES_PER_PAGE
/2;
621 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
623 stage
+= ENTRIES_PER_PAGEPAGE
;
626 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
627 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
628 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
630 spin_lock(needs_lock
);
632 spin_unlock(needs_lock
);
637 list_add(&middir
->lru
, &pages_to_free
);
639 shmem_dir_unmap(dir
);
640 dir
= shmem_dir_map(middir
);
648 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
649 if (unlikely(idx
== stage
)) {
650 shmem_dir_unmap(dir
);
651 dir
= shmem_dir_map(topdir
) +
652 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
655 idx
+= ENTRIES_PER_PAGEPAGE
;
659 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
662 needs_lock
= &info
->lock
;
663 if (upper_limit
>= stage
) {
665 spin_lock(needs_lock
);
667 spin_unlock(needs_lock
);
672 list_add(&middir
->lru
, &pages_to_free
);
674 shmem_dir_unmap(dir
);
676 dir
= shmem_dir_map(middir
);
679 punch_lock
= needs_lock
;
680 subdir
= dir
[diroff
];
681 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
683 spin_lock(needs_lock
);
685 spin_unlock(needs_lock
);
690 list_add(&subdir
->lru
, &pages_to_free
);
692 if (subdir
&& page_private(subdir
) /* has swap entries */) {
694 if (size
> ENTRIES_PER_PAGE
)
695 size
= ENTRIES_PER_PAGE
;
696 freed
= shmem_map_and_free_swp(subdir
,
697 offset
, size
, &dir
, punch_lock
);
699 dir
= shmem_dir_map(middir
);
700 nr_swaps_freed
+= freed
;
701 if (offset
|| punch_lock
) {
702 spin_lock(&info
->lock
);
703 set_page_private(subdir
,
704 page_private(subdir
) - freed
);
705 spin_unlock(&info
->lock
);
707 BUG_ON(page_private(subdir
) != freed
);
712 shmem_dir_unmap(dir
);
714 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
716 * Call truncate_inode_pages again: racing shmem_unuse_inode
717 * may have swizzled a page in from swap since vmtruncate or
718 * generic_delete_inode did it, before we lowered next_index.
719 * Also, though shmem_getpage checks i_size before adding to
720 * cache, no recheck after: so fix the narrow window there too.
722 * Recalling truncate_inode_pages_range and unmap_mapping_range
723 * every time for punch_hole (which never got a chance to clear
724 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
725 * yet hardly ever necessary: try to optimize them out later.
727 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
729 unmap_mapping_range(inode
->i_mapping
, start
,
733 spin_lock(&info
->lock
);
734 info
->flags
&= ~SHMEM_TRUNCATE
;
735 info
->swapped
-= nr_swaps_freed
;
736 if (nr_pages_to_free
)
737 shmem_free_blocks(inode
, nr_pages_to_free
);
738 shmem_recalc_inode(inode
);
739 spin_unlock(&info
->lock
);
742 * Empty swap vector directory pages to be freed?
744 if (!list_empty(&pages_to_free
)) {
745 pages_to_free
.prev
->next
= NULL
;
746 shmem_free_pages(pages_to_free
.next
);
750 static void shmem_truncate(struct inode
*inode
)
752 shmem_truncate_range(inode
, inode
->i_size
, (loff_t
)-1);
755 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
757 struct inode
*inode
= dentry
->d_inode
;
758 struct page
*page
= NULL
;
761 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
762 if (attr
->ia_size
< inode
->i_size
) {
764 * If truncating down to a partial page, then
765 * if that page is already allocated, hold it
766 * in memory until the truncation is over, so
767 * truncate_partial_page cannnot miss it were
768 * it assigned to swap.
770 if (attr
->ia_size
& (PAGE_CACHE_SIZE
-1)) {
771 (void) shmem_getpage(inode
,
772 attr
->ia_size
>>PAGE_CACHE_SHIFT
,
773 &page
, SGP_READ
, NULL
);
778 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
779 * detect if any pages might have been added to cache
780 * after truncate_inode_pages. But we needn't bother
781 * if it's being fully truncated to zero-length: the
782 * nrpages check is efficient enough in that case.
785 struct shmem_inode_info
*info
= SHMEM_I(inode
);
786 spin_lock(&info
->lock
);
787 info
->flags
&= ~SHMEM_PAGEIN
;
788 spin_unlock(&info
->lock
);
793 error
= inode_change_ok(inode
, attr
);
795 error
= inode_setattr(inode
, attr
);
796 #ifdef CONFIG_TMPFS_POSIX_ACL
797 if (!error
&& (attr
->ia_valid
& ATTR_MODE
))
798 error
= generic_acl_chmod(inode
, &shmem_acl_ops
);
801 page_cache_release(page
);
805 static void shmem_delete_inode(struct inode
*inode
)
807 struct shmem_inode_info
*info
= SHMEM_I(inode
);
809 if (inode
->i_op
->truncate
== shmem_truncate
) {
810 truncate_inode_pages(inode
->i_mapping
, 0);
811 shmem_unacct_size(info
->flags
, inode
->i_size
);
813 shmem_truncate(inode
);
814 if (!list_empty(&info
->swaplist
)) {
815 mutex_lock(&shmem_swaplist_mutex
);
816 list_del_init(&info
->swaplist
);
817 mutex_unlock(&shmem_swaplist_mutex
);
820 BUG_ON(inode
->i_blocks
);
821 shmem_free_inode(inode
->i_sb
);
825 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
829 for (ptr
= dir
; ptr
< edir
; ptr
++) {
830 if (ptr
->val
== entry
.val
)
836 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
850 ptr
= info
->i_direct
;
851 spin_lock(&info
->lock
);
852 if (!info
->swapped
) {
853 list_del_init(&info
->swaplist
);
856 limit
= info
->next_index
;
858 if (size
> SHMEM_NR_DIRECT
)
859 size
= SHMEM_NR_DIRECT
;
860 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
863 if (!info
->i_indirect
)
866 dir
= shmem_dir_map(info
->i_indirect
);
867 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
869 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
870 if (unlikely(idx
== stage
)) {
871 shmem_dir_unmap(dir
-1);
872 if (cond_resched_lock(&info
->lock
)) {
873 /* check it has not been truncated */
874 if (limit
> info
->next_index
) {
875 limit
= info
->next_index
;
880 dir
= shmem_dir_map(info
->i_indirect
) +
881 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
884 idx
+= ENTRIES_PER_PAGEPAGE
;
888 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
890 shmem_dir_unmap(dir
);
891 dir
= shmem_dir_map(subdir
);
894 if (subdir
&& page_private(subdir
)) {
895 ptr
= shmem_swp_map(subdir
);
897 if (size
> ENTRIES_PER_PAGE
)
898 size
= ENTRIES_PER_PAGE
;
899 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
900 shmem_swp_unmap(ptr
);
902 shmem_dir_unmap(dir
);
908 shmem_dir_unmap(dir
-1);
910 spin_unlock(&info
->lock
);
914 inode
= igrab(&info
->vfs_inode
);
915 spin_unlock(&info
->lock
);
918 * Move _head_ to start search for next from here.
919 * But be careful: shmem_delete_inode checks list_empty without taking
920 * mutex, and there's an instant in list_move_tail when info->swaplist
921 * would appear empty, if it were the only one on shmem_swaplist. We
922 * could avoid doing it if inode NULL; or use this minor optimization.
924 if (shmem_swaplist
.next
!= &info
->swaplist
)
925 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
926 mutex_unlock(&shmem_swaplist_mutex
);
932 * Charge page using GFP_KERNEL while we can wait.
933 * Charged back to the user(not to caller) when swap account is used.
934 * add_to_page_cache() will be called with GFP_NOWAIT.
936 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
939 error
= radix_tree_preload(GFP_KERNEL
);
941 mem_cgroup_uncharge_cache_page(page
);
946 spin_lock(&info
->lock
);
947 ptr
= shmem_swp_entry(info
, idx
, NULL
);
948 if (ptr
&& ptr
->val
== entry
.val
) {
949 error
= add_to_page_cache_locked(page
, inode
->i_mapping
,
951 /* does mem_cgroup_uncharge_cache_page on error */
952 } else /* we must compensate for our precharge above */
953 mem_cgroup_uncharge_cache_page(page
);
955 if (error
== -EEXIST
) {
956 struct page
*filepage
= find_get_page(inode
->i_mapping
, idx
);
960 * There might be a more uptodate page coming down
961 * from a stacked writepage: forget our swappage if so.
963 if (PageUptodate(filepage
))
965 page_cache_release(filepage
);
969 delete_from_swap_cache(page
);
970 set_page_dirty(page
);
971 info
->flags
|= SHMEM_PAGEIN
;
972 shmem_swp_set(info
, ptr
, 0);
974 error
= 1; /* not an error, but entry was found */
977 shmem_swp_unmap(ptr
);
978 spin_unlock(&info
->lock
);
979 radix_tree_preload_end();
982 page_cache_release(page
);
983 iput(inode
); /* allows for NULL */
988 * shmem_unuse() search for an eventually swapped out shmem page.
990 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
992 struct list_head
*p
, *next
;
993 struct shmem_inode_info
*info
;
996 mutex_lock(&shmem_swaplist_mutex
);
997 list_for_each_safe(p
, next
, &shmem_swaplist
) {
998 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
999 found
= shmem_unuse_inode(info
, entry
, page
);
1004 mutex_unlock(&shmem_swaplist_mutex
);
1005 out
: return found
; /* 0 or 1 or -ENOMEM */
1009 * Move the page from the page cache to the swap cache.
1011 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1013 struct shmem_inode_info
*info
;
1014 swp_entry_t
*entry
, swap
;
1015 struct address_space
*mapping
;
1016 unsigned long index
;
1017 struct inode
*inode
;
1019 BUG_ON(!PageLocked(page
));
1020 mapping
= page
->mapping
;
1021 index
= page
->index
;
1022 inode
= mapping
->host
;
1023 info
= SHMEM_I(inode
);
1024 if (info
->flags
& VM_LOCKED
)
1026 if (!total_swap_pages
)
1030 * shmem_backing_dev_info's capabilities prevent regular writeback or
1031 * sync from ever calling shmem_writepage; but a stacking filesystem
1032 * may use the ->writepage of its underlying filesystem, in which case
1033 * tmpfs should write out to swap only in response to memory pressure,
1034 * and not for pdflush or sync. However, in those cases, we do still
1035 * want to check if there's a redundant swappage to be discarded.
1037 if (wbc
->for_reclaim
)
1038 swap
= get_swap_page();
1042 spin_lock(&info
->lock
);
1043 if (index
>= info
->next_index
) {
1044 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1047 entry
= shmem_swp_entry(info
, index
, NULL
);
1050 * The more uptodate page coming down from a stacked
1051 * writepage should replace our old swappage.
1053 free_swap_and_cache(*entry
);
1054 shmem_swp_set(info
, entry
, 0);
1056 shmem_recalc_inode(inode
);
1058 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1059 remove_from_page_cache(page
);
1060 shmem_swp_set(info
, entry
, swap
.val
);
1061 shmem_swp_unmap(entry
);
1062 if (list_empty(&info
->swaplist
))
1063 inode
= igrab(inode
);
1066 spin_unlock(&info
->lock
);
1067 swap_duplicate(swap
);
1068 BUG_ON(page_mapped(page
));
1069 page_cache_release(page
); /* pagecache ref */
1070 set_page_dirty(page
);
1073 mutex_lock(&shmem_swaplist_mutex
);
1074 /* move instead of add in case we're racing */
1075 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
1076 mutex_unlock(&shmem_swaplist_mutex
);
1082 shmem_swp_unmap(entry
);
1084 spin_unlock(&info
->lock
);
1087 set_page_dirty(page
);
1088 if (wbc
->for_reclaim
)
1089 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1096 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1100 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1101 return; /* show nothing */
1103 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
1105 seq_printf(seq
, ",mpol=%s", buffer
);
1108 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1110 struct mempolicy
*mpol
= NULL
;
1112 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1113 mpol
= sbinfo
->mpol
;
1115 spin_unlock(&sbinfo
->stat_lock
);
1119 #endif /* CONFIG_TMPFS */
1121 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1122 struct shmem_inode_info
*info
, unsigned long idx
)
1124 struct mempolicy mpol
, *spol
;
1125 struct vm_area_struct pvma
;
1128 spol
= mpol_cond_copy(&mpol
,
1129 mpol_shared_policy_lookup(&info
->policy
, idx
));
1131 /* Create a pseudo vma that just contains the policy */
1133 pvma
.vm_pgoff
= idx
;
1135 pvma
.vm_policy
= spol
;
1136 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1140 static struct page
*shmem_alloc_page(gfp_t gfp
,
1141 struct shmem_inode_info
*info
, unsigned long idx
)
1143 struct vm_area_struct pvma
;
1145 /* Create a pseudo vma that just contains the policy */
1147 pvma
.vm_pgoff
= idx
;
1149 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1152 * alloc_page_vma() will drop the shared policy reference
1154 return alloc_page_vma(gfp
, &pvma
, 0);
1156 #else /* !CONFIG_NUMA */
1158 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*p
)
1161 #endif /* CONFIG_TMPFS */
1163 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1164 struct shmem_inode_info
*info
, unsigned long idx
)
1166 return swapin_readahead(entry
, gfp
, NULL
, 0);
1169 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1170 struct shmem_inode_info
*info
, unsigned long idx
)
1172 return alloc_page(gfp
);
1174 #endif /* CONFIG_NUMA */
1176 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1177 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1184 * shmem_getpage - either get the page from swap or allocate a new one
1186 * If we allocate a new one we do not mark it dirty. That's up to the
1187 * vm. If we swap it in we mark it dirty since we also free the swap
1188 * entry since a page cannot live in both the swap and page cache
1190 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1191 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1193 struct address_space
*mapping
= inode
->i_mapping
;
1194 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1195 struct shmem_sb_info
*sbinfo
;
1196 struct page
*filepage
= *pagep
;
1197 struct page
*swappage
;
1203 if (idx
>= SHMEM_MAX_INDEX
)
1210 * Normally, filepage is NULL on entry, and either found
1211 * uptodate immediately, or allocated and zeroed, or read
1212 * in under swappage, which is then assigned to filepage.
1213 * But shmem_readpage (required for splice) passes in a locked
1214 * filepage, which may be found not uptodate by other callers
1215 * too, and may need to be copied from the swappage read in.
1219 filepage
= find_lock_page(mapping
, idx
);
1220 if (filepage
&& PageUptodate(filepage
))
1223 gfp
= mapping_gfp_mask(mapping
);
1226 * Try to preload while we can wait, to not make a habit of
1227 * draining atomic reserves; but don't latch on to this cpu.
1229 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1232 radix_tree_preload_end();
1235 spin_lock(&info
->lock
);
1236 shmem_recalc_inode(inode
);
1237 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1238 if (IS_ERR(entry
)) {
1239 spin_unlock(&info
->lock
);
1240 error
= PTR_ERR(entry
);
1246 /* Look it up and read it in.. */
1247 swappage
= lookup_swap_cache(swap
);
1249 shmem_swp_unmap(entry
);
1250 /* here we actually do the io */
1251 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1252 __count_vm_event(PGMAJFAULT
);
1253 *type
|= VM_FAULT_MAJOR
;
1255 spin_unlock(&info
->lock
);
1256 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1258 spin_lock(&info
->lock
);
1259 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1261 error
= PTR_ERR(entry
);
1263 if (entry
->val
== swap
.val
)
1265 shmem_swp_unmap(entry
);
1267 spin_unlock(&info
->lock
);
1272 wait_on_page_locked(swappage
);
1273 page_cache_release(swappage
);
1277 /* We have to do this with page locked to prevent races */
1278 if (!trylock_page(swappage
)) {
1279 shmem_swp_unmap(entry
);
1280 spin_unlock(&info
->lock
);
1281 wait_on_page_locked(swappage
);
1282 page_cache_release(swappage
);
1285 if (PageWriteback(swappage
)) {
1286 shmem_swp_unmap(entry
);
1287 spin_unlock(&info
->lock
);
1288 wait_on_page_writeback(swappage
);
1289 unlock_page(swappage
);
1290 page_cache_release(swappage
);
1293 if (!PageUptodate(swappage
)) {
1294 shmem_swp_unmap(entry
);
1295 spin_unlock(&info
->lock
);
1296 unlock_page(swappage
);
1297 page_cache_release(swappage
);
1303 shmem_swp_set(info
, entry
, 0);
1304 shmem_swp_unmap(entry
);
1305 delete_from_swap_cache(swappage
);
1306 spin_unlock(&info
->lock
);
1307 copy_highpage(filepage
, swappage
);
1308 unlock_page(swappage
);
1309 page_cache_release(swappage
);
1310 flush_dcache_page(filepage
);
1311 SetPageUptodate(filepage
);
1312 set_page_dirty(filepage
);
1314 } else if (!(error
= add_to_page_cache_locked(swappage
, mapping
,
1315 idx
, GFP_NOWAIT
))) {
1316 info
->flags
|= SHMEM_PAGEIN
;
1317 shmem_swp_set(info
, entry
, 0);
1318 shmem_swp_unmap(entry
);
1319 delete_from_swap_cache(swappage
);
1320 spin_unlock(&info
->lock
);
1321 filepage
= swappage
;
1322 set_page_dirty(filepage
);
1325 shmem_swp_unmap(entry
);
1326 spin_unlock(&info
->lock
);
1327 if (error
== -ENOMEM
) {
1328 /* allow reclaim from this memory cgroup */
1329 error
= mem_cgroup_shrink_usage(swappage
,
1333 unlock_page(swappage
);
1334 page_cache_release(swappage
);
1338 unlock_page(swappage
);
1339 page_cache_release(swappage
);
1342 } else if (sgp
== SGP_READ
&& !filepage
) {
1343 shmem_swp_unmap(entry
);
1344 filepage
= find_get_page(mapping
, idx
);
1346 (!PageUptodate(filepage
) || !trylock_page(filepage
))) {
1347 spin_unlock(&info
->lock
);
1348 wait_on_page_locked(filepage
);
1349 page_cache_release(filepage
);
1353 spin_unlock(&info
->lock
);
1355 shmem_swp_unmap(entry
);
1356 sbinfo
= SHMEM_SB(inode
->i_sb
);
1357 if (sbinfo
->max_blocks
) {
1358 spin_lock(&sbinfo
->stat_lock
);
1359 if (sbinfo
->free_blocks
== 0 ||
1360 shmem_acct_block(info
->flags
)) {
1361 spin_unlock(&sbinfo
->stat_lock
);
1362 spin_unlock(&info
->lock
);
1366 sbinfo
->free_blocks
--;
1367 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1368 spin_unlock(&sbinfo
->stat_lock
);
1369 } else if (shmem_acct_block(info
->flags
)) {
1370 spin_unlock(&info
->lock
);
1378 spin_unlock(&info
->lock
);
1379 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1381 shmem_unacct_blocks(info
->flags
, 1);
1382 shmem_free_blocks(inode
, 1);
1386 SetPageSwapBacked(filepage
);
1388 /* Precharge page while we can wait, compensate after */
1389 error
= mem_cgroup_cache_charge(filepage
, current
->mm
,
1392 page_cache_release(filepage
);
1393 shmem_unacct_blocks(info
->flags
, 1);
1394 shmem_free_blocks(inode
, 1);
1399 spin_lock(&info
->lock
);
1400 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1402 error
= PTR_ERR(entry
);
1405 shmem_swp_unmap(entry
);
1407 ret
= error
|| swap
.val
;
1409 mem_cgroup_uncharge_cache_page(filepage
);
1411 ret
= add_to_page_cache_lru(filepage
, mapping
,
1414 * At add_to_page_cache_lru() failure, uncharge will
1415 * be done automatically.
1418 spin_unlock(&info
->lock
);
1419 page_cache_release(filepage
);
1420 shmem_unacct_blocks(info
->flags
, 1);
1421 shmem_free_blocks(inode
, 1);
1427 info
->flags
|= SHMEM_PAGEIN
;
1431 spin_unlock(&info
->lock
);
1432 clear_highpage(filepage
);
1433 flush_dcache_page(filepage
);
1434 SetPageUptodate(filepage
);
1435 if (sgp
== SGP_DIRTY
)
1436 set_page_dirty(filepage
);
1443 if (*pagep
!= filepage
) {
1444 unlock_page(filepage
);
1445 page_cache_release(filepage
);
1450 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1452 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1456 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1457 return VM_FAULT_SIGBUS
;
1459 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1461 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1463 return ret
| VM_FAULT_LOCKED
;
1467 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1469 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1470 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1473 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1476 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1479 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1480 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1484 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1486 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1487 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1488 int retval
= -ENOMEM
;
1490 spin_lock(&info
->lock
);
1491 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1492 if (!user_shm_lock(inode
->i_size
, user
))
1494 info
->flags
|= VM_LOCKED
;
1495 mapping_set_unevictable(file
->f_mapping
);
1497 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1498 user_shm_unlock(inode
->i_size
, user
);
1499 info
->flags
&= ~VM_LOCKED
;
1500 mapping_clear_unevictable(file
->f_mapping
);
1501 scan_mapping_unevictable_pages(file
->f_mapping
);
1506 spin_unlock(&info
->lock
);
1510 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1512 file_accessed(file
);
1513 vma
->vm_ops
= &shmem_vm_ops
;
1514 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1518 static struct inode
*shmem_get_inode(struct super_block
*sb
, int mode
,
1519 dev_t dev
, unsigned long flags
)
1521 struct inode
*inode
;
1522 struct shmem_inode_info
*info
;
1523 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1525 if (shmem_reserve_inode(sb
))
1528 inode
= new_inode(sb
);
1530 inode
->i_mode
= mode
;
1531 inode
->i_uid
= current_fsuid();
1532 inode
->i_gid
= current_fsgid();
1533 inode
->i_blocks
= 0;
1534 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1535 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1536 inode
->i_generation
= get_seconds();
1537 info
= SHMEM_I(inode
);
1538 memset(info
, 0, (char *)inode
- (char *)info
);
1539 spin_lock_init(&info
->lock
);
1540 info
->flags
= flags
& VM_NORESERVE
;
1541 INIT_LIST_HEAD(&info
->swaplist
);
1543 switch (mode
& S_IFMT
) {
1545 inode
->i_op
= &shmem_special_inode_operations
;
1546 init_special_inode(inode
, mode
, dev
);
1549 inode
->i_mapping
->a_ops
= &shmem_aops
;
1550 inode
->i_op
= &shmem_inode_operations
;
1551 inode
->i_fop
= &shmem_file_operations
;
1552 mpol_shared_policy_init(&info
->policy
,
1553 shmem_get_sbmpol(sbinfo
));
1557 /* Some things misbehave if size == 0 on a directory */
1558 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1559 inode
->i_op
= &shmem_dir_inode_operations
;
1560 inode
->i_fop
= &simple_dir_operations
;
1564 * Must not load anything in the rbtree,
1565 * mpol_free_shared_policy will not be called.
1567 mpol_shared_policy_init(&info
->policy
, NULL
);
1571 shmem_free_inode(sb
);
1576 static const struct inode_operations shmem_symlink_inode_operations
;
1577 static const struct inode_operations shmem_symlink_inline_operations
;
1580 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1581 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1582 * below the loop driver, in the generic fashion that many filesystems support.
1584 static int shmem_readpage(struct file
*file
, struct page
*page
)
1586 struct inode
*inode
= page
->mapping
->host
;
1587 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1593 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1594 loff_t pos
, unsigned len
, unsigned flags
,
1595 struct page
**pagep
, void **fsdata
)
1597 struct inode
*inode
= mapping
->host
;
1598 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1600 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1604 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1605 loff_t pos
, unsigned len
, unsigned copied
,
1606 struct page
*page
, void *fsdata
)
1608 struct inode
*inode
= mapping
->host
;
1610 if (pos
+ copied
> inode
->i_size
)
1611 i_size_write(inode
, pos
+ copied
);
1614 set_page_dirty(page
);
1615 page_cache_release(page
);
1620 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1622 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1623 struct address_space
*mapping
= inode
->i_mapping
;
1624 unsigned long index
, offset
;
1625 enum sgp_type sgp
= SGP_READ
;
1628 * Might this read be for a stacking filesystem? Then when reading
1629 * holes of a sparse file, we actually need to allocate those pages,
1630 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1632 if (segment_eq(get_fs(), KERNEL_DS
))
1635 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1636 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1639 struct page
*page
= NULL
;
1640 unsigned long end_index
, nr
, ret
;
1641 loff_t i_size
= i_size_read(inode
);
1643 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1644 if (index
> end_index
)
1646 if (index
== end_index
) {
1647 nr
= i_size
& ~PAGE_CACHE_MASK
;
1652 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1654 if (desc
->error
== -EINVAL
)
1662 * We must evaluate after, since reads (unlike writes)
1663 * are called without i_mutex protection against truncate
1665 nr
= PAGE_CACHE_SIZE
;
1666 i_size
= i_size_read(inode
);
1667 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1668 if (index
== end_index
) {
1669 nr
= i_size
& ~PAGE_CACHE_MASK
;
1672 page_cache_release(page
);
1680 * If users can be writing to this page using arbitrary
1681 * virtual addresses, take care about potential aliasing
1682 * before reading the page on the kernel side.
1684 if (mapping_writably_mapped(mapping
))
1685 flush_dcache_page(page
);
1687 * Mark the page accessed if we read the beginning.
1690 mark_page_accessed(page
);
1692 page
= ZERO_PAGE(0);
1693 page_cache_get(page
);
1697 * Ok, we have the page, and it's up-to-date, so
1698 * now we can copy it to user space...
1700 * The actor routine returns how many bytes were actually used..
1701 * NOTE! This may not be the same as how much of a user buffer
1702 * we filled up (we may be padding etc), so we can only update
1703 * "pos" here (the actor routine has to update the user buffer
1704 * pointers and the remaining count).
1706 ret
= actor(desc
, page
, offset
, nr
);
1708 index
+= offset
>> PAGE_CACHE_SHIFT
;
1709 offset
&= ~PAGE_CACHE_MASK
;
1711 page_cache_release(page
);
1712 if (ret
!= nr
|| !desc
->count
)
1718 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1719 file_accessed(filp
);
1722 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1723 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1725 struct file
*filp
= iocb
->ki_filp
;
1729 loff_t
*ppos
= &iocb
->ki_pos
;
1731 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1735 for (seg
= 0; seg
< nr_segs
; seg
++) {
1736 read_descriptor_t desc
;
1739 desc
.arg
.buf
= iov
[seg
].iov_base
;
1740 desc
.count
= iov
[seg
].iov_len
;
1741 if (desc
.count
== 0)
1744 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1745 retval
+= desc
.written
;
1747 retval
= retval
?: desc
.error
;
1756 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1758 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1760 buf
->f_type
= TMPFS_MAGIC
;
1761 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1762 buf
->f_namelen
= NAME_MAX
;
1763 spin_lock(&sbinfo
->stat_lock
);
1764 if (sbinfo
->max_blocks
) {
1765 buf
->f_blocks
= sbinfo
->max_blocks
;
1766 buf
->f_bavail
= buf
->f_bfree
= sbinfo
->free_blocks
;
1768 if (sbinfo
->max_inodes
) {
1769 buf
->f_files
= sbinfo
->max_inodes
;
1770 buf
->f_ffree
= sbinfo
->free_inodes
;
1772 /* else leave those fields 0 like simple_statfs */
1773 spin_unlock(&sbinfo
->stat_lock
);
1778 * File creation. Allocate an inode, and we're done..
1781 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1783 struct inode
*inode
;
1784 int error
= -ENOSPC
;
1786 inode
= shmem_get_inode(dir
->i_sb
, mode
, dev
, VM_NORESERVE
);
1788 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1791 if (error
!= -EOPNOTSUPP
) {
1796 error
= shmem_acl_init(inode
, dir
);
1801 if (dir
->i_mode
& S_ISGID
) {
1802 inode
->i_gid
= dir
->i_gid
;
1804 inode
->i_mode
|= S_ISGID
;
1806 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1807 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1808 d_instantiate(dentry
, inode
);
1809 dget(dentry
); /* Extra count - pin the dentry in core */
1814 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1818 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1824 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1825 struct nameidata
*nd
)
1827 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1833 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1835 struct inode
*inode
= old_dentry
->d_inode
;
1839 * No ordinary (disk based) filesystem counts links as inodes;
1840 * but each new link needs a new dentry, pinning lowmem, and
1841 * tmpfs dentries cannot be pruned until they are unlinked.
1843 ret
= shmem_reserve_inode(inode
->i_sb
);
1847 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1848 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1850 atomic_inc(&inode
->i_count
); /* New dentry reference */
1851 dget(dentry
); /* Extra pinning count for the created dentry */
1852 d_instantiate(dentry
, inode
);
1857 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1859 struct inode
*inode
= dentry
->d_inode
;
1861 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1862 shmem_free_inode(inode
->i_sb
);
1864 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1865 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1867 dput(dentry
); /* Undo the count from "create" - this does all the work */
1871 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1873 if (!simple_empty(dentry
))
1876 drop_nlink(dentry
->d_inode
);
1878 return shmem_unlink(dir
, dentry
);
1882 * The VFS layer already does all the dentry stuff for rename,
1883 * we just have to decrement the usage count for the target if
1884 * it exists so that the VFS layer correctly free's it when it
1887 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1889 struct inode
*inode
= old_dentry
->d_inode
;
1890 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1892 if (!simple_empty(new_dentry
))
1895 if (new_dentry
->d_inode
) {
1896 (void) shmem_unlink(new_dir
, new_dentry
);
1898 drop_nlink(old_dir
);
1899 } else if (they_are_dirs
) {
1900 drop_nlink(old_dir
);
1904 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1905 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1906 old_dir
->i_ctime
= old_dir
->i_mtime
=
1907 new_dir
->i_ctime
= new_dir
->i_mtime
=
1908 inode
->i_ctime
= CURRENT_TIME
;
1912 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1916 struct inode
*inode
;
1917 struct page
*page
= NULL
;
1919 struct shmem_inode_info
*info
;
1921 len
= strlen(symname
) + 1;
1922 if (len
> PAGE_CACHE_SIZE
)
1923 return -ENAMETOOLONG
;
1925 inode
= shmem_get_inode(dir
->i_sb
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
1929 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1932 if (error
!= -EOPNOTSUPP
) {
1939 info
= SHMEM_I(inode
);
1940 inode
->i_size
= len
-1;
1941 if (len
<= (char *)inode
- (char *)info
) {
1943 memcpy(info
, symname
, len
);
1944 inode
->i_op
= &shmem_symlink_inline_operations
;
1946 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
1952 inode
->i_mapping
->a_ops
= &shmem_aops
;
1953 inode
->i_op
= &shmem_symlink_inode_operations
;
1954 kaddr
= kmap_atomic(page
, KM_USER0
);
1955 memcpy(kaddr
, symname
, len
);
1956 kunmap_atomic(kaddr
, KM_USER0
);
1957 set_page_dirty(page
);
1958 page_cache_release(page
);
1960 if (dir
->i_mode
& S_ISGID
)
1961 inode
->i_gid
= dir
->i_gid
;
1962 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1963 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1964 d_instantiate(dentry
, inode
);
1969 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
1971 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
1975 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1977 struct page
*page
= NULL
;
1978 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
1979 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
1985 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
1987 if (!IS_ERR(nd_get_link(nd
))) {
1988 struct page
*page
= cookie
;
1990 mark_page_accessed(page
);
1991 page_cache_release(page
);
1995 static const struct inode_operations shmem_symlink_inline_operations
= {
1996 .readlink
= generic_readlink
,
1997 .follow_link
= shmem_follow_link_inline
,
2000 static const struct inode_operations shmem_symlink_inode_operations
= {
2001 .truncate
= shmem_truncate
,
2002 .readlink
= generic_readlink
,
2003 .follow_link
= shmem_follow_link
,
2004 .put_link
= shmem_put_link
,
2007 #ifdef CONFIG_TMPFS_POSIX_ACL
2009 * Superblocks without xattr inode operations will get security.* xattr
2010 * support from the VFS "for free". As soon as we have any other xattrs
2011 * like ACLs, we also need to implement the security.* handlers at
2012 * filesystem level, though.
2015 static size_t shmem_xattr_security_list(struct inode
*inode
, char *list
,
2016 size_t list_len
, const char *name
,
2019 return security_inode_listsecurity(inode
, list
, list_len
);
2022 static int shmem_xattr_security_get(struct inode
*inode
, const char *name
,
2023 void *buffer
, size_t size
)
2025 if (strcmp(name
, "") == 0)
2027 return xattr_getsecurity(inode
, name
, buffer
, size
);
2030 static int shmem_xattr_security_set(struct inode
*inode
, const char *name
,
2031 const void *value
, size_t size
, int flags
)
2033 if (strcmp(name
, "") == 0)
2035 return security_inode_setsecurity(inode
, name
, value
, size
, flags
);
2038 static struct xattr_handler shmem_xattr_security_handler
= {
2039 .prefix
= XATTR_SECURITY_PREFIX
,
2040 .list
= shmem_xattr_security_list
,
2041 .get
= shmem_xattr_security_get
,
2042 .set
= shmem_xattr_security_set
,
2045 static struct xattr_handler
*shmem_xattr_handlers
[] = {
2046 &shmem_xattr_acl_access_handler
,
2047 &shmem_xattr_acl_default_handler
,
2048 &shmem_xattr_security_handler
,
2053 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2055 return ERR_PTR(-ESTALE
);
2058 static int shmem_match(struct inode
*ino
, void *vfh
)
2062 inum
= (inum
<< 32) | fh
[1];
2063 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2066 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2067 struct fid
*fid
, int fh_len
, int fh_type
)
2069 struct inode
*inode
;
2070 struct dentry
*dentry
= NULL
;
2071 u64 inum
= fid
->raw
[2];
2072 inum
= (inum
<< 32) | fid
->raw
[1];
2077 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2078 shmem_match
, fid
->raw
);
2080 dentry
= d_find_alias(inode
);
2087 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2090 struct inode
*inode
= dentry
->d_inode
;
2095 if (hlist_unhashed(&inode
->i_hash
)) {
2096 /* Unfortunately insert_inode_hash is not idempotent,
2097 * so as we hash inodes here rather than at creation
2098 * time, we need a lock to ensure we only try
2101 static DEFINE_SPINLOCK(lock
);
2103 if (hlist_unhashed(&inode
->i_hash
))
2104 __insert_inode_hash(inode
,
2105 inode
->i_ino
+ inode
->i_generation
);
2109 fh
[0] = inode
->i_generation
;
2110 fh
[1] = inode
->i_ino
;
2111 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2117 static const struct export_operations shmem_export_ops
= {
2118 .get_parent
= shmem_get_parent
,
2119 .encode_fh
= shmem_encode_fh
,
2120 .fh_to_dentry
= shmem_fh_to_dentry
,
2123 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2126 char *this_char
, *value
, *rest
;
2128 while (options
!= NULL
) {
2129 this_char
= options
;
2132 * NUL-terminate this option: unfortunately,
2133 * mount options form a comma-separated list,
2134 * but mpol's nodelist may also contain commas.
2136 options
= strchr(options
, ',');
2137 if (options
== NULL
)
2140 if (!isdigit(*options
)) {
2147 if ((value
= strchr(this_char
,'=')) != NULL
) {
2151 "tmpfs: No value for mount option '%s'\n",
2156 if (!strcmp(this_char
,"size")) {
2157 unsigned long long size
;
2158 size
= memparse(value
,&rest
);
2160 size
<<= PAGE_SHIFT
;
2161 size
*= totalram_pages
;
2167 sbinfo
->max_blocks
=
2168 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2169 } else if (!strcmp(this_char
,"nr_blocks")) {
2170 sbinfo
->max_blocks
= memparse(value
, &rest
);
2173 } else if (!strcmp(this_char
,"nr_inodes")) {
2174 sbinfo
->max_inodes
= memparse(value
, &rest
);
2177 } else if (!strcmp(this_char
,"mode")) {
2180 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2183 } else if (!strcmp(this_char
,"uid")) {
2186 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2189 } else if (!strcmp(this_char
,"gid")) {
2192 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2195 } else if (!strcmp(this_char
,"mpol")) {
2196 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2199 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2207 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2213 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2215 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2216 struct shmem_sb_info config
= *sbinfo
;
2217 unsigned long blocks
;
2218 unsigned long inodes
;
2219 int error
= -EINVAL
;
2221 if (shmem_parse_options(data
, &config
, true))
2224 spin_lock(&sbinfo
->stat_lock
);
2225 blocks
= sbinfo
->max_blocks
- sbinfo
->free_blocks
;
2226 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2227 if (config
.max_blocks
< blocks
)
2229 if (config
.max_inodes
< inodes
)
2232 * Those tests also disallow limited->unlimited while any are in
2233 * use, so i_blocks will always be zero when max_blocks is zero;
2234 * but we must separately disallow unlimited->limited, because
2235 * in that case we have no record of how much is already in use.
2237 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2239 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2243 sbinfo
->max_blocks
= config
.max_blocks
;
2244 sbinfo
->free_blocks
= config
.max_blocks
- blocks
;
2245 sbinfo
->max_inodes
= config
.max_inodes
;
2246 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2248 mpol_put(sbinfo
->mpol
);
2249 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2251 spin_unlock(&sbinfo
->stat_lock
);
2255 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2257 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2259 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2260 seq_printf(seq
, ",size=%luk",
2261 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2262 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2263 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2264 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2265 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2266 if (sbinfo
->uid
!= 0)
2267 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2268 if (sbinfo
->gid
!= 0)
2269 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2270 shmem_show_mpol(seq
, sbinfo
->mpol
);
2273 #endif /* CONFIG_TMPFS */
2275 static void shmem_put_super(struct super_block
*sb
)
2277 kfree(sb
->s_fs_info
);
2278 sb
->s_fs_info
= NULL
;
2281 static int shmem_fill_super(struct super_block
*sb
,
2282 void *data
, int silent
)
2284 struct inode
*inode
;
2285 struct dentry
*root
;
2286 struct shmem_sb_info
*sbinfo
;
2289 /* Round up to L1_CACHE_BYTES to resist false sharing */
2290 sbinfo
= kmalloc(max((int)sizeof(struct shmem_sb_info
),
2291 L1_CACHE_BYTES
), GFP_KERNEL
);
2295 sbinfo
->max_blocks
= 0;
2296 sbinfo
->max_inodes
= 0;
2297 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2298 sbinfo
->uid
= current_fsuid();
2299 sbinfo
->gid
= current_fsgid();
2300 sbinfo
->mpol
= NULL
;
2301 sb
->s_fs_info
= sbinfo
;
2305 * Per default we only allow half of the physical ram per
2306 * tmpfs instance, limiting inodes to one per page of lowmem;
2307 * but the internal instance is left unlimited.
2309 if (!(sb
->s_flags
& MS_NOUSER
)) {
2310 sbinfo
->max_blocks
= shmem_default_max_blocks();
2311 sbinfo
->max_inodes
= shmem_default_max_inodes();
2312 if (shmem_parse_options(data
, sbinfo
, false)) {
2317 sb
->s_export_op
= &shmem_export_ops
;
2319 sb
->s_flags
|= MS_NOUSER
;
2322 spin_lock_init(&sbinfo
->stat_lock
);
2323 sbinfo
->free_blocks
= sbinfo
->max_blocks
;
2324 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2326 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2327 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2328 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2329 sb
->s_magic
= TMPFS_MAGIC
;
2330 sb
->s_op
= &shmem_ops
;
2331 sb
->s_time_gran
= 1;
2332 #ifdef CONFIG_TMPFS_POSIX_ACL
2333 sb
->s_xattr
= shmem_xattr_handlers
;
2334 sb
->s_flags
|= MS_POSIXACL
;
2337 inode
= shmem_get_inode(sb
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2340 inode
->i_uid
= sbinfo
->uid
;
2341 inode
->i_gid
= sbinfo
->gid
;
2342 root
= d_alloc_root(inode
);
2351 shmem_put_super(sb
);
2355 static struct kmem_cache
*shmem_inode_cachep
;
2357 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2359 struct shmem_inode_info
*p
;
2360 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2363 return &p
->vfs_inode
;
2366 static void shmem_destroy_inode(struct inode
*inode
)
2368 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2369 /* only struct inode is valid if it's an inline symlink */
2370 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2372 shmem_acl_destroy_inode(inode
);
2373 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2376 static void init_once(void *foo
)
2378 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2380 inode_init_once(&p
->vfs_inode
);
2381 #ifdef CONFIG_TMPFS_POSIX_ACL
2383 p
->i_default_acl
= NULL
;
2387 static int init_inodecache(void)
2389 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2390 sizeof(struct shmem_inode_info
),
2391 0, SLAB_PANIC
, init_once
);
2395 static void destroy_inodecache(void)
2397 kmem_cache_destroy(shmem_inode_cachep
);
2400 static const struct address_space_operations shmem_aops
= {
2401 .writepage
= shmem_writepage
,
2402 .set_page_dirty
= __set_page_dirty_no_writeback
,
2404 .readpage
= shmem_readpage
,
2405 .write_begin
= shmem_write_begin
,
2406 .write_end
= shmem_write_end
,
2408 .migratepage
= migrate_page
,
2411 static const struct file_operations shmem_file_operations
= {
2414 .llseek
= generic_file_llseek
,
2415 .read
= do_sync_read
,
2416 .write
= do_sync_write
,
2417 .aio_read
= shmem_file_aio_read
,
2418 .aio_write
= generic_file_aio_write
,
2419 .fsync
= simple_sync_file
,
2420 .splice_read
= generic_file_splice_read
,
2421 .splice_write
= generic_file_splice_write
,
2425 static const struct inode_operations shmem_inode_operations
= {
2426 .truncate
= shmem_truncate
,
2427 .setattr
= shmem_notify_change
,
2428 .truncate_range
= shmem_truncate_range
,
2429 #ifdef CONFIG_TMPFS_POSIX_ACL
2430 .setxattr
= generic_setxattr
,
2431 .getxattr
= generic_getxattr
,
2432 .listxattr
= generic_listxattr
,
2433 .removexattr
= generic_removexattr
,
2434 .permission
= shmem_permission
,
2439 static const struct inode_operations shmem_dir_inode_operations
= {
2441 .create
= shmem_create
,
2442 .lookup
= simple_lookup
,
2444 .unlink
= shmem_unlink
,
2445 .symlink
= shmem_symlink
,
2446 .mkdir
= shmem_mkdir
,
2447 .rmdir
= shmem_rmdir
,
2448 .mknod
= shmem_mknod
,
2449 .rename
= shmem_rename
,
2451 #ifdef CONFIG_TMPFS_POSIX_ACL
2452 .setattr
= shmem_notify_change
,
2453 .setxattr
= generic_setxattr
,
2454 .getxattr
= generic_getxattr
,
2455 .listxattr
= generic_listxattr
,
2456 .removexattr
= generic_removexattr
,
2457 .permission
= shmem_permission
,
2461 static const struct inode_operations shmem_special_inode_operations
= {
2462 #ifdef CONFIG_TMPFS_POSIX_ACL
2463 .setattr
= shmem_notify_change
,
2464 .setxattr
= generic_setxattr
,
2465 .getxattr
= generic_getxattr
,
2466 .listxattr
= generic_listxattr
,
2467 .removexattr
= generic_removexattr
,
2468 .permission
= shmem_permission
,
2472 static const struct super_operations shmem_ops
= {
2473 .alloc_inode
= shmem_alloc_inode
,
2474 .destroy_inode
= shmem_destroy_inode
,
2476 .statfs
= shmem_statfs
,
2477 .remount_fs
= shmem_remount_fs
,
2478 .show_options
= shmem_show_options
,
2480 .delete_inode
= shmem_delete_inode
,
2481 .drop_inode
= generic_delete_inode
,
2482 .put_super
= shmem_put_super
,
2485 static struct vm_operations_struct shmem_vm_ops
= {
2486 .fault
= shmem_fault
,
2488 .set_policy
= shmem_set_policy
,
2489 .get_policy
= shmem_get_policy
,
2494 static int shmem_get_sb(struct file_system_type
*fs_type
,
2495 int flags
, const char *dev_name
, void *data
, struct vfsmount
*mnt
)
2497 return get_sb_nodev(fs_type
, flags
, data
, shmem_fill_super
, mnt
);
2500 static struct file_system_type tmpfs_fs_type
= {
2501 .owner
= THIS_MODULE
,
2503 .get_sb
= shmem_get_sb
,
2504 .kill_sb
= kill_litter_super
,
2507 static int __init
init_tmpfs(void)
2511 error
= bdi_init(&shmem_backing_dev_info
);
2515 error
= init_inodecache();
2519 error
= register_filesystem(&tmpfs_fs_type
);
2521 printk(KERN_ERR
"Could not register tmpfs\n");
2525 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2526 tmpfs_fs_type
.name
, NULL
);
2527 if (IS_ERR(shm_mnt
)) {
2528 error
= PTR_ERR(shm_mnt
);
2529 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2535 unregister_filesystem(&tmpfs_fs_type
);
2537 destroy_inodecache();
2539 bdi_destroy(&shmem_backing_dev_info
);
2541 shm_mnt
= ERR_PTR(error
);
2545 #else /* !CONFIG_SHMEM */
2548 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2550 * This is intended for small system where the benefits of the full
2551 * shmem code (swap-backed and resource-limited) are outweighed by
2552 * their complexity. On systems without swap this code should be
2553 * effectively equivalent, but much lighter weight.
2556 #include <linux/ramfs.h>
2558 static struct file_system_type tmpfs_fs_type
= {
2560 .get_sb
= ramfs_get_sb
,
2561 .kill_sb
= kill_litter_super
,
2564 static int __init
init_tmpfs(void)
2566 BUG_ON(register_filesystem(&tmpfs_fs_type
) != 0);
2568 shm_mnt
= kern_mount(&tmpfs_fs_type
);
2569 BUG_ON(IS_ERR(shm_mnt
));
2574 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
2579 #define shmem_vm_ops generic_file_vm_ops
2580 #define shmem_file_operations ramfs_file_operations
2581 #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev)
2582 #define shmem_acct_size(flags, size) 0
2583 #define shmem_unacct_size(flags, size) do {} while (0)
2584 #define SHMEM_MAX_BYTES LLONG_MAX
2586 #endif /* CONFIG_SHMEM */
2591 * shmem_file_setup - get an unlinked file living in tmpfs
2592 * @name: name for dentry (to be seen in /proc/<pid>/maps
2593 * @size: size to be set for the file
2594 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2596 struct file
*shmem_file_setup(char *name
, loff_t size
, unsigned long flags
)
2600 struct inode
*inode
;
2601 struct dentry
*dentry
, *root
;
2604 if (IS_ERR(shm_mnt
))
2605 return (void *)shm_mnt
;
2607 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2608 return ERR_PTR(-EINVAL
);
2610 if (shmem_acct_size(flags
, size
))
2611 return ERR_PTR(-ENOMEM
);
2615 this.len
= strlen(name
);
2616 this.hash
= 0; /* will go */
2617 root
= shm_mnt
->mnt_root
;
2618 dentry
= d_alloc(root
, &this);
2623 file
= get_empty_filp();
2628 inode
= shmem_get_inode(root
->d_sb
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2632 d_instantiate(dentry
, inode
);
2633 inode
->i_size
= size
;
2634 inode
->i_nlink
= 0; /* It is unlinked */
2635 init_file(file
, shm_mnt
, dentry
, FMODE_WRITE
| FMODE_READ
,
2636 &shmem_file_operations
);
2639 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2650 shmem_unacct_size(flags
, size
);
2651 return ERR_PTR(error
);
2653 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2656 * shmem_zero_setup - setup a shared anonymous mapping
2657 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2659 int shmem_zero_setup(struct vm_area_struct
*vma
)
2662 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2664 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2666 return PTR_ERR(file
);
2670 vma
->vm_file
= file
;
2671 vma
->vm_ops
= &shmem_vm_ops
;
2675 module_init(init_tmpfs
)