x86: get rid of the insane TIF_ABI_PENDING bit
[linux-2.6/linux-2.6-openrd.git] / fs / btrfs / file.c
blobc02033596f02237aaeaabb2795960c2b29bd0e7b
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/statfs.h>
30 #include <linux/compat.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "ioctl.h"
36 #include "print-tree.h"
37 #include "tree-log.h"
38 #include "locking.h"
39 #include "compat.h"
42 /* simple helper to fault in pages and copy. This should go away
43 * and be replaced with calls into generic code.
45 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
46 int write_bytes,
47 struct page **prepared_pages,
48 const char __user *buf)
50 long page_fault = 0;
51 int i;
52 int offset = pos & (PAGE_CACHE_SIZE - 1);
54 for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) {
55 size_t count = min_t(size_t,
56 PAGE_CACHE_SIZE - offset, write_bytes);
57 struct page *page = prepared_pages[i];
58 fault_in_pages_readable(buf, count);
60 /* Copy data from userspace to the current page */
61 kmap(page);
62 page_fault = __copy_from_user(page_address(page) + offset,
63 buf, count);
64 /* Flush processor's dcache for this page */
65 flush_dcache_page(page);
66 kunmap(page);
67 buf += count;
68 write_bytes -= count;
70 if (page_fault)
71 break;
73 return page_fault ? -EFAULT : 0;
77 * unlocks pages after btrfs_file_write is done with them
79 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
81 size_t i;
82 for (i = 0; i < num_pages; i++) {
83 if (!pages[i])
84 break;
85 /* page checked is some magic around finding pages that
86 * have been modified without going through btrfs_set_page_dirty
87 * clear it here
89 ClearPageChecked(pages[i]);
90 unlock_page(pages[i]);
91 mark_page_accessed(pages[i]);
92 page_cache_release(pages[i]);
97 * after copy_from_user, pages need to be dirtied and we need to make
98 * sure holes are created between the current EOF and the start of
99 * any next extents (if required).
101 * this also makes the decision about creating an inline extent vs
102 * doing real data extents, marking pages dirty and delalloc as required.
104 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct file *file,
107 struct page **pages,
108 size_t num_pages,
109 loff_t pos,
110 size_t write_bytes)
112 int err = 0;
113 int i;
114 struct inode *inode = fdentry(file)->d_inode;
115 u64 num_bytes;
116 u64 start_pos;
117 u64 end_of_last_block;
118 u64 end_pos = pos + write_bytes;
119 loff_t isize = i_size_read(inode);
121 start_pos = pos & ~((u64)root->sectorsize - 1);
122 num_bytes = (write_bytes + pos - start_pos +
123 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
125 end_of_last_block = start_pos + num_bytes - 1;
126 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block);
127 if (err)
128 return err;
130 for (i = 0; i < num_pages; i++) {
131 struct page *p = pages[i];
132 SetPageUptodate(p);
133 ClearPageChecked(p);
134 set_page_dirty(p);
136 if (end_pos > isize) {
137 i_size_write(inode, end_pos);
138 /* we've only changed i_size in ram, and we haven't updated
139 * the disk i_size. There is no need to log the inode
140 * at this time.
143 return err;
147 * this drops all the extents in the cache that intersect the range
148 * [start, end]. Existing extents are split as required.
150 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
151 int skip_pinned)
153 struct extent_map *em;
154 struct extent_map *split = NULL;
155 struct extent_map *split2 = NULL;
156 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
157 u64 len = end - start + 1;
158 int ret;
159 int testend = 1;
160 unsigned long flags;
161 int compressed = 0;
163 WARN_ON(end < start);
164 if (end == (u64)-1) {
165 len = (u64)-1;
166 testend = 0;
168 while (1) {
169 if (!split)
170 split = alloc_extent_map(GFP_NOFS);
171 if (!split2)
172 split2 = alloc_extent_map(GFP_NOFS);
174 write_lock(&em_tree->lock);
175 em = lookup_extent_mapping(em_tree, start, len);
176 if (!em) {
177 write_unlock(&em_tree->lock);
178 break;
180 flags = em->flags;
181 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
182 if (testend && em->start + em->len >= start + len) {
183 free_extent_map(em);
184 write_unlock(&em_tree->lock);
185 break;
187 start = em->start + em->len;
188 if (testend)
189 len = start + len - (em->start + em->len);
190 free_extent_map(em);
191 write_unlock(&em_tree->lock);
192 continue;
194 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
195 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
196 remove_extent_mapping(em_tree, em);
198 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
199 em->start < start) {
200 split->start = em->start;
201 split->len = start - em->start;
202 split->orig_start = em->orig_start;
203 split->block_start = em->block_start;
205 if (compressed)
206 split->block_len = em->block_len;
207 else
208 split->block_len = split->len;
210 split->bdev = em->bdev;
211 split->flags = flags;
212 ret = add_extent_mapping(em_tree, split);
213 BUG_ON(ret);
214 free_extent_map(split);
215 split = split2;
216 split2 = NULL;
218 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
219 testend && em->start + em->len > start + len) {
220 u64 diff = start + len - em->start;
222 split->start = start + len;
223 split->len = em->start + em->len - (start + len);
224 split->bdev = em->bdev;
225 split->flags = flags;
227 if (compressed) {
228 split->block_len = em->block_len;
229 split->block_start = em->block_start;
230 split->orig_start = em->orig_start;
231 } else {
232 split->block_len = split->len;
233 split->block_start = em->block_start + diff;
234 split->orig_start = split->start;
237 ret = add_extent_mapping(em_tree, split);
238 BUG_ON(ret);
239 free_extent_map(split);
240 split = NULL;
242 write_unlock(&em_tree->lock);
244 /* once for us */
245 free_extent_map(em);
246 /* once for the tree*/
247 free_extent_map(em);
249 if (split)
250 free_extent_map(split);
251 if (split2)
252 free_extent_map(split2);
253 return 0;
257 * this is very complex, but the basic idea is to drop all extents
258 * in the range start - end. hint_block is filled in with a block number
259 * that would be a good hint to the block allocator for this file.
261 * If an extent intersects the range but is not entirely inside the range
262 * it is either truncated or split. Anything entirely inside the range
263 * is deleted from the tree.
265 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
266 u64 start, u64 end, u64 *hint_byte, int drop_cache)
268 struct btrfs_root *root = BTRFS_I(inode)->root;
269 struct extent_buffer *leaf;
270 struct btrfs_file_extent_item *fi;
271 struct btrfs_path *path;
272 struct btrfs_key key;
273 struct btrfs_key new_key;
274 u64 search_start = start;
275 u64 disk_bytenr = 0;
276 u64 num_bytes = 0;
277 u64 extent_offset = 0;
278 u64 extent_end = 0;
279 int del_nr = 0;
280 int del_slot = 0;
281 int extent_type;
282 int recow;
283 int ret;
285 if (drop_cache)
286 btrfs_drop_extent_cache(inode, start, end - 1, 0);
288 path = btrfs_alloc_path();
289 if (!path)
290 return -ENOMEM;
292 while (1) {
293 recow = 0;
294 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
295 search_start, -1);
296 if (ret < 0)
297 break;
298 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
299 leaf = path->nodes[0];
300 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
301 if (key.objectid == inode->i_ino &&
302 key.type == BTRFS_EXTENT_DATA_KEY)
303 path->slots[0]--;
305 ret = 0;
306 next_slot:
307 leaf = path->nodes[0];
308 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
309 BUG_ON(del_nr > 0);
310 ret = btrfs_next_leaf(root, path);
311 if (ret < 0)
312 break;
313 if (ret > 0) {
314 ret = 0;
315 break;
317 leaf = path->nodes[0];
318 recow = 1;
321 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
322 if (key.objectid > inode->i_ino ||
323 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
324 break;
326 fi = btrfs_item_ptr(leaf, path->slots[0],
327 struct btrfs_file_extent_item);
328 extent_type = btrfs_file_extent_type(leaf, fi);
330 if (extent_type == BTRFS_FILE_EXTENT_REG ||
331 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
332 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
333 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
334 extent_offset = btrfs_file_extent_offset(leaf, fi);
335 extent_end = key.offset +
336 btrfs_file_extent_num_bytes(leaf, fi);
337 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
338 extent_end = key.offset +
339 btrfs_file_extent_inline_len(leaf, fi);
340 } else {
341 WARN_ON(1);
342 extent_end = search_start;
345 if (extent_end <= search_start) {
346 path->slots[0]++;
347 goto next_slot;
350 search_start = max(key.offset, start);
351 if (recow) {
352 btrfs_release_path(root, path);
353 continue;
357 * | - range to drop - |
358 * | -------- extent -------- |
360 if (start > key.offset && end < extent_end) {
361 BUG_ON(del_nr > 0);
362 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
364 memcpy(&new_key, &key, sizeof(new_key));
365 new_key.offset = start;
366 ret = btrfs_duplicate_item(trans, root, path,
367 &new_key);
368 if (ret == -EAGAIN) {
369 btrfs_release_path(root, path);
370 continue;
372 if (ret < 0)
373 break;
375 leaf = path->nodes[0];
376 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
377 struct btrfs_file_extent_item);
378 btrfs_set_file_extent_num_bytes(leaf, fi,
379 start - key.offset);
381 fi = btrfs_item_ptr(leaf, path->slots[0],
382 struct btrfs_file_extent_item);
384 extent_offset += start - key.offset;
385 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
386 btrfs_set_file_extent_num_bytes(leaf, fi,
387 extent_end - start);
388 btrfs_mark_buffer_dirty(leaf);
390 if (disk_bytenr > 0) {
391 ret = btrfs_inc_extent_ref(trans, root,
392 disk_bytenr, num_bytes, 0,
393 root->root_key.objectid,
394 new_key.objectid,
395 start - extent_offset);
396 BUG_ON(ret);
397 *hint_byte = disk_bytenr;
399 key.offset = start;
402 * | ---- range to drop ----- |
403 * | -------- extent -------- |
405 if (start <= key.offset && end < extent_end) {
406 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
408 memcpy(&new_key, &key, sizeof(new_key));
409 new_key.offset = end;
410 btrfs_set_item_key_safe(trans, root, path, &new_key);
412 extent_offset += end - key.offset;
413 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
414 btrfs_set_file_extent_num_bytes(leaf, fi,
415 extent_end - end);
416 btrfs_mark_buffer_dirty(leaf);
417 if (disk_bytenr > 0) {
418 inode_sub_bytes(inode, end - key.offset);
419 *hint_byte = disk_bytenr;
421 break;
424 search_start = extent_end;
426 * | ---- range to drop ----- |
427 * | -------- extent -------- |
429 if (start > key.offset && end >= extent_end) {
430 BUG_ON(del_nr > 0);
431 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
433 btrfs_set_file_extent_num_bytes(leaf, fi,
434 start - key.offset);
435 btrfs_mark_buffer_dirty(leaf);
436 if (disk_bytenr > 0) {
437 inode_sub_bytes(inode, extent_end - start);
438 *hint_byte = disk_bytenr;
440 if (end == extent_end)
441 break;
443 path->slots[0]++;
444 goto next_slot;
448 * | ---- range to drop ----- |
449 * | ------ extent ------ |
451 if (start <= key.offset && end >= extent_end) {
452 if (del_nr == 0) {
453 del_slot = path->slots[0];
454 del_nr = 1;
455 } else {
456 BUG_ON(del_slot + del_nr != path->slots[0]);
457 del_nr++;
460 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
461 inode_sub_bytes(inode,
462 extent_end - key.offset);
463 extent_end = ALIGN(extent_end,
464 root->sectorsize);
465 } else if (disk_bytenr > 0) {
466 ret = btrfs_free_extent(trans, root,
467 disk_bytenr, num_bytes, 0,
468 root->root_key.objectid,
469 key.objectid, key.offset -
470 extent_offset);
471 BUG_ON(ret);
472 inode_sub_bytes(inode,
473 extent_end - key.offset);
474 *hint_byte = disk_bytenr;
477 if (end == extent_end)
478 break;
480 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
481 path->slots[0]++;
482 goto next_slot;
485 ret = btrfs_del_items(trans, root, path, del_slot,
486 del_nr);
487 BUG_ON(ret);
489 del_nr = 0;
490 del_slot = 0;
492 btrfs_release_path(root, path);
493 continue;
496 BUG_ON(1);
499 if (del_nr > 0) {
500 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
501 BUG_ON(ret);
504 btrfs_free_path(path);
505 return ret;
508 static int extent_mergeable(struct extent_buffer *leaf, int slot,
509 u64 objectid, u64 bytenr, u64 orig_offset,
510 u64 *start, u64 *end)
512 struct btrfs_file_extent_item *fi;
513 struct btrfs_key key;
514 u64 extent_end;
516 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
517 return 0;
519 btrfs_item_key_to_cpu(leaf, &key, slot);
520 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
521 return 0;
523 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
524 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
525 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
526 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
527 btrfs_file_extent_compression(leaf, fi) ||
528 btrfs_file_extent_encryption(leaf, fi) ||
529 btrfs_file_extent_other_encoding(leaf, fi))
530 return 0;
532 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
533 if ((*start && *start != key.offset) || (*end && *end != extent_end))
534 return 0;
536 *start = key.offset;
537 *end = extent_end;
538 return 1;
542 * Mark extent in the range start - end as written.
544 * This changes extent type from 'pre-allocated' to 'regular'. If only
545 * part of extent is marked as written, the extent will be split into
546 * two or three.
548 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
549 struct inode *inode, u64 start, u64 end)
551 struct btrfs_root *root = BTRFS_I(inode)->root;
552 struct extent_buffer *leaf;
553 struct btrfs_path *path;
554 struct btrfs_file_extent_item *fi;
555 struct btrfs_key key;
556 struct btrfs_key new_key;
557 u64 bytenr;
558 u64 num_bytes;
559 u64 extent_end;
560 u64 orig_offset;
561 u64 other_start;
562 u64 other_end;
563 u64 split;
564 int del_nr = 0;
565 int del_slot = 0;
566 int recow;
567 int ret;
569 btrfs_drop_extent_cache(inode, start, end - 1, 0);
571 path = btrfs_alloc_path();
572 BUG_ON(!path);
573 again:
574 recow = 0;
575 split = start;
576 key.objectid = inode->i_ino;
577 key.type = BTRFS_EXTENT_DATA_KEY;
578 key.offset = split;
580 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
581 if (ret > 0 && path->slots[0] > 0)
582 path->slots[0]--;
584 leaf = path->nodes[0];
585 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
586 BUG_ON(key.objectid != inode->i_ino ||
587 key.type != BTRFS_EXTENT_DATA_KEY);
588 fi = btrfs_item_ptr(leaf, path->slots[0],
589 struct btrfs_file_extent_item);
590 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
591 BTRFS_FILE_EXTENT_PREALLOC);
592 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
593 BUG_ON(key.offset > start || extent_end < end);
595 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
596 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
597 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
598 memcpy(&new_key, &key, sizeof(new_key));
600 if (start == key.offset && end < extent_end) {
601 other_start = 0;
602 other_end = start;
603 if (extent_mergeable(leaf, path->slots[0] - 1,
604 inode->i_ino, bytenr, orig_offset,
605 &other_start, &other_end)) {
606 new_key.offset = end;
607 btrfs_set_item_key_safe(trans, root, path, &new_key);
608 fi = btrfs_item_ptr(leaf, path->slots[0],
609 struct btrfs_file_extent_item);
610 btrfs_set_file_extent_num_bytes(leaf, fi,
611 extent_end - end);
612 btrfs_set_file_extent_offset(leaf, fi,
613 end - orig_offset);
614 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
615 struct btrfs_file_extent_item);
616 btrfs_set_file_extent_num_bytes(leaf, fi,
617 end - other_start);
618 btrfs_mark_buffer_dirty(leaf);
619 goto out;
623 if (start > key.offset && end == extent_end) {
624 other_start = end;
625 other_end = 0;
626 if (extent_mergeable(leaf, path->slots[0] + 1,
627 inode->i_ino, bytenr, orig_offset,
628 &other_start, &other_end)) {
629 fi = btrfs_item_ptr(leaf, path->slots[0],
630 struct btrfs_file_extent_item);
631 btrfs_set_file_extent_num_bytes(leaf, fi,
632 start - key.offset);
633 path->slots[0]++;
634 new_key.offset = start;
635 btrfs_set_item_key_safe(trans, root, path, &new_key);
637 fi = btrfs_item_ptr(leaf, path->slots[0],
638 struct btrfs_file_extent_item);
639 btrfs_set_file_extent_num_bytes(leaf, fi,
640 other_end - start);
641 btrfs_set_file_extent_offset(leaf, fi,
642 start - orig_offset);
643 btrfs_mark_buffer_dirty(leaf);
644 goto out;
648 while (start > key.offset || end < extent_end) {
649 if (key.offset == start)
650 split = end;
652 new_key.offset = split;
653 ret = btrfs_duplicate_item(trans, root, path, &new_key);
654 if (ret == -EAGAIN) {
655 btrfs_release_path(root, path);
656 goto again;
658 BUG_ON(ret < 0);
660 leaf = path->nodes[0];
661 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
662 struct btrfs_file_extent_item);
663 btrfs_set_file_extent_num_bytes(leaf, fi,
664 split - key.offset);
666 fi = btrfs_item_ptr(leaf, path->slots[0],
667 struct btrfs_file_extent_item);
669 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
670 btrfs_set_file_extent_num_bytes(leaf, fi,
671 extent_end - split);
672 btrfs_mark_buffer_dirty(leaf);
674 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
675 root->root_key.objectid,
676 inode->i_ino, orig_offset);
677 BUG_ON(ret);
679 if (split == start) {
680 key.offset = start;
681 } else {
682 BUG_ON(start != key.offset);
683 path->slots[0]--;
684 extent_end = end;
686 recow = 1;
689 other_start = end;
690 other_end = 0;
691 if (extent_mergeable(leaf, path->slots[0] + 1,
692 inode->i_ino, bytenr, orig_offset,
693 &other_start, &other_end)) {
694 if (recow) {
695 btrfs_release_path(root, path);
696 goto again;
698 extent_end = other_end;
699 del_slot = path->slots[0] + 1;
700 del_nr++;
701 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
702 0, root->root_key.objectid,
703 inode->i_ino, orig_offset);
704 BUG_ON(ret);
706 other_start = 0;
707 other_end = start;
708 if (extent_mergeable(leaf, path->slots[0] - 1,
709 inode->i_ino, bytenr, orig_offset,
710 &other_start, &other_end)) {
711 if (recow) {
712 btrfs_release_path(root, path);
713 goto again;
715 key.offset = other_start;
716 del_slot = path->slots[0];
717 del_nr++;
718 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
719 0, root->root_key.objectid,
720 inode->i_ino, orig_offset);
721 BUG_ON(ret);
723 fi = btrfs_item_ptr(leaf, path->slots[0],
724 struct btrfs_file_extent_item);
725 if (del_nr == 0) {
726 btrfs_set_file_extent_type(leaf, fi,
727 BTRFS_FILE_EXTENT_REG);
728 btrfs_mark_buffer_dirty(leaf);
729 } else {
730 btrfs_set_file_extent_type(leaf, fi,
731 BTRFS_FILE_EXTENT_REG);
732 btrfs_set_file_extent_num_bytes(leaf, fi,
733 extent_end - key.offset);
734 btrfs_mark_buffer_dirty(leaf);
736 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
737 BUG_ON(ret);
739 out:
740 btrfs_free_path(path);
741 return 0;
745 * this gets pages into the page cache and locks them down, it also properly
746 * waits for data=ordered extents to finish before allowing the pages to be
747 * modified.
749 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
750 struct page **pages, size_t num_pages,
751 loff_t pos, unsigned long first_index,
752 unsigned long last_index, size_t write_bytes)
754 int i;
755 unsigned long index = pos >> PAGE_CACHE_SHIFT;
756 struct inode *inode = fdentry(file)->d_inode;
757 int err = 0;
758 u64 start_pos;
759 u64 last_pos;
761 start_pos = pos & ~((u64)root->sectorsize - 1);
762 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
764 if (start_pos > inode->i_size) {
765 err = btrfs_cont_expand(inode, start_pos);
766 if (err)
767 return err;
770 memset(pages, 0, num_pages * sizeof(struct page *));
771 again:
772 for (i = 0; i < num_pages; i++) {
773 pages[i] = grab_cache_page(inode->i_mapping, index + i);
774 if (!pages[i]) {
775 err = -ENOMEM;
776 BUG_ON(1);
778 wait_on_page_writeback(pages[i]);
780 if (start_pos < inode->i_size) {
781 struct btrfs_ordered_extent *ordered;
782 lock_extent(&BTRFS_I(inode)->io_tree,
783 start_pos, last_pos - 1, GFP_NOFS);
784 ordered = btrfs_lookup_first_ordered_extent(inode,
785 last_pos - 1);
786 if (ordered &&
787 ordered->file_offset + ordered->len > start_pos &&
788 ordered->file_offset < last_pos) {
789 btrfs_put_ordered_extent(ordered);
790 unlock_extent(&BTRFS_I(inode)->io_tree,
791 start_pos, last_pos - 1, GFP_NOFS);
792 for (i = 0; i < num_pages; i++) {
793 unlock_page(pages[i]);
794 page_cache_release(pages[i]);
796 btrfs_wait_ordered_range(inode, start_pos,
797 last_pos - start_pos);
798 goto again;
800 if (ordered)
801 btrfs_put_ordered_extent(ordered);
803 clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos,
804 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
805 EXTENT_DO_ACCOUNTING,
806 GFP_NOFS);
807 unlock_extent(&BTRFS_I(inode)->io_tree,
808 start_pos, last_pos - 1, GFP_NOFS);
810 for (i = 0; i < num_pages; i++) {
811 clear_page_dirty_for_io(pages[i]);
812 set_page_extent_mapped(pages[i]);
813 WARN_ON(!PageLocked(pages[i]));
815 return 0;
818 static ssize_t btrfs_file_write(struct file *file, const char __user *buf,
819 size_t count, loff_t *ppos)
821 loff_t pos;
822 loff_t start_pos;
823 ssize_t num_written = 0;
824 ssize_t err = 0;
825 int ret = 0;
826 struct inode *inode = fdentry(file)->d_inode;
827 struct btrfs_root *root = BTRFS_I(inode)->root;
828 struct page **pages = NULL;
829 int nrptrs;
830 struct page *pinned[2];
831 unsigned long first_index;
832 unsigned long last_index;
833 int will_write;
835 will_write = ((file->f_flags & O_DSYNC) || IS_SYNC(inode) ||
836 (file->f_flags & O_DIRECT));
838 nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE,
839 PAGE_CACHE_SIZE / (sizeof(struct page *)));
840 pinned[0] = NULL;
841 pinned[1] = NULL;
843 pos = *ppos;
844 start_pos = pos;
846 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
848 /* do the reserve before the mutex lock in case we have to do some
849 * flushing. We wouldn't deadlock, but this is more polite.
851 err = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
852 if (err)
853 goto out_nolock;
855 mutex_lock(&inode->i_mutex);
857 current->backing_dev_info = inode->i_mapping->backing_dev_info;
858 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
859 if (err)
860 goto out;
862 if (count == 0)
863 goto out;
865 err = file_remove_suid(file);
866 if (err)
867 goto out;
869 file_update_time(file);
871 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
873 /* generic_write_checks can change our pos */
874 start_pos = pos;
876 BTRFS_I(inode)->sequence++;
877 first_index = pos >> PAGE_CACHE_SHIFT;
878 last_index = (pos + count) >> PAGE_CACHE_SHIFT;
881 * there are lots of better ways to do this, but this code
882 * makes sure the first and last page in the file range are
883 * up to date and ready for cow
885 if ((pos & (PAGE_CACHE_SIZE - 1))) {
886 pinned[0] = grab_cache_page(inode->i_mapping, first_index);
887 if (!PageUptodate(pinned[0])) {
888 ret = btrfs_readpage(NULL, pinned[0]);
889 BUG_ON(ret);
890 wait_on_page_locked(pinned[0]);
891 } else {
892 unlock_page(pinned[0]);
895 if ((pos + count) & (PAGE_CACHE_SIZE - 1)) {
896 pinned[1] = grab_cache_page(inode->i_mapping, last_index);
897 if (!PageUptodate(pinned[1])) {
898 ret = btrfs_readpage(NULL, pinned[1]);
899 BUG_ON(ret);
900 wait_on_page_locked(pinned[1]);
901 } else {
902 unlock_page(pinned[1]);
906 while (count > 0) {
907 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
908 size_t write_bytes = min(count, nrptrs *
909 (size_t)PAGE_CACHE_SIZE -
910 offset);
911 size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
912 PAGE_CACHE_SHIFT;
914 WARN_ON(num_pages > nrptrs);
915 memset(pages, 0, sizeof(struct page *) * nrptrs);
917 ret = btrfs_check_data_free_space(root, inode, write_bytes);
918 if (ret)
919 goto out;
921 ret = prepare_pages(root, file, pages, num_pages,
922 pos, first_index, last_index,
923 write_bytes);
924 if (ret) {
925 btrfs_free_reserved_data_space(root, inode,
926 write_bytes);
927 goto out;
930 ret = btrfs_copy_from_user(pos, num_pages,
931 write_bytes, pages, buf);
932 if (ret) {
933 btrfs_free_reserved_data_space(root, inode,
934 write_bytes);
935 btrfs_drop_pages(pages, num_pages);
936 goto out;
939 ret = dirty_and_release_pages(NULL, root, file, pages,
940 num_pages, pos, write_bytes);
941 btrfs_drop_pages(pages, num_pages);
942 if (ret) {
943 btrfs_free_reserved_data_space(root, inode,
944 write_bytes);
945 goto out;
948 if (will_write) {
949 filemap_fdatawrite_range(inode->i_mapping, pos,
950 pos + write_bytes - 1);
951 } else {
952 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
953 num_pages);
954 if (num_pages <
955 (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
956 btrfs_btree_balance_dirty(root, 1);
957 btrfs_throttle(root);
960 buf += write_bytes;
961 count -= write_bytes;
962 pos += write_bytes;
963 num_written += write_bytes;
965 cond_resched();
967 out:
968 mutex_unlock(&inode->i_mutex);
969 if (ret)
970 err = ret;
971 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
973 out_nolock:
974 kfree(pages);
975 if (pinned[0])
976 page_cache_release(pinned[0]);
977 if (pinned[1])
978 page_cache_release(pinned[1]);
979 *ppos = pos;
982 * we want to make sure fsync finds this change
983 * but we haven't joined a transaction running right now.
985 * Later on, someone is sure to update the inode and get the
986 * real transid recorded.
988 * We set last_trans now to the fs_info generation + 1,
989 * this will either be one more than the running transaction
990 * or the generation used for the next transaction if there isn't
991 * one running right now.
993 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
995 if (num_written > 0 && will_write) {
996 struct btrfs_trans_handle *trans;
998 err = btrfs_wait_ordered_range(inode, start_pos, num_written);
999 if (err)
1000 num_written = err;
1002 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
1003 trans = btrfs_start_transaction(root, 1);
1004 ret = btrfs_log_dentry_safe(trans, root,
1005 file->f_dentry);
1006 if (ret == 0) {
1007 ret = btrfs_sync_log(trans, root);
1008 if (ret == 0)
1009 btrfs_end_transaction(trans, root);
1010 else
1011 btrfs_commit_transaction(trans, root);
1012 } else if (ret != BTRFS_NO_LOG_SYNC) {
1013 btrfs_commit_transaction(trans, root);
1014 } else {
1015 btrfs_end_transaction(trans, root);
1018 if (file->f_flags & O_DIRECT) {
1019 invalidate_mapping_pages(inode->i_mapping,
1020 start_pos >> PAGE_CACHE_SHIFT,
1021 (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1024 current->backing_dev_info = NULL;
1025 return num_written ? num_written : err;
1028 int btrfs_release_file(struct inode *inode, struct file *filp)
1031 * ordered_data_close is set by settattr when we are about to truncate
1032 * a file from a non-zero size to a zero size. This tries to
1033 * flush down new bytes that may have been written if the
1034 * application were using truncate to replace a file in place.
1036 if (BTRFS_I(inode)->ordered_data_close) {
1037 BTRFS_I(inode)->ordered_data_close = 0;
1038 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1039 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1040 filemap_flush(inode->i_mapping);
1042 if (filp->private_data)
1043 btrfs_ioctl_trans_end(filp);
1044 return 0;
1048 * fsync call for both files and directories. This logs the inode into
1049 * the tree log instead of forcing full commits whenever possible.
1051 * It needs to call filemap_fdatawait so that all ordered extent updates are
1052 * in the metadata btree are up to date for copying to the log.
1054 * It drops the inode mutex before doing the tree log commit. This is an
1055 * important optimization for directories because holding the mutex prevents
1056 * new operations on the dir while we write to disk.
1058 int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync)
1060 struct inode *inode = dentry->d_inode;
1061 struct btrfs_root *root = BTRFS_I(inode)->root;
1062 int ret = 0;
1063 struct btrfs_trans_handle *trans;
1066 /* we wait first, since the writeback may change the inode */
1067 root->log_batch++;
1068 /* the VFS called filemap_fdatawrite for us */
1069 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1070 root->log_batch++;
1073 * check the transaction that last modified this inode
1074 * and see if its already been committed
1076 if (!BTRFS_I(inode)->last_trans)
1077 goto out;
1080 * if the last transaction that changed this file was before
1081 * the current transaction, we can bail out now without any
1082 * syncing
1084 mutex_lock(&root->fs_info->trans_mutex);
1085 if (BTRFS_I(inode)->last_trans <=
1086 root->fs_info->last_trans_committed) {
1087 BTRFS_I(inode)->last_trans = 0;
1088 mutex_unlock(&root->fs_info->trans_mutex);
1089 goto out;
1091 mutex_unlock(&root->fs_info->trans_mutex);
1094 * ok we haven't committed the transaction yet, lets do a commit
1096 if (file && file->private_data)
1097 btrfs_ioctl_trans_end(file);
1099 trans = btrfs_start_transaction(root, 1);
1100 if (!trans) {
1101 ret = -ENOMEM;
1102 goto out;
1105 ret = btrfs_log_dentry_safe(trans, root, dentry);
1106 if (ret < 0)
1107 goto out;
1109 /* we've logged all the items and now have a consistent
1110 * version of the file in the log. It is possible that
1111 * someone will come in and modify the file, but that's
1112 * fine because the log is consistent on disk, and we
1113 * have references to all of the file's extents
1115 * It is possible that someone will come in and log the
1116 * file again, but that will end up using the synchronization
1117 * inside btrfs_sync_log to keep things safe.
1119 mutex_unlock(&dentry->d_inode->i_mutex);
1121 if (ret != BTRFS_NO_LOG_SYNC) {
1122 if (ret > 0) {
1123 ret = btrfs_commit_transaction(trans, root);
1124 } else {
1125 ret = btrfs_sync_log(trans, root);
1126 if (ret == 0)
1127 ret = btrfs_end_transaction(trans, root);
1128 else
1129 ret = btrfs_commit_transaction(trans, root);
1131 } else {
1132 ret = btrfs_end_transaction(trans, root);
1134 mutex_lock(&dentry->d_inode->i_mutex);
1135 out:
1136 return ret > 0 ? EIO : ret;
1139 static const struct vm_operations_struct btrfs_file_vm_ops = {
1140 .fault = filemap_fault,
1141 .page_mkwrite = btrfs_page_mkwrite,
1144 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1146 vma->vm_ops = &btrfs_file_vm_ops;
1147 file_accessed(filp);
1148 return 0;
1151 const struct file_operations btrfs_file_operations = {
1152 .llseek = generic_file_llseek,
1153 .read = do_sync_read,
1154 .aio_read = generic_file_aio_read,
1155 .splice_read = generic_file_splice_read,
1156 .write = btrfs_file_write,
1157 .mmap = btrfs_file_mmap,
1158 .open = generic_file_open,
1159 .release = btrfs_release_file,
1160 .fsync = btrfs_sync_file,
1161 .unlocked_ioctl = btrfs_ioctl,
1162 #ifdef CONFIG_COMPAT
1163 .compat_ioctl = btrfs_ioctl,
1164 #endif