4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/bootmem.h>
28 #include <asm/atomic.h>
29 #include <asm/uaccess.h>
30 #include <asm/tlbflush.h>
33 /*** Page table manipulation functions ***/
35 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
39 pte
= pte_offset_kernel(pmd
, addr
);
41 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
42 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
43 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
46 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
51 pmd
= pmd_offset(pud
, addr
);
53 next
= pmd_addr_end(addr
, end
);
54 if (pmd_none_or_clear_bad(pmd
))
56 vunmap_pte_range(pmd
, addr
, next
);
57 } while (pmd
++, addr
= next
, addr
!= end
);
60 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
65 pud
= pud_offset(pgd
, addr
);
67 next
= pud_addr_end(addr
, end
);
68 if (pud_none_or_clear_bad(pud
))
70 vunmap_pmd_range(pud
, addr
, next
);
71 } while (pud
++, addr
= next
, addr
!= end
);
74 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
80 pgd
= pgd_offset_k(addr
);
82 next
= pgd_addr_end(addr
, end
);
83 if (pgd_none_or_clear_bad(pgd
))
85 vunmap_pud_range(pgd
, addr
, next
);
86 } while (pgd
++, addr
= next
, addr
!= end
);
89 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
90 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
99 pte
= pte_alloc_kernel(pmd
, addr
);
103 struct page
*page
= pages
[*nr
];
105 if (WARN_ON(!pte_none(*pte
)))
109 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
111 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
115 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
116 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
121 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
125 next
= pmd_addr_end(addr
, end
);
126 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
128 } while (pmd
++, addr
= next
, addr
!= end
);
132 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
133 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
138 pud
= pud_alloc(&init_mm
, pgd
, addr
);
142 next
= pud_addr_end(addr
, end
);
143 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
145 } while (pud
++, addr
= next
, addr
!= end
);
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 static int vmap_page_range(unsigned long start
, unsigned long end
,
156 pgprot_t prot
, struct page
**pages
)
160 unsigned long addr
= start
;
165 pgd
= pgd_offset_k(addr
);
167 next
= pgd_addr_end(addr
, end
);
168 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
171 } while (pgd
++, addr
= next
, addr
!= end
);
172 flush_cache_vmap(start
, end
);
179 static inline int is_vmalloc_or_module_addr(const void *x
)
182 * ARM, x86-64 and sparc64 put modules in a special place,
183 * and fall back on vmalloc() if that fails. Others
184 * just put it in the vmalloc space.
186 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187 unsigned long addr
= (unsigned long)x
;
188 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
191 return is_vmalloc_addr(x
);
195 * Walk a vmap address to the struct page it maps.
197 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
199 unsigned long addr
= (unsigned long) vmalloc_addr
;
200 struct page
*page
= NULL
;
201 pgd_t
*pgd
= pgd_offset_k(addr
);
204 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205 * architectures that do not vmalloc module space
207 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
209 if (!pgd_none(*pgd
)) {
210 pud_t
*pud
= pud_offset(pgd
, addr
);
211 if (!pud_none(*pud
)) {
212 pmd_t
*pmd
= pmd_offset(pud
, addr
);
213 if (!pmd_none(*pmd
)) {
216 ptep
= pte_offset_map(pmd
, addr
);
218 if (pte_present(pte
))
219 page
= pte_page(pte
);
226 EXPORT_SYMBOL(vmalloc_to_page
);
229 * Map a vmalloc()-space virtual address to the physical page frame number.
231 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
233 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
235 EXPORT_SYMBOL(vmalloc_to_pfn
);
238 /*** Global kva allocator ***/
240 #define VM_LAZY_FREE 0x01
241 #define VM_LAZY_FREEING 0x02
242 #define VM_VM_AREA 0x04
245 unsigned long va_start
;
246 unsigned long va_end
;
248 struct rb_node rb_node
; /* address sorted rbtree */
249 struct list_head list
; /* address sorted list */
250 struct list_head purge_list
; /* "lazy purge" list */
252 struct rcu_head rcu_head
;
255 static DEFINE_SPINLOCK(vmap_area_lock
);
256 static struct rb_root vmap_area_root
= RB_ROOT
;
257 static LIST_HEAD(vmap_area_list
);
259 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
261 struct rb_node
*n
= vmap_area_root
.rb_node
;
264 struct vmap_area
*va
;
266 va
= rb_entry(n
, struct vmap_area
, rb_node
);
267 if (addr
< va
->va_start
)
269 else if (addr
> va
->va_start
)
278 static void __insert_vmap_area(struct vmap_area
*va
)
280 struct rb_node
**p
= &vmap_area_root
.rb_node
;
281 struct rb_node
*parent
= NULL
;
285 struct vmap_area
*tmp
;
288 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
289 if (va
->va_start
< tmp
->va_end
)
291 else if (va
->va_end
> tmp
->va_start
)
297 rb_link_node(&va
->rb_node
, parent
, p
);
298 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
300 /* address-sort this list so it is usable like the vmlist */
301 tmp
= rb_prev(&va
->rb_node
);
303 struct vmap_area
*prev
;
304 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
305 list_add_rcu(&va
->list
, &prev
->list
);
307 list_add_rcu(&va
->list
, &vmap_area_list
);
310 static void purge_vmap_area_lazy(void);
313 * Allocate a region of KVA of the specified size and alignment, within the
316 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
318 unsigned long vstart
, unsigned long vend
,
319 int node
, gfp_t gfp_mask
)
321 struct vmap_area
*va
;
326 BUG_ON(size
& ~PAGE_MASK
);
328 va
= kmalloc_node(sizeof(struct vmap_area
),
329 gfp_mask
& GFP_RECLAIM_MASK
, node
);
331 return ERR_PTR(-ENOMEM
);
334 addr
= ALIGN(vstart
, align
);
336 spin_lock(&vmap_area_lock
);
337 /* XXX: could have a last_hole cache */
338 n
= vmap_area_root
.rb_node
;
340 struct vmap_area
*first
= NULL
;
343 struct vmap_area
*tmp
;
344 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
345 if (tmp
->va_end
>= addr
) {
346 if (!first
&& tmp
->va_start
< addr
+ size
)
358 if (first
->va_end
< addr
) {
359 n
= rb_next(&first
->rb_node
);
361 first
= rb_entry(n
, struct vmap_area
, rb_node
);
366 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
367 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
369 n
= rb_next(&first
->rb_node
);
371 first
= rb_entry(n
, struct vmap_area
, rb_node
);
377 if (addr
+ size
> vend
) {
378 spin_unlock(&vmap_area_lock
);
380 purge_vmap_area_lazy();
384 if (printk_ratelimit())
386 "vmap allocation for size %lu failed: "
387 "use vmalloc=<size> to increase size.\n", size
);
388 return ERR_PTR(-EBUSY
);
391 BUG_ON(addr
& (align
-1));
394 va
->va_end
= addr
+ size
;
396 __insert_vmap_area(va
);
397 spin_unlock(&vmap_area_lock
);
402 static void rcu_free_va(struct rcu_head
*head
)
404 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
409 static void __free_vmap_area(struct vmap_area
*va
)
411 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
412 rb_erase(&va
->rb_node
, &vmap_area_root
);
413 RB_CLEAR_NODE(&va
->rb_node
);
414 list_del_rcu(&va
->list
);
416 call_rcu(&va
->rcu_head
, rcu_free_va
);
420 * Free a region of KVA allocated by alloc_vmap_area
422 static void free_vmap_area(struct vmap_area
*va
)
424 spin_lock(&vmap_area_lock
);
425 __free_vmap_area(va
);
426 spin_unlock(&vmap_area_lock
);
430 * Clear the pagetable entries of a given vmap_area
432 static void unmap_vmap_area(struct vmap_area
*va
)
434 vunmap_page_range(va
->va_start
, va
->va_end
);
437 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
440 * Unmap page tables and force a TLB flush immediately if
441 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
442 * bugs similarly to those in linear kernel virtual address
443 * space after a page has been freed.
445 * All the lazy freeing logic is still retained, in order to
446 * minimise intrusiveness of this debugging feature.
448 * This is going to be *slow* (linear kernel virtual address
449 * debugging doesn't do a broadcast TLB flush so it is a lot
452 #ifdef CONFIG_DEBUG_PAGEALLOC
453 vunmap_page_range(start
, end
);
454 flush_tlb_kernel_range(start
, end
);
459 * lazy_max_pages is the maximum amount of virtual address space we gather up
460 * before attempting to purge with a TLB flush.
462 * There is a tradeoff here: a larger number will cover more kernel page tables
463 * and take slightly longer to purge, but it will linearly reduce the number of
464 * global TLB flushes that must be performed. It would seem natural to scale
465 * this number up linearly with the number of CPUs (because vmapping activity
466 * could also scale linearly with the number of CPUs), however it is likely
467 * that in practice, workloads might be constrained in other ways that mean
468 * vmap activity will not scale linearly with CPUs. Also, I want to be
469 * conservative and not introduce a big latency on huge systems, so go with
470 * a less aggressive log scale. It will still be an improvement over the old
471 * code, and it will be simple to change the scale factor if we find that it
472 * becomes a problem on bigger systems.
474 static unsigned long lazy_max_pages(void)
478 log
= fls(num_online_cpus());
480 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
483 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
486 * Purges all lazily-freed vmap areas.
488 * If sync is 0 then don't purge if there is already a purge in progress.
489 * If force_flush is 1, then flush kernel TLBs between *start and *end even
490 * if we found no lazy vmap areas to unmap (callers can use this to optimise
491 * their own TLB flushing).
492 * Returns with *start = min(*start, lowest purged address)
493 * *end = max(*end, highest purged address)
495 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
496 int sync
, int force_flush
)
498 static DEFINE_SPINLOCK(purge_lock
);
500 struct vmap_area
*va
;
504 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
505 * should not expect such behaviour. This just simplifies locking for
506 * the case that isn't actually used at the moment anyway.
508 if (!sync
&& !force_flush
) {
509 if (!spin_trylock(&purge_lock
))
512 spin_lock(&purge_lock
);
515 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
516 if (va
->flags
& VM_LAZY_FREE
) {
517 if (va
->va_start
< *start
)
518 *start
= va
->va_start
;
519 if (va
->va_end
> *end
)
521 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
523 list_add_tail(&va
->purge_list
, &valist
);
524 va
->flags
|= VM_LAZY_FREEING
;
525 va
->flags
&= ~VM_LAZY_FREE
;
531 BUG_ON(nr
> atomic_read(&vmap_lazy_nr
));
532 atomic_sub(nr
, &vmap_lazy_nr
);
535 if (nr
|| force_flush
)
536 flush_tlb_kernel_range(*start
, *end
);
539 spin_lock(&vmap_area_lock
);
540 list_for_each_entry(va
, &valist
, purge_list
)
541 __free_vmap_area(va
);
542 spin_unlock(&vmap_area_lock
);
544 spin_unlock(&purge_lock
);
548 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
549 * is already purging.
551 static void try_purge_vmap_area_lazy(void)
553 unsigned long start
= ULONG_MAX
, end
= 0;
555 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
559 * Kick off a purge of the outstanding lazy areas.
561 static void purge_vmap_area_lazy(void)
563 unsigned long start
= ULONG_MAX
, end
= 0;
565 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
569 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
570 * called for the correct range previously.
572 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
574 va
->flags
|= VM_LAZY_FREE
;
575 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
576 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
577 try_purge_vmap_area_lazy();
581 * Free and unmap a vmap area
583 static void free_unmap_vmap_area(struct vmap_area
*va
)
585 flush_cache_vunmap(va
->va_start
, va
->va_end
);
586 free_unmap_vmap_area_noflush(va
);
589 static struct vmap_area
*find_vmap_area(unsigned long addr
)
591 struct vmap_area
*va
;
593 spin_lock(&vmap_area_lock
);
594 va
= __find_vmap_area(addr
);
595 spin_unlock(&vmap_area_lock
);
600 static void free_unmap_vmap_area_addr(unsigned long addr
)
602 struct vmap_area
*va
;
604 va
= find_vmap_area(addr
);
606 free_unmap_vmap_area(va
);
610 /*** Per cpu kva allocator ***/
613 * vmap space is limited especially on 32 bit architectures. Ensure there is
614 * room for at least 16 percpu vmap blocks per CPU.
617 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
618 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
619 * instead (we just need a rough idea)
621 #if BITS_PER_LONG == 32
622 #define VMALLOC_SPACE (128UL*1024*1024)
624 #define VMALLOC_SPACE (128UL*1024*1024*1024)
627 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
628 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
629 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
630 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
631 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
632 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
633 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
634 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
635 VMALLOC_PAGES / NR_CPUS / 16))
637 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
639 static bool vmap_initialized __read_mostly
= false;
641 struct vmap_block_queue
{
643 struct list_head free
;
644 struct list_head dirty
;
645 unsigned int nr_dirty
;
650 struct vmap_area
*va
;
651 struct vmap_block_queue
*vbq
;
652 unsigned long free
, dirty
;
653 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
654 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
657 struct list_head free_list
;
658 struct list_head dirty_list
;
660 struct rcu_head rcu_head
;
664 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
665 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
668 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
669 * in the free path. Could get rid of this if we change the API to return a
670 * "cookie" from alloc, to be passed to free. But no big deal yet.
672 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
673 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
676 * We should probably have a fallback mechanism to allocate virtual memory
677 * out of partially filled vmap blocks. However vmap block sizing should be
678 * fairly reasonable according to the vmalloc size, so it shouldn't be a
682 static unsigned long addr_to_vb_idx(unsigned long addr
)
684 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
685 addr
/= VMAP_BLOCK_SIZE
;
689 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
691 struct vmap_block_queue
*vbq
;
692 struct vmap_block
*vb
;
693 struct vmap_area
*va
;
694 unsigned long vb_idx
;
697 node
= numa_node_id();
699 vb
= kmalloc_node(sizeof(struct vmap_block
),
700 gfp_mask
& GFP_RECLAIM_MASK
, node
);
702 return ERR_PTR(-ENOMEM
);
704 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
705 VMALLOC_START
, VMALLOC_END
,
707 if (unlikely(IS_ERR(va
))) {
709 return ERR_PTR(PTR_ERR(va
));
712 err
= radix_tree_preload(gfp_mask
);
719 spin_lock_init(&vb
->lock
);
721 vb
->free
= VMAP_BBMAP_BITS
;
723 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
724 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
725 INIT_LIST_HEAD(&vb
->free_list
);
726 INIT_LIST_HEAD(&vb
->dirty_list
);
728 vb_idx
= addr_to_vb_idx(va
->va_start
);
729 spin_lock(&vmap_block_tree_lock
);
730 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
731 spin_unlock(&vmap_block_tree_lock
);
733 radix_tree_preload_end();
735 vbq
= &get_cpu_var(vmap_block_queue
);
737 spin_lock(&vbq
->lock
);
738 list_add(&vb
->free_list
, &vbq
->free
);
739 spin_unlock(&vbq
->lock
);
740 put_cpu_var(vmap_cpu_blocks
);
745 static void rcu_free_vb(struct rcu_head
*head
)
747 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
752 static void free_vmap_block(struct vmap_block
*vb
)
754 struct vmap_block
*tmp
;
755 unsigned long vb_idx
;
757 spin_lock(&vb
->vbq
->lock
);
758 if (!list_empty(&vb
->free_list
))
759 list_del(&vb
->free_list
);
760 if (!list_empty(&vb
->dirty_list
))
761 list_del(&vb
->dirty_list
);
762 spin_unlock(&vb
->vbq
->lock
);
764 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
765 spin_lock(&vmap_block_tree_lock
);
766 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
767 spin_unlock(&vmap_block_tree_lock
);
770 free_unmap_vmap_area_noflush(vb
->va
);
771 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
774 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
776 struct vmap_block_queue
*vbq
;
777 struct vmap_block
*vb
;
778 unsigned long addr
= 0;
781 BUG_ON(size
& ~PAGE_MASK
);
782 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
783 order
= get_order(size
);
787 vbq
= &get_cpu_var(vmap_block_queue
);
788 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
791 spin_lock(&vb
->lock
);
792 i
= bitmap_find_free_region(vb
->alloc_map
,
793 VMAP_BBMAP_BITS
, order
);
796 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
797 BUG_ON(addr_to_vb_idx(addr
) !=
798 addr_to_vb_idx(vb
->va
->va_start
));
799 vb
->free
-= 1UL << order
;
801 spin_lock(&vbq
->lock
);
802 list_del_init(&vb
->free_list
);
803 spin_unlock(&vbq
->lock
);
805 spin_unlock(&vb
->lock
);
808 spin_unlock(&vb
->lock
);
810 put_cpu_var(vmap_cpu_blocks
);
814 vb
= new_vmap_block(gfp_mask
);
823 static void vb_free(const void *addr
, unsigned long size
)
825 unsigned long offset
;
826 unsigned long vb_idx
;
828 struct vmap_block
*vb
;
830 BUG_ON(size
& ~PAGE_MASK
);
831 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
833 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
835 order
= get_order(size
);
837 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
839 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
841 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
845 spin_lock(&vb
->lock
);
846 bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
);
848 spin_lock(&vb
->vbq
->lock
);
849 list_add(&vb
->dirty_list
, &vb
->vbq
->dirty
);
850 spin_unlock(&vb
->vbq
->lock
);
852 vb
->dirty
+= 1UL << order
;
853 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
854 BUG_ON(vb
->free
|| !list_empty(&vb
->free_list
));
855 spin_unlock(&vb
->lock
);
858 spin_unlock(&vb
->lock
);
862 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
864 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
865 * to amortize TLB flushing overheads. What this means is that any page you
866 * have now, may, in a former life, have been mapped into kernel virtual
867 * address by the vmap layer and so there might be some CPUs with TLB entries
868 * still referencing that page (additional to the regular 1:1 kernel mapping).
870 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
871 * be sure that none of the pages we have control over will have any aliases
872 * from the vmap layer.
874 void vm_unmap_aliases(void)
876 unsigned long start
= ULONG_MAX
, end
= 0;
880 if (unlikely(!vmap_initialized
))
883 for_each_possible_cpu(cpu
) {
884 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
885 struct vmap_block
*vb
;
888 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
891 spin_lock(&vb
->lock
);
892 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
893 while (i
< VMAP_BBMAP_BITS
) {
896 j
= find_next_zero_bit(vb
->dirty_map
,
899 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
900 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
901 vunmap_page_range(s
, e
);
910 i
= find_next_bit(vb
->dirty_map
,
913 spin_unlock(&vb
->lock
);
918 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
920 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
923 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
924 * @mem: the pointer returned by vm_map_ram
925 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
927 void vm_unmap_ram(const void *mem
, unsigned int count
)
929 unsigned long size
= count
<< PAGE_SHIFT
;
930 unsigned long addr
= (unsigned long)mem
;
933 BUG_ON(addr
< VMALLOC_START
);
934 BUG_ON(addr
> VMALLOC_END
);
935 BUG_ON(addr
& (PAGE_SIZE
-1));
937 debug_check_no_locks_freed(mem
, size
);
938 vmap_debug_free_range(addr
, addr
+size
);
940 if (likely(count
<= VMAP_MAX_ALLOC
))
943 free_unmap_vmap_area_addr(addr
);
945 EXPORT_SYMBOL(vm_unmap_ram
);
948 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
949 * @pages: an array of pointers to the pages to be mapped
950 * @count: number of pages
951 * @node: prefer to allocate data structures on this node
952 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
954 * Returns: a pointer to the address that has been mapped, or %NULL on failure
956 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
958 unsigned long size
= count
<< PAGE_SHIFT
;
962 if (likely(count
<= VMAP_MAX_ALLOC
)) {
963 mem
= vb_alloc(size
, GFP_KERNEL
);
966 addr
= (unsigned long)mem
;
968 struct vmap_area
*va
;
969 va
= alloc_vmap_area(size
, PAGE_SIZE
,
970 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
977 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
978 vm_unmap_ram(mem
, count
);
983 EXPORT_SYMBOL(vm_map_ram
);
985 void __init
vmalloc_init(void)
987 struct vmap_area
*va
;
988 struct vm_struct
*tmp
;
991 for_each_possible_cpu(i
) {
992 struct vmap_block_queue
*vbq
;
994 vbq
= &per_cpu(vmap_block_queue
, i
);
995 spin_lock_init(&vbq
->lock
);
996 INIT_LIST_HEAD(&vbq
->free
);
997 INIT_LIST_HEAD(&vbq
->dirty
);
1001 /* Import existing vmlist entries. */
1002 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1003 va
= alloc_bootmem(sizeof(struct vmap_area
));
1004 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1005 va
->va_start
= (unsigned long)tmp
->addr
;
1006 va
->va_end
= va
->va_start
+ tmp
->size
;
1007 __insert_vmap_area(va
);
1009 vmap_initialized
= true;
1012 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1014 unsigned long end
= addr
+ size
;
1015 vunmap_page_range(addr
, end
);
1016 flush_tlb_kernel_range(addr
, end
);
1019 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1021 unsigned long addr
= (unsigned long)area
->addr
;
1022 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1025 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1033 EXPORT_SYMBOL_GPL(map_vm_area
);
1035 /*** Old vmalloc interfaces ***/
1036 DEFINE_RWLOCK(vmlist_lock
);
1037 struct vm_struct
*vmlist
;
1039 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1040 unsigned long flags
, unsigned long start
, unsigned long end
,
1041 int node
, gfp_t gfp_mask
, void *caller
)
1043 static struct vmap_area
*va
;
1044 struct vm_struct
*area
;
1045 struct vm_struct
*tmp
, **p
;
1046 unsigned long align
= 1;
1048 BUG_ON(in_interrupt());
1049 if (flags
& VM_IOREMAP
) {
1050 int bit
= fls(size
);
1052 if (bit
> IOREMAP_MAX_ORDER
)
1053 bit
= IOREMAP_MAX_ORDER
;
1054 else if (bit
< PAGE_SHIFT
)
1060 size
= PAGE_ALIGN(size
);
1061 if (unlikely(!size
))
1064 area
= kmalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1065 if (unlikely(!area
))
1069 * We always allocate a guard page.
1073 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1079 area
->flags
= flags
;
1080 area
->addr
= (void *)va
->va_start
;
1084 area
->phys_addr
= 0;
1085 area
->caller
= caller
;
1087 va
->flags
|= VM_VM_AREA
;
1089 write_lock(&vmlist_lock
);
1090 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1091 if (tmp
->addr
>= area
->addr
)
1096 write_unlock(&vmlist_lock
);
1101 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1102 unsigned long start
, unsigned long end
)
1104 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1105 __builtin_return_address(0));
1107 EXPORT_SYMBOL_GPL(__get_vm_area
);
1110 * get_vm_area - reserve a contiguous kernel virtual area
1111 * @size: size of the area
1112 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1114 * Search an area of @size in the kernel virtual mapping area,
1115 * and reserved it for out purposes. Returns the area descriptor
1116 * on success or %NULL on failure.
1118 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1120 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1121 -1, GFP_KERNEL
, __builtin_return_address(0));
1124 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1127 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1128 -1, GFP_KERNEL
, caller
);
1131 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1132 int node
, gfp_t gfp_mask
)
1134 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
, node
,
1135 gfp_mask
, __builtin_return_address(0));
1138 static struct vm_struct
*find_vm_area(const void *addr
)
1140 struct vmap_area
*va
;
1142 va
= find_vmap_area((unsigned long)addr
);
1143 if (va
&& va
->flags
& VM_VM_AREA
)
1150 * remove_vm_area - find and remove a continuous kernel virtual area
1151 * @addr: base address
1153 * Search for the kernel VM area starting at @addr, and remove it.
1154 * This function returns the found VM area, but using it is NOT safe
1155 * on SMP machines, except for its size or flags.
1157 struct vm_struct
*remove_vm_area(const void *addr
)
1159 struct vmap_area
*va
;
1161 va
= find_vmap_area((unsigned long)addr
);
1162 if (va
&& va
->flags
& VM_VM_AREA
) {
1163 struct vm_struct
*vm
= va
->private;
1164 struct vm_struct
*tmp
, **p
;
1166 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1167 free_unmap_vmap_area(va
);
1168 vm
->size
-= PAGE_SIZE
;
1170 write_lock(&vmlist_lock
);
1171 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1174 write_unlock(&vmlist_lock
);
1181 static void __vunmap(const void *addr
, int deallocate_pages
)
1183 struct vm_struct
*area
;
1188 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1189 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1193 area
= remove_vm_area(addr
);
1194 if (unlikely(!area
)) {
1195 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1200 debug_check_no_locks_freed(addr
, area
->size
);
1201 debug_check_no_obj_freed(addr
, area
->size
);
1203 if (deallocate_pages
) {
1206 for (i
= 0; i
< area
->nr_pages
; i
++) {
1207 struct page
*page
= area
->pages
[i
];
1213 if (area
->flags
& VM_VPAGES
)
1224 * vfree - release memory allocated by vmalloc()
1225 * @addr: memory base address
1227 * Free the virtually continuous memory area starting at @addr, as
1228 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1229 * NULL, no operation is performed.
1231 * Must not be called in interrupt context.
1233 void vfree(const void *addr
)
1235 BUG_ON(in_interrupt());
1238 EXPORT_SYMBOL(vfree
);
1241 * vunmap - release virtual mapping obtained by vmap()
1242 * @addr: memory base address
1244 * Free the virtually contiguous memory area starting at @addr,
1245 * which was created from the page array passed to vmap().
1247 * Must not be called in interrupt context.
1249 void vunmap(const void *addr
)
1251 BUG_ON(in_interrupt());
1254 EXPORT_SYMBOL(vunmap
);
1257 * vmap - map an array of pages into virtually contiguous space
1258 * @pages: array of page pointers
1259 * @count: number of pages to map
1260 * @flags: vm_area->flags
1261 * @prot: page protection for the mapping
1263 * Maps @count pages from @pages into contiguous kernel virtual
1266 void *vmap(struct page
**pages
, unsigned int count
,
1267 unsigned long flags
, pgprot_t prot
)
1269 struct vm_struct
*area
;
1271 if (count
> num_physpages
)
1274 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1275 __builtin_return_address(0));
1279 if (map_vm_area(area
, prot
, &pages
)) {
1286 EXPORT_SYMBOL(vmap
);
1288 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1289 int node
, void *caller
);
1290 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1291 pgprot_t prot
, int node
, void *caller
)
1293 struct page
**pages
;
1294 unsigned int nr_pages
, array_size
, i
;
1296 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1297 array_size
= (nr_pages
* sizeof(struct page
*));
1299 area
->nr_pages
= nr_pages
;
1300 /* Please note that the recursion is strictly bounded. */
1301 if (array_size
> PAGE_SIZE
) {
1302 pages
= __vmalloc_node(array_size
, gfp_mask
| __GFP_ZERO
,
1303 PAGE_KERNEL
, node
, caller
);
1304 area
->flags
|= VM_VPAGES
;
1306 pages
= kmalloc_node(array_size
,
1307 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1310 area
->pages
= pages
;
1311 area
->caller
= caller
;
1313 remove_vm_area(area
->addr
);
1318 for (i
= 0; i
< area
->nr_pages
; i
++) {
1322 page
= alloc_page(gfp_mask
);
1324 page
= alloc_pages_node(node
, gfp_mask
, 0);
1326 if (unlikely(!page
)) {
1327 /* Successfully allocated i pages, free them in __vunmap() */
1331 area
->pages
[i
] = page
;
1334 if (map_vm_area(area
, prot
, &pages
))
1343 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1345 return __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1346 __builtin_return_address(0));
1350 * __vmalloc_node - allocate virtually contiguous memory
1351 * @size: allocation size
1352 * @gfp_mask: flags for the page level allocator
1353 * @prot: protection mask for the allocated pages
1354 * @node: node to use for allocation or -1
1355 * @caller: caller's return address
1357 * Allocate enough pages to cover @size from the page level
1358 * allocator with @gfp_mask flags. Map them into contiguous
1359 * kernel virtual space, using a pagetable protection of @prot.
1361 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1362 int node
, void *caller
)
1364 struct vm_struct
*area
;
1366 size
= PAGE_ALIGN(size
);
1367 if (!size
|| (size
>> PAGE_SHIFT
) > num_physpages
)
1370 area
= __get_vm_area_node(size
, VM_ALLOC
, VMALLOC_START
, VMALLOC_END
,
1371 node
, gfp_mask
, caller
);
1376 return __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1379 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1381 return __vmalloc_node(size
, gfp_mask
, prot
, -1,
1382 __builtin_return_address(0));
1384 EXPORT_SYMBOL(__vmalloc
);
1387 * vmalloc - allocate virtually contiguous memory
1388 * @size: allocation size
1389 * Allocate enough pages to cover @size from the page level
1390 * allocator and map them into contiguous kernel virtual space.
1392 * For tight control over page level allocator and protection flags
1393 * use __vmalloc() instead.
1395 void *vmalloc(unsigned long size
)
1397 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1398 -1, __builtin_return_address(0));
1400 EXPORT_SYMBOL(vmalloc
);
1403 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1404 * @size: allocation size
1406 * The resulting memory area is zeroed so it can be mapped to userspace
1407 * without leaking data.
1409 void *vmalloc_user(unsigned long size
)
1411 struct vm_struct
*area
;
1414 ret
= __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1415 PAGE_KERNEL
, -1, __builtin_return_address(0));
1417 area
= find_vm_area(ret
);
1418 area
->flags
|= VM_USERMAP
;
1422 EXPORT_SYMBOL(vmalloc_user
);
1425 * vmalloc_node - allocate memory on a specific node
1426 * @size: allocation size
1429 * Allocate enough pages to cover @size from the page level
1430 * allocator and map them into contiguous kernel virtual space.
1432 * For tight control over page level allocator and protection flags
1433 * use __vmalloc() instead.
1435 void *vmalloc_node(unsigned long size
, int node
)
1437 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1438 node
, __builtin_return_address(0));
1440 EXPORT_SYMBOL(vmalloc_node
);
1442 #ifndef PAGE_KERNEL_EXEC
1443 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1447 * vmalloc_exec - allocate virtually contiguous, executable memory
1448 * @size: allocation size
1450 * Kernel-internal function to allocate enough pages to cover @size
1451 * the page level allocator and map them into contiguous and
1452 * executable kernel virtual space.
1454 * For tight control over page level allocator and protection flags
1455 * use __vmalloc() instead.
1458 void *vmalloc_exec(unsigned long size
)
1460 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1461 -1, __builtin_return_address(0));
1464 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1465 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1466 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1467 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1469 #define GFP_VMALLOC32 GFP_KERNEL
1473 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1474 * @size: allocation size
1476 * Allocate enough 32bit PA addressable pages to cover @size from the
1477 * page level allocator and map them into contiguous kernel virtual space.
1479 void *vmalloc_32(unsigned long size
)
1481 return __vmalloc_node(size
, GFP_VMALLOC32
, PAGE_KERNEL
,
1482 -1, __builtin_return_address(0));
1484 EXPORT_SYMBOL(vmalloc_32
);
1487 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1488 * @size: allocation size
1490 * The resulting memory area is 32bit addressable and zeroed so it can be
1491 * mapped to userspace without leaking data.
1493 void *vmalloc_32_user(unsigned long size
)
1495 struct vm_struct
*area
;
1498 ret
= __vmalloc_node(size
, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1499 -1, __builtin_return_address(0));
1501 area
= find_vm_area(ret
);
1502 area
->flags
|= VM_USERMAP
;
1506 EXPORT_SYMBOL(vmalloc_32_user
);
1508 long vread(char *buf
, char *addr
, unsigned long count
)
1510 struct vm_struct
*tmp
;
1511 char *vaddr
, *buf_start
= buf
;
1514 /* Don't allow overflow */
1515 if ((unsigned long) addr
+ count
< count
)
1516 count
= -(unsigned long) addr
;
1518 read_lock(&vmlist_lock
);
1519 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1520 vaddr
= (char *) tmp
->addr
;
1521 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1523 while (addr
< vaddr
) {
1531 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1542 read_unlock(&vmlist_lock
);
1543 return buf
- buf_start
;
1546 long vwrite(char *buf
, char *addr
, unsigned long count
)
1548 struct vm_struct
*tmp
;
1549 char *vaddr
, *buf_start
= buf
;
1552 /* Don't allow overflow */
1553 if ((unsigned long) addr
+ count
< count
)
1554 count
= -(unsigned long) addr
;
1556 read_lock(&vmlist_lock
);
1557 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1558 vaddr
= (char *) tmp
->addr
;
1559 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1561 while (addr
< vaddr
) {
1568 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1579 read_unlock(&vmlist_lock
);
1580 return buf
- buf_start
;
1584 * remap_vmalloc_range - map vmalloc pages to userspace
1585 * @vma: vma to cover (map full range of vma)
1586 * @addr: vmalloc memory
1587 * @pgoff: number of pages into addr before first page to map
1589 * Returns: 0 for success, -Exxx on failure
1591 * This function checks that addr is a valid vmalloc'ed area, and
1592 * that it is big enough to cover the vma. Will return failure if
1593 * that criteria isn't met.
1595 * Similar to remap_pfn_range() (see mm/memory.c)
1597 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1598 unsigned long pgoff
)
1600 struct vm_struct
*area
;
1601 unsigned long uaddr
= vma
->vm_start
;
1602 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1604 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1607 area
= find_vm_area(addr
);
1611 if (!(area
->flags
& VM_USERMAP
))
1614 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1617 addr
+= pgoff
<< PAGE_SHIFT
;
1619 struct page
*page
= vmalloc_to_page(addr
);
1622 ret
= vm_insert_page(vma
, uaddr
, page
);
1629 } while (usize
> 0);
1631 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1632 vma
->vm_flags
|= VM_RESERVED
;
1636 EXPORT_SYMBOL(remap_vmalloc_range
);
1639 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1642 void __attribute__((weak
)) vmalloc_sync_all(void)
1647 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
1649 /* apply_to_page_range() does all the hard work. */
1654 * alloc_vm_area - allocate a range of kernel address space
1655 * @size: size of the area
1657 * Returns: NULL on failure, vm_struct on success
1659 * This function reserves a range of kernel address space, and
1660 * allocates pagetables to map that range. No actual mappings
1661 * are created. If the kernel address space is not shared
1662 * between processes, it syncs the pagetable across all
1665 struct vm_struct
*alloc_vm_area(size_t size
)
1667 struct vm_struct
*area
;
1669 area
= get_vm_area_caller(size
, VM_IOREMAP
,
1670 __builtin_return_address(0));
1675 * This ensures that page tables are constructed for this region
1676 * of kernel virtual address space and mapped into init_mm.
1678 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
1679 area
->size
, f
, NULL
)) {
1684 /* Make sure the pagetables are constructed in process kernel
1690 EXPORT_SYMBOL_GPL(alloc_vm_area
);
1692 void free_vm_area(struct vm_struct
*area
)
1694 struct vm_struct
*ret
;
1695 ret
= remove_vm_area(area
->addr
);
1696 BUG_ON(ret
!= area
);
1699 EXPORT_SYMBOL_GPL(free_vm_area
);
1702 #ifdef CONFIG_PROC_FS
1703 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
1706 struct vm_struct
*v
;
1708 read_lock(&vmlist_lock
);
1710 while (n
> 0 && v
) {
1721 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1723 struct vm_struct
*v
= p
;
1729 static void s_stop(struct seq_file
*m
, void *p
)
1731 read_unlock(&vmlist_lock
);
1734 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
1737 unsigned int nr
, *counters
= m
->private;
1742 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
1744 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
1745 counters
[page_to_nid(v
->pages
[nr
])]++;
1747 for_each_node_state(nr
, N_HIGH_MEMORY
)
1749 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
1753 static int s_show(struct seq_file
*m
, void *p
)
1755 struct vm_struct
*v
= p
;
1757 seq_printf(m
, "0x%p-0x%p %7ld",
1758 v
->addr
, v
->addr
+ v
->size
, v
->size
);
1761 char buff
[KSYM_SYMBOL_LEN
];
1764 sprint_symbol(buff
, (unsigned long)v
->caller
);
1769 seq_printf(m
, " pages=%d", v
->nr_pages
);
1772 seq_printf(m
, " phys=%lx", v
->phys_addr
);
1774 if (v
->flags
& VM_IOREMAP
)
1775 seq_printf(m
, " ioremap");
1777 if (v
->flags
& VM_ALLOC
)
1778 seq_printf(m
, " vmalloc");
1780 if (v
->flags
& VM_MAP
)
1781 seq_printf(m
, " vmap");
1783 if (v
->flags
& VM_USERMAP
)
1784 seq_printf(m
, " user");
1786 if (v
->flags
& VM_VPAGES
)
1787 seq_printf(m
, " vpages");
1789 show_numa_info(m
, v
);
1794 static const struct seq_operations vmalloc_op
= {
1801 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
1803 unsigned int *ptr
= NULL
;
1807 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
1808 ret
= seq_open(file
, &vmalloc_op
);
1810 struct seq_file
*m
= file
->private_data
;
1817 static const struct file_operations proc_vmalloc_operations
= {
1818 .open
= vmalloc_open
,
1820 .llseek
= seq_lseek
,
1821 .release
= seq_release_private
,
1824 static int __init
proc_vmalloc_init(void)
1826 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
1829 module_init(proc_vmalloc_init
);