2 mvsas.c - Marvell 88SE6440 SAS/SATA support
4 Copyright 2007 Red Hat, Inc.
5 Copyright 2008 Marvell. <kewei@marvell.com>
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
9 published by the Free Software Foundation; either version 2,
10 or (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty
14 of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
15 See the GNU General Public License for more details.
17 You should have received a copy of the GNU General Public
18 License along with this program; see the file COPYING. If not,
19 write to the Free Software Foundation, 675 Mass Ave, Cambridge,
22 ---------------------------------------------------------------
25 * hardware supports controlling the endian-ness of data
26 structures. this permits elimination of all the le32_to_cpu()
27 and cpu_to_le32() conversions.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/ctype.h>
39 #include <scsi/libsas.h>
40 #include <scsi/scsi_tcq.h>
41 #include <scsi/sas_ata.h>
44 #define DRV_NAME "mvsas"
45 #define DRV_VERSION "0.5.2"
47 #define MVS_DISABLE_NVRAM
48 #define MVS_DISABLE_MSI
50 #define mr32(reg) readl(regs + MVS_##reg)
51 #define mw32(reg,val) writel((val), regs + MVS_##reg)
52 #define mw32_f(reg,val) do { \
53 writel((val), regs + MVS_##reg); \
54 readl(regs + MVS_##reg); \
57 #define MVS_ID_NOT_MAPPED 0x7f
58 #define MVS_CHIP_SLOT_SZ (1U << mvi->chip->slot_width)
60 /* offset for D2H FIS in the Received FIS List Structure */
61 #define SATA_RECEIVED_D2H_FIS(reg_set) \
62 ((void *) mvi->rx_fis + 0x400 + 0x100 * reg_set + 0x40)
63 #define SATA_RECEIVED_PIO_FIS(reg_set) \
64 ((void *) mvi->rx_fis + 0x400 + 0x100 * reg_set + 0x20)
65 #define UNASSOC_D2H_FIS(id) \
66 ((void *) mvi->rx_fis + 0x100 * id)
68 #define for_each_phy(__lseq_mask, __mc, __lseq, __rest) \
69 for ((__mc) = (__lseq_mask), (__lseq) = 0; \
70 (__mc) != 0 && __rest; \
71 (++__lseq), (__mc) >>= 1)
73 /* driver compile-time configuration */
74 enum driver_configuration
{
75 MVS_TX_RING_SZ
= 1024, /* TX ring size (12-bit) */
76 MVS_RX_RING_SZ
= 1024, /* RX ring size (12-bit) */
77 /* software requires power-of-2
80 MVS_SLOTS
= 512, /* command slots */
81 MVS_SLOT_BUF_SZ
= 8192, /* cmd tbl + IU + status + PRD */
82 MVS_SSP_CMD_SZ
= 64, /* SSP command table buffer size */
83 MVS_ATA_CMD_SZ
= 96, /* SATA command table buffer size */
84 MVS_OAF_SZ
= 64, /* Open address frame buffer size */
86 MVS_RX_FIS_COUNT
= 17, /* Optional rx'd FISs (max 17) */
88 MVS_QUEUE_SIZE
= 30, /* Support Queue depth */
89 MVS_CAN_QUEUE
= MVS_SLOTS
- 1, /* SCSI Queue depth */
92 /* unchangeable hardware details */
93 enum hardware_details
{
94 MVS_MAX_PHYS
= 8, /* max. possible phys */
95 MVS_MAX_PORTS
= 8, /* max. possible ports */
96 MVS_RX_FISL_SZ
= 0x400 + (MVS_RX_FIS_COUNT
* 0x100),
99 /* peripheral registers (BAR2) */
100 enum peripheral_registers
{
101 SPI_CTL
= 0x10, /* EEPROM control */
102 SPI_CMD
= 0x14, /* EEPROM command */
103 SPI_DATA
= 0x18, /* EEPROM data */
106 enum peripheral_register_bits
{
107 TWSI_RDY
= (1U << 7), /* EEPROM interface ready */
108 TWSI_RD
= (1U << 4), /* EEPROM read access */
110 SPI_ADDR_MASK
= 0x3ffff, /* bits 17:0 */
113 /* enhanced mode registers (BAR4) */
115 MVS_GBL_CTL
= 0x04, /* global control */
116 MVS_GBL_INT_STAT
= 0x08, /* global irq status */
117 MVS_GBL_PI
= 0x0C, /* ports implemented bitmask */
118 MVS_GBL_PORT_TYPE
= 0xa0, /* port type */
120 MVS_CTL
= 0x100, /* SAS/SATA port configuration */
121 MVS_PCS
= 0x104, /* SAS/SATA port control/status */
122 MVS_CMD_LIST_LO
= 0x108, /* cmd list addr */
123 MVS_CMD_LIST_HI
= 0x10C,
124 MVS_RX_FIS_LO
= 0x110, /* RX FIS list addr */
125 MVS_RX_FIS_HI
= 0x114,
127 MVS_TX_CFG
= 0x120, /* TX configuration */
128 MVS_TX_LO
= 0x124, /* TX (delivery) ring addr */
131 MVS_TX_PROD_IDX
= 0x12C, /* TX producer pointer */
132 MVS_TX_CONS_IDX
= 0x130, /* TX consumer pointer (RO) */
133 MVS_RX_CFG
= 0x134, /* RX configuration */
134 MVS_RX_LO
= 0x138, /* RX (completion) ring addr */
136 MVS_RX_CONS_IDX
= 0x140, /* RX consumer pointer (RO) */
138 MVS_INT_COAL
= 0x148, /* Int coalescing config */
139 MVS_INT_COAL_TMOUT
= 0x14C, /* Int coalescing timeout */
140 MVS_INT_STAT
= 0x150, /* Central int status */
141 MVS_INT_MASK
= 0x154, /* Central int enable */
142 MVS_INT_STAT_SRS
= 0x158, /* SATA register set status */
143 MVS_INT_MASK_SRS
= 0x15C,
145 /* ports 1-3 follow after this */
146 MVS_P0_INT_STAT
= 0x160, /* port0 interrupt status */
147 MVS_P0_INT_MASK
= 0x164, /* port0 interrupt mask */
148 MVS_P4_INT_STAT
= 0x200, /* Port 4 interrupt status */
149 MVS_P4_INT_MASK
= 0x204, /* Port 4 interrupt enable mask */
151 /* ports 1-3 follow after this */
152 MVS_P0_SER_CTLSTAT
= 0x180, /* port0 serial control/status */
153 MVS_P4_SER_CTLSTAT
= 0x220, /* port4 serial control/status */
155 MVS_CMD_ADDR
= 0x1B8, /* Command register port (addr) */
156 MVS_CMD_DATA
= 0x1BC, /* Command register port (data) */
158 /* ports 1-3 follow after this */
159 MVS_P0_CFG_ADDR
= 0x1C0, /* port0 phy register address */
160 MVS_P0_CFG_DATA
= 0x1C4, /* port0 phy register data */
161 MVS_P4_CFG_ADDR
= 0x230, /* Port 4 config address */
162 MVS_P4_CFG_DATA
= 0x234, /* Port 4 config data */
164 /* ports 1-3 follow after this */
165 MVS_P0_VSR_ADDR
= 0x1E0, /* port0 VSR address */
166 MVS_P0_VSR_DATA
= 0x1E4, /* port0 VSR data */
167 MVS_P4_VSR_ADDR
= 0x250, /* port 4 VSR addr */
168 MVS_P4_VSR_DATA
= 0x254, /* port 4 VSR data */
171 enum hw_register_bits
{
173 INT_EN
= (1U << 1), /* Global int enable */
174 HBA_RST
= (1U << 0), /* HBA reset */
176 /* MVS_GBL_INT_STAT */
177 INT_XOR
= (1U << 4), /* XOR engine event */
178 INT_SAS_SATA
= (1U << 0), /* SAS/SATA event */
180 /* MVS_GBL_PORT_TYPE */ /* shl for ports 1-3 */
181 SATA_TARGET
= (1U << 16), /* port0 SATA target enable */
182 MODE_AUTO_DET_PORT7
= (1U << 15), /* port0 SAS/SATA autodetect */
183 MODE_AUTO_DET_PORT6
= (1U << 14),
184 MODE_AUTO_DET_PORT5
= (1U << 13),
185 MODE_AUTO_DET_PORT4
= (1U << 12),
186 MODE_AUTO_DET_PORT3
= (1U << 11),
187 MODE_AUTO_DET_PORT2
= (1U << 10),
188 MODE_AUTO_DET_PORT1
= (1U << 9),
189 MODE_AUTO_DET_PORT0
= (1U << 8),
190 MODE_AUTO_DET_EN
= MODE_AUTO_DET_PORT0
| MODE_AUTO_DET_PORT1
|
191 MODE_AUTO_DET_PORT2
| MODE_AUTO_DET_PORT3
|
192 MODE_AUTO_DET_PORT4
| MODE_AUTO_DET_PORT5
|
193 MODE_AUTO_DET_PORT6
| MODE_AUTO_DET_PORT7
,
194 MODE_SAS_PORT7_MASK
= (1U << 7), /* port0 SAS(1), SATA(0) mode */
195 MODE_SAS_PORT6_MASK
= (1U << 6),
196 MODE_SAS_PORT5_MASK
= (1U << 5),
197 MODE_SAS_PORT4_MASK
= (1U << 4),
198 MODE_SAS_PORT3_MASK
= (1U << 3),
199 MODE_SAS_PORT2_MASK
= (1U << 2),
200 MODE_SAS_PORT1_MASK
= (1U << 1),
201 MODE_SAS_PORT0_MASK
= (1U << 0),
202 MODE_SAS_SATA
= MODE_SAS_PORT0_MASK
| MODE_SAS_PORT1_MASK
|
203 MODE_SAS_PORT2_MASK
| MODE_SAS_PORT3_MASK
|
204 MODE_SAS_PORT4_MASK
| MODE_SAS_PORT5_MASK
|
205 MODE_SAS_PORT6_MASK
| MODE_SAS_PORT7_MASK
,
207 /* SAS_MODE value may be
208 * dictated (in hw) by values
209 * of SATA_TARGET & AUTO_DET
213 TX_EN
= (1U << 16), /* Enable TX */
214 TX_RING_SZ_MASK
= 0xfff, /* TX ring size, bits 11:0 */
217 RX_EN
= (1U << 16), /* Enable RX */
218 RX_RING_SZ_MASK
= 0xfff, /* RX ring size, bits 11:0 */
221 COAL_EN
= (1U << 16), /* Enable int coalescing */
223 /* MVS_INT_STAT, MVS_INT_MASK */
224 CINT_I2C
= (1U << 31), /* I2C event */
225 CINT_SW0
= (1U << 30), /* software event 0 */
226 CINT_SW1
= (1U << 29), /* software event 1 */
227 CINT_PRD_BC
= (1U << 28), /* PRD BC err for read cmd */
228 CINT_DMA_PCIE
= (1U << 27), /* DMA to PCIE timeout */
229 CINT_MEM
= (1U << 26), /* int mem parity err */
230 CINT_I2C_SLAVE
= (1U << 25), /* slave I2C event */
231 CINT_SRS
= (1U << 3), /* SRS event */
232 CINT_CI_STOP
= (1U << 1), /* cmd issue stopped */
233 CINT_DONE
= (1U << 0), /* cmd completion */
235 /* shl for ports 1-3 */
236 CINT_PORT_STOPPED
= (1U << 16), /* port0 stopped */
237 CINT_PORT
= (1U << 8), /* port0 event */
238 CINT_PORT_MASK_OFFSET
= 8,
239 CINT_PORT_MASK
= (0xFF << CINT_PORT_MASK_OFFSET
),
241 /* TX (delivery) ring bits */
243 TXQ_CMD_SSP
= 1, /* SSP protocol */
244 TXQ_CMD_SMP
= 2, /* SMP protocol */
245 TXQ_CMD_STP
= 3, /* STP/SATA protocol */
246 TXQ_CMD_SSP_FREE_LIST
= 4, /* add to SSP targ free list */
247 TXQ_CMD_SLOT_RESET
= 7, /* reset command slot */
248 TXQ_MODE_I
= (1U << 28), /* mode: 0=target,1=initiator */
249 TXQ_PRIO_HI
= (1U << 27), /* priority: 0=normal, 1=high */
250 TXQ_SRS_SHIFT
= 20, /* SATA register set */
252 TXQ_PHY_SHIFT
= 12, /* PHY bitmap */
254 TXQ_SLOT_MASK
= 0xfff, /* slot number */
256 /* RX (completion) ring bits */
257 RXQ_GOOD
= (1U << 23), /* Response good */
258 RXQ_SLOT_RESET
= (1U << 21), /* Slot reset complete */
259 RXQ_CMD_RX
= (1U << 20), /* target cmd received */
260 RXQ_ATTN
= (1U << 19), /* attention */
261 RXQ_RSP
= (1U << 18), /* response frame xfer'd */
262 RXQ_ERR
= (1U << 17), /* err info rec xfer'd */
263 RXQ_DONE
= (1U << 16), /* cmd complete */
264 RXQ_SLOT_MASK
= 0xfff, /* slot number */
266 /* mvs_cmd_hdr bits */
267 MCH_PRD_LEN_SHIFT
= 16, /* 16-bit PRD table len */
268 MCH_SSP_FR_TYPE_SHIFT
= 13, /* SSP frame type */
270 /* SSP initiator only */
271 MCH_SSP_FR_CMD
= 0x0, /* COMMAND frame */
273 /* SSP initiator or target */
274 MCH_SSP_FR_TASK
= 0x1, /* TASK frame */
276 /* SSP target only */
277 MCH_SSP_FR_XFER_RDY
= 0x4, /* XFER_RDY frame */
278 MCH_SSP_FR_RESP
= 0x5, /* RESPONSE frame */
279 MCH_SSP_FR_READ
= 0x6, /* Read DATA frame(s) */
280 MCH_SSP_FR_READ_RESP
= 0x7, /* ditto, plus RESPONSE */
282 MCH_PASSTHRU
= (1U << 12), /* pass-through (SSP) */
283 MCH_FBURST
= (1U << 11), /* first burst (SSP) */
284 MCH_CHK_LEN
= (1U << 10), /* chk xfer len (SSP) */
285 MCH_RETRY
= (1U << 9), /* tport layer retry (SSP) */
286 MCH_PROTECTION
= (1U << 8), /* protection info rec (SSP) */
287 MCH_RESET
= (1U << 7), /* Reset (STP/SATA) */
288 MCH_FPDMA
= (1U << 6), /* First party DMA (STP/SATA) */
289 MCH_ATAPI
= (1U << 5), /* ATAPI (STP/SATA) */
290 MCH_BIST
= (1U << 4), /* BIST activate (STP/SATA) */
291 MCH_PMP_MASK
= 0xf, /* PMP from cmd FIS (STP/SATA)*/
293 CCTL_RST
= (1U << 5), /* port logic reset */
295 /* 0(LSB first), 1(MSB first) */
296 CCTL_ENDIAN_DATA
= (1U << 3), /* PRD data */
297 CCTL_ENDIAN_RSP
= (1U << 2), /* response frame */
298 CCTL_ENDIAN_OPEN
= (1U << 1), /* open address frame */
299 CCTL_ENDIAN_CMD
= (1U << 0), /* command table */
301 /* MVS_Px_SER_CTLSTAT (per-phy control) */
302 PHY_SSP_RST
= (1U << 3), /* reset SSP link layer */
303 PHY_BCAST_CHG
= (1U << 2), /* broadcast(change) notif */
304 PHY_RST_HARD
= (1U << 1), /* hard reset + phy reset */
305 PHY_RST
= (1U << 0), /* phy reset */
306 PHY_MIN_SPP_PHYS_LINK_RATE_MASK
= (0xF << 8),
307 PHY_MAX_SPP_PHYS_LINK_RATE_MASK
= (0xF << 12),
308 PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET
= (16),
309 PHY_NEG_SPP_PHYS_LINK_RATE_MASK
=
310 (0xF << PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET
),
311 PHY_READY_MASK
= (1U << 20),
313 /* MVS_Px_INT_STAT, MVS_Px_INT_MASK (per-phy events) */
314 PHYEV_DEC_ERR
= (1U << 24), /* Phy Decoding Error */
315 PHYEV_UNASSOC_FIS
= (1U << 19), /* unassociated FIS rx'd */
316 PHYEV_AN
= (1U << 18), /* SATA async notification */
317 PHYEV_BIST_ACT
= (1U << 17), /* BIST activate FIS */
318 PHYEV_SIG_FIS
= (1U << 16), /* signature FIS */
319 PHYEV_POOF
= (1U << 12), /* phy ready from 1 -> 0 */
320 PHYEV_IU_BIG
= (1U << 11), /* IU too long err */
321 PHYEV_IU_SMALL
= (1U << 10), /* IU too short err */
322 PHYEV_UNK_TAG
= (1U << 9), /* unknown tag */
323 PHYEV_BROAD_CH
= (1U << 8), /* broadcast(CHANGE) */
324 PHYEV_COMWAKE
= (1U << 7), /* COMWAKE rx'd */
325 PHYEV_PORT_SEL
= (1U << 6), /* port selector present */
326 PHYEV_HARD_RST
= (1U << 5), /* hard reset rx'd */
327 PHYEV_ID_TMOUT
= (1U << 4), /* identify timeout */
328 PHYEV_ID_FAIL
= (1U << 3), /* identify failed */
329 PHYEV_ID_DONE
= (1U << 2), /* identify done */
330 PHYEV_HARD_RST_DONE
= (1U << 1), /* hard reset done */
331 PHYEV_RDY_CH
= (1U << 0), /* phy ready changed state */
334 PCS_EN_SATA_REG_SHIFT
= (16), /* Enable SATA Register Set */
335 PCS_EN_PORT_XMT_SHIFT
= (12), /* Enable Port Transmit */
336 PCS_EN_PORT_XMT_SHIFT2
= (8), /* For 6480 */
337 PCS_SATA_RETRY
= (1U << 8), /* retry ctl FIS on R_ERR */
338 PCS_RSP_RX_EN
= (1U << 7), /* raw response rx */
339 PCS_SELF_CLEAR
= (1U << 5), /* self-clearing int mode */
340 PCS_FIS_RX_EN
= (1U << 4), /* FIS rx enable */
341 PCS_CMD_STOP_ERR
= (1U << 3), /* cmd stop-on-err enable */
342 PCS_CMD_RST
= (1U << 1), /* reset cmd issue */
343 PCS_CMD_EN
= (1U << 0), /* enable cmd issue */
345 /* Port n Attached Device Info */
346 PORT_DEV_SSP_TRGT
= (1U << 19),
347 PORT_DEV_SMP_TRGT
= (1U << 18),
348 PORT_DEV_STP_TRGT
= (1U << 17),
349 PORT_DEV_SSP_INIT
= (1U << 11),
350 PORT_DEV_SMP_INIT
= (1U << 10),
351 PORT_DEV_STP_INIT
= (1U << 9),
352 PORT_PHY_ID_MASK
= (0xFFU
<< 24),
353 PORT_DEV_TRGT_MASK
= (0x7U
<< 17),
354 PORT_DEV_INIT_MASK
= (0x7U
<< 9),
355 PORT_DEV_TYPE_MASK
= (0x7U
<< 0),
357 /* Port n PHY Status */
359 PHY_DW_SYNC
= (1U << 1),
360 PHY_OOB_DTCTD
= (1U << 0),
363 /* PHYMODE 6 (CDB) */
364 PHY_MODE6_LATECLK
= (1U << 29), /* Lock Clock */
365 PHY_MODE6_DTL_SPEED
= (1U << 27), /* Digital Loop Speed */
366 PHY_MODE6_FC_ORDER
= (1U << 26), /* Fibre Channel Mode Order*/
367 PHY_MODE6_MUCNT_EN
= (1U << 24), /* u Count Enable */
368 PHY_MODE6_SEL_MUCNT_LEN
= (1U << 22), /* Training Length Select */
369 PHY_MODE6_SELMUPI
= (1U << 20), /* Phase Multi Select (init) */
370 PHY_MODE6_SELMUPF
= (1U << 18), /* Phase Multi Select (final) */
371 PHY_MODE6_SELMUFF
= (1U << 16), /* Freq Loop Multi Sel(final) */
372 PHY_MODE6_SELMUFI
= (1U << 14), /* Freq Loop Multi Sel(init) */
373 PHY_MODE6_FREEZE_LOOP
= (1U << 12), /* Freeze Rx CDR Loop */
374 PHY_MODE6_INT_RXFOFFS
= (1U << 3), /* Rx CDR Freq Loop Enable */
375 PHY_MODE6_FRC_RXFOFFS
= (1U << 2), /* Initial Rx CDR Offset */
376 PHY_MODE6_STAU_0D8
= (1U << 1), /* Rx CDR Freq Loop Saturate */
377 PHY_MODE6_RXSAT_DIS
= (1U << 0), /* Saturate Ctl */
380 enum mvs_info_flags
{
381 MVF_MSI
= (1U << 0), /* MSI is enabled */
382 MVF_PHY_PWR_FIX
= (1U << 1), /* bug workaround */
385 enum sas_cmd_port_registers
{
386 CMD_CMRST_OOB_DET
= 0x100, /* COMRESET OOB detect register */
387 CMD_CMWK_OOB_DET
= 0x104, /* COMWAKE OOB detect register */
388 CMD_CMSAS_OOB_DET
= 0x108, /* COMSAS OOB detect register */
389 CMD_BRST_OOB_DET
= 0x10c, /* burst OOB detect register */
390 CMD_OOB_SPACE
= 0x110, /* OOB space control register */
391 CMD_OOB_BURST
= 0x114, /* OOB burst control register */
392 CMD_PHY_TIMER
= 0x118, /* PHY timer control register */
393 CMD_PHY_CONFIG0
= 0x11c, /* PHY config register 0 */
394 CMD_PHY_CONFIG1
= 0x120, /* PHY config register 1 */
395 CMD_SAS_CTL0
= 0x124, /* SAS control register 0 */
396 CMD_SAS_CTL1
= 0x128, /* SAS control register 1 */
397 CMD_SAS_CTL2
= 0x12c, /* SAS control register 2 */
398 CMD_SAS_CTL3
= 0x130, /* SAS control register 3 */
399 CMD_ID_TEST
= 0x134, /* ID test register */
400 CMD_PL_TIMER
= 0x138, /* PL timer register */
401 CMD_WD_TIMER
= 0x13c, /* WD timer register */
402 CMD_PORT_SEL_COUNT
= 0x140, /* port selector count register */
403 CMD_APP_MEM_CTL
= 0x144, /* Application Memory Control */
404 CMD_XOR_MEM_CTL
= 0x148, /* XOR Block Memory Control */
405 CMD_DMA_MEM_CTL
= 0x14c, /* DMA Block Memory Control */
406 CMD_PORT_MEM_CTL0
= 0x150, /* Port Memory Control 0 */
407 CMD_PORT_MEM_CTL1
= 0x154, /* Port Memory Control 1 */
408 CMD_SATA_PORT_MEM_CTL0
= 0x158, /* SATA Port Memory Control 0 */
409 CMD_SATA_PORT_MEM_CTL1
= 0x15c, /* SATA Port Memory Control 1 */
410 CMD_XOR_MEM_BIST_CTL
= 0x160, /* XOR Memory BIST Control */
411 CMD_XOR_MEM_BIST_STAT
= 0x164, /* XOR Memroy BIST Status */
412 CMD_DMA_MEM_BIST_CTL
= 0x168, /* DMA Memory BIST Control */
413 CMD_DMA_MEM_BIST_STAT
= 0x16c, /* DMA Memory BIST Status */
414 CMD_PORT_MEM_BIST_CTL
= 0x170, /* Port Memory BIST Control */
415 CMD_PORT_MEM_BIST_STAT0
= 0x174, /* Port Memory BIST Status 0 */
416 CMD_PORT_MEM_BIST_STAT1
= 0x178, /* Port Memory BIST Status 1 */
417 CMD_STP_MEM_BIST_CTL
= 0x17c, /* STP Memory BIST Control */
418 CMD_STP_MEM_BIST_STAT0
= 0x180, /* STP Memory BIST Status 0 */
419 CMD_STP_MEM_BIST_STAT1
= 0x184, /* STP Memory BIST Status 1 */
420 CMD_RESET_COUNT
= 0x188, /* Reset Count */
421 CMD_MONTR_DATA_SEL
= 0x18C, /* Monitor Data/Select */
422 CMD_PLL_PHY_CONFIG
= 0x190, /* PLL/PHY Configuration */
423 CMD_PHY_CTL
= 0x194, /* PHY Control and Status */
424 CMD_PHY_TEST_COUNT0
= 0x198, /* Phy Test Count 0 */
425 CMD_PHY_TEST_COUNT1
= 0x19C, /* Phy Test Count 1 */
426 CMD_PHY_TEST_COUNT2
= 0x1A0, /* Phy Test Count 2 */
427 CMD_APP_ERR_CONFIG
= 0x1A4, /* Application Error Configuration */
428 CMD_PND_FIFO_CTL0
= 0x1A8, /* Pending FIFO Control 0 */
429 CMD_HOST_CTL
= 0x1AC, /* Host Control Status */
430 CMD_HOST_WR_DATA
= 0x1B0, /* Host Write Data */
431 CMD_HOST_RD_DATA
= 0x1B4, /* Host Read Data */
432 CMD_PHY_MODE_21
= 0x1B8, /* Phy Mode 21 */
433 CMD_SL_MODE0
= 0x1BC, /* SL Mode 0 */
434 CMD_SL_MODE1
= 0x1C0, /* SL Mode 1 */
435 CMD_PND_FIFO_CTL1
= 0x1C4, /* Pending FIFO Control 1 */
438 /* SAS/SATA configuration port registers, aka phy registers */
439 enum sas_sata_config_port_regs
{
440 PHYR_IDENTIFY
= 0x00, /* info for IDENTIFY frame */
441 PHYR_ADDR_LO
= 0x04, /* my SAS address (low) */
442 PHYR_ADDR_HI
= 0x08, /* my SAS address (high) */
443 PHYR_ATT_DEV_INFO
= 0x0C, /* attached device info */
444 PHYR_ATT_ADDR_LO
= 0x10, /* attached dev SAS addr (low) */
445 PHYR_ATT_ADDR_HI
= 0x14, /* attached dev SAS addr (high) */
446 PHYR_SATA_CTL
= 0x18, /* SATA control */
447 PHYR_PHY_STAT
= 0x1C, /* PHY status */
448 PHYR_SATA_SIG0
= 0x20, /*port SATA signature FIS(Byte 0-3) */
449 PHYR_SATA_SIG1
= 0x24, /*port SATA signature FIS(Byte 4-7) */
450 PHYR_SATA_SIG2
= 0x28, /*port SATA signature FIS(Byte 8-11) */
451 PHYR_SATA_SIG3
= 0x2c, /*port SATA signature FIS(Byte 12-15) */
452 PHYR_R_ERR_COUNT
= 0x30, /* port R_ERR count register */
453 PHYR_CRC_ERR_COUNT
= 0x34, /* port CRC error count register */
454 PHYR_WIDE_PORT
= 0x38, /* wide port participating */
455 PHYR_CURRENT0
= 0x80, /* current connection info 0 */
456 PHYR_CURRENT1
= 0x84, /* current connection info 1 */
457 PHYR_CURRENT2
= 0x88, /* current connection info 2 */
460 /* SAS/SATA Vendor Specific Port Registers */
461 enum sas_sata_vsp_regs
{
462 VSR_PHY_STAT
= 0x00, /* Phy Status */
463 VSR_PHY_MODE1
= 0x01, /* phy tx */
464 VSR_PHY_MODE2
= 0x02, /* tx scc */
465 VSR_PHY_MODE3
= 0x03, /* pll */
466 VSR_PHY_MODE4
= 0x04, /* VCO */
467 VSR_PHY_MODE5
= 0x05, /* Rx */
468 VSR_PHY_MODE6
= 0x06, /* CDR */
469 VSR_PHY_MODE7
= 0x07, /* Impedance */
470 VSR_PHY_MODE8
= 0x08, /* Voltage */
471 VSR_PHY_MODE9
= 0x09, /* Test */
472 VSR_PHY_MODE10
= 0x0A, /* Power */
473 VSR_PHY_MODE11
= 0x0B, /* Phy Mode */
474 VSR_PHY_VS0
= 0x0C, /* Vednor Specific 0 */
475 VSR_PHY_VS1
= 0x0D, /* Vednor Specific 1 */
478 enum pci_cfg_registers
{
484 enum pci_cfg_register_bits
{
485 PCTL_PWR_ON
= (0xFU
<< 24),
486 PCTL_OFF
= (0xFU
<< 12),
487 PRD_REQ_SIZE
= (0x4000),
488 PRD_REQ_MASK
= (0x00007000),
491 enum nvram_layout_offsets
{
492 NVR_SIG
= 0x00, /* 0xAA, 0x55 */
493 NVR_SAS_ADDR
= 0x02, /* 8-byte SAS address */
503 PORT_TYPE_SAS
= (1L << 1),
504 PORT_TYPE_SATA
= (1L << 0),
507 /* Command Table Format */
515 STP_ATAPI_CMD
= 0x40,
524 SB_EIR_OFF
= 0x00, /* Error Information Record */
525 SB_RFB_OFF
= 0x08, /* Response Frame Buffer */
526 SB_RFB_MAX
= 0x400, /* RFB size*/
529 enum error_info_rec
{
530 CMD_ISS_STPD
= (1U << 31), /* Cmd Issue Stopped */
531 CMD_PI_ERR
= (1U << 30), /* Protection info error. see flags2 */
532 RSP_OVER
= (1U << 29), /* rsp buffer overflow */
533 RETRY_LIM
= (1U << 28), /* FIS/frame retry limit exceeded */
534 UNK_FIS
= (1U << 27), /* unknown FIS */
535 DMA_TERM
= (1U << 26), /* DMA terminate primitive rx'd */
536 SYNC_ERR
= (1U << 25), /* SYNC rx'd during frame xmit */
537 TFILE_ERR
= (1U << 24), /* SATA taskfile Error bit set */
538 R_ERR
= (1U << 23), /* SATA returned R_ERR prim */
539 RD_OFS
= (1U << 20), /* Read DATA frame invalid offset */
540 XFER_RDY_OFS
= (1U << 19), /* XFER_RDY offset error */
541 UNEXP_XFER_RDY
= (1U << 18), /* unexpected XFER_RDY error */
542 DATA_OVER_UNDER
= (1U << 16), /* data overflow/underflow */
543 INTERLOCK
= (1U << 15), /* interlock error */
544 NAK
= (1U << 14), /* NAK rx'd */
545 ACK_NAK_TO
= (1U << 13), /* ACK/NAK timeout */
546 CXN_CLOSED
= (1U << 12), /* cxn closed w/out ack/nak */
547 OPEN_TO
= (1U << 11), /* I_T nexus lost, open cxn timeout */
548 PATH_BLOCKED
= (1U << 10), /* I_T nexus lost, pathway blocked */
549 NO_DEST
= (1U << 9), /* I_T nexus lost, no destination */
550 STP_RES_BSY
= (1U << 8), /* STP resources busy */
551 BREAK
= (1U << 7), /* break received */
552 BAD_DEST
= (1U << 6), /* bad destination */
553 BAD_PROTO
= (1U << 5), /* protocol not supported */
554 BAD_RATE
= (1U << 4), /* cxn rate not supported */
555 WRONG_DEST
= (1U << 3), /* wrong destination error */
556 CREDIT_TO
= (1U << 2), /* credit timeout */
557 WDOG_TO
= (1U << 1), /* watchdog timeout */
558 BUF_PAR
= (1U << 0), /* buffer parity error */
561 enum error_info_rec_2
{
562 SLOT_BSY_ERR
= (1U << 31), /* Slot Busy Error */
563 GRD_CHK_ERR
= (1U << 14), /* Guard Check Error */
564 APP_CHK_ERR
= (1U << 13), /* Application Check error */
565 REF_CHK_ERR
= (1U << 12), /* Reference Check Error */
566 USR_BLK_NM
= (1U << 0), /* User Block Number */
569 struct mvs_chip_info
{
575 struct mvs_err_info
{
581 __le64 addr
; /* 64-bit buffer address */
583 __le32 len
; /* 16-bit length */
587 __le32 flags
; /* PRD tbl len; SAS, SATA ctl */
588 __le32 lens
; /* cmd, max resp frame len */
589 __le32 tags
; /* targ port xfer tag; tag */
590 __le32 data_len
; /* data xfer len */
591 __le64 cmd_tbl
; /* command table address */
592 __le64 open_frame
; /* open addr frame address */
593 __le64 status_buf
; /* status buffer address */
594 __le64 prd_tbl
; /* PRD tbl address */
599 struct asd_sas_port sas_port
;
603 struct list_head list
;
607 struct mvs_port
*port
;
608 struct asd_sas_phy sas_phy
;
609 struct sas_identify identify
;
610 struct scsi_device
*sdev
;
612 u64 att_dev_sas_addr
;
621 enum sas_linkrate minimum_linkrate
;
622 enum sas_linkrate maximum_linkrate
;
625 struct mvs_slot_info
{
626 struct list_head list
;
627 struct sas_task
*task
;
631 /* DMA buffer for storing cmd tbl, open addr frame, status buffer,
641 struct mvs_port
*port
;
647 spinlock_t lock
; /* host-wide lock */
648 struct pci_dev
*pdev
; /* our device */
649 void __iomem
*regs
; /* enhanced mode registers */
650 void __iomem
*peri_regs
; /* peripheral registers */
652 u8 sas_addr
[SAS_ADDR_SIZE
];
653 struct sas_ha_struct sas
; /* SCSI/SAS glue */
654 struct Scsi_Host
*shost
;
656 __le32
*tx
; /* TX (delivery) DMA ring */
658 u32 tx_prod
; /* cached next-producer idx */
660 __le32
*rx
; /* RX (completion) DMA ring */
662 u32 rx_cons
; /* RX consumer idx */
664 __le32
*rx_fis
; /* RX'd FIS area */
665 dma_addr_t rx_fis_dma
;
667 struct mvs_cmd_hdr
*slot
; /* DMA command header slots */
670 const struct mvs_chip_info
*chip
;
673 struct mvs_slot_info slot_info
[MVS_SLOTS
];
674 /* further per-slot information */
675 struct mvs_phy phy
[MVS_MAX_PHYS
];
676 struct mvs_port port
[MVS_MAX_PHYS
];
677 #ifdef MVS_USE_TASKLET
678 struct tasklet_struct tasklet
;
682 static int mvs_phy_control(struct asd_sas_phy
*sas_phy
, enum phy_func func
,
684 static u32
mvs_read_phy_ctl(struct mvs_info
*mvi
, u32 port
);
685 static void mvs_write_phy_ctl(struct mvs_info
*mvi
, u32 port
, u32 val
);
686 static u32
mvs_read_port_irq_stat(struct mvs_info
*mvi
, u32 port
);
687 static void mvs_write_port_irq_stat(struct mvs_info
*mvi
, u32 port
, u32 val
);
688 static void mvs_write_port_irq_mask(struct mvs_info
*mvi
, u32 port
, u32 val
);
689 static u32
mvs_read_port_irq_mask(struct mvs_info
*mvi
, u32 port
);
691 static u32
mvs_is_phy_ready(struct mvs_info
*mvi
, int i
);
692 static void mvs_detect_porttype(struct mvs_info
*mvi
, int i
);
693 static void mvs_update_phyinfo(struct mvs_info
*mvi
, int i
, int get_st
);
694 static void mvs_release_task(struct mvs_info
*mvi
, int phy_no
);
696 static int mvs_scan_finished(struct Scsi_Host
*, unsigned long);
697 static void mvs_scan_start(struct Scsi_Host
*);
698 static int mvs_slave_configure(struct scsi_device
*sdev
);
700 static struct scsi_transport_template
*mvs_stt
;
702 static const struct mvs_chip_info mvs_chips
[] = {
703 [chip_6320
] = { 2, 16, 9 },
704 [chip_6440
] = { 4, 16, 9 },
705 [chip_6480
] = { 8, 32, 10 },
708 static struct scsi_host_template mvs_sht
= {
709 .module
= THIS_MODULE
,
711 .queuecommand
= sas_queuecommand
,
712 .target_alloc
= sas_target_alloc
,
713 .slave_configure
= mvs_slave_configure
,
714 .slave_destroy
= sas_slave_destroy
,
715 .scan_finished
= mvs_scan_finished
,
716 .scan_start
= mvs_scan_start
,
717 .change_queue_depth
= sas_change_queue_depth
,
718 .change_queue_type
= sas_change_queue_type
,
719 .bios_param
= sas_bios_param
,
723 .sg_tablesize
= SG_ALL
,
724 .max_sectors
= SCSI_DEFAULT_MAX_SECTORS
,
725 .use_clustering
= ENABLE_CLUSTERING
,
726 .eh_device_reset_handler
= sas_eh_device_reset_handler
,
727 .eh_bus_reset_handler
= sas_eh_bus_reset_handler
,
728 .slave_alloc
= sas_slave_alloc
,
729 .target_destroy
= sas_target_destroy
,
733 static void mvs_hexdump(u32 size
, u8
*data
, u32 baseaddr
)
741 printk("%08X : ", baseaddr
+ offset
);
747 for (i
= 0; i
< 16; i
++) {
749 printk("%02X ", (u32
)data
[i
]);
754 for (i
= 0; i
< run
; i
++)
755 printk("%c", isalnum(data
[i
]) ? data
[i
] : '.');
764 static void mvs_hba_sb_dump(struct mvs_info
*mvi
, u32 tag
,
765 enum sas_protocol proto
)
768 struct pci_dev
*pdev
= mvi
->pdev
;
769 struct mvs_slot_info
*slot
= &mvi
->slot_info
[tag
];
771 offset
= slot
->cmd_size
+ MVS_OAF_SZ
+
772 sizeof(struct mvs_prd
) * slot
->n_elem
;
773 dev_printk(KERN_DEBUG
, &pdev
->dev
, "+---->Status buffer[%d] :\n",
775 mvs_hexdump(32, (u8
*) slot
->response
,
776 (u32
) slot
->buf_dma
+ offset
);
780 static void mvs_hba_memory_dump(struct mvs_info
*mvi
, u32 tag
,
781 enum sas_protocol proto
)
786 void __iomem
*regs
= mvi
->regs
;
787 struct pci_dev
*pdev
= mvi
->pdev
;
788 struct mvs_slot_info
*slot
= &mvi
->slot_info
[tag
];
791 sz
= mr32(TX_CFG
) & TX_RING_SZ_MASK
;
793 addr
= mr32(TX_HI
) << 16 << 16 | mr32(TX_LO
);
794 dev_printk(KERN_DEBUG
, &pdev
->dev
,
795 "Delivery Queue Size=%04d , WRT_PTR=%04X\n", sz
, w_ptr
);
796 dev_printk(KERN_DEBUG
, &pdev
->dev
,
797 "Delivery Queue Base Address=0x%llX (PA)"
798 "(tx_dma=0x%llX), Entry=%04d\n",
799 addr
, mvi
->tx_dma
, w_ptr
);
800 mvs_hexdump(sizeof(u32
), (u8
*)(&mvi
->tx
[mvi
->tx_prod
]),
801 (u32
) mvi
->tx_dma
+ sizeof(u32
) * w_ptr
);
803 addr
= mvi
->slot_dma
;
804 dev_printk(KERN_DEBUG
, &pdev
->dev
,
805 "Command List Base Address=0x%llX (PA)"
806 "(slot_dma=0x%llX), Header=%03d\n",
807 addr
, slot
->buf_dma
, tag
);
808 dev_printk(KERN_DEBUG
, &pdev
->dev
, "Command Header[%03d]:\n", tag
);
810 mvs_hexdump(sizeof(struct mvs_cmd_hdr
), (u8
*)(&mvi
->slot
[tag
]),
811 (u32
) mvi
->slot_dma
+ tag
* sizeof(struct mvs_cmd_hdr
));
812 /*1.command table area */
813 dev_printk(KERN_DEBUG
, &pdev
->dev
, "+---->Command Table :\n");
814 mvs_hexdump(slot
->cmd_size
, (u8
*) slot
->buf
, (u32
) slot
->buf_dma
);
815 /*2.open address frame area */
816 dev_printk(KERN_DEBUG
, &pdev
->dev
, "+---->Open Address Frame :\n");
817 mvs_hexdump(MVS_OAF_SZ
, (u8
*) slot
->buf
+ slot
->cmd_size
,
818 (u32
) slot
->buf_dma
+ slot
->cmd_size
);
820 mvs_hba_sb_dump(mvi
, tag
, proto
);
822 dev_printk(KERN_DEBUG
, &pdev
->dev
, "+---->PRD table :\n");
823 mvs_hexdump(sizeof(struct mvs_prd
) * slot
->n_elem
,
824 (u8
*) slot
->buf
+ slot
->cmd_size
+ MVS_OAF_SZ
,
825 (u32
) slot
->buf_dma
+ slot
->cmd_size
+ MVS_OAF_SZ
);
829 static void mvs_hba_cq_dump(struct mvs_info
*mvi
)
833 void __iomem
*regs
= mvi
->regs
;
834 struct pci_dev
*pdev
= mvi
->pdev
;
835 u32 entry
= mvi
->rx_cons
+ 1;
836 u32 rx_desc
= le32_to_cpu(mvi
->rx
[entry
]);
838 /*Completion Queue */
839 addr
= mr32(RX_HI
) << 16 << 16 | mr32(RX_LO
);
840 dev_printk(KERN_DEBUG
, &pdev
->dev
, "Completion Task = 0x%p\n",
841 mvi
->slot_info
[rx_desc
& RXQ_SLOT_MASK
].task
);
842 dev_printk(KERN_DEBUG
, &pdev
->dev
,
843 "Completion List Base Address=0x%llX (PA), "
844 "CQ_Entry=%04d, CQ_WP=0x%08X\n",
845 addr
, entry
- 1, mvi
->rx
[0]);
846 mvs_hexdump(sizeof(u32
), (u8
*)(&rx_desc
),
847 mvi
->rx_dma
+ sizeof(u32
) * entry
);
851 static void mvs_hba_interrupt_enable(struct mvs_info
*mvi
)
853 void __iomem
*regs
= mvi
->regs
;
858 mw32(GBL_CTL
, tmp
| INT_EN
);
861 static void mvs_hba_interrupt_disable(struct mvs_info
*mvi
)
863 void __iomem
*regs
= mvi
->regs
;
868 mw32(GBL_CTL
, tmp
& ~INT_EN
);
871 static int mvs_int_rx(struct mvs_info
*mvi
, bool self_clear
);
873 /* move to PCI layer or libata core? */
874 static int pci_go_64(struct pci_dev
*pdev
)
878 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
879 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
881 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
883 dev_printk(KERN_ERR
, &pdev
->dev
,
884 "64-bit DMA enable failed\n");
889 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
891 dev_printk(KERN_ERR
, &pdev
->dev
,
892 "32-bit DMA enable failed\n");
895 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
897 dev_printk(KERN_ERR
, &pdev
->dev
,
898 "32-bit consistent DMA enable failed\n");
906 static int mvs_find_tag(struct mvs_info
*mvi
, struct sas_task
*task
, u32
*tag
)
908 if (task
->lldd_task
) {
909 struct mvs_slot_info
*slot
;
910 slot
= (struct mvs_slot_info
*) task
->lldd_task
;
911 *tag
= slot
- mvi
->slot_info
;
917 static void mvs_tag_clear(struct mvs_info
*mvi
, u32 tag
)
919 void *bitmap
= (void *) &mvi
->tags
;
920 clear_bit(tag
, bitmap
);
923 static void mvs_tag_free(struct mvs_info
*mvi
, u32 tag
)
925 mvs_tag_clear(mvi
, tag
);
928 static void mvs_tag_set(struct mvs_info
*mvi
, unsigned int tag
)
930 void *bitmap
= (void *) &mvi
->tags
;
931 set_bit(tag
, bitmap
);
934 static int mvs_tag_alloc(struct mvs_info
*mvi
, u32
*tag_out
)
936 unsigned int index
, tag
;
937 void *bitmap
= (void *) &mvi
->tags
;
939 index
= find_first_zero_bit(bitmap
, MVS_SLOTS
);
941 if (tag
>= MVS_SLOTS
)
942 return -SAS_QUEUE_FULL
;
943 mvs_tag_set(mvi
, tag
);
948 static void mvs_tag_init(struct mvs_info
*mvi
)
951 for (i
= 0; i
< MVS_SLOTS
; ++i
)
952 mvs_tag_clear(mvi
, i
);
955 #ifndef MVS_DISABLE_NVRAM
956 static int mvs_eep_read(void __iomem
*regs
, u32 addr
, u32
*data
)
960 if (addr
& ~SPI_ADDR_MASK
)
963 writel(addr
, regs
+ SPI_CMD
);
964 writel(TWSI_RD
, regs
+ SPI_CTL
);
966 while (timeout
-- > 0) {
967 if (readl(regs
+ SPI_CTL
) & TWSI_RDY
) {
968 *data
= readl(regs
+ SPI_DATA
);
978 static int mvs_eep_read_buf(void __iomem
*regs
, u32 addr
,
979 void *buf
, u32 buflen
)
981 u32 addr_end
, tmp_addr
, i
, j
;
984 u8
*tmp8
, *buf8
= buf
;
986 addr_end
= addr
+ buflen
;
987 tmp_addr
= ALIGN(addr
, 4);
993 rc
= mvs_eep_read(regs
, tmp_addr
, &tmp
);
998 for (i
= j
; i
< 4; i
++)
1004 for (j
= ALIGN(addr_end
, 4); tmp_addr
< j
; tmp_addr
+= 4) {
1005 rc
= mvs_eep_read(regs
, tmp_addr
, &tmp
);
1009 memcpy(buf8
, &tmp
, 4);
1013 if (tmp_addr
< addr_end
) {
1014 rc
= mvs_eep_read(regs
, tmp_addr
, &tmp
);
1019 j
= addr_end
- tmp_addr
;
1020 for (i
= 0; i
< j
; i
++)
1030 static int mvs_nvram_read(struct mvs_info
*mvi
, u32 addr
,
1031 void *buf
, u32 buflen
)
1033 #ifndef MVS_DISABLE_NVRAM
1034 void __iomem
*regs
= mvi
->regs
;
1040 rc
= mvs_eep_read_buf(regs
, addr
, &hdr
, 2);
1042 msg
= "nvram hdr read failed";
1045 rc
= mvs_eep_read_buf(regs
, addr
+ 2, buf
, buflen
);
1047 msg
= "nvram read failed";
1051 if (hdr
[0] != 0x5A) {
1053 msg
= "invalid nvram entry id";
1059 sum
= ((u32
)hdr
[0]) + ((u32
)hdr
[1]);
1060 for (i
= 0; i
< buflen
; i
++)
1061 sum
+= ((u32
)tmp
[i
]);
1064 msg
= "nvram checksum failure";
1072 dev_printk(KERN_ERR
, &mvi
->pdev
->dev
, "%s", msg
);
1075 /* FIXME , For SAS target mode */
1076 memcpy(buf
, "\x50\x05\x04\x30\x11\xab\x00\x00", 8);
1081 static void mvs_bytes_dmaed(struct mvs_info
*mvi
, int i
)
1083 struct mvs_phy
*phy
= &mvi
->phy
[i
];
1084 struct asd_sas_phy
*sas_phy
= mvi
->sas
.sas_phy
[i
];
1086 if (!phy
->phy_attached
)
1090 struct sas_phy
*sphy
= sas_phy
->phy
;
1092 sphy
->negotiated_linkrate
= sas_phy
->linkrate
;
1093 sphy
->minimum_linkrate
= phy
->minimum_linkrate
;
1094 sphy
->minimum_linkrate_hw
= SAS_LINK_RATE_1_5_GBPS
;
1095 sphy
->maximum_linkrate
= phy
->maximum_linkrate
;
1096 sphy
->maximum_linkrate_hw
= SAS_LINK_RATE_3_0_GBPS
;
1099 if (phy
->phy_type
& PORT_TYPE_SAS
) {
1100 struct sas_identify_frame
*id
;
1102 id
= (struct sas_identify_frame
*)phy
->frame_rcvd
;
1103 id
->dev_type
= phy
->identify
.device_type
;
1104 id
->initiator_bits
= SAS_PROTOCOL_ALL
;
1105 id
->target_bits
= phy
->identify
.target_port_protocols
;
1106 } else if (phy
->phy_type
& PORT_TYPE_SATA
) {
1109 mvi
->sas
.sas_phy
[i
]->frame_rcvd_size
= phy
->frame_rcvd_size
;
1110 mvi
->sas
.notify_port_event(mvi
->sas
.sas_phy
[i
],
1114 static int mvs_scan_finished(struct Scsi_Host
*shost
, unsigned long time
)
1116 /* give the phy enabling interrupt event time to come in (1s
1117 * is empirically about all it takes) */
1120 /* Wait for discovery to finish */
1121 scsi_flush_work(shost
);
1125 static void mvs_scan_start(struct Scsi_Host
*shost
)
1128 struct mvs_info
*mvi
= SHOST_TO_SAS_HA(shost
)->lldd_ha
;
1130 for (i
= 0; i
< mvi
->chip
->n_phy
; ++i
) {
1131 mvs_bytes_dmaed(mvi
, i
);
1135 static int mvs_slave_configure(struct scsi_device
*sdev
)
1137 struct domain_device
*dev
= sdev_to_domain_dev(sdev
);
1138 int ret
= sas_slave_configure(sdev
);
1143 if (dev_is_sata(dev
)) {
1144 /* struct ata_port *ap = dev->sata_dev.ap; */
1145 /* struct ata_device *adev = ap->link.device; */
1147 /* clamp at no NCQ for the time being */
1148 /* adev->flags |= ATA_DFLAG_NCQ_OFF; */
1149 scsi_adjust_queue_depth(sdev
, MSG_SIMPLE_TAG
, 1);
1154 static void mvs_int_port(struct mvs_info
*mvi
, int phy_no
, u32 events
)
1156 struct pci_dev
*pdev
= mvi
->pdev
;
1157 struct sas_ha_struct
*sas_ha
= &mvi
->sas
;
1158 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
1159 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
1161 phy
->irq_status
= mvs_read_port_irq_stat(mvi
, phy_no
);
1163 * events is port event now ,
1164 * we need check the interrupt status which belongs to per port.
1166 dev_printk(KERN_DEBUG
, &pdev
->dev
,
1167 "Port %d Event = %X\n",
1168 phy_no
, phy
->irq_status
);
1170 if (phy
->irq_status
& (PHYEV_POOF
| PHYEV_DEC_ERR
)) {
1171 mvs_release_task(mvi
, phy_no
);
1172 if (!mvs_is_phy_ready(mvi
, phy_no
)) {
1173 sas_phy_disconnected(sas_phy
);
1174 sas_ha
->notify_phy_event(sas_phy
, PHYE_LOSS_OF_SIGNAL
);
1175 dev_printk(KERN_INFO
, &pdev
->dev
,
1176 "Port %d Unplug Notice\n", phy_no
);
1179 mvs_phy_control(sas_phy
, PHY_FUNC_LINK_RESET
, NULL
);
1181 if (!(phy
->irq_status
& PHYEV_DEC_ERR
)) {
1182 if (phy
->irq_status
& PHYEV_COMWAKE
) {
1183 u32 tmp
= mvs_read_port_irq_mask(mvi
, phy_no
);
1184 mvs_write_port_irq_mask(mvi
, phy_no
,
1185 tmp
| PHYEV_SIG_FIS
);
1187 if (phy
->irq_status
& (PHYEV_SIG_FIS
| PHYEV_ID_DONE
)) {
1188 phy
->phy_status
= mvs_is_phy_ready(mvi
, phy_no
);
1189 if (phy
->phy_status
) {
1190 mvs_detect_porttype(mvi
, phy_no
);
1192 if (phy
->phy_type
& PORT_TYPE_SATA
) {
1193 u32 tmp
= mvs_read_port_irq_mask(mvi
,
1195 tmp
&= ~PHYEV_SIG_FIS
;
1196 mvs_write_port_irq_mask(mvi
,
1200 mvs_update_phyinfo(mvi
, phy_no
, 0);
1201 sas_ha
->notify_phy_event(sas_phy
,
1203 mvs_bytes_dmaed(mvi
, phy_no
);
1205 dev_printk(KERN_DEBUG
, &pdev
->dev
,
1206 "plugin interrupt but phy is gone\n");
1207 mvs_phy_control(sas_phy
, PHY_FUNC_LINK_RESET
,
1210 } else if (phy
->irq_status
& PHYEV_BROAD_CH
) {
1211 mvs_release_task(mvi
, phy_no
);
1212 sas_ha
->notify_port_event(sas_phy
,
1213 PORTE_BROADCAST_RCVD
);
1216 mvs_write_port_irq_stat(mvi
, phy_no
, phy
->irq_status
);
1219 static void mvs_int_sata(struct mvs_info
*mvi
)
1222 void __iomem
*regs
= mvi
->regs
;
1223 tmp
= mr32(INT_STAT_SRS
);
1224 mw32(INT_STAT_SRS
, tmp
& 0xFFFF);
1227 static void mvs_slot_reset(struct mvs_info
*mvi
, struct sas_task
*task
,
1230 void __iomem
*regs
= mvi
->regs
;
1231 struct domain_device
*dev
= task
->dev
;
1232 struct asd_sas_port
*sas_port
= dev
->port
;
1233 struct mvs_port
*port
= mvi
->slot_info
[slot_idx
].port
;
1234 u32 reg_set
, phy_mask
;
1236 if (!sas_protocol_ata(task
->task_proto
)) {
1238 phy_mask
= (port
->wide_port_phymap
) ? port
->wide_port_phymap
:
1241 reg_set
= port
->taskfileset
;
1242 phy_mask
= sas_port
->phy_mask
;
1244 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32(TXQ_MODE_I
| slot_idx
|
1245 (TXQ_CMD_SLOT_RESET
<< TXQ_CMD_SHIFT
) |
1246 (phy_mask
<< TXQ_PHY_SHIFT
) |
1247 (reg_set
<< TXQ_SRS_SHIFT
));
1249 mw32(TX_PROD_IDX
, mvi
->tx_prod
);
1250 mvi
->tx_prod
= (mvi
->tx_prod
+ 1) & (MVS_CHIP_SLOT_SZ
- 1);
1253 static int mvs_sata_done(struct mvs_info
*mvi
, struct sas_task
*task
,
1254 u32 slot_idx
, int err
)
1256 struct mvs_port
*port
= mvi
->slot_info
[slot_idx
].port
;
1257 struct task_status_struct
*tstat
= &task
->task_status
;
1258 struct ata_task_resp
*resp
= (struct ata_task_resp
*)tstat
->buf
;
1259 int stat
= SAM_GOOD
;
1261 resp
->frame_len
= sizeof(struct dev_to_host_fis
);
1262 memcpy(&resp
->ending_fis
[0],
1263 SATA_RECEIVED_D2H_FIS(port
->taskfileset
),
1264 sizeof(struct dev_to_host_fis
));
1265 tstat
->buf_valid_size
= sizeof(*resp
);
1267 stat
= SAS_PROTO_RESPONSE
;
1271 static void mvs_slot_free(struct mvs_info
*mvi
, u32 rx_desc
)
1273 u32 slot_idx
= rx_desc
& RXQ_SLOT_MASK
;
1274 mvs_tag_clear(mvi
, slot_idx
);
1277 static void mvs_slot_task_free(struct mvs_info
*mvi
, struct sas_task
*task
,
1278 struct mvs_slot_info
*slot
, u32 slot_idx
)
1280 if (!sas_protocol_ata(task
->task_proto
))
1282 pci_unmap_sg(mvi
->pdev
, task
->scatter
,
1283 slot
->n_elem
, task
->data_dir
);
1285 switch (task
->task_proto
) {
1286 case SAS_PROTOCOL_SMP
:
1287 pci_unmap_sg(mvi
->pdev
, &task
->smp_task
.smp_resp
, 1,
1288 PCI_DMA_FROMDEVICE
);
1289 pci_unmap_sg(mvi
->pdev
, &task
->smp_task
.smp_req
, 1,
1293 case SAS_PROTOCOL_SATA
:
1294 case SAS_PROTOCOL_STP
:
1295 case SAS_PROTOCOL_SSP
:
1300 list_del(&slot
->list
);
1301 task
->lldd_task
= NULL
;
1306 static int mvs_slot_err(struct mvs_info
*mvi
, struct sas_task
*task
,
1309 struct mvs_slot_info
*slot
= &mvi
->slot_info
[slot_idx
];
1310 u32 err_dw0
= le32_to_cpu(*(u32
*) (slot
->response
));
1311 u32 err_dw1
= le32_to_cpu(*(u32
*) (slot
->response
+ 4));
1312 int stat
= SAM_CHECK_COND
;
1314 if (err_dw1
& SLOT_BSY_ERR
) {
1315 stat
= SAS_QUEUE_FULL
;
1316 mvs_slot_reset(mvi
, task
, slot_idx
);
1318 switch (task
->task_proto
) {
1319 case SAS_PROTOCOL_SSP
:
1321 case SAS_PROTOCOL_SMP
:
1323 case SAS_PROTOCOL_SATA
:
1324 case SAS_PROTOCOL_STP
:
1325 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
1326 if (err_dw0
& TFILE_ERR
)
1327 stat
= mvs_sata_done(mvi
, task
, slot_idx
, 1);
1333 mvs_hexdump(16, (u8
*) slot
->response
, 0);
1337 static int mvs_slot_complete(struct mvs_info
*mvi
, u32 rx_desc
, u32 flags
)
1339 u32 slot_idx
= rx_desc
& RXQ_SLOT_MASK
;
1340 struct mvs_slot_info
*slot
= &mvi
->slot_info
[slot_idx
];
1341 struct sas_task
*task
= slot
->task
;
1342 struct task_status_struct
*tstat
;
1343 struct mvs_port
*port
;
1347 if (unlikely(!task
|| !task
->lldd_task
))
1350 mvs_hba_cq_dump(mvi
);
1352 spin_lock(&task
->task_state_lock
);
1353 aborted
= task
->task_state_flags
& SAS_TASK_STATE_ABORTED
;
1355 task
->task_state_flags
&=
1356 ~(SAS_TASK_STATE_PENDING
| SAS_TASK_AT_INITIATOR
);
1357 task
->task_state_flags
|= SAS_TASK_STATE_DONE
;
1359 spin_unlock(&task
->task_state_lock
);
1362 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1363 mvs_slot_free(mvi
, rx_desc
);
1368 tstat
= &task
->task_status
;
1369 memset(tstat
, 0, sizeof(*tstat
));
1370 tstat
->resp
= SAS_TASK_COMPLETE
;
1372 if (unlikely(!port
->port_attached
|| flags
)) {
1373 mvs_slot_err(mvi
, task
, slot_idx
);
1374 if (!sas_protocol_ata(task
->task_proto
))
1375 tstat
->stat
= SAS_PHY_DOWN
;
1379 /* error info record present */
1380 if (unlikely((rx_desc
& RXQ_ERR
) && (*(u64
*) slot
->response
))) {
1381 tstat
->stat
= mvs_slot_err(mvi
, task
, slot_idx
);
1385 switch (task
->task_proto
) {
1386 case SAS_PROTOCOL_SSP
:
1387 /* hw says status == 0, datapres == 0 */
1388 if (rx_desc
& RXQ_GOOD
) {
1389 tstat
->stat
= SAM_GOOD
;
1390 tstat
->resp
= SAS_TASK_COMPLETE
;
1392 /* response frame present */
1393 else if (rx_desc
& RXQ_RSP
) {
1394 struct ssp_response_iu
*iu
=
1395 slot
->response
+ sizeof(struct mvs_err_info
);
1396 sas_ssp_task_response(&mvi
->pdev
->dev
, task
, iu
);
1399 /* should never happen? */
1401 tstat
->stat
= SAM_CHECK_COND
;
1404 case SAS_PROTOCOL_SMP
: {
1405 struct scatterlist
*sg_resp
= &task
->smp_task
.smp_resp
;
1406 tstat
->stat
= SAM_GOOD
;
1407 to
= kmap_atomic(sg_page(sg_resp
), KM_IRQ0
);
1408 memcpy(to
+ sg_resp
->offset
,
1409 slot
->response
+ sizeof(struct mvs_err_info
),
1410 sg_dma_len(sg_resp
));
1411 kunmap_atomic(to
, KM_IRQ0
);
1415 case SAS_PROTOCOL_SATA
:
1416 case SAS_PROTOCOL_STP
:
1417 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
: {
1418 tstat
->stat
= mvs_sata_done(mvi
, task
, slot_idx
, 0);
1423 tstat
->stat
= SAM_CHECK_COND
;
1428 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1429 if (unlikely(tstat
->stat
!= SAS_QUEUE_FULL
))
1430 mvs_slot_free(mvi
, rx_desc
);
1432 spin_unlock(&mvi
->lock
);
1433 task
->task_done(task
);
1434 spin_lock(&mvi
->lock
);
1438 static void mvs_release_task(struct mvs_info
*mvi
, int phy_no
)
1440 struct list_head
*pos
, *n
;
1441 struct mvs_slot_info
*slot
;
1442 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
1443 struct mvs_port
*port
= phy
->port
;
1449 list_for_each_safe(pos
, n
, &port
->list
) {
1450 slot
= container_of(pos
, struct mvs_slot_info
, list
);
1451 rx_desc
= (u32
) (slot
- mvi
->slot_info
);
1452 mvs_slot_complete(mvi
, rx_desc
, 1);
1456 static void mvs_int_full(struct mvs_info
*mvi
)
1458 void __iomem
*regs
= mvi
->regs
;
1462 stat
= mr32(INT_STAT
);
1464 mvs_int_rx(mvi
, false);
1466 for (i
= 0; i
< MVS_MAX_PORTS
; i
++) {
1467 tmp
= (stat
>> i
) & (CINT_PORT
| CINT_PORT_STOPPED
);
1469 mvs_int_port(mvi
, i
, tmp
);
1472 if (stat
& CINT_SRS
)
1475 mw32(INT_STAT
, stat
);
1478 static int mvs_int_rx(struct mvs_info
*mvi
, bool self_clear
)
1480 void __iomem
*regs
= mvi
->regs
;
1481 u32 rx_prod_idx
, rx_desc
;
1483 struct pci_dev
*pdev
= mvi
->pdev
;
1485 /* the first dword in the RX ring is special: it contains
1486 * a mirror of the hardware's RX producer index, so that
1487 * we don't have to stall the CPU reading that register.
1488 * The actual RX ring is offset by one dword, due to this.
1490 rx_prod_idx
= mvi
->rx_cons
;
1491 mvi
->rx_cons
= le32_to_cpu(mvi
->rx
[0]);
1492 if (mvi
->rx_cons
== 0xfff) /* h/w hasn't touched RX ring yet */
1495 /* The CMPL_Q may come late, read from register and try again
1496 * note: if coalescing is enabled,
1497 * it will need to read from register every time for sure
1499 if (mvi
->rx_cons
== rx_prod_idx
)
1500 mvi
->rx_cons
= mr32(RX_CONS_IDX
) & RX_RING_SZ_MASK
;
1502 if (mvi
->rx_cons
== rx_prod_idx
)
1505 while (mvi
->rx_cons
!= rx_prod_idx
) {
1507 /* increment our internal RX consumer pointer */
1508 rx_prod_idx
= (rx_prod_idx
+ 1) & (MVS_RX_RING_SZ
- 1);
1510 rx_desc
= le32_to_cpu(mvi
->rx
[rx_prod_idx
+ 1]);
1512 if (likely(rx_desc
& RXQ_DONE
))
1513 mvs_slot_complete(mvi
, rx_desc
, 0);
1514 if (rx_desc
& RXQ_ATTN
) {
1516 dev_printk(KERN_DEBUG
, &pdev
->dev
, "ATTN %X\n",
1518 } else if (rx_desc
& RXQ_ERR
) {
1519 if (!(rx_desc
& RXQ_DONE
))
1520 mvs_slot_complete(mvi
, rx_desc
, 0);
1521 dev_printk(KERN_DEBUG
, &pdev
->dev
, "RXQ_ERR %X\n",
1523 } else if (rx_desc
& RXQ_SLOT_RESET
) {
1524 dev_printk(KERN_DEBUG
, &pdev
->dev
, "Slot reset[%X]\n",
1526 mvs_slot_free(mvi
, rx_desc
);
1530 if (attn
&& self_clear
)
1536 #ifdef MVS_USE_TASKLET
1537 static void mvs_tasklet(unsigned long data
)
1539 struct mvs_info
*mvi
= (struct mvs_info
*) data
;
1540 unsigned long flags
;
1542 spin_lock_irqsave(&mvi
->lock
, flags
);
1544 #ifdef MVS_DISABLE_MSI
1547 mvs_int_rx(mvi
, true);
1549 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1553 static irqreturn_t
mvs_interrupt(int irq
, void *opaque
)
1555 struct mvs_info
*mvi
= opaque
;
1556 void __iomem
*regs
= mvi
->regs
;
1559 stat
= mr32(GBL_INT_STAT
);
1561 if (stat
== 0 || stat
== 0xffffffff)
1564 /* clear CMD_CMPLT ASAP */
1565 mw32_f(INT_STAT
, CINT_DONE
);
1567 #ifndef MVS_USE_TASKLET
1568 spin_lock(&mvi
->lock
);
1572 spin_unlock(&mvi
->lock
);
1574 tasklet_schedule(&mvi
->tasklet
);
1579 #ifndef MVS_DISABLE_MSI
1580 static irqreturn_t
mvs_msi_interrupt(int irq
, void *opaque
)
1582 struct mvs_info
*mvi
= opaque
;
1584 #ifndef MVS_USE_TASKLET
1585 spin_lock(&mvi
->lock
);
1587 mvs_int_rx(mvi
, true);
1589 spin_unlock(&mvi
->lock
);
1591 tasklet_schedule(&mvi
->tasklet
);
1597 struct mvs_task_exec_info
{
1598 struct sas_task
*task
;
1599 struct mvs_cmd_hdr
*hdr
;
1600 struct mvs_port
*port
;
1605 static int mvs_task_prep_smp(struct mvs_info
*mvi
,
1606 struct mvs_task_exec_info
*tei
)
1609 struct sas_task
*task
= tei
->task
;
1610 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
1611 struct scatterlist
*sg_req
, *sg_resp
;
1612 u32 req_len
, resp_len
, tag
= tei
->tag
;
1615 dma_addr_t buf_tmp_dma
;
1616 struct mvs_prd
*buf_prd
;
1617 struct scatterlist
*sg
;
1618 struct mvs_slot_info
*slot
= &mvi
->slot_info
[tag
];
1619 struct asd_sas_port
*sas_port
= task
->dev
->port
;
1620 u32 flags
= (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
);
1626 * DMA-map SMP request, response buffers
1628 sg_req
= &task
->smp_task
.smp_req
;
1629 elem
= pci_map_sg(mvi
->pdev
, sg_req
, 1, PCI_DMA_TODEVICE
);
1632 req_len
= sg_dma_len(sg_req
);
1634 sg_resp
= &task
->smp_task
.smp_resp
;
1635 elem
= pci_map_sg(mvi
->pdev
, sg_resp
, 1, PCI_DMA_FROMDEVICE
);
1640 resp_len
= sg_dma_len(sg_resp
);
1642 /* must be in dwords */
1643 if ((req_len
& 0x3) || (resp_len
& 0x3)) {
1649 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
1652 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
1653 buf_tmp
= slot
->buf
;
1654 buf_tmp_dma
= slot
->buf_dma
;
1658 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
1660 buf_tmp_dma
+= req_len
;
1661 slot
->cmd_size
= req_len
;
1663 hdr
->cmd_tbl
= cpu_to_le64(sg_dma_address(sg_req
));
1666 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
1668 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
1670 buf_tmp
+= MVS_OAF_SZ
;
1671 buf_tmp_dma
+= MVS_OAF_SZ
;
1673 /* region 3: PRD table ********************************************* */
1676 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
1680 i
= sizeof(struct mvs_prd
) * tei
->n_elem
;
1684 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
1685 slot
->response
= buf_tmp
;
1686 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
1689 * Fill in TX ring and command slot header
1691 slot
->tx
= mvi
->tx_prod
;
1692 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32((TXQ_CMD_SMP
<< TXQ_CMD_SHIFT
) |
1694 (sas_port
->phy_mask
<< TXQ_PHY_SHIFT
));
1696 hdr
->flags
|= flags
;
1697 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | ((req_len
- 4) / 4));
1698 hdr
->tags
= cpu_to_le32(tag
);
1701 /* generate open address frame hdr (first 12 bytes) */
1702 buf_oaf
[0] = (1 << 7) | (0 << 4) | 0x01; /* initiator, SMP, ftype 1h */
1703 buf_oaf
[1] = task
->dev
->linkrate
& 0xf;
1704 *(u16
*)(buf_oaf
+ 2) = 0xFFFF; /* SAS SPEC */
1705 memcpy(buf_oaf
+ 4, task
->dev
->sas_addr
, SAS_ADDR_SIZE
);
1707 /* fill in PRD (scatter/gather) table, if any */
1708 for_each_sg(task
->scatter
, sg
, tei
->n_elem
, i
) {
1709 buf_prd
->addr
= cpu_to_le64(sg_dma_address(sg
));
1710 buf_prd
->len
= cpu_to_le32(sg_dma_len(sg
));
1715 /* copy cmd table */
1716 from
= kmap_atomic(sg_page(sg_req
), KM_IRQ0
);
1717 memcpy(buf_cmd
, from
+ sg_req
->offset
, req_len
);
1718 kunmap_atomic(from
, KM_IRQ0
);
1723 pci_unmap_sg(mvi
->pdev
, &tei
->task
->smp_task
.smp_resp
, 1,
1724 PCI_DMA_FROMDEVICE
);
1726 pci_unmap_sg(mvi
->pdev
, &tei
->task
->smp_task
.smp_req
, 1,
1731 static void mvs_free_reg_set(struct mvs_info
*mvi
, struct mvs_port
*port
)
1733 void __iomem
*regs
= mvi
->regs
;
1735 u8
*tfs
= &port
->taskfileset
;
1737 if (*tfs
== MVS_ID_NOT_MAPPED
)
1740 offs
= 1U << ((*tfs
& 0x0f) + PCS_EN_SATA_REG_SHIFT
);
1743 mw32(PCS
, tmp
& ~offs
);
1746 mw32(CTL
, tmp
& ~offs
);
1749 tmp
= mr32(INT_STAT_SRS
) & (1U << *tfs
);
1751 mw32(INT_STAT_SRS
, tmp
);
1753 *tfs
= MVS_ID_NOT_MAPPED
;
1756 static u8
mvs_assign_reg_set(struct mvs_info
*mvi
, struct mvs_port
*port
)
1760 void __iomem
*regs
= mvi
->regs
;
1762 if (port
->taskfileset
!= MVS_ID_NOT_MAPPED
)
1767 for (i
= 0; i
< mvi
->chip
->srs_sz
; i
++) {
1770 offs
= 1U << ((i
& 0x0f) + PCS_EN_SATA_REG_SHIFT
);
1771 if (!(tmp
& offs
)) {
1772 port
->taskfileset
= i
;
1775 mw32(PCS
, tmp
| offs
);
1777 mw32(CTL
, tmp
| offs
);
1778 tmp
= mr32(INT_STAT_SRS
) & (1U << i
);
1780 mw32(INT_STAT_SRS
, tmp
);
1784 return MVS_ID_NOT_MAPPED
;
1787 static u32
mvs_get_ncq_tag(struct sas_task
*task
, u32
*tag
)
1789 struct ata_queued_cmd
*qc
= task
->uldd_task
;
1792 if (qc
->tf
.command
== ATA_CMD_FPDMA_WRITE
||
1793 qc
->tf
.command
== ATA_CMD_FPDMA_READ
) {
1802 static int mvs_task_prep_ata(struct mvs_info
*mvi
,
1803 struct mvs_task_exec_info
*tei
)
1805 struct sas_task
*task
= tei
->task
;
1806 struct domain_device
*dev
= task
->dev
;
1807 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
1808 struct asd_sas_port
*sas_port
= dev
->port
;
1809 struct mvs_slot_info
*slot
;
1810 struct scatterlist
*sg
;
1811 struct mvs_prd
*buf_prd
;
1812 struct mvs_port
*port
= tei
->port
;
1814 u32 flags
= (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
);
1816 u8
*buf_cmd
, *buf_oaf
;
1817 dma_addr_t buf_tmp_dma
;
1818 u32 i
, req_len
, resp_len
;
1819 const u32 max_resp_len
= SB_RFB_MAX
;
1821 if (mvs_assign_reg_set(mvi
, port
) == MVS_ID_NOT_MAPPED
)
1824 slot
= &mvi
->slot_info
[tag
];
1825 slot
->tx
= mvi
->tx_prod
;
1826 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32(TXQ_MODE_I
| tag
|
1827 (TXQ_CMD_STP
<< TXQ_CMD_SHIFT
) |
1828 (sas_port
->phy_mask
<< TXQ_PHY_SHIFT
) |
1829 (port
->taskfileset
<< TXQ_SRS_SHIFT
));
1831 if (task
->ata_task
.use_ncq
)
1833 if (dev
->sata_dev
.command_set
== ATAPI_COMMAND_SET
) {
1834 if (task
->ata_task
.fis
.command
!= ATA_CMD_ID_ATAPI
)
1838 /* FIXME: fill in port multiplier number */
1840 hdr
->flags
= cpu_to_le32(flags
);
1842 /* FIXME: the low order order 5 bits for the TAG if enable NCQ */
1843 if (task
->ata_task
.use_ncq
&& mvs_get_ncq_tag(task
, &hdr
->tags
))
1844 task
->ata_task
.fis
.sector_count
|= hdr
->tags
<< 3;
1846 hdr
->tags
= cpu_to_le32(tag
);
1847 hdr
->data_len
= cpu_to_le32(task
->total_xfer_len
);
1850 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
1853 /* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
1854 buf_cmd
= buf_tmp
= slot
->buf
;
1855 buf_tmp_dma
= slot
->buf_dma
;
1857 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
1859 buf_tmp
+= MVS_ATA_CMD_SZ
;
1860 buf_tmp_dma
+= MVS_ATA_CMD_SZ
;
1862 slot
->cmd_size
= MVS_ATA_CMD_SZ
;
1865 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
1866 /* used for STP. unused for SATA? */
1868 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
1870 buf_tmp
+= MVS_OAF_SZ
;
1871 buf_tmp_dma
+= MVS_OAF_SZ
;
1873 /* region 3: PRD table ********************************************* */
1876 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
1880 i
= sizeof(struct mvs_prd
) * tei
->n_elem
;
1884 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
1885 /* FIXME: probably unused, for SATA. kept here just in case
1886 * we get a STP/SATA error information record
1888 slot
->response
= buf_tmp
;
1889 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
1891 req_len
= sizeof(struct host_to_dev_fis
);
1892 resp_len
= MVS_SLOT_BUF_SZ
- MVS_ATA_CMD_SZ
-
1893 sizeof(struct mvs_err_info
) - i
;
1895 /* request, response lengths */
1896 resp_len
= min(resp_len
, max_resp_len
);
1897 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | (req_len
/ 4));
1899 task
->ata_task
.fis
.flags
|= 0x80; /* C=1: update ATA cmd reg */
1900 /* fill in command FIS and ATAPI CDB */
1901 memcpy(buf_cmd
, &task
->ata_task
.fis
, sizeof(struct host_to_dev_fis
));
1902 if (dev
->sata_dev
.command_set
== ATAPI_COMMAND_SET
)
1903 memcpy(buf_cmd
+ STP_ATAPI_CMD
,
1904 task
->ata_task
.atapi_packet
, 16);
1906 /* generate open address frame hdr (first 12 bytes) */
1907 buf_oaf
[0] = (1 << 7) | (2 << 4) | 0x1; /* initiator, STP, ftype 1h */
1908 buf_oaf
[1] = task
->dev
->linkrate
& 0xf;
1909 *(u16
*)(buf_oaf
+ 2) = cpu_to_be16(tag
);
1910 memcpy(buf_oaf
+ 4, task
->dev
->sas_addr
, SAS_ADDR_SIZE
);
1912 /* fill in PRD (scatter/gather) table, if any */
1913 for_each_sg(task
->scatter
, sg
, tei
->n_elem
, i
) {
1914 buf_prd
->addr
= cpu_to_le64(sg_dma_address(sg
));
1915 buf_prd
->len
= cpu_to_le32(sg_dma_len(sg
));
1922 static int mvs_task_prep_ssp(struct mvs_info
*mvi
,
1923 struct mvs_task_exec_info
*tei
)
1925 struct sas_task
*task
= tei
->task
;
1926 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
1927 struct mvs_port
*port
= tei
->port
;
1928 struct mvs_slot_info
*slot
;
1929 struct scatterlist
*sg
;
1930 struct mvs_prd
*buf_prd
;
1931 struct ssp_frame_hdr
*ssp_hdr
;
1933 u8
*buf_cmd
, *buf_oaf
, fburst
= 0;
1934 dma_addr_t buf_tmp_dma
;
1936 u32 resp_len
, req_len
, i
, tag
= tei
->tag
;
1937 const u32 max_resp_len
= SB_RFB_MAX
;
1940 slot
= &mvi
->slot_info
[tag
];
1942 phy_mask
= (port
->wide_port_phymap
) ? port
->wide_port_phymap
:
1943 task
->dev
->port
->phy_mask
;
1944 slot
->tx
= mvi
->tx_prod
;
1945 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32(TXQ_MODE_I
| tag
|
1946 (TXQ_CMD_SSP
<< TXQ_CMD_SHIFT
) |
1947 (phy_mask
<< TXQ_PHY_SHIFT
));
1950 if (task
->ssp_task
.enable_first_burst
) {
1951 flags
|= MCH_FBURST
;
1954 hdr
->flags
= cpu_to_le32(flags
|
1955 (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
) |
1956 (MCH_SSP_FR_CMD
<< MCH_SSP_FR_TYPE_SHIFT
));
1958 hdr
->tags
= cpu_to_le32(tag
);
1959 hdr
->data_len
= cpu_to_le32(task
->total_xfer_len
);
1962 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
1965 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
1966 buf_cmd
= buf_tmp
= slot
->buf
;
1967 buf_tmp_dma
= slot
->buf_dma
;
1969 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
1971 buf_tmp
+= MVS_SSP_CMD_SZ
;
1972 buf_tmp_dma
+= MVS_SSP_CMD_SZ
;
1974 slot
->cmd_size
= MVS_SSP_CMD_SZ
;
1977 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
1979 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
1981 buf_tmp
+= MVS_OAF_SZ
;
1982 buf_tmp_dma
+= MVS_OAF_SZ
;
1984 /* region 3: PRD table ********************************************* */
1987 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
1991 i
= sizeof(struct mvs_prd
) * tei
->n_elem
;
1995 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
1996 slot
->response
= buf_tmp
;
1997 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
1999 resp_len
= MVS_SLOT_BUF_SZ
- MVS_SSP_CMD_SZ
- MVS_OAF_SZ
-
2000 sizeof(struct mvs_err_info
) - i
;
2001 resp_len
= min(resp_len
, max_resp_len
);
2003 req_len
= sizeof(struct ssp_frame_hdr
) + 28;
2005 /* request, response lengths */
2006 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | (req_len
/ 4));
2008 /* generate open address frame hdr (first 12 bytes) */
2009 buf_oaf
[0] = (1 << 7) | (1 << 4) | 0x1; /* initiator, SSP, ftype 1h */
2010 buf_oaf
[1] = task
->dev
->linkrate
& 0xf;
2011 *(u16
*)(buf_oaf
+ 2) = cpu_to_be16(tag
);
2012 memcpy(buf_oaf
+ 4, task
->dev
->sas_addr
, SAS_ADDR_SIZE
);
2014 /* fill in SSP frame header (Command Table.SSP frame header) */
2015 ssp_hdr
= (struct ssp_frame_hdr
*)buf_cmd
;
2016 ssp_hdr
->frame_type
= SSP_COMMAND
;
2017 memcpy(ssp_hdr
->hashed_dest_addr
, task
->dev
->hashed_sas_addr
,
2018 HASHED_SAS_ADDR_SIZE
);
2019 memcpy(ssp_hdr
->hashed_src_addr
,
2020 task
->dev
->port
->ha
->hashed_sas_addr
, HASHED_SAS_ADDR_SIZE
);
2021 ssp_hdr
->tag
= cpu_to_be16(tag
);
2023 /* fill in command frame IU */
2024 buf_cmd
+= sizeof(*ssp_hdr
);
2025 memcpy(buf_cmd
, &task
->ssp_task
.LUN
, 8);
2026 buf_cmd
[9] = fburst
| task
->ssp_task
.task_attr
|
2027 (task
->ssp_task
.task_prio
<< 3);
2028 memcpy(buf_cmd
+ 12, &task
->ssp_task
.cdb
, 16);
2030 /* fill in PRD (scatter/gather) table, if any */
2031 for_each_sg(task
->scatter
, sg
, tei
->n_elem
, i
) {
2032 buf_prd
->addr
= cpu_to_le64(sg_dma_address(sg
));
2033 buf_prd
->len
= cpu_to_le32(sg_dma_len(sg
));
2040 static int mvs_task_exec(struct sas_task
*task
, const int num
, gfp_t gfp_flags
)
2042 struct domain_device
*dev
= task
->dev
;
2043 struct mvs_info
*mvi
= dev
->port
->ha
->lldd_ha
;
2044 struct pci_dev
*pdev
= mvi
->pdev
;
2045 void __iomem
*regs
= mvi
->regs
;
2046 struct mvs_task_exec_info tei
;
2047 struct sas_task
*t
= task
;
2048 struct mvs_slot_info
*slot
;
2049 u32 tag
= 0xdeadbeef, rc
, n_elem
= 0;
2050 unsigned long flags
;
2051 u32 n
= num
, pass
= 0;
2053 spin_lock_irqsave(&mvi
->lock
, flags
);
2056 tei
.port
= &mvi
->port
[dev
->port
->id
];
2058 if (!tei
.port
->port_attached
) {
2059 if (sas_protocol_ata(t
->task_proto
)) {
2063 struct task_status_struct
*ts
= &t
->task_status
;
2064 ts
->resp
= SAS_TASK_UNDELIVERED
;
2065 ts
->stat
= SAS_PHY_DOWN
;
2068 t
= list_entry(t
->list
.next
,
2069 struct sas_task
, list
);
2074 if (!sas_protocol_ata(t
->task_proto
)) {
2075 if (t
->num_scatter
) {
2076 n_elem
= pci_map_sg(mvi
->pdev
, t
->scatter
,
2085 n_elem
= t
->num_scatter
;
2088 rc
= mvs_tag_alloc(mvi
, &tag
);
2092 slot
= &mvi
->slot_info
[tag
];
2093 t
->lldd_task
= NULL
;
2094 slot
->n_elem
= n_elem
;
2095 memset(slot
->buf
, 0, MVS_SLOT_BUF_SZ
);
2097 tei
.hdr
= &mvi
->slot
[tag
];
2099 tei
.n_elem
= n_elem
;
2101 switch (t
->task_proto
) {
2102 case SAS_PROTOCOL_SMP
:
2103 rc
= mvs_task_prep_smp(mvi
, &tei
);
2105 case SAS_PROTOCOL_SSP
:
2106 rc
= mvs_task_prep_ssp(mvi
, &tei
);
2108 case SAS_PROTOCOL_SATA
:
2109 case SAS_PROTOCOL_STP
:
2110 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
2111 rc
= mvs_task_prep_ata(mvi
, &tei
);
2114 dev_printk(KERN_ERR
, &pdev
->dev
,
2115 "unknown sas_task proto: 0x%x\n",
2125 slot
->port
= tei
.port
;
2126 t
->lldd_task
= (void *) slot
;
2127 list_add_tail(&slot
->list
, &slot
->port
->list
);
2128 /* TODO: select normal or high priority */
2130 spin_lock(&t
->task_state_lock
);
2131 t
->task_state_flags
|= SAS_TASK_AT_INITIATOR
;
2132 spin_unlock(&t
->task_state_lock
);
2134 mvs_hba_memory_dump(mvi
, tag
, t
->task_proto
);
2137 mvi
->tx_prod
= (mvi
->tx_prod
+ 1) & (MVS_CHIP_SLOT_SZ
- 1);
2139 t
= list_entry(t
->list
.next
, struct sas_task
, list
);
2146 mvs_tag_free(mvi
, tag
);
2148 dev_printk(KERN_ERR
, &pdev
->dev
, "mvsas exec failed[%d]!\n", rc
);
2149 if (!sas_protocol_ata(t
->task_proto
))
2151 pci_unmap_sg(mvi
->pdev
, t
->scatter
, n_elem
,
2155 mw32(TX_PROD_IDX
, (mvi
->tx_prod
- 1) & (MVS_CHIP_SLOT_SZ
- 1));
2156 spin_unlock_irqrestore(&mvi
->lock
, flags
);
2160 static int mvs_task_abort(struct sas_task
*task
)
2163 unsigned long flags
;
2164 struct mvs_info
*mvi
= task
->dev
->port
->ha
->lldd_ha
;
2165 struct pci_dev
*pdev
= mvi
->pdev
;
2168 spin_lock_irqsave(&task
->task_state_lock
, flags
);
2169 if (task
->task_state_flags
& SAS_TASK_STATE_DONE
) {
2170 rc
= TMF_RESP_FUNC_COMPLETE
;
2171 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
2174 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
2176 switch (task
->task_proto
) {
2177 case SAS_PROTOCOL_SMP
:
2178 dev_printk(KERN_DEBUG
, &pdev
->dev
, "SMP Abort! \n");
2180 case SAS_PROTOCOL_SSP
:
2181 dev_printk(KERN_DEBUG
, &pdev
->dev
, "SSP Abort! \n");
2183 case SAS_PROTOCOL_SATA
:
2184 case SAS_PROTOCOL_STP
:
2185 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:{
2186 dev_printk(KERN_DEBUG
, &pdev
->dev
, "STP Abort! \n");
2188 dev_printk(KERN_DEBUG
, &pdev
->dev
, "Dump D2H FIS: \n");
2189 mvs_hexdump(sizeof(struct host_to_dev_fis
),
2190 (void *)&task
->ata_task
.fis
, 0);
2191 dev_printk(KERN_DEBUG
, &pdev
->dev
, "Dump ATAPI Cmd : \n");
2192 mvs_hexdump(16, task
->ata_task
.atapi_packet
, 0);
2194 spin_lock_irqsave(&task
->task_state_lock
, flags
);
2195 if (task
->task_state_flags
& SAS_TASK_NEED_DEV_RESET
) {
2199 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
2206 if (mvs_find_tag(mvi
, task
, &tag
)) {
2207 spin_lock_irqsave(&mvi
->lock
, flags
);
2208 mvs_slot_task_free(mvi
, task
, &mvi
->slot_info
[tag
], tag
);
2209 spin_unlock_irqrestore(&mvi
->lock
, flags
);
2211 if (!mvs_task_exec(task
, 1, GFP_ATOMIC
))
2212 rc
= TMF_RESP_FUNC_COMPLETE
;
2214 rc
= TMF_RESP_FUNC_FAILED
;
2219 static void mvs_free(struct mvs_info
*mvi
)
2226 for (i
= 0; i
< MVS_SLOTS
; i
++) {
2227 struct mvs_slot_info
*slot
= &mvi
->slot_info
[i
];
2230 dma_free_coherent(&mvi
->pdev
->dev
, MVS_SLOT_BUF_SZ
,
2231 slot
->buf
, slot
->buf_dma
);
2235 dma_free_coherent(&mvi
->pdev
->dev
,
2236 sizeof(*mvi
->tx
) * MVS_CHIP_SLOT_SZ
,
2237 mvi
->tx
, mvi
->tx_dma
);
2239 dma_free_coherent(&mvi
->pdev
->dev
, MVS_RX_FISL_SZ
,
2240 mvi
->rx_fis
, mvi
->rx_fis_dma
);
2242 dma_free_coherent(&mvi
->pdev
->dev
,
2243 sizeof(*mvi
->rx
) * (MVS_RX_RING_SZ
+ 1),
2244 mvi
->rx
, mvi
->rx_dma
);
2246 dma_free_coherent(&mvi
->pdev
->dev
,
2247 sizeof(*mvi
->slot
) * MVS_SLOTS
,
2248 mvi
->slot
, mvi
->slot_dma
);
2249 #ifdef MVS_ENABLE_PERI
2251 iounmap(mvi
->peri_regs
);
2256 scsi_host_put(mvi
->shost
);
2257 kfree(mvi
->sas
.sas_port
);
2258 kfree(mvi
->sas
.sas_phy
);
2262 /* FIXME: locking? */
2263 static int mvs_phy_control(struct asd_sas_phy
*sas_phy
, enum phy_func func
,
2266 struct mvs_info
*mvi
= sas_phy
->ha
->lldd_ha
;
2267 int rc
= 0, phy_id
= sas_phy
->id
;
2270 tmp
= mvs_read_phy_ctl(mvi
, phy_id
);
2273 case PHY_FUNC_SET_LINK_RATE
:{
2274 struct sas_phy_linkrates
*rates
= funcdata
;
2275 u32 lrmin
= 0, lrmax
= 0;
2277 lrmin
= (rates
->minimum_linkrate
<< 8);
2278 lrmax
= (rates
->maximum_linkrate
<< 12);
2285 tmp
&= ~(0xf << 12);
2288 mvs_write_phy_ctl(mvi
, phy_id
, tmp
);
2292 case PHY_FUNC_HARD_RESET
:
2293 if (tmp
& PHY_RST_HARD
)
2295 mvs_write_phy_ctl(mvi
, phy_id
, tmp
| PHY_RST_HARD
);
2298 case PHY_FUNC_LINK_RESET
:
2299 mvs_write_phy_ctl(mvi
, phy_id
, tmp
| PHY_RST
);
2302 case PHY_FUNC_DISABLE
:
2303 case PHY_FUNC_RELEASE_SPINUP_HOLD
:
2311 static void __devinit
mvs_phy_init(struct mvs_info
*mvi
, int phy_id
)
2313 struct mvs_phy
*phy
= &mvi
->phy
[phy_id
];
2314 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
2316 sas_phy
->enabled
= (phy_id
< mvi
->chip
->n_phy
) ? 1 : 0;
2317 sas_phy
->class = SAS
;
2318 sas_phy
->iproto
= SAS_PROTOCOL_ALL
;
2319 sas_phy
->tproto
= 0;
2320 sas_phy
->type
= PHY_TYPE_PHYSICAL
;
2321 sas_phy
->role
= PHY_ROLE_INITIATOR
;
2322 sas_phy
->oob_mode
= OOB_NOT_CONNECTED
;
2323 sas_phy
->linkrate
= SAS_LINK_RATE_UNKNOWN
;
2325 sas_phy
->id
= phy_id
;
2326 sas_phy
->sas_addr
= &mvi
->sas_addr
[0];
2327 sas_phy
->frame_rcvd
= &phy
->frame_rcvd
[0];
2328 sas_phy
->ha
= &mvi
->sas
;
2329 sas_phy
->lldd_phy
= phy
;
2332 static struct mvs_info
*__devinit
mvs_alloc(struct pci_dev
*pdev
,
2333 const struct pci_device_id
*ent
)
2335 struct mvs_info
*mvi
;
2336 unsigned long res_start
, res_len
, res_flag
;
2337 struct asd_sas_phy
**arr_phy
;
2338 struct asd_sas_port
**arr_port
;
2339 const struct mvs_chip_info
*chip
= &mvs_chips
[ent
->driver_data
];
2343 * alloc and init our per-HBA mvs_info struct
2346 mvi
= kzalloc(sizeof(*mvi
), GFP_KERNEL
);
2350 spin_lock_init(&mvi
->lock
);
2351 #ifdef MVS_USE_TASKLET
2352 tasklet_init(&mvi
->tasklet
, mvs_tasklet
, (unsigned long)mvi
);
2357 if (pdev
->device
== 0x6440 && pdev
->revision
== 0)
2358 mvi
->flags
|= MVF_PHY_PWR_FIX
;
2361 * alloc and init SCSI, SAS glue
2364 mvi
->shost
= scsi_host_alloc(&mvs_sht
, sizeof(void *));
2368 arr_phy
= kcalloc(MVS_MAX_PHYS
, sizeof(void *), GFP_KERNEL
);
2369 arr_port
= kcalloc(MVS_MAX_PHYS
, sizeof(void *), GFP_KERNEL
);
2370 if (!arr_phy
|| !arr_port
)
2373 for (i
= 0; i
< MVS_MAX_PHYS
; i
++) {
2374 mvs_phy_init(mvi
, i
);
2375 arr_phy
[i
] = &mvi
->phy
[i
].sas_phy
;
2376 arr_port
[i
] = &mvi
->port
[i
].sas_port
;
2377 mvi
->port
[i
].taskfileset
= MVS_ID_NOT_MAPPED
;
2378 mvi
->port
[i
].wide_port_phymap
= 0;
2379 mvi
->port
[i
].port_attached
= 0;
2380 INIT_LIST_HEAD(&mvi
->port
[i
].list
);
2383 SHOST_TO_SAS_HA(mvi
->shost
) = &mvi
->sas
;
2384 mvi
->shost
->transportt
= mvs_stt
;
2385 mvi
->shost
->max_id
= 21;
2386 mvi
->shost
->max_lun
= ~0;
2387 mvi
->shost
->max_channel
= 0;
2388 mvi
->shost
->max_cmd_len
= 16;
2390 mvi
->sas
.sas_ha_name
= DRV_NAME
;
2391 mvi
->sas
.dev
= &pdev
->dev
;
2392 mvi
->sas
.lldd_module
= THIS_MODULE
;
2393 mvi
->sas
.sas_addr
= &mvi
->sas_addr
[0];
2394 mvi
->sas
.sas_phy
= arr_phy
;
2395 mvi
->sas
.sas_port
= arr_port
;
2396 mvi
->sas
.num_phys
= chip
->n_phy
;
2397 mvi
->sas
.lldd_max_execute_num
= 1;
2398 mvi
->sas
.lldd_queue_size
= MVS_QUEUE_SIZE
;
2399 mvi
->shost
->can_queue
= MVS_CAN_QUEUE
;
2400 mvi
->shost
->cmd_per_lun
= MVS_SLOTS
/ mvi
->sas
.num_phys
;
2401 mvi
->sas
.lldd_ha
= mvi
;
2402 mvi
->sas
.core
.shost
= mvi
->shost
;
2407 * ioremap main and peripheral registers
2410 #ifdef MVS_ENABLE_PERI
2411 res_start
= pci_resource_start(pdev
, 2);
2412 res_len
= pci_resource_len(pdev
, 2);
2413 if (!res_start
|| !res_len
)
2416 mvi
->peri_regs
= ioremap_nocache(res_start
, res_len
);
2417 if (!mvi
->peri_regs
)
2421 res_start
= pci_resource_start(pdev
, 4);
2422 res_len
= pci_resource_len(pdev
, 4);
2423 if (!res_start
|| !res_len
)
2426 res_flag
= pci_resource_flags(pdev
, 4);
2427 if (res_flag
& IORESOURCE_CACHEABLE
)
2428 mvi
->regs
= ioremap(res_start
, res_len
);
2430 mvi
->regs
= ioremap_nocache(res_start
, res_len
);
2436 * alloc and init our DMA areas
2439 mvi
->tx
= dma_alloc_coherent(&pdev
->dev
,
2440 sizeof(*mvi
->tx
) * MVS_CHIP_SLOT_SZ
,
2441 &mvi
->tx_dma
, GFP_KERNEL
);
2444 memset(mvi
->tx
, 0, sizeof(*mvi
->tx
) * MVS_CHIP_SLOT_SZ
);
2446 mvi
->rx_fis
= dma_alloc_coherent(&pdev
->dev
, MVS_RX_FISL_SZ
,
2447 &mvi
->rx_fis_dma
, GFP_KERNEL
);
2450 memset(mvi
->rx_fis
, 0, MVS_RX_FISL_SZ
);
2452 mvi
->rx
= dma_alloc_coherent(&pdev
->dev
,
2453 sizeof(*mvi
->rx
) * (MVS_RX_RING_SZ
+ 1),
2454 &mvi
->rx_dma
, GFP_KERNEL
);
2457 memset(mvi
->rx
, 0, sizeof(*mvi
->rx
) * (MVS_RX_RING_SZ
+ 1));
2459 mvi
->rx
[0] = cpu_to_le32(0xfff);
2460 mvi
->rx_cons
= 0xfff;
2462 mvi
->slot
= dma_alloc_coherent(&pdev
->dev
,
2463 sizeof(*mvi
->slot
) * MVS_SLOTS
,
2464 &mvi
->slot_dma
, GFP_KERNEL
);
2467 memset(mvi
->slot
, 0, sizeof(*mvi
->slot
) * MVS_SLOTS
);
2469 for (i
= 0; i
< MVS_SLOTS
; i
++) {
2470 struct mvs_slot_info
*slot
= &mvi
->slot_info
[i
];
2472 slot
->buf
= dma_alloc_coherent(&pdev
->dev
, MVS_SLOT_BUF_SZ
,
2473 &slot
->buf_dma
, GFP_KERNEL
);
2476 memset(slot
->buf
, 0, MVS_SLOT_BUF_SZ
);
2479 /* finally, read NVRAM to get our SAS address */
2480 if (mvs_nvram_read(mvi
, NVR_SAS_ADDR
, &mvi
->sas_addr
, 8))
2489 static u32
mvs_cr32(void __iomem
*regs
, u32 addr
)
2491 mw32(CMD_ADDR
, addr
);
2492 return mr32(CMD_DATA
);
2495 static void mvs_cw32(void __iomem
*regs
, u32 addr
, u32 val
)
2497 mw32(CMD_ADDR
, addr
);
2498 mw32(CMD_DATA
, val
);
2501 static u32
mvs_read_phy_ctl(struct mvs_info
*mvi
, u32 port
)
2503 void __iomem
*regs
= mvi
->regs
;
2504 return (port
< 4)?mr32(P0_SER_CTLSTAT
+ port
* 4):
2505 mr32(P4_SER_CTLSTAT
+ (port
- 4) * 4);
2508 static void mvs_write_phy_ctl(struct mvs_info
*mvi
, u32 port
, u32 val
)
2510 void __iomem
*regs
= mvi
->regs
;
2512 mw32(P0_SER_CTLSTAT
+ port
* 4, val
);
2514 mw32(P4_SER_CTLSTAT
+ (port
- 4) * 4, val
);
2517 static u32
mvs_read_port(struct mvs_info
*mvi
, u32 off
, u32 off2
, u32 port
)
2519 void __iomem
*regs
= mvi
->regs
+ off
;
2520 void __iomem
*regs2
= mvi
->regs
+ off2
;
2521 return (port
< 4)?readl(regs
+ port
* 8):
2522 readl(regs2
+ (port
- 4) * 8);
2525 static void mvs_write_port(struct mvs_info
*mvi
, u32 off
, u32 off2
,
2528 void __iomem
*regs
= mvi
->regs
+ off
;
2529 void __iomem
*regs2
= mvi
->regs
+ off2
;
2531 writel(val
, regs
+ port
* 8);
2533 writel(val
, regs2
+ (port
- 4) * 8);
2536 static u32
mvs_read_port_cfg_data(struct mvs_info
*mvi
, u32 port
)
2538 return mvs_read_port(mvi
, MVS_P0_CFG_DATA
, MVS_P4_CFG_DATA
, port
);
2541 static void mvs_write_port_cfg_data(struct mvs_info
*mvi
, u32 port
, u32 val
)
2543 mvs_write_port(mvi
, MVS_P0_CFG_DATA
, MVS_P4_CFG_DATA
, port
, val
);
2546 static void mvs_write_port_cfg_addr(struct mvs_info
*mvi
, u32 port
, u32 addr
)
2548 mvs_write_port(mvi
, MVS_P0_CFG_ADDR
, MVS_P4_CFG_ADDR
, port
, addr
);
2551 static u32
mvs_read_port_vsr_data(struct mvs_info
*mvi
, u32 port
)
2553 return mvs_read_port(mvi
, MVS_P0_VSR_DATA
, MVS_P4_VSR_DATA
, port
);
2556 static void mvs_write_port_vsr_data(struct mvs_info
*mvi
, u32 port
, u32 val
)
2558 mvs_write_port(mvi
, MVS_P0_VSR_DATA
, MVS_P4_VSR_DATA
, port
, val
);
2561 static void mvs_write_port_vsr_addr(struct mvs_info
*mvi
, u32 port
, u32 addr
)
2563 mvs_write_port(mvi
, MVS_P0_VSR_ADDR
, MVS_P4_VSR_ADDR
, port
, addr
);
2566 static u32
mvs_read_port_irq_stat(struct mvs_info
*mvi
, u32 port
)
2568 return mvs_read_port(mvi
, MVS_P0_INT_STAT
, MVS_P4_INT_STAT
, port
);
2571 static void mvs_write_port_irq_stat(struct mvs_info
*mvi
, u32 port
, u32 val
)
2573 mvs_write_port(mvi
, MVS_P0_INT_STAT
, MVS_P4_INT_STAT
, port
, val
);
2576 static u32
mvs_read_port_irq_mask(struct mvs_info
*mvi
, u32 port
)
2578 return mvs_read_port(mvi
, MVS_P0_INT_MASK
, MVS_P4_INT_MASK
, port
);
2581 static void mvs_write_port_irq_mask(struct mvs_info
*mvi
, u32 port
, u32 val
)
2583 mvs_write_port(mvi
, MVS_P0_INT_MASK
, MVS_P4_INT_MASK
, port
, val
);
2586 static void __devinit
mvs_phy_hacks(struct mvs_info
*mvi
)
2588 void __iomem
*regs
= mvi
->regs
;
2591 /* workaround for SATA R-ERR, to ignore phy glitch */
2592 tmp
= mvs_cr32(regs
, CMD_PHY_TIMER
);
2595 mvs_cw32(regs
, CMD_PHY_TIMER
, tmp
);
2597 /* enable retry 127 times */
2598 mvs_cw32(regs
, CMD_SAS_CTL1
, 0x7f7f);
2600 /* extend open frame timeout to max */
2601 tmp
= mvs_cr32(regs
, CMD_SAS_CTL0
);
2604 mvs_cw32(regs
, CMD_SAS_CTL0
, tmp
);
2606 /* workaround for WDTIMEOUT , set to 550 ms */
2607 mvs_cw32(regs
, CMD_WD_TIMER
, 0x86470);
2609 /* not to halt for different port op during wideport link change */
2610 mvs_cw32(regs
, CMD_APP_ERR_CONFIG
, 0xffefbf7d);
2612 /* workaround for Seagate disk not-found OOB sequence, recv
2613 * COMINIT before sending out COMWAKE */
2614 tmp
= mvs_cr32(regs
, CMD_PHY_MODE_21
);
2617 mvs_cw32(regs
, CMD_PHY_MODE_21
, tmp
);
2619 tmp
= mvs_cr32(regs
, CMD_PHY_TIMER
);
2621 tmp
|= (2U << 29); /* 8 ms retry */
2622 mvs_cw32(regs
, CMD_PHY_TIMER
, tmp
);
2624 /* TEST - for phy decoding error, adjust voltage levels */
2625 mw32(P0_VSR_ADDR
+ 0, 0x8);
2626 mw32(P0_VSR_DATA
+ 0, 0x2F0);
2628 mw32(P0_VSR_ADDR
+ 8, 0x8);
2629 mw32(P0_VSR_DATA
+ 8, 0x2F0);
2631 mw32(P0_VSR_ADDR
+ 16, 0x8);
2632 mw32(P0_VSR_DATA
+ 16, 0x2F0);
2634 mw32(P0_VSR_ADDR
+ 24, 0x8);
2635 mw32(P0_VSR_DATA
+ 24, 0x2F0);
2639 static void mvs_enable_xmt(struct mvs_info
*mvi
, int PhyId
)
2641 void __iomem
*regs
= mvi
->regs
;
2645 if (mvi
->chip
->n_phy
<= 4)
2646 tmp
|= 1 << (PhyId
+ PCS_EN_PORT_XMT_SHIFT
);
2648 tmp
|= 1 << (PhyId
+ PCS_EN_PORT_XMT_SHIFT2
);
2652 static void mvs_detect_porttype(struct mvs_info
*mvi
, int i
)
2654 void __iomem
*regs
= mvi
->regs
;
2656 struct mvs_phy
*phy
= &mvi
->phy
[i
];
2658 /* TODO check & save device type */
2659 reg
= mr32(GBL_PORT_TYPE
);
2661 if (reg
& MODE_SAS_SATA
& (1 << i
))
2662 phy
->phy_type
|= PORT_TYPE_SAS
;
2664 phy
->phy_type
|= PORT_TYPE_SATA
;
2667 static void *mvs_get_d2h_reg(struct mvs_info
*mvi
, int i
, void *buf
)
2669 u32
*s
= (u32
*) buf
;
2674 mvs_write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG3
);
2675 s
[3] = mvs_read_port_cfg_data(mvi
, i
);
2677 mvs_write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG2
);
2678 s
[2] = mvs_read_port_cfg_data(mvi
, i
);
2680 mvs_write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG1
);
2681 s
[1] = mvs_read_port_cfg_data(mvi
, i
);
2683 mvs_write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG0
);
2684 s
[0] = mvs_read_port_cfg_data(mvi
, i
);
2689 static u32
mvs_is_sig_fis_received(u32 irq_status
)
2691 return irq_status
& PHYEV_SIG_FIS
;
2694 static void mvs_update_wideport(struct mvs_info
*mvi
, int i
)
2696 struct mvs_phy
*phy
= &mvi
->phy
[i
];
2697 struct mvs_port
*port
= phy
->port
;
2700 for_each_phy(port
->wide_port_phymap
, no
, j
, mvi
->chip
->n_phy
)
2702 mvs_write_port_cfg_addr(mvi
, no
, PHYR_WIDE_PORT
);
2703 mvs_write_port_cfg_data(mvi
, no
,
2704 port
->wide_port_phymap
);
2706 mvs_write_port_cfg_addr(mvi
, no
, PHYR_WIDE_PORT
);
2707 mvs_write_port_cfg_data(mvi
, no
, 0);
2711 static u32
mvs_is_phy_ready(struct mvs_info
*mvi
, int i
)
2714 struct mvs_phy
*phy
= &mvi
->phy
[i
];
2715 struct mvs_port
*port
= phy
->port
;;
2717 tmp
= mvs_read_phy_ctl(mvi
, i
);
2719 if ((tmp
& PHY_READY_MASK
) && !(phy
->irq_status
& PHYEV_POOF
)) {
2721 phy
->phy_attached
= 1;
2726 if (phy
->phy_type
& PORT_TYPE_SAS
) {
2727 port
->wide_port_phymap
&= ~(1U << i
);
2728 if (!port
->wide_port_phymap
)
2729 port
->port_attached
= 0;
2730 mvs_update_wideport(mvi
, i
);
2731 } else if (phy
->phy_type
& PORT_TYPE_SATA
)
2732 port
->port_attached
= 0;
2733 mvs_free_reg_set(mvi
, phy
->port
);
2735 phy
->phy_attached
= 0;
2736 phy
->phy_type
&= ~(PORT_TYPE_SAS
| PORT_TYPE_SATA
);
2741 static void mvs_update_phyinfo(struct mvs_info
*mvi
, int i
,
2744 struct mvs_phy
*phy
= &mvi
->phy
[i
];
2745 struct pci_dev
*pdev
= mvi
->pdev
;
2749 mvs_write_port_cfg_addr(mvi
, i
, PHYR_IDENTIFY
);
2750 phy
->dev_info
= mvs_read_port_cfg_data(mvi
, i
);
2752 mvs_write_port_cfg_addr(mvi
, i
, PHYR_ADDR_HI
);
2753 phy
->dev_sas_addr
= (u64
) mvs_read_port_cfg_data(mvi
, i
) << 32;
2755 mvs_write_port_cfg_addr(mvi
, i
, PHYR_ADDR_LO
);
2756 phy
->dev_sas_addr
|= mvs_read_port_cfg_data(mvi
, i
);
2759 phy
->irq_status
= mvs_read_port_irq_stat(mvi
, i
);
2760 phy
->phy_status
= mvs_is_phy_ready(mvi
, i
);
2763 if (phy
->phy_status
) {
2765 struct asd_sas_phy
*sas_phy
= mvi
->sas
.sas_phy
[i
];
2767 mvs_write_port_cfg_addr(mvi
, i
, PHYR_PHY_STAT
);
2768 phy_st
= mvs_read_port_cfg_data(mvi
, i
);
2771 (phy
->phy_status
& PHY_NEG_SPP_PHYS_LINK_RATE_MASK
) >>
2772 PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET
;
2773 phy
->minimum_linkrate
=
2775 PHY_MIN_SPP_PHYS_LINK_RATE_MASK
) >> 8;
2776 phy
->maximum_linkrate
=
2778 PHY_MAX_SPP_PHYS_LINK_RATE_MASK
) >> 12;
2780 if (phy
->phy_type
& PORT_TYPE_SAS
) {
2781 /* Updated attached_sas_addr */
2782 mvs_write_port_cfg_addr(mvi
, i
, PHYR_ATT_ADDR_HI
);
2783 phy
->att_dev_sas_addr
=
2784 (u64
) mvs_read_port_cfg_data(mvi
, i
) << 32;
2785 mvs_write_port_cfg_addr(mvi
, i
, PHYR_ATT_ADDR_LO
);
2786 phy
->att_dev_sas_addr
|= mvs_read_port_cfg_data(mvi
, i
);
2787 mvs_write_port_cfg_addr(mvi
, i
, PHYR_ATT_DEV_INFO
);
2788 phy
->att_dev_info
= mvs_read_port_cfg_data(mvi
, i
);
2789 phy
->identify
.device_type
=
2790 phy
->att_dev_info
& PORT_DEV_TYPE_MASK
;
2792 if (phy
->identify
.device_type
== SAS_END_DEV
)
2793 phy
->identify
.target_port_protocols
=
2795 else if (phy
->identify
.device_type
!= NO_DEVICE
)
2796 phy
->identify
.target_port_protocols
=
2798 if (phy_st
& PHY_OOB_DTCTD
)
2799 sas_phy
->oob_mode
= SAS_OOB_MODE
;
2800 phy
->frame_rcvd_size
=
2801 sizeof(struct sas_identify_frame
);
2802 } else if (phy
->phy_type
& PORT_TYPE_SATA
) {
2803 phy
->identify
.target_port_protocols
= SAS_PROTOCOL_STP
;
2804 if (mvs_is_sig_fis_received(phy
->irq_status
)) {
2805 phy
->att_dev_sas_addr
= i
; /* temp */
2806 if (phy_st
& PHY_OOB_DTCTD
)
2807 sas_phy
->oob_mode
= SATA_OOB_MODE
;
2808 phy
->frame_rcvd_size
=
2809 sizeof(struct dev_to_host_fis
);
2810 mvs_get_d2h_reg(mvi
, i
,
2811 (void *)sas_phy
->frame_rcvd
);
2813 dev_printk(KERN_DEBUG
, &pdev
->dev
,
2815 phy
->phy_type
&= ~(PORT_TYPE_SATA
);
2819 tmp64
= cpu_to_be64(phy
->att_dev_sas_addr
);
2820 memcpy(sas_phy
->attached_sas_addr
, &tmp64
, SAS_ADDR_SIZE
);
2822 dev_printk(KERN_DEBUG
, &pdev
->dev
,
2823 "phy[%d] Get Attached Address 0x%llX ,"
2824 " SAS Address 0x%llX\n",
2826 (unsigned long long)phy
->att_dev_sas_addr
,
2827 (unsigned long long)phy
->dev_sas_addr
);
2828 dev_printk(KERN_DEBUG
, &pdev
->dev
,
2829 "Rate = %x , type = %d\n",
2830 sas_phy
->linkrate
, phy
->phy_type
);
2832 /* workaround for HW phy decoding error on 1.5g disk drive */
2833 mvs_write_port_vsr_addr(mvi
, i
, VSR_PHY_MODE6
);
2834 tmp
= mvs_read_port_vsr_data(mvi
, i
);
2835 if (((phy
->phy_status
& PHY_NEG_SPP_PHYS_LINK_RATE_MASK
) >>
2836 PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET
) ==
2837 SAS_LINK_RATE_1_5_GBPS
)
2838 tmp
&= ~PHY_MODE6_LATECLK
;
2840 tmp
|= PHY_MODE6_LATECLK
;
2841 mvs_write_port_vsr_data(mvi
, i
, tmp
);
2846 mvs_write_port_irq_stat(mvi
, i
, phy
->irq_status
);
2849 static void mvs_port_formed(struct asd_sas_phy
*sas_phy
)
2851 struct sas_ha_struct
*sas_ha
= sas_phy
->ha
;
2852 struct mvs_info
*mvi
= sas_ha
->lldd_ha
;
2853 struct asd_sas_port
*sas_port
= sas_phy
->port
;
2854 struct mvs_phy
*phy
= sas_phy
->lldd_phy
;
2855 struct mvs_port
*port
= &mvi
->port
[sas_port
->id
];
2856 unsigned long flags
;
2858 spin_lock_irqsave(&mvi
->lock
, flags
);
2859 port
->port_attached
= 1;
2861 port
->taskfileset
= MVS_ID_NOT_MAPPED
;
2862 if (phy
->phy_type
& PORT_TYPE_SAS
) {
2863 port
->wide_port_phymap
= sas_port
->phy_mask
;
2864 mvs_update_wideport(mvi
, sas_phy
->id
);
2866 spin_unlock_irqrestore(&mvi
->lock
, flags
);
2869 static int mvs_I_T_nexus_reset(struct domain_device
*dev
)
2871 return TMF_RESP_FUNC_FAILED
;
2874 static int __devinit
mvs_hw_init(struct mvs_info
*mvi
)
2876 void __iomem
*regs
= mvi
->regs
;
2880 /* make sure interrupts are masked immediately (paranoia) */
2882 tmp
= mr32(GBL_CTL
);
2884 /* Reset Controller */
2885 if (!(tmp
& HBA_RST
)) {
2886 if (mvi
->flags
& MVF_PHY_PWR_FIX
) {
2887 pci_read_config_dword(mvi
->pdev
, PCR_PHY_CTL
, &tmp
);
2888 tmp
&= ~PCTL_PWR_ON
;
2890 pci_write_config_dword(mvi
->pdev
, PCR_PHY_CTL
, tmp
);
2892 pci_read_config_dword(mvi
->pdev
, PCR_PHY_CTL2
, &tmp
);
2893 tmp
&= ~PCTL_PWR_ON
;
2895 pci_write_config_dword(mvi
->pdev
, PCR_PHY_CTL2
, tmp
);
2898 /* global reset, incl. COMRESET/H_RESET_N (self-clearing) */
2899 mw32_f(GBL_CTL
, HBA_RST
);
2902 /* wait for reset to finish; timeout is just a guess */
2907 if (!(mr32(GBL_CTL
) & HBA_RST
))
2910 if (mr32(GBL_CTL
) & HBA_RST
) {
2911 dev_printk(KERN_ERR
, &mvi
->pdev
->dev
, "HBA reset failed\n");
2916 /* make sure RST is set; HBA_RST /should/ have done that for us */
2918 if (cctl
& CCTL_RST
)
2921 mw32_f(CTL
, cctl
| CCTL_RST
);
2923 /* write to device control _AND_ device status register? - A.C. */
2924 pci_read_config_dword(mvi
->pdev
, PCR_DEV_CTRL
, &tmp
);
2925 tmp
&= ~PRD_REQ_MASK
;
2926 tmp
|= PRD_REQ_SIZE
;
2927 pci_write_config_dword(mvi
->pdev
, PCR_DEV_CTRL
, tmp
);
2929 pci_read_config_dword(mvi
->pdev
, PCR_PHY_CTL
, &tmp
);
2932 pci_write_config_dword(mvi
->pdev
, PCR_PHY_CTL
, tmp
);
2934 pci_read_config_dword(mvi
->pdev
, PCR_PHY_CTL2
, &tmp
);
2937 pci_write_config_dword(mvi
->pdev
, PCR_PHY_CTL2
, tmp
);
2942 mw32(PCS
, 0); /*MVS_PCS */
2946 mw32(CMD_LIST_LO
, mvi
->slot_dma
);
2947 mw32(CMD_LIST_HI
, (mvi
->slot_dma
>> 16) >> 16);
2949 mw32(RX_FIS_LO
, mvi
->rx_fis_dma
);
2950 mw32(RX_FIS_HI
, (mvi
->rx_fis_dma
>> 16) >> 16);
2952 mw32(TX_CFG
, MVS_CHIP_SLOT_SZ
);
2953 mw32(TX_LO
, mvi
->tx_dma
);
2954 mw32(TX_HI
, (mvi
->tx_dma
>> 16) >> 16);
2956 mw32(RX_CFG
, MVS_RX_RING_SZ
);
2957 mw32(RX_LO
, mvi
->rx_dma
);
2958 mw32(RX_HI
, (mvi
->rx_dma
>> 16) >> 16);
2960 /* enable auto port detection */
2961 mw32(GBL_PORT_TYPE
, MODE_AUTO_DET_EN
);
2963 /* init and reset phys */
2964 for (i
= 0; i
< mvi
->chip
->n_phy
; i
++) {
2965 u32 lo
= be32_to_cpu(*(u32
*)&mvi
->sas_addr
[4]);
2966 u32 hi
= be32_to_cpu(*(u32
*)&mvi
->sas_addr
[0]);
2968 mvs_detect_porttype(mvi
, i
);
2970 /* set phy local SAS address */
2971 mvs_write_port_cfg_addr(mvi
, i
, PHYR_ADDR_LO
);
2972 mvs_write_port_cfg_data(mvi
, i
, lo
);
2973 mvs_write_port_cfg_addr(mvi
, i
, PHYR_ADDR_HI
);
2974 mvs_write_port_cfg_data(mvi
, i
, hi
);
2977 tmp
= mvs_read_phy_ctl(mvi
, i
);
2979 mvs_write_phy_ctl(mvi
, i
, tmp
);
2984 for (i
= 0; i
< mvi
->chip
->n_phy
; i
++) {
2985 /* clear phy int status */
2986 tmp
= mvs_read_port_irq_stat(mvi
, i
);
2987 tmp
&= ~PHYEV_SIG_FIS
;
2988 mvs_write_port_irq_stat(mvi
, i
, tmp
);
2990 /* set phy int mask */
2991 tmp
= PHYEV_RDY_CH
| PHYEV_BROAD_CH
| PHYEV_UNASSOC_FIS
|
2992 PHYEV_ID_DONE
| PHYEV_DEC_ERR
;
2993 mvs_write_port_irq_mask(mvi
, i
, tmp
);
2996 mvs_update_phyinfo(mvi
, i
, 1);
2997 mvs_enable_xmt(mvi
, i
);
3000 /* FIXME: update wide port bitmaps */
3002 /* little endian for open address and command table, etc. */
3004 * it seems that ( from the spec ) turning on big-endian won't
3005 * do us any good on big-endian machines, need further confirmation
3008 cctl
|= CCTL_ENDIAN_CMD
;
3009 cctl
|= CCTL_ENDIAN_DATA
;
3010 cctl
&= ~CCTL_ENDIAN_OPEN
;
3011 cctl
|= CCTL_ENDIAN_RSP
;
3014 /* reset CMD queue */
3018 /* interrupt coalescing may cause missing HW interrput in some case,
3019 * and the max count is 0x1ff, while our max slot is 0x200,
3020 * it will make count 0.
3023 mw32(INT_COAL
, tmp
);
3026 mw32(INT_COAL_TMOUT
, tmp
);
3028 /* ladies and gentlemen, start your engines */
3030 mw32(TX_CFG
, MVS_CHIP_SLOT_SZ
| TX_EN
);
3031 mw32(RX_CFG
, MVS_RX_RING_SZ
| RX_EN
);
3032 /* enable CMD/CMPL_Q/RESP mode */
3033 mw32(PCS
, PCS_SATA_RETRY
| PCS_FIS_RX_EN
| PCS_CMD_EN
);
3035 /* enable completion queue interrupt */
3036 tmp
= (CINT_PORT_MASK
| CINT_DONE
| CINT_MEM
| CINT_SRS
);
3037 mw32(INT_MASK
, tmp
);
3039 /* Enable SRS interrupt */
3040 mw32(INT_MASK_SRS
, 0xFF);
3044 static void __devinit
mvs_print_info(struct mvs_info
*mvi
)
3046 struct pci_dev
*pdev
= mvi
->pdev
;
3047 static int printed_version
;
3049 if (!printed_version
++)
3050 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3052 dev_printk(KERN_INFO
, &pdev
->dev
, "%u phys, addr %llx\n",
3053 mvi
->chip
->n_phy
, SAS_ADDR(mvi
->sas_addr
));
3056 static int __devinit
mvs_pci_init(struct pci_dev
*pdev
,
3057 const struct pci_device_id
*ent
)
3060 struct mvs_info
*mvi
;
3061 irq_handler_t irq_handler
= mvs_interrupt
;
3063 rc
= pci_enable_device(pdev
);
3067 pci_set_master(pdev
);
3069 rc
= pci_request_regions(pdev
, DRV_NAME
);
3071 goto err_out_disable
;
3073 rc
= pci_go_64(pdev
);
3075 goto err_out_regions
;
3077 mvi
= mvs_alloc(pdev
, ent
);
3080 goto err_out_regions
;
3083 rc
= mvs_hw_init(mvi
);
3087 #ifndef MVS_DISABLE_MSI
3088 if (!pci_enable_msi(pdev
)) {
3090 void __iomem
*regs
= mvi
->regs
;
3091 mvi
->flags
|= MVF_MSI
;
3092 irq_handler
= mvs_msi_interrupt
;
3094 mw32(PCS
, tmp
| PCS_SELF_CLEAR
);
3098 rc
= request_irq(pdev
->irq
, irq_handler
, IRQF_SHARED
, DRV_NAME
, mvi
);
3102 rc
= scsi_add_host(mvi
->shost
, &pdev
->dev
);
3106 rc
= sas_register_ha(&mvi
->sas
);
3110 pci_set_drvdata(pdev
, mvi
);
3112 mvs_print_info(mvi
);
3114 mvs_hba_interrupt_enable(mvi
);
3116 scsi_scan_host(mvi
->shost
);
3121 scsi_remove_host(mvi
->shost
);
3123 free_irq(pdev
->irq
, mvi
);
3125 if (mvi
->flags
|= MVF_MSI
)
3126 pci_disable_msi(pdev
);
3130 pci_release_regions(pdev
);
3132 pci_disable_device(pdev
);
3136 static void __devexit
mvs_pci_remove(struct pci_dev
*pdev
)
3138 struct mvs_info
*mvi
= pci_get_drvdata(pdev
);
3140 pci_set_drvdata(pdev
, NULL
);
3143 sas_unregister_ha(&mvi
->sas
);
3144 mvs_hba_interrupt_disable(mvi
);
3145 sas_remove_host(mvi
->shost
);
3146 scsi_remove_host(mvi
->shost
);
3148 free_irq(pdev
->irq
, mvi
);
3149 if (mvi
->flags
& MVF_MSI
)
3150 pci_disable_msi(pdev
);
3152 pci_release_regions(pdev
);
3154 pci_disable_device(pdev
);
3157 static struct sas_domain_function_template mvs_transport_ops
= {
3158 .lldd_execute_task
= mvs_task_exec
,
3159 .lldd_control_phy
= mvs_phy_control
,
3160 .lldd_abort_task
= mvs_task_abort
,
3161 .lldd_port_formed
= mvs_port_formed
,
3162 .lldd_I_T_nexus_reset
= mvs_I_T_nexus_reset
,
3165 static struct pci_device_id __devinitdata mvs_pci_table
[] = {
3166 { PCI_VDEVICE(MARVELL
, 0x6320), chip_6320
},
3167 { PCI_VDEVICE(MARVELL
, 0x6340), chip_6440
},
3169 .vendor
= PCI_VENDOR_ID_MARVELL
,
3171 .subvendor
= PCI_ANY_ID
,
3172 .subdevice
= 0x6480,
3175 .driver_data
= chip_6480
,
3177 { PCI_VDEVICE(MARVELL
, 0x6440), chip_6440
},
3178 { PCI_VDEVICE(MARVELL
, 0x6480), chip_6480
},
3180 { } /* terminate list */
3183 static struct pci_driver mvs_pci_driver
= {
3185 .id_table
= mvs_pci_table
,
3186 .probe
= mvs_pci_init
,
3187 .remove
= __devexit_p(mvs_pci_remove
),
3190 static int __init
mvs_init(void)
3194 mvs_stt
= sas_domain_attach_transport(&mvs_transport_ops
);
3198 rc
= pci_register_driver(&mvs_pci_driver
);
3205 sas_release_transport(mvs_stt
);
3209 static void __exit
mvs_exit(void)
3211 pci_unregister_driver(&mvs_pci_driver
);
3212 sas_release_transport(mvs_stt
);
3215 module_init(mvs_init
);
3216 module_exit(mvs_exit
);
3218 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
3219 MODULE_DESCRIPTION("Marvell 88SE6440 SAS/SATA controller driver");
3220 MODULE_VERSION(DRV_VERSION
);
3221 MODULE_LICENSE("GPL");
3222 MODULE_DEVICE_TABLE(pci
, mvs_pci_table
);