2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
21 #include "transaction.h"
24 #include "print-tree.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
47 * rename foo/some_dir foo2/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
93 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
94 struct btrfs_root
*root
, struct inode
*inode
,
96 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
97 struct btrfs_root
*root
,
98 struct btrfs_path
*path
, u64 objectid
);
99 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
100 struct btrfs_root
*root
,
101 struct btrfs_root
*log
,
102 struct btrfs_path
*path
,
103 u64 dirid
, int del_all
);
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
133 static int start_log_trans(struct btrfs_trans_handle
*trans
,
134 struct btrfs_root
*root
)
138 mutex_lock(&root
->log_mutex
);
139 if (root
->log_root
) {
140 if (!root
->log_start_pid
) {
141 root
->log_start_pid
= current
->pid
;
142 root
->log_multiple_pids
= false;
143 } else if (root
->log_start_pid
!= current
->pid
) {
144 root
->log_multiple_pids
= true;
148 atomic_inc(&root
->log_writers
);
149 mutex_unlock(&root
->log_mutex
);
152 root
->log_multiple_pids
= false;
153 root
->log_start_pid
= current
->pid
;
154 mutex_lock(&root
->fs_info
->tree_log_mutex
);
155 if (!root
->fs_info
->log_root_tree
) {
156 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
159 if (!root
->log_root
) {
160 ret
= btrfs_add_log_tree(trans
, root
);
163 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
165 atomic_inc(&root
->log_writers
);
166 mutex_unlock(&root
->log_mutex
);
171 * returns 0 if there was a log transaction running and we were able
172 * to join, or returns -ENOENT if there were not transactions
175 static int join_running_log_trans(struct btrfs_root
*root
)
183 mutex_lock(&root
->log_mutex
);
184 if (root
->log_root
) {
186 atomic_inc(&root
->log_writers
);
188 mutex_unlock(&root
->log_mutex
);
193 * This either makes the current running log transaction wait
194 * until you call btrfs_end_log_trans() or it makes any future
195 * log transactions wait until you call btrfs_end_log_trans()
197 int btrfs_pin_log_trans(struct btrfs_root
*root
)
201 mutex_lock(&root
->log_mutex
);
202 atomic_inc(&root
->log_writers
);
203 mutex_unlock(&root
->log_mutex
);
208 * indicate we're done making changes to the log tree
209 * and wake up anyone waiting to do a sync
211 int btrfs_end_log_trans(struct btrfs_root
*root
)
213 if (atomic_dec_and_test(&root
->log_writers
)) {
215 if (waitqueue_active(&root
->log_writer_wait
))
216 wake_up(&root
->log_writer_wait
);
223 * the walk control struct is used to pass state down the chain when
224 * processing the log tree. The stage field tells us which part
225 * of the log tree processing we are currently doing. The others
226 * are state fields used for that specific part
228 struct walk_control
{
229 /* should we free the extent on disk when done? This is used
230 * at transaction commit time while freeing a log tree
234 /* should we write out the extent buffer? This is used
235 * while flushing the log tree to disk during a sync
239 /* should we wait for the extent buffer io to finish? Also used
240 * while flushing the log tree to disk for a sync
244 /* pin only walk, we record which extents on disk belong to the
249 /* what stage of the replay code we're currently in */
252 /* the root we are currently replaying */
253 struct btrfs_root
*replay_dest
;
255 /* the trans handle for the current replay */
256 struct btrfs_trans_handle
*trans
;
258 /* the function that gets used to process blocks we find in the
259 * tree. Note the extent_buffer might not be up to date when it is
260 * passed in, and it must be checked or read if you need the data
263 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
264 struct walk_control
*wc
, u64 gen
);
268 * process_func used to pin down extents, write them or wait on them
270 static int process_one_buffer(struct btrfs_root
*log
,
271 struct extent_buffer
*eb
,
272 struct walk_control
*wc
, u64 gen
)
275 btrfs_pin_extent(log
->fs_info
->extent_root
,
276 eb
->start
, eb
->len
, 0);
278 if (btrfs_buffer_uptodate(eb
, gen
)) {
280 btrfs_write_tree_block(eb
);
282 btrfs_wait_tree_block_writeback(eb
);
288 * Item overwrite used by replay and tree logging. eb, slot and key all refer
289 * to the src data we are copying out.
291 * root is the tree we are copying into, and path is a scratch
292 * path for use in this function (it should be released on entry and
293 * will be released on exit).
295 * If the key is already in the destination tree the existing item is
296 * overwritten. If the existing item isn't big enough, it is extended.
297 * If it is too large, it is truncated.
299 * If the key isn't in the destination yet, a new item is inserted.
301 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
302 struct btrfs_root
*root
,
303 struct btrfs_path
*path
,
304 struct extent_buffer
*eb
, int slot
,
305 struct btrfs_key
*key
)
309 u64 saved_i_size
= 0;
310 int save_old_i_size
= 0;
311 unsigned long src_ptr
;
312 unsigned long dst_ptr
;
313 int overwrite_root
= 0;
315 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
318 item_size
= btrfs_item_size_nr(eb
, slot
);
319 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
321 /* look for the key in the destination tree */
322 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
326 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
328 if (dst_size
!= item_size
)
331 if (item_size
== 0) {
332 btrfs_release_path(root
, path
);
335 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
336 src_copy
= kmalloc(item_size
, GFP_NOFS
);
338 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
340 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
341 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
343 ret
= memcmp(dst_copy
, src_copy
, item_size
);
348 * they have the same contents, just return, this saves
349 * us from cowing blocks in the destination tree and doing
350 * extra writes that may not have been done by a previous
354 btrfs_release_path(root
, path
);
360 btrfs_release_path(root
, path
);
361 /* try to insert the key into the destination tree */
362 ret
= btrfs_insert_empty_item(trans
, root
, path
,
365 /* make sure any existing item is the correct size */
366 if (ret
== -EEXIST
) {
368 found_size
= btrfs_item_size_nr(path
->nodes
[0],
370 if (found_size
> item_size
) {
371 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
372 } else if (found_size
< item_size
) {
373 ret
= btrfs_extend_item(trans
, root
, path
,
374 item_size
- found_size
);
380 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
383 /* don't overwrite an existing inode if the generation number
384 * was logged as zero. This is done when the tree logging code
385 * is just logging an inode to make sure it exists after recovery.
387 * Also, don't overwrite i_size on directories during replay.
388 * log replay inserts and removes directory items based on the
389 * state of the tree found in the subvolume, and i_size is modified
392 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
393 struct btrfs_inode_item
*src_item
;
394 struct btrfs_inode_item
*dst_item
;
396 src_item
= (struct btrfs_inode_item
*)src_ptr
;
397 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
399 if (btrfs_inode_generation(eb
, src_item
) == 0)
402 if (overwrite_root
&&
403 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
404 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
406 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
411 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
414 if (save_old_i_size
) {
415 struct btrfs_inode_item
*dst_item
;
416 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
417 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
420 /* make sure the generation is filled in */
421 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
422 struct btrfs_inode_item
*dst_item
;
423 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
424 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
425 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
430 btrfs_mark_buffer_dirty(path
->nodes
[0]);
431 btrfs_release_path(root
, path
);
436 * simple helper to read an inode off the disk from a given root
437 * This can only be called for subvolume roots and not for the log
439 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
442 struct btrfs_key key
;
445 key
.objectid
= objectid
;
446 key
.type
= BTRFS_INODE_ITEM_KEY
;
448 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
);
451 } else if (is_bad_inode(inode
)) {
458 /* replays a single extent in 'eb' at 'slot' with 'key' into the
459 * subvolume 'root'. path is released on entry and should be released
462 * extents in the log tree have not been allocated out of the extent
463 * tree yet. So, this completes the allocation, taking a reference
464 * as required if the extent already exists or creating a new extent
465 * if it isn't in the extent allocation tree yet.
467 * The extent is inserted into the file, dropping any existing extents
468 * from the file that overlap the new one.
470 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
471 struct btrfs_root
*root
,
472 struct btrfs_path
*path
,
473 struct extent_buffer
*eb
, int slot
,
474 struct btrfs_key
*key
)
477 u64 mask
= root
->sectorsize
- 1;
480 u64 start
= key
->offset
;
482 struct btrfs_file_extent_item
*item
;
483 struct inode
*inode
= NULL
;
487 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
488 found_type
= btrfs_file_extent_type(eb
, item
);
490 if (found_type
== BTRFS_FILE_EXTENT_REG
||
491 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
492 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
493 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
494 size
= btrfs_file_extent_inline_len(eb
, item
);
495 extent_end
= (start
+ size
+ mask
) & ~mask
;
501 inode
= read_one_inode(root
, key
->objectid
);
508 * first check to see if we already have this extent in the
509 * file. This must be done before the btrfs_drop_extents run
510 * so we don't try to drop this extent.
512 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
516 (found_type
== BTRFS_FILE_EXTENT_REG
||
517 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
518 struct btrfs_file_extent_item cmp1
;
519 struct btrfs_file_extent_item cmp2
;
520 struct btrfs_file_extent_item
*existing
;
521 struct extent_buffer
*leaf
;
523 leaf
= path
->nodes
[0];
524 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
525 struct btrfs_file_extent_item
);
527 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
529 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
533 * we already have a pointer to this exact extent,
534 * we don't have to do anything
536 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
537 btrfs_release_path(root
, path
);
541 btrfs_release_path(root
, path
);
543 saved_nbytes
= inode_get_bytes(inode
);
544 /* drop any overlapping extents */
545 ret
= btrfs_drop_extents(trans
, inode
, start
, extent_end
,
549 if (found_type
== BTRFS_FILE_EXTENT_REG
||
550 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
552 unsigned long dest_offset
;
553 struct btrfs_key ins
;
555 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
558 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
560 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
561 (unsigned long)item
, sizeof(*item
));
563 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
564 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
565 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
566 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
568 if (ins
.objectid
> 0) {
571 LIST_HEAD(ordered_sums
);
573 * is this extent already allocated in the extent
574 * allocation tree? If so, just add a reference
576 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
579 ret
= btrfs_inc_extent_ref(trans
, root
,
580 ins
.objectid
, ins
.offset
,
581 0, root
->root_key
.objectid
,
582 key
->objectid
, offset
);
585 * insert the extent pointer in the extent
588 ret
= btrfs_alloc_logged_file_extent(trans
,
589 root
, root
->root_key
.objectid
,
590 key
->objectid
, offset
, &ins
);
593 btrfs_release_path(root
, path
);
595 if (btrfs_file_extent_compression(eb
, item
)) {
596 csum_start
= ins
.objectid
;
597 csum_end
= csum_start
+ ins
.offset
;
599 csum_start
= ins
.objectid
+
600 btrfs_file_extent_offset(eb
, item
);
601 csum_end
= csum_start
+
602 btrfs_file_extent_num_bytes(eb
, item
);
605 ret
= btrfs_lookup_csums_range(root
->log_root
,
606 csum_start
, csum_end
- 1,
609 while (!list_empty(&ordered_sums
)) {
610 struct btrfs_ordered_sum
*sums
;
611 sums
= list_entry(ordered_sums
.next
,
612 struct btrfs_ordered_sum
,
614 ret
= btrfs_csum_file_blocks(trans
,
615 root
->fs_info
->csum_root
,
618 list_del(&sums
->list
);
622 btrfs_release_path(root
, path
);
624 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
625 /* inline extents are easy, we just overwrite them */
626 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
630 inode_set_bytes(inode
, saved_nbytes
);
631 btrfs_update_inode(trans
, root
, inode
);
639 * when cleaning up conflicts between the directory names in the
640 * subvolume, directory names in the log and directory names in the
641 * inode back references, we may have to unlink inodes from directories.
643 * This is a helper function to do the unlink of a specific directory
646 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
647 struct btrfs_root
*root
,
648 struct btrfs_path
*path
,
650 struct btrfs_dir_item
*di
)
655 struct extent_buffer
*leaf
;
656 struct btrfs_key location
;
659 leaf
= path
->nodes
[0];
661 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
662 name_len
= btrfs_dir_name_len(leaf
, di
);
663 name
= kmalloc(name_len
, GFP_NOFS
);
664 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
665 btrfs_release_path(root
, path
);
667 inode
= read_one_inode(root
, location
.objectid
);
670 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
673 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
682 * helper function to see if a given name and sequence number found
683 * in an inode back reference are already in a directory and correctly
684 * point to this inode
686 static noinline
int inode_in_dir(struct btrfs_root
*root
,
687 struct btrfs_path
*path
,
688 u64 dirid
, u64 objectid
, u64 index
,
689 const char *name
, int name_len
)
691 struct btrfs_dir_item
*di
;
692 struct btrfs_key location
;
695 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
696 index
, name
, name_len
, 0);
697 if (di
&& !IS_ERR(di
)) {
698 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
699 if (location
.objectid
!= objectid
)
703 btrfs_release_path(root
, path
);
705 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
706 if (di
&& !IS_ERR(di
)) {
707 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
708 if (location
.objectid
!= objectid
)
714 btrfs_release_path(root
, path
);
719 * helper function to check a log tree for a named back reference in
720 * an inode. This is used to decide if a back reference that is
721 * found in the subvolume conflicts with what we find in the log.
723 * inode backreferences may have multiple refs in a single item,
724 * during replay we process one reference at a time, and we don't
725 * want to delete valid links to a file from the subvolume if that
726 * link is also in the log.
728 static noinline
int backref_in_log(struct btrfs_root
*log
,
729 struct btrfs_key
*key
,
730 char *name
, int namelen
)
732 struct btrfs_path
*path
;
733 struct btrfs_inode_ref
*ref
;
735 unsigned long ptr_end
;
736 unsigned long name_ptr
;
742 path
= btrfs_alloc_path();
743 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
747 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
748 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
749 ptr_end
= ptr
+ item_size
;
750 while (ptr
< ptr_end
) {
751 ref
= (struct btrfs_inode_ref
*)ptr
;
752 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
753 if (found_name_len
== namelen
) {
754 name_ptr
= (unsigned long)(ref
+ 1);
755 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
762 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
765 btrfs_free_path(path
);
771 * replay one inode back reference item found in the log tree.
772 * eb, slot and key refer to the buffer and key found in the log tree.
773 * root is the destination we are replaying into, and path is for temp
774 * use by this function. (it should be released on return).
776 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
777 struct btrfs_root
*root
,
778 struct btrfs_root
*log
,
779 struct btrfs_path
*path
,
780 struct extent_buffer
*eb
, int slot
,
781 struct btrfs_key
*key
)
785 struct btrfs_key location
;
786 struct btrfs_inode_ref
*ref
;
787 struct btrfs_dir_item
*di
;
791 unsigned long ref_ptr
;
792 unsigned long ref_end
;
794 location
.objectid
= key
->objectid
;
795 location
.type
= BTRFS_INODE_ITEM_KEY
;
799 * it is possible that we didn't log all the parent directories
800 * for a given inode. If we don't find the dir, just don't
801 * copy the back ref in. The link count fixup code will take
804 dir
= read_one_inode(root
, key
->offset
);
808 inode
= read_one_inode(root
, key
->objectid
);
811 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
812 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
815 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
817 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
818 name
= kmalloc(namelen
, GFP_NOFS
);
821 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
823 /* if we already have a perfect match, we're done */
824 if (inode_in_dir(root
, path
, dir
->i_ino
, inode
->i_ino
,
825 btrfs_inode_ref_index(eb
, ref
),
831 * look for a conflicting back reference in the metadata.
832 * if we find one we have to unlink that name of the file
833 * before we add our new link. Later on, we overwrite any
834 * existing back reference, and we don't want to create
835 * dangling pointers in the directory.
838 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
842 struct btrfs_inode_ref
*victim_ref
;
844 unsigned long ptr_end
;
845 struct extent_buffer
*leaf
= path
->nodes
[0];
847 /* are we trying to overwrite a back ref for the root directory
848 * if so, just jump out, we're done
850 if (key
->objectid
== key
->offset
)
853 /* check all the names in this back reference to see
854 * if they are in the log. if so, we allow them to stay
855 * otherwise they must be unlinked as a conflict
857 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
858 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
859 while (ptr
< ptr_end
) {
860 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
861 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
863 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
864 BUG_ON(!victim_name
);
866 read_extent_buffer(leaf
, victim_name
,
867 (unsigned long)(victim_ref
+ 1),
870 if (!backref_in_log(log
, key
, victim_name
,
872 btrfs_inc_nlink(inode
);
873 btrfs_release_path(root
, path
);
875 ret
= btrfs_unlink_inode(trans
, root
, dir
,
879 btrfs_release_path(root
, path
);
883 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
887 btrfs_release_path(root
, path
);
889 /* look for a conflicting sequence number */
890 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
891 btrfs_inode_ref_index(eb
, ref
),
893 if (di
&& !IS_ERR(di
)) {
894 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
897 btrfs_release_path(root
, path
);
900 /* look for a conflicting name */
901 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
903 if (di
&& !IS_ERR(di
)) {
904 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
907 btrfs_release_path(root
, path
);
909 /* insert our name */
910 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
911 btrfs_inode_ref_index(eb
, ref
));
914 btrfs_update_inode(trans
, root
, inode
);
917 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
919 if (ref_ptr
< ref_end
)
922 /* finally write the back reference in the inode */
923 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
927 btrfs_release_path(root
, path
);
933 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
934 struct btrfs_root
*root
, u64 offset
)
937 ret
= btrfs_find_orphan_item(root
, offset
);
939 ret
= btrfs_insert_orphan_item(trans
, root
, offset
);
945 * There are a few corners where the link count of the file can't
946 * be properly maintained during replay. So, instead of adding
947 * lots of complexity to the log code, we just scan the backrefs
948 * for any file that has been through replay.
950 * The scan will update the link count on the inode to reflect the
951 * number of back refs found. If it goes down to zero, the iput
952 * will free the inode.
954 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
955 struct btrfs_root
*root
,
958 struct btrfs_path
*path
;
960 struct btrfs_key key
;
963 unsigned long ptr_end
;
966 key
.objectid
= inode
->i_ino
;
967 key
.type
= BTRFS_INODE_REF_KEY
;
968 key
.offset
= (u64
)-1;
970 path
= btrfs_alloc_path();
973 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
977 if (path
->slots
[0] == 0)
981 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
983 if (key
.objectid
!= inode
->i_ino
||
984 key
.type
!= BTRFS_INODE_REF_KEY
)
986 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
987 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
989 while (ptr
< ptr_end
) {
990 struct btrfs_inode_ref
*ref
;
992 ref
= (struct btrfs_inode_ref
*)ptr
;
993 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
995 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1002 btrfs_release_path(root
, path
);
1004 btrfs_release_path(root
, path
);
1005 if (nlink
!= inode
->i_nlink
) {
1006 inode
->i_nlink
= nlink
;
1007 btrfs_update_inode(trans
, root
, inode
);
1009 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1011 if (inode
->i_nlink
== 0) {
1012 if (S_ISDIR(inode
->i_mode
)) {
1013 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1017 ret
= insert_orphan_item(trans
, root
, inode
->i_ino
);
1020 btrfs_free_path(path
);
1025 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1026 struct btrfs_root
*root
,
1027 struct btrfs_path
*path
)
1030 struct btrfs_key key
;
1031 struct inode
*inode
;
1033 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1034 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1035 key
.offset
= (u64
)-1;
1037 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1042 if (path
->slots
[0] == 0)
1047 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1048 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1049 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1052 ret
= btrfs_del_item(trans
, root
, path
);
1055 btrfs_release_path(root
, path
);
1056 inode
= read_one_inode(root
, key
.offset
);
1059 ret
= fixup_inode_link_count(trans
, root
, inode
);
1065 * fixup on a directory may create new entries,
1066 * make sure we always look for the highset possible
1069 key
.offset
= (u64
)-1;
1071 btrfs_release_path(root
, path
);
1077 * record a given inode in the fixup dir so we can check its link
1078 * count when replay is done. The link count is incremented here
1079 * so the inode won't go away until we check it
1081 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1082 struct btrfs_root
*root
,
1083 struct btrfs_path
*path
,
1086 struct btrfs_key key
;
1088 struct inode
*inode
;
1090 inode
= read_one_inode(root
, objectid
);
1093 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1094 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1095 key
.offset
= objectid
;
1097 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1099 btrfs_release_path(root
, path
);
1101 btrfs_inc_nlink(inode
);
1102 btrfs_update_inode(trans
, root
, inode
);
1103 } else if (ret
== -EEXIST
) {
1114 * when replaying the log for a directory, we only insert names
1115 * for inodes that actually exist. This means an fsync on a directory
1116 * does not implicitly fsync all the new files in it
1118 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1119 struct btrfs_root
*root
,
1120 struct btrfs_path
*path
,
1121 u64 dirid
, u64 index
,
1122 char *name
, int name_len
, u8 type
,
1123 struct btrfs_key
*location
)
1125 struct inode
*inode
;
1129 inode
= read_one_inode(root
, location
->objectid
);
1133 dir
= read_one_inode(root
, dirid
);
1138 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1140 /* FIXME, put inode into FIXUP list */
1148 * take a single entry in a log directory item and replay it into
1151 * if a conflicting item exists in the subdirectory already,
1152 * the inode it points to is unlinked and put into the link count
1155 * If a name from the log points to a file or directory that does
1156 * not exist in the FS, it is skipped. fsyncs on directories
1157 * do not force down inodes inside that directory, just changes to the
1158 * names or unlinks in a directory.
1160 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1161 struct btrfs_root
*root
,
1162 struct btrfs_path
*path
,
1163 struct extent_buffer
*eb
,
1164 struct btrfs_dir_item
*di
,
1165 struct btrfs_key
*key
)
1169 struct btrfs_dir_item
*dst_di
;
1170 struct btrfs_key found_key
;
1171 struct btrfs_key log_key
;
1177 dir
= read_one_inode(root
, key
->objectid
);
1180 name_len
= btrfs_dir_name_len(eb
, di
);
1181 name
= kmalloc(name_len
, GFP_NOFS
);
1182 log_type
= btrfs_dir_type(eb
, di
);
1183 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1186 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1187 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1192 btrfs_release_path(root
, path
);
1194 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1195 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1197 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1198 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1205 if (!dst_di
|| IS_ERR(dst_di
)) {
1206 /* we need a sequence number to insert, so we only
1207 * do inserts for the BTRFS_DIR_INDEX_KEY types
1209 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1214 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1215 /* the existing item matches the logged item */
1216 if (found_key
.objectid
== log_key
.objectid
&&
1217 found_key
.type
== log_key
.type
&&
1218 found_key
.offset
== log_key
.offset
&&
1219 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1224 * don't drop the conflicting directory entry if the inode
1225 * for the new entry doesn't exist
1230 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1233 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1236 btrfs_release_path(root
, path
);
1242 btrfs_release_path(root
, path
);
1243 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1244 name
, name_len
, log_type
, &log_key
);
1246 BUG_ON(ret
&& ret
!= -ENOENT
);
1251 * find all the names in a directory item and reconcile them into
1252 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1253 * one name in a directory item, but the same code gets used for
1254 * both directory index types
1256 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1257 struct btrfs_root
*root
,
1258 struct btrfs_path
*path
,
1259 struct extent_buffer
*eb
, int slot
,
1260 struct btrfs_key
*key
)
1263 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1264 struct btrfs_dir_item
*di
;
1267 unsigned long ptr_end
;
1269 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1270 ptr_end
= ptr
+ item_size
;
1271 while (ptr
< ptr_end
) {
1272 di
= (struct btrfs_dir_item
*)ptr
;
1273 name_len
= btrfs_dir_name_len(eb
, di
);
1274 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1276 ptr
= (unsigned long)(di
+ 1);
1283 * directory replay has two parts. There are the standard directory
1284 * items in the log copied from the subvolume, and range items
1285 * created in the log while the subvolume was logged.
1287 * The range items tell us which parts of the key space the log
1288 * is authoritative for. During replay, if a key in the subvolume
1289 * directory is in a logged range item, but not actually in the log
1290 * that means it was deleted from the directory before the fsync
1291 * and should be removed.
1293 static noinline
int find_dir_range(struct btrfs_root
*root
,
1294 struct btrfs_path
*path
,
1295 u64 dirid
, int key_type
,
1296 u64
*start_ret
, u64
*end_ret
)
1298 struct btrfs_key key
;
1300 struct btrfs_dir_log_item
*item
;
1304 if (*start_ret
== (u64
)-1)
1307 key
.objectid
= dirid
;
1308 key
.type
= key_type
;
1309 key
.offset
= *start_ret
;
1311 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1315 if (path
->slots
[0] == 0)
1320 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1322 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1326 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1327 struct btrfs_dir_log_item
);
1328 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1330 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1332 *start_ret
= key
.offset
;
1333 *end_ret
= found_end
;
1338 /* check the next slot in the tree to see if it is a valid item */
1339 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1340 if (path
->slots
[0] >= nritems
) {
1341 ret
= btrfs_next_leaf(root
, path
);
1348 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1350 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1354 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1355 struct btrfs_dir_log_item
);
1356 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1357 *start_ret
= key
.offset
;
1358 *end_ret
= found_end
;
1361 btrfs_release_path(root
, path
);
1366 * this looks for a given directory item in the log. If the directory
1367 * item is not in the log, the item is removed and the inode it points
1370 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1371 struct btrfs_root
*root
,
1372 struct btrfs_root
*log
,
1373 struct btrfs_path
*path
,
1374 struct btrfs_path
*log_path
,
1376 struct btrfs_key
*dir_key
)
1379 struct extent_buffer
*eb
;
1382 struct btrfs_dir_item
*di
;
1383 struct btrfs_dir_item
*log_di
;
1386 unsigned long ptr_end
;
1388 struct inode
*inode
;
1389 struct btrfs_key location
;
1392 eb
= path
->nodes
[0];
1393 slot
= path
->slots
[0];
1394 item_size
= btrfs_item_size_nr(eb
, slot
);
1395 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1396 ptr_end
= ptr
+ item_size
;
1397 while (ptr
< ptr_end
) {
1398 di
= (struct btrfs_dir_item
*)ptr
;
1399 name_len
= btrfs_dir_name_len(eb
, di
);
1400 name
= kmalloc(name_len
, GFP_NOFS
);
1405 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1408 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1409 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1412 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1413 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1419 if (!log_di
|| IS_ERR(log_di
)) {
1420 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1421 btrfs_release_path(root
, path
);
1422 btrfs_release_path(log
, log_path
);
1423 inode
= read_one_inode(root
, location
.objectid
);
1426 ret
= link_to_fixup_dir(trans
, root
,
1427 path
, location
.objectid
);
1429 btrfs_inc_nlink(inode
);
1430 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1436 /* there might still be more names under this key
1437 * check and repeat if required
1439 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1446 btrfs_release_path(log
, log_path
);
1449 ptr
= (unsigned long)(di
+ 1);
1454 btrfs_release_path(root
, path
);
1455 btrfs_release_path(log
, log_path
);
1460 * deletion replay happens before we copy any new directory items
1461 * out of the log or out of backreferences from inodes. It
1462 * scans the log to find ranges of keys that log is authoritative for,
1463 * and then scans the directory to find items in those ranges that are
1464 * not present in the log.
1466 * Anything we don't find in the log is unlinked and removed from the
1469 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1470 struct btrfs_root
*root
,
1471 struct btrfs_root
*log
,
1472 struct btrfs_path
*path
,
1473 u64 dirid
, int del_all
)
1477 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1479 struct btrfs_key dir_key
;
1480 struct btrfs_key found_key
;
1481 struct btrfs_path
*log_path
;
1484 dir_key
.objectid
= dirid
;
1485 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1486 log_path
= btrfs_alloc_path();
1490 dir
= read_one_inode(root
, dirid
);
1491 /* it isn't an error if the inode isn't there, that can happen
1492 * because we replay the deletes before we copy in the inode item
1496 btrfs_free_path(log_path
);
1504 range_end
= (u64
)-1;
1506 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1507 &range_start
, &range_end
);
1512 dir_key
.offset
= range_start
;
1515 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1520 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1521 if (path
->slots
[0] >= nritems
) {
1522 ret
= btrfs_next_leaf(root
, path
);
1526 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1528 if (found_key
.objectid
!= dirid
||
1529 found_key
.type
!= dir_key
.type
)
1532 if (found_key
.offset
> range_end
)
1535 ret
= check_item_in_log(trans
, root
, log
, path
,
1539 if (found_key
.offset
== (u64
)-1)
1541 dir_key
.offset
= found_key
.offset
+ 1;
1543 btrfs_release_path(root
, path
);
1544 if (range_end
== (u64
)-1)
1546 range_start
= range_end
+ 1;
1551 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1552 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1553 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1554 btrfs_release_path(root
, path
);
1558 btrfs_release_path(root
, path
);
1559 btrfs_free_path(log_path
);
1565 * the process_func used to replay items from the log tree. This
1566 * gets called in two different stages. The first stage just looks
1567 * for inodes and makes sure they are all copied into the subvolume.
1569 * The second stage copies all the other item types from the log into
1570 * the subvolume. The two stage approach is slower, but gets rid of
1571 * lots of complexity around inodes referencing other inodes that exist
1572 * only in the log (references come from either directory items or inode
1575 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1576 struct walk_control
*wc
, u64 gen
)
1579 struct btrfs_path
*path
;
1580 struct btrfs_root
*root
= wc
->replay_dest
;
1581 struct btrfs_key key
;
1587 btrfs_read_buffer(eb
, gen
);
1589 level
= btrfs_header_level(eb
);
1594 path
= btrfs_alloc_path();
1597 nritems
= btrfs_header_nritems(eb
);
1598 for (i
= 0; i
< nritems
; i
++) {
1599 btrfs_item_key_to_cpu(eb
, &key
, i
);
1600 item_size
= btrfs_item_size_nr(eb
, i
);
1602 /* inode keys are done during the first stage */
1603 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1604 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1605 struct btrfs_inode_item
*inode_item
;
1608 inode_item
= btrfs_item_ptr(eb
, i
,
1609 struct btrfs_inode_item
);
1610 mode
= btrfs_inode_mode(eb
, inode_item
);
1611 if (S_ISDIR(mode
)) {
1612 ret
= replay_dir_deletes(wc
->trans
,
1613 root
, log
, path
, key
.objectid
, 0);
1616 ret
= overwrite_item(wc
->trans
, root
, path
,
1620 /* for regular files, make sure corresponding
1621 * orhpan item exist. extents past the new EOF
1622 * will be truncated later by orphan cleanup.
1624 if (S_ISREG(mode
)) {
1625 ret
= insert_orphan_item(wc
->trans
, root
,
1630 ret
= link_to_fixup_dir(wc
->trans
, root
,
1631 path
, key
.objectid
);
1634 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1637 /* these keys are simply copied */
1638 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1639 ret
= overwrite_item(wc
->trans
, root
, path
,
1642 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1643 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1645 BUG_ON(ret
&& ret
!= -ENOENT
);
1646 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1647 ret
= replay_one_extent(wc
->trans
, root
, path
,
1650 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1651 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1652 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1657 btrfs_free_path(path
);
1661 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1662 struct btrfs_root
*root
,
1663 struct btrfs_path
*path
, int *level
,
1664 struct walk_control
*wc
)
1670 struct extent_buffer
*next
;
1671 struct extent_buffer
*cur
;
1672 struct extent_buffer
*parent
;
1676 WARN_ON(*level
< 0);
1677 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1679 while (*level
> 0) {
1680 WARN_ON(*level
< 0);
1681 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1682 cur
= path
->nodes
[*level
];
1684 if (btrfs_header_level(cur
) != *level
)
1687 if (path
->slots
[*level
] >=
1688 btrfs_header_nritems(cur
))
1691 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1692 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1693 blocksize
= btrfs_level_size(root
, *level
- 1);
1695 parent
= path
->nodes
[*level
];
1696 root_owner
= btrfs_header_owner(parent
);
1697 root_gen
= btrfs_header_generation(parent
);
1699 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1701 wc
->process_func(root
, next
, wc
, ptr_gen
);
1704 path
->slots
[*level
]++;
1706 btrfs_read_buffer(next
, ptr_gen
);
1708 btrfs_tree_lock(next
);
1709 clean_tree_block(trans
, root
, next
);
1710 btrfs_set_lock_blocking(next
);
1711 btrfs_wait_tree_block_writeback(next
);
1712 btrfs_tree_unlock(next
);
1714 WARN_ON(root_owner
!=
1715 BTRFS_TREE_LOG_OBJECTID
);
1716 ret
= btrfs_free_reserved_extent(root
,
1720 free_extent_buffer(next
);
1723 btrfs_read_buffer(next
, ptr_gen
);
1725 WARN_ON(*level
<= 0);
1726 if (path
->nodes
[*level
-1])
1727 free_extent_buffer(path
->nodes
[*level
-1]);
1728 path
->nodes
[*level
-1] = next
;
1729 *level
= btrfs_header_level(next
);
1730 path
->slots
[*level
] = 0;
1733 WARN_ON(*level
< 0);
1734 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1736 if (path
->nodes
[*level
] == root
->node
)
1737 parent
= path
->nodes
[*level
];
1739 parent
= path
->nodes
[*level
+ 1];
1741 bytenr
= path
->nodes
[*level
]->start
;
1743 blocksize
= btrfs_level_size(root
, *level
);
1744 root_owner
= btrfs_header_owner(parent
);
1745 root_gen
= btrfs_header_generation(parent
);
1747 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1748 btrfs_header_generation(path
->nodes
[*level
]));
1751 next
= path
->nodes
[*level
];
1752 btrfs_tree_lock(next
);
1753 clean_tree_block(trans
, root
, next
);
1754 btrfs_set_lock_blocking(next
);
1755 btrfs_wait_tree_block_writeback(next
);
1756 btrfs_tree_unlock(next
);
1758 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1759 ret
= btrfs_free_reserved_extent(root
, bytenr
, blocksize
);
1762 free_extent_buffer(path
->nodes
[*level
]);
1763 path
->nodes
[*level
] = NULL
;
1770 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1771 struct btrfs_root
*root
,
1772 struct btrfs_path
*path
, int *level
,
1773 struct walk_control
*wc
)
1781 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1782 slot
= path
->slots
[i
];
1783 if (slot
< btrfs_header_nritems(path
->nodes
[i
]) - 1) {
1784 struct extent_buffer
*node
;
1785 node
= path
->nodes
[i
];
1788 WARN_ON(*level
== 0);
1791 struct extent_buffer
*parent
;
1792 if (path
->nodes
[*level
] == root
->node
)
1793 parent
= path
->nodes
[*level
];
1795 parent
= path
->nodes
[*level
+ 1];
1797 root_owner
= btrfs_header_owner(parent
);
1798 root_gen
= btrfs_header_generation(parent
);
1799 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1800 btrfs_header_generation(path
->nodes
[*level
]));
1802 struct extent_buffer
*next
;
1804 next
= path
->nodes
[*level
];
1806 btrfs_tree_lock(next
);
1807 clean_tree_block(trans
, root
, next
);
1808 btrfs_set_lock_blocking(next
);
1809 btrfs_wait_tree_block_writeback(next
);
1810 btrfs_tree_unlock(next
);
1812 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1813 ret
= btrfs_free_reserved_extent(root
,
1814 path
->nodes
[*level
]->start
,
1815 path
->nodes
[*level
]->len
);
1818 free_extent_buffer(path
->nodes
[*level
]);
1819 path
->nodes
[*level
] = NULL
;
1827 * drop the reference count on the tree rooted at 'snap'. This traverses
1828 * the tree freeing any blocks that have a ref count of zero after being
1831 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1832 struct btrfs_root
*log
, struct walk_control
*wc
)
1837 struct btrfs_path
*path
;
1841 path
= btrfs_alloc_path();
1844 level
= btrfs_header_level(log
->node
);
1846 path
->nodes
[level
] = log
->node
;
1847 extent_buffer_get(log
->node
);
1848 path
->slots
[level
] = 0;
1851 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1857 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1864 /* was the root node processed? if not, catch it here */
1865 if (path
->nodes
[orig_level
]) {
1866 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1867 btrfs_header_generation(path
->nodes
[orig_level
]));
1869 struct extent_buffer
*next
;
1871 next
= path
->nodes
[orig_level
];
1873 btrfs_tree_lock(next
);
1874 clean_tree_block(trans
, log
, next
);
1875 btrfs_set_lock_blocking(next
);
1876 btrfs_wait_tree_block_writeback(next
);
1877 btrfs_tree_unlock(next
);
1879 WARN_ON(log
->root_key
.objectid
!=
1880 BTRFS_TREE_LOG_OBJECTID
);
1881 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1887 for (i
= 0; i
<= orig_level
; i
++) {
1888 if (path
->nodes
[i
]) {
1889 free_extent_buffer(path
->nodes
[i
]);
1890 path
->nodes
[i
] = NULL
;
1893 btrfs_free_path(path
);
1898 * helper function to update the item for a given subvolumes log root
1899 * in the tree of log roots
1901 static int update_log_root(struct btrfs_trans_handle
*trans
,
1902 struct btrfs_root
*log
)
1906 if (log
->log_transid
== 1) {
1907 /* insert root item on the first sync */
1908 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1909 &log
->root_key
, &log
->root_item
);
1911 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1912 &log
->root_key
, &log
->root_item
);
1917 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1918 struct btrfs_root
*root
, unsigned long transid
)
1921 int index
= transid
% 2;
1924 * we only allow two pending log transactions at a time,
1925 * so we know that if ours is more than 2 older than the
1926 * current transaction, we're done
1929 prepare_to_wait(&root
->log_commit_wait
[index
],
1930 &wait
, TASK_UNINTERRUPTIBLE
);
1931 mutex_unlock(&root
->log_mutex
);
1933 if (root
->fs_info
->last_trans_log_full_commit
!=
1934 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1935 atomic_read(&root
->log_commit
[index
]))
1938 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1939 mutex_lock(&root
->log_mutex
);
1940 } while (root
->log_transid
< transid
+ 2 &&
1941 atomic_read(&root
->log_commit
[index
]));
1945 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1946 struct btrfs_root
*root
)
1949 while (atomic_read(&root
->log_writers
)) {
1950 prepare_to_wait(&root
->log_writer_wait
,
1951 &wait
, TASK_UNINTERRUPTIBLE
);
1952 mutex_unlock(&root
->log_mutex
);
1953 if (root
->fs_info
->last_trans_log_full_commit
!=
1954 trans
->transid
&& atomic_read(&root
->log_writers
))
1956 mutex_lock(&root
->log_mutex
);
1957 finish_wait(&root
->log_writer_wait
, &wait
);
1963 * btrfs_sync_log does sends a given tree log down to the disk and
1964 * updates the super blocks to record it. When this call is done,
1965 * you know that any inodes previously logged are safely on disk only
1968 * Any other return value means you need to call btrfs_commit_transaction.
1969 * Some of the edge cases for fsyncing directories that have had unlinks
1970 * or renames done in the past mean that sometimes the only safe
1971 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1972 * that has happened.
1974 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1975 struct btrfs_root
*root
)
1981 struct btrfs_root
*log
= root
->log_root
;
1982 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1983 unsigned long log_transid
= 0;
1985 mutex_lock(&root
->log_mutex
);
1986 index1
= root
->log_transid
% 2;
1987 if (atomic_read(&root
->log_commit
[index1
])) {
1988 wait_log_commit(trans
, root
, root
->log_transid
);
1989 mutex_unlock(&root
->log_mutex
);
1992 atomic_set(&root
->log_commit
[index1
], 1);
1994 /* wait for previous tree log sync to complete */
1995 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
1996 wait_log_commit(trans
, root
, root
->log_transid
- 1);
1999 unsigned long batch
= root
->log_batch
;
2000 if (root
->log_multiple_pids
) {
2001 mutex_unlock(&root
->log_mutex
);
2002 schedule_timeout_uninterruptible(1);
2003 mutex_lock(&root
->log_mutex
);
2005 wait_for_writer(trans
, root
);
2006 if (batch
== root
->log_batch
)
2010 /* bail out if we need to do a full commit */
2011 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2013 mutex_unlock(&root
->log_mutex
);
2017 log_transid
= root
->log_transid
;
2018 if (log_transid
% 2 == 0)
2019 mark
= EXTENT_DIRTY
;
2023 /* we start IO on all the marked extents here, but we don't actually
2024 * wait for them until later.
2026 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2029 btrfs_set_root_node(&log
->root_item
, log
->node
);
2031 root
->log_batch
= 0;
2032 root
->log_transid
++;
2033 log
->log_transid
= root
->log_transid
;
2034 root
->log_start_pid
= 0;
2037 * IO has been started, blocks of the log tree have WRITTEN flag set
2038 * in their headers. new modifications of the log will be written to
2039 * new positions. so it's safe to allow log writers to go in.
2041 mutex_unlock(&root
->log_mutex
);
2043 mutex_lock(&log_root_tree
->log_mutex
);
2044 log_root_tree
->log_batch
++;
2045 atomic_inc(&log_root_tree
->log_writers
);
2046 mutex_unlock(&log_root_tree
->log_mutex
);
2048 ret
= update_log_root(trans
, log
);
2051 mutex_lock(&log_root_tree
->log_mutex
);
2052 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2054 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2055 wake_up(&log_root_tree
->log_writer_wait
);
2058 index2
= log_root_tree
->log_transid
% 2;
2059 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2060 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2061 wait_log_commit(trans
, log_root_tree
,
2062 log_root_tree
->log_transid
);
2063 mutex_unlock(&log_root_tree
->log_mutex
);
2066 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2068 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2069 wait_log_commit(trans
, log_root_tree
,
2070 log_root_tree
->log_transid
- 1);
2073 wait_for_writer(trans
, log_root_tree
);
2076 * now that we've moved on to the tree of log tree roots,
2077 * check the full commit flag again
2079 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2080 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2081 mutex_unlock(&log_root_tree
->log_mutex
);
2083 goto out_wake_log_root
;
2086 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2087 &log_root_tree
->dirty_log_pages
,
2088 EXTENT_DIRTY
| EXTENT_NEW
);
2090 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2092 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2093 log_root_tree
->node
->start
);
2094 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2095 btrfs_header_level(log_root_tree
->node
));
2097 log_root_tree
->log_batch
= 0;
2098 log_root_tree
->log_transid
++;
2101 mutex_unlock(&log_root_tree
->log_mutex
);
2104 * nobody else is going to jump in and write the the ctree
2105 * super here because the log_commit atomic below is protecting
2106 * us. We must be called with a transaction handle pinning
2107 * the running transaction open, so a full commit can't hop
2108 * in and cause problems either.
2110 write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2113 mutex_lock(&root
->log_mutex
);
2114 if (root
->last_log_commit
< log_transid
)
2115 root
->last_log_commit
= log_transid
;
2116 mutex_unlock(&root
->log_mutex
);
2119 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2121 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2122 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2124 atomic_set(&root
->log_commit
[index1
], 0);
2126 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2127 wake_up(&root
->log_commit_wait
[index1
]);
2132 * free all the extents used by the tree log. This should be called
2133 * at commit time of the full transaction
2135 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2138 struct btrfs_root
*log
;
2142 struct walk_control wc
= {
2144 .process_func
= process_one_buffer
2147 if (!root
->log_root
|| root
->fs_info
->log_root_recovering
)
2150 log
= root
->log_root
;
2151 ret
= walk_log_tree(trans
, log
, &wc
);
2155 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2156 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
2160 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2161 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2164 if (log
->log_transid
> 0) {
2165 ret
= btrfs_del_root(trans
, root
->fs_info
->log_root_tree
,
2169 root
->log_root
= NULL
;
2170 free_extent_buffer(log
->node
);
2176 * If both a file and directory are logged, and unlinks or renames are
2177 * mixed in, we have a few interesting corners:
2179 * create file X in dir Y
2180 * link file X to X.link in dir Y
2182 * unlink file X but leave X.link
2185 * After a crash we would expect only X.link to exist. But file X
2186 * didn't get fsync'd again so the log has back refs for X and X.link.
2188 * We solve this by removing directory entries and inode backrefs from the
2189 * log when a file that was logged in the current transaction is
2190 * unlinked. Any later fsync will include the updated log entries, and
2191 * we'll be able to reconstruct the proper directory items from backrefs.
2193 * This optimizations allows us to avoid relogging the entire inode
2194 * or the entire directory.
2196 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2197 struct btrfs_root
*root
,
2198 const char *name
, int name_len
,
2199 struct inode
*dir
, u64 index
)
2201 struct btrfs_root
*log
;
2202 struct btrfs_dir_item
*di
;
2203 struct btrfs_path
*path
;
2207 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2210 ret
= join_running_log_trans(root
);
2214 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2216 log
= root
->log_root
;
2217 path
= btrfs_alloc_path();
2218 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir
->i_ino
,
2219 name
, name_len
, -1);
2220 if (di
&& !IS_ERR(di
)) {
2221 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2222 bytes_del
+= name_len
;
2225 btrfs_release_path(log
, path
);
2226 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir
->i_ino
,
2227 index
, name
, name_len
, -1);
2228 if (di
&& !IS_ERR(di
)) {
2229 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2230 bytes_del
+= name_len
;
2234 /* update the directory size in the log to reflect the names
2238 struct btrfs_key key
;
2240 key
.objectid
= dir
->i_ino
;
2242 key
.type
= BTRFS_INODE_ITEM_KEY
;
2243 btrfs_release_path(log
, path
);
2245 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2247 struct btrfs_inode_item
*item
;
2250 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2251 struct btrfs_inode_item
);
2252 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2253 if (i_size
> bytes_del
)
2254 i_size
-= bytes_del
;
2257 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2258 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2261 btrfs_release_path(log
, path
);
2264 btrfs_free_path(path
);
2265 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2266 btrfs_end_log_trans(root
);
2271 /* see comments for btrfs_del_dir_entries_in_log */
2272 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2273 struct btrfs_root
*root
,
2274 const char *name
, int name_len
,
2275 struct inode
*inode
, u64 dirid
)
2277 struct btrfs_root
*log
;
2281 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2284 ret
= join_running_log_trans(root
);
2287 log
= root
->log_root
;
2288 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2290 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, inode
->i_ino
,
2292 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2293 btrfs_end_log_trans(root
);
2299 * creates a range item in the log for 'dirid'. first_offset and
2300 * last_offset tell us which parts of the key space the log should
2301 * be considered authoritative for.
2303 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2304 struct btrfs_root
*log
,
2305 struct btrfs_path
*path
,
2306 int key_type
, u64 dirid
,
2307 u64 first_offset
, u64 last_offset
)
2310 struct btrfs_key key
;
2311 struct btrfs_dir_log_item
*item
;
2313 key
.objectid
= dirid
;
2314 key
.offset
= first_offset
;
2315 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2316 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2318 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2319 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2322 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2323 struct btrfs_dir_log_item
);
2324 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2325 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2326 btrfs_release_path(log
, path
);
2331 * log all the items included in the current transaction for a given
2332 * directory. This also creates the range items in the log tree required
2333 * to replay anything deleted before the fsync
2335 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2336 struct btrfs_root
*root
, struct inode
*inode
,
2337 struct btrfs_path
*path
,
2338 struct btrfs_path
*dst_path
, int key_type
,
2339 u64 min_offset
, u64
*last_offset_ret
)
2341 struct btrfs_key min_key
;
2342 struct btrfs_key max_key
;
2343 struct btrfs_root
*log
= root
->log_root
;
2344 struct extent_buffer
*src
;
2348 u64 first_offset
= min_offset
;
2349 u64 last_offset
= (u64
)-1;
2351 log
= root
->log_root
;
2352 max_key
.objectid
= inode
->i_ino
;
2353 max_key
.offset
= (u64
)-1;
2354 max_key
.type
= key_type
;
2356 min_key
.objectid
= inode
->i_ino
;
2357 min_key
.type
= key_type
;
2358 min_key
.offset
= min_offset
;
2360 path
->keep_locks
= 1;
2362 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2363 path
, 0, trans
->transid
);
2366 * we didn't find anything from this transaction, see if there
2367 * is anything at all
2369 if (ret
!= 0 || min_key
.objectid
!= inode
->i_ino
||
2370 min_key
.type
!= key_type
) {
2371 min_key
.objectid
= inode
->i_ino
;
2372 min_key
.type
= key_type
;
2373 min_key
.offset
= (u64
)-1;
2374 btrfs_release_path(root
, path
);
2375 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2377 btrfs_release_path(root
, path
);
2380 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2382 /* if ret == 0 there are items for this type,
2383 * create a range to tell us the last key of this type.
2384 * otherwise, there are no items in this directory after
2385 * *min_offset, and we create a range to indicate that.
2388 struct btrfs_key tmp
;
2389 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2391 if (key_type
== tmp
.type
)
2392 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2397 /* go backward to find any previous key */
2398 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2400 struct btrfs_key tmp
;
2401 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2402 if (key_type
== tmp
.type
) {
2403 first_offset
= tmp
.offset
;
2404 ret
= overwrite_item(trans
, log
, dst_path
,
2405 path
->nodes
[0], path
->slots
[0],
2409 btrfs_release_path(root
, path
);
2411 /* find the first key from this transaction again */
2412 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2419 * we have a block from this transaction, log every item in it
2420 * from our directory
2423 struct btrfs_key tmp
;
2424 src
= path
->nodes
[0];
2425 nritems
= btrfs_header_nritems(src
);
2426 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2427 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2429 if (min_key
.objectid
!= inode
->i_ino
||
2430 min_key
.type
!= key_type
)
2432 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2436 path
->slots
[0] = nritems
;
2439 * look ahead to the next item and see if it is also
2440 * from this directory and from this transaction
2442 ret
= btrfs_next_leaf(root
, path
);
2444 last_offset
= (u64
)-1;
2447 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2448 if (tmp
.objectid
!= inode
->i_ino
|| tmp
.type
!= key_type
) {
2449 last_offset
= (u64
)-1;
2452 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2453 ret
= overwrite_item(trans
, log
, dst_path
,
2454 path
->nodes
[0], path
->slots
[0],
2458 last_offset
= tmp
.offset
;
2463 *last_offset_ret
= last_offset
;
2464 btrfs_release_path(root
, path
);
2465 btrfs_release_path(log
, dst_path
);
2467 /* insert the log range keys to indicate where the log is valid */
2468 ret
= insert_dir_log_key(trans
, log
, path
, key_type
, inode
->i_ino
,
2469 first_offset
, last_offset
);
2475 * logging directories is very similar to logging inodes, We find all the items
2476 * from the current transaction and write them to the log.
2478 * The recovery code scans the directory in the subvolume, and if it finds a
2479 * key in the range logged that is not present in the log tree, then it means
2480 * that dir entry was unlinked during the transaction.
2482 * In order for that scan to work, we must include one key smaller than
2483 * the smallest logged by this transaction and one key larger than the largest
2484 * key logged by this transaction.
2486 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2487 struct btrfs_root
*root
, struct inode
*inode
,
2488 struct btrfs_path
*path
,
2489 struct btrfs_path
*dst_path
)
2494 int key_type
= BTRFS_DIR_ITEM_KEY
;
2500 ret
= log_dir_items(trans
, root
, inode
, path
,
2501 dst_path
, key_type
, min_key
,
2504 if (max_key
== (u64
)-1)
2506 min_key
= max_key
+ 1;
2509 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2510 key_type
= BTRFS_DIR_INDEX_KEY
;
2517 * a helper function to drop items from the log before we relog an
2518 * inode. max_key_type indicates the highest item type to remove.
2519 * This cannot be run for file data extents because it does not
2520 * free the extents they point to.
2522 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2523 struct btrfs_root
*log
,
2524 struct btrfs_path
*path
,
2525 u64 objectid
, int max_key_type
)
2528 struct btrfs_key key
;
2529 struct btrfs_key found_key
;
2531 key
.objectid
= objectid
;
2532 key
.type
= max_key_type
;
2533 key
.offset
= (u64
)-1;
2536 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2541 if (path
->slots
[0] == 0)
2545 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2548 if (found_key
.objectid
!= objectid
)
2551 ret
= btrfs_del_item(trans
, log
, path
);
2553 btrfs_release_path(log
, path
);
2555 btrfs_release_path(log
, path
);
2559 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2560 struct btrfs_root
*log
,
2561 struct btrfs_path
*dst_path
,
2562 struct extent_buffer
*src
,
2563 int start_slot
, int nr
, int inode_only
)
2565 unsigned long src_offset
;
2566 unsigned long dst_offset
;
2567 struct btrfs_file_extent_item
*extent
;
2568 struct btrfs_inode_item
*inode_item
;
2570 struct btrfs_key
*ins_keys
;
2574 struct list_head ordered_sums
;
2576 INIT_LIST_HEAD(&ordered_sums
);
2578 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2579 nr
* sizeof(u32
), GFP_NOFS
);
2580 ins_sizes
= (u32
*)ins_data
;
2581 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2583 for (i
= 0; i
< nr
; i
++) {
2584 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2585 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2587 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2588 ins_keys
, ins_sizes
, nr
);
2591 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2592 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2593 dst_path
->slots
[0]);
2595 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2597 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2598 src_offset
, ins_sizes
[i
]);
2600 if (inode_only
== LOG_INODE_EXISTS
&&
2601 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2602 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2604 struct btrfs_inode_item
);
2605 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2607 /* set the generation to zero so the recover code
2608 * can tell the difference between an logging
2609 * just to say 'this inode exists' and a logging
2610 * to say 'update this inode with these values'
2612 btrfs_set_inode_generation(dst_path
->nodes
[0],
2615 /* take a reference on file data extents so that truncates
2616 * or deletes of this inode don't have to relog the inode
2619 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2621 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2622 struct btrfs_file_extent_item
);
2624 found_type
= btrfs_file_extent_type(src
, extent
);
2625 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2626 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2628 ds
= btrfs_file_extent_disk_bytenr(src
,
2630 /* ds == 0 is a hole */
2634 dl
= btrfs_file_extent_disk_num_bytes(src
,
2636 cs
= btrfs_file_extent_offset(src
, extent
);
2637 cl
= btrfs_file_extent_num_bytes(src
,
2639 if (btrfs_file_extent_compression(src
,
2645 ret
= btrfs_lookup_csums_range(
2646 log
->fs_info
->csum_root
,
2647 ds
+ cs
, ds
+ cs
+ cl
- 1,
2654 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2655 btrfs_release_path(log
, dst_path
);
2659 * we have to do this after the loop above to avoid changing the
2660 * log tree while trying to change the log tree.
2662 while (!list_empty(&ordered_sums
)) {
2663 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2664 struct btrfs_ordered_sum
,
2666 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2668 list_del(&sums
->list
);
2674 /* log a single inode in the tree log.
2675 * At least one parent directory for this inode must exist in the tree
2676 * or be logged already.
2678 * Any items from this inode changed by the current transaction are copied
2679 * to the log tree. An extra reference is taken on any extents in this
2680 * file, allowing us to avoid a whole pile of corner cases around logging
2681 * blocks that have been removed from the tree.
2683 * See LOG_INODE_ALL and related defines for a description of what inode_only
2686 * This handles both files and directories.
2688 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2689 struct btrfs_root
*root
, struct inode
*inode
,
2692 struct btrfs_path
*path
;
2693 struct btrfs_path
*dst_path
;
2694 struct btrfs_key min_key
;
2695 struct btrfs_key max_key
;
2696 struct btrfs_root
*log
= root
->log_root
;
2697 struct extent_buffer
*src
= NULL
;
2701 int ins_start_slot
= 0;
2704 log
= root
->log_root
;
2706 path
= btrfs_alloc_path();
2707 dst_path
= btrfs_alloc_path();
2709 min_key
.objectid
= inode
->i_ino
;
2710 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2713 max_key
.objectid
= inode
->i_ino
;
2715 /* today the code can only do partial logging of directories */
2716 if (!S_ISDIR(inode
->i_mode
))
2717 inode_only
= LOG_INODE_ALL
;
2719 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2720 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2722 max_key
.type
= (u8
)-1;
2723 max_key
.offset
= (u64
)-1;
2725 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2728 * a brute force approach to making sure we get the most uptodate
2729 * copies of everything.
2731 if (S_ISDIR(inode
->i_mode
)) {
2732 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2734 if (inode_only
== LOG_INODE_EXISTS
)
2735 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2736 ret
= drop_objectid_items(trans
, log
, path
,
2737 inode
->i_ino
, max_key_type
);
2739 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2742 path
->keep_locks
= 1;
2746 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2747 path
, 0, trans
->transid
);
2751 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2752 if (min_key
.objectid
!= inode
->i_ino
)
2754 if (min_key
.type
> max_key
.type
)
2757 src
= path
->nodes
[0];
2758 size
= btrfs_item_size_nr(src
, path
->slots
[0]);
2759 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2762 } else if (!ins_nr
) {
2763 ins_start_slot
= path
->slots
[0];
2768 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2769 ins_nr
, inode_only
);
2772 ins_start_slot
= path
->slots
[0];
2775 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2777 if (path
->slots
[0] < nritems
) {
2778 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2783 ret
= copy_items(trans
, log
, dst_path
, src
,
2785 ins_nr
, inode_only
);
2789 btrfs_release_path(root
, path
);
2791 if (min_key
.offset
< (u64
)-1)
2793 else if (min_key
.type
< (u8
)-1)
2795 else if (min_key
.objectid
< (u64
)-1)
2801 ret
= copy_items(trans
, log
, dst_path
, src
,
2803 ins_nr
, inode_only
);
2808 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2809 btrfs_release_path(root
, path
);
2810 btrfs_release_path(log
, dst_path
);
2811 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2814 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2815 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2817 btrfs_free_path(path
);
2818 btrfs_free_path(dst_path
);
2823 * follow the dentry parent pointers up the chain and see if any
2824 * of the directories in it require a full commit before they can
2825 * be logged. Returns zero if nothing special needs to be done or 1 if
2826 * a full commit is required.
2828 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2829 struct inode
*inode
,
2830 struct dentry
*parent
,
2831 struct super_block
*sb
,
2835 struct btrfs_root
*root
;
2838 * for regular files, if its inode is already on disk, we don't
2839 * have to worry about the parents at all. This is because
2840 * we can use the last_unlink_trans field to record renames
2841 * and other fun in this file.
2843 if (S_ISREG(inode
->i_mode
) &&
2844 BTRFS_I(inode
)->generation
<= last_committed
&&
2845 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2848 if (!S_ISDIR(inode
->i_mode
)) {
2849 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2851 inode
= parent
->d_inode
;
2855 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2858 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2859 root
= BTRFS_I(inode
)->root
;
2862 * make sure any commits to the log are forced
2863 * to be full commits
2865 root
->fs_info
->last_trans_log_full_commit
=
2871 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2874 if (IS_ROOT(parent
))
2877 parent
= parent
->d_parent
;
2878 inode
= parent
->d_inode
;
2885 static int inode_in_log(struct btrfs_trans_handle
*trans
,
2886 struct inode
*inode
)
2888 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2891 mutex_lock(&root
->log_mutex
);
2892 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
&&
2893 BTRFS_I(inode
)->last_sub_trans
<= root
->last_log_commit
)
2895 mutex_unlock(&root
->log_mutex
);
2901 * helper function around btrfs_log_inode to make sure newly created
2902 * parent directories also end up in the log. A minimal inode and backref
2903 * only logging is done of any parent directories that are older than
2904 * the last committed transaction
2906 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
2907 struct btrfs_root
*root
, struct inode
*inode
,
2908 struct dentry
*parent
, int exists_only
)
2910 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
2911 struct super_block
*sb
;
2913 u64 last_committed
= root
->fs_info
->last_trans_committed
;
2917 if (btrfs_test_opt(root
, NOTREELOG
)) {
2922 if (root
->fs_info
->last_trans_log_full_commit
>
2923 root
->fs_info
->last_trans_committed
) {
2928 if (root
!= BTRFS_I(inode
)->root
||
2929 btrfs_root_refs(&root
->root_item
) == 0) {
2934 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
2935 sb
, last_committed
);
2939 if (inode_in_log(trans
, inode
)) {
2940 ret
= BTRFS_NO_LOG_SYNC
;
2944 start_log_trans(trans
, root
);
2946 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2950 * for regular files, if its inode is already on disk, we don't
2951 * have to worry about the parents at all. This is because
2952 * we can use the last_unlink_trans field to record renames
2953 * and other fun in this file.
2955 if (S_ISREG(inode
->i_mode
) &&
2956 BTRFS_I(inode
)->generation
<= last_committed
&&
2957 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2960 inode_only
= LOG_INODE_EXISTS
;
2962 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2965 inode
= parent
->d_inode
;
2966 if (root
!= BTRFS_I(inode
)->root
)
2969 if (BTRFS_I(inode
)->generation
>
2970 root
->fs_info
->last_trans_committed
) {
2971 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2974 if (IS_ROOT(parent
))
2977 parent
= parent
->d_parent
;
2981 btrfs_end_log_trans(root
);
2987 * it is not safe to log dentry if the chunk root has added new
2988 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2989 * If this returns 1, you must commit the transaction to safely get your
2992 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
2993 struct btrfs_root
*root
, struct dentry
*dentry
)
2995 return btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
,
2996 dentry
->d_parent
, 0);
3000 * should be called during mount to recover any replay any log trees
3003 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3006 struct btrfs_path
*path
;
3007 struct btrfs_trans_handle
*trans
;
3008 struct btrfs_key key
;
3009 struct btrfs_key found_key
;
3010 struct btrfs_key tmp_key
;
3011 struct btrfs_root
*log
;
3012 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3013 struct walk_control wc
= {
3014 .process_func
= process_one_buffer
,
3018 fs_info
->log_root_recovering
= 1;
3019 path
= btrfs_alloc_path();
3022 trans
= btrfs_start_transaction(fs_info
->tree_root
, 1);
3027 walk_log_tree(trans
, log_root_tree
, &wc
);
3030 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3031 key
.offset
= (u64
)-1;
3032 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3035 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3039 if (path
->slots
[0] == 0)
3043 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3045 btrfs_release_path(log_root_tree
, path
);
3046 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3049 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3054 tmp_key
.objectid
= found_key
.offset
;
3055 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3056 tmp_key
.offset
= (u64
)-1;
3058 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3059 BUG_ON(!wc
.replay_dest
);
3061 wc
.replay_dest
->log_root
= log
;
3062 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3063 ret
= walk_log_tree(trans
, log
, &wc
);
3066 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3067 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3072 key
.offset
= found_key
.offset
- 1;
3073 wc
.replay_dest
->log_root
= NULL
;
3074 free_extent_buffer(log
->node
);
3075 free_extent_buffer(log
->commit_root
);
3078 if (found_key
.offset
== 0)
3081 btrfs_release_path(log_root_tree
, path
);
3083 /* step one is to pin it all, step two is to replay just inodes */
3086 wc
.process_func
= replay_one_buffer
;
3087 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3090 /* step three is to replay everything */
3091 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3096 btrfs_free_path(path
);
3098 free_extent_buffer(log_root_tree
->node
);
3099 log_root_tree
->log_root
= NULL
;
3100 fs_info
->log_root_recovering
= 0;
3102 /* step 4: commit the transaction, which also unpins the blocks */
3103 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3105 kfree(log_root_tree
);
3110 * there are some corner cases where we want to force a full
3111 * commit instead of allowing a directory to be logged.
3113 * They revolve around files there were unlinked from the directory, and
3114 * this function updates the parent directory so that a full commit is
3115 * properly done if it is fsync'd later after the unlinks are done.
3117 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3118 struct inode
*dir
, struct inode
*inode
,
3122 * when we're logging a file, if it hasn't been renamed
3123 * or unlinked, and its inode is fully committed on disk,
3124 * we don't have to worry about walking up the directory chain
3125 * to log its parents.
3127 * So, we use the last_unlink_trans field to put this transid
3128 * into the file. When the file is logged we check it and
3129 * don't log the parents if the file is fully on disk.
3131 if (S_ISREG(inode
->i_mode
))
3132 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3135 * if this directory was already logged any new
3136 * names for this file/dir will get recorded
3139 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3143 * if the inode we're about to unlink was logged,
3144 * the log will be properly updated for any new names
3146 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3150 * when renaming files across directories, if the directory
3151 * there we're unlinking from gets fsync'd later on, there's
3152 * no way to find the destination directory later and fsync it
3153 * properly. So, we have to be conservative and force commits
3154 * so the new name gets discovered.
3159 /* we can safely do the unlink without any special recording */
3163 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3167 * Call this after adding a new name for a file and it will properly
3168 * update the log to reflect the new name.
3170 * It will return zero if all goes well, and it will return 1 if a
3171 * full transaction commit is required.
3173 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3174 struct inode
*inode
, struct inode
*old_dir
,
3175 struct dentry
*parent
)
3177 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3180 * this will force the logging code to walk the dentry chain
3183 if (S_ISREG(inode
->i_mode
))
3184 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3187 * if this inode hasn't been logged and directory we're renaming it
3188 * from hasn't been logged, we don't need to log it
3190 if (BTRFS_I(inode
)->logged_trans
<=
3191 root
->fs_info
->last_trans_committed
&&
3192 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3193 root
->fs_info
->last_trans_committed
))
3196 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);