2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
42 * anon_vma->lock (memory_failure, collect_procs_anon)
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
60 #include <asm/tlbflush.h>
64 static struct kmem_cache
*anon_vma_cachep
;
66 static inline struct anon_vma
*anon_vma_alloc(void)
68 return kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
71 void anon_vma_free(struct anon_vma
*anon_vma
)
73 kmem_cache_free(anon_vma_cachep
, anon_vma
);
77 * anon_vma_prepare - attach an anon_vma to a memory region
78 * @vma: the memory region in question
80 * This makes sure the memory mapping described by 'vma' has
81 * an 'anon_vma' attached to it, so that we can associate the
82 * anonymous pages mapped into it with that anon_vma.
84 * The common case will be that we already have one, but if
85 * if not we either need to find an adjacent mapping that we
86 * can re-use the anon_vma from (very common when the only
87 * reason for splitting a vma has been mprotect()), or we
90 * Anon-vma allocations are very subtle, because we may have
91 * optimistically looked up an anon_vma in page_lock_anon_vma()
92 * and that may actually touch the spinlock even in the newly
93 * allocated vma (it depends on RCU to make sure that the
94 * anon_vma isn't actually destroyed).
96 * As a result, we need to do proper anon_vma locking even
97 * for the new allocation. At the same time, we do not want
98 * to do any locking for the common case of already having
101 * This must be called with the mmap_sem held for reading.
103 int anon_vma_prepare(struct vm_area_struct
*vma
)
105 struct anon_vma
*anon_vma
= vma
->anon_vma
;
108 if (unlikely(!anon_vma
)) {
109 struct mm_struct
*mm
= vma
->vm_mm
;
110 struct anon_vma
*allocated
;
112 anon_vma
= find_mergeable_anon_vma(vma
);
115 anon_vma
= anon_vma_alloc();
116 if (unlikely(!anon_vma
))
118 allocated
= anon_vma
;
120 spin_lock(&anon_vma
->lock
);
122 /* page_table_lock to protect against threads */
123 spin_lock(&mm
->page_table_lock
);
124 if (likely(!vma
->anon_vma
)) {
125 vma
->anon_vma
= anon_vma
;
126 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
129 spin_unlock(&mm
->page_table_lock
);
131 spin_unlock(&anon_vma
->lock
);
132 if (unlikely(allocated
))
133 anon_vma_free(allocated
);
138 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
140 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
141 list_del(&next
->anon_vma_node
);
144 void __anon_vma_link(struct vm_area_struct
*vma
)
146 struct anon_vma
*anon_vma
= vma
->anon_vma
;
149 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
152 void anon_vma_link(struct vm_area_struct
*vma
)
154 struct anon_vma
*anon_vma
= vma
->anon_vma
;
157 spin_lock(&anon_vma
->lock
);
158 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
159 spin_unlock(&anon_vma
->lock
);
163 void anon_vma_unlink(struct vm_area_struct
*vma
)
165 struct anon_vma
*anon_vma
= vma
->anon_vma
;
171 spin_lock(&anon_vma
->lock
);
172 list_del(&vma
->anon_vma_node
);
174 /* We must garbage collect the anon_vma if it's empty */
175 empty
= list_empty(&anon_vma
->head
) && !ksm_refcount(anon_vma
);
176 spin_unlock(&anon_vma
->lock
);
179 anon_vma_free(anon_vma
);
182 static void anon_vma_ctor(void *data
)
184 struct anon_vma
*anon_vma
= data
;
186 spin_lock_init(&anon_vma
->lock
);
187 ksm_refcount_init(anon_vma
);
188 INIT_LIST_HEAD(&anon_vma
->head
);
191 void __init
anon_vma_init(void)
193 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
194 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
198 * Getting a lock on a stable anon_vma from a page off the LRU is
199 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
201 struct anon_vma
*page_lock_anon_vma(struct page
*page
)
203 struct anon_vma
*anon_vma
;
204 unsigned long anon_mapping
;
207 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
208 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
210 if (!page_mapped(page
))
213 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
214 spin_lock(&anon_vma
->lock
);
221 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
223 spin_unlock(&anon_vma
->lock
);
228 * At what user virtual address is page expected in @vma?
229 * Returns virtual address or -EFAULT if page's index/offset is not
230 * within the range mapped the @vma.
232 static inline unsigned long
233 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
235 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
236 unsigned long address
;
238 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
239 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
240 /* page should be within @vma mapping range */
247 * At what user virtual address is page expected in vma?
248 * checking that the page matches the vma.
250 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
252 if (PageAnon(page
)) {
253 if (vma
->anon_vma
!= page_anon_vma(page
))
255 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
257 vma
->vm_file
->f_mapping
!= page
->mapping
)
261 return vma_address(page
, vma
);
265 * Check that @page is mapped at @address into @mm.
267 * If @sync is false, page_check_address may perform a racy check to avoid
268 * the page table lock when the pte is not present (helpful when reclaiming
269 * highly shared pages).
271 * On success returns with pte mapped and locked.
273 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
274 unsigned long address
, spinlock_t
**ptlp
, int sync
)
282 pgd
= pgd_offset(mm
, address
);
283 if (!pgd_present(*pgd
))
286 pud
= pud_offset(pgd
, address
);
287 if (!pud_present(*pud
))
290 pmd
= pmd_offset(pud
, address
);
291 if (!pmd_present(*pmd
))
294 pte
= pte_offset_map(pmd
, address
);
295 /* Make a quick check before getting the lock */
296 if (!sync
&& !pte_present(*pte
)) {
301 ptl
= pte_lockptr(mm
, pmd
);
303 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
307 pte_unmap_unlock(pte
, ptl
);
312 * page_mapped_in_vma - check whether a page is really mapped in a VMA
313 * @page: the page to test
314 * @vma: the VMA to test
316 * Returns 1 if the page is mapped into the page tables of the VMA, 0
317 * if the page is not mapped into the page tables of this VMA. Only
318 * valid for normal file or anonymous VMAs.
320 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
322 unsigned long address
;
326 address
= vma_address(page
, vma
);
327 if (address
== -EFAULT
) /* out of vma range */
329 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
330 if (!pte
) /* the page is not in this mm */
332 pte_unmap_unlock(pte
, ptl
);
338 * Subfunctions of page_referenced: page_referenced_one called
339 * repeatedly from either page_referenced_anon or page_referenced_file.
341 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
342 unsigned long address
, unsigned int *mapcount
,
343 unsigned long *vm_flags
)
345 struct mm_struct
*mm
= vma
->vm_mm
;
350 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
355 * Don't want to elevate referenced for mlocked page that gets this far,
356 * in order that it progresses to try_to_unmap and is moved to the
359 if (vma
->vm_flags
& VM_LOCKED
) {
360 *mapcount
= 1; /* break early from loop */
361 *vm_flags
|= VM_LOCKED
;
365 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
367 * Don't treat a reference through a sequentially read
368 * mapping as such. If the page has been used in
369 * another mapping, we will catch it; if this other
370 * mapping is already gone, the unmap path will have
371 * set PG_referenced or activated the page.
373 if (likely(!VM_SequentialReadHint(vma
)))
377 /* Pretend the page is referenced if the task has the
378 swap token and is in the middle of a page fault. */
379 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
380 rwsem_is_locked(&mm
->mmap_sem
))
385 pte_unmap_unlock(pte
, ptl
);
388 *vm_flags
|= vma
->vm_flags
;
393 static int page_referenced_anon(struct page
*page
,
394 struct mem_cgroup
*mem_cont
,
395 unsigned long *vm_flags
)
397 unsigned int mapcount
;
398 struct anon_vma
*anon_vma
;
399 struct vm_area_struct
*vma
;
402 anon_vma
= page_lock_anon_vma(page
);
406 mapcount
= page_mapcount(page
);
407 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
408 unsigned long address
= vma_address(page
, vma
);
409 if (address
== -EFAULT
)
412 * If we are reclaiming on behalf of a cgroup, skip
413 * counting on behalf of references from different
416 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
418 referenced
+= page_referenced_one(page
, vma
, address
,
419 &mapcount
, vm_flags
);
424 page_unlock_anon_vma(anon_vma
);
429 * page_referenced_file - referenced check for object-based rmap
430 * @page: the page we're checking references on.
431 * @mem_cont: target memory controller
432 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
434 * For an object-based mapped page, find all the places it is mapped and
435 * check/clear the referenced flag. This is done by following the page->mapping
436 * pointer, then walking the chain of vmas it holds. It returns the number
437 * of references it found.
439 * This function is only called from page_referenced for object-based pages.
441 static int page_referenced_file(struct page
*page
,
442 struct mem_cgroup
*mem_cont
,
443 unsigned long *vm_flags
)
445 unsigned int mapcount
;
446 struct address_space
*mapping
= page
->mapping
;
447 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
448 struct vm_area_struct
*vma
;
449 struct prio_tree_iter iter
;
453 * The caller's checks on page->mapping and !PageAnon have made
454 * sure that this is a file page: the check for page->mapping
455 * excludes the case just before it gets set on an anon page.
457 BUG_ON(PageAnon(page
));
460 * The page lock not only makes sure that page->mapping cannot
461 * suddenly be NULLified by truncation, it makes sure that the
462 * structure at mapping cannot be freed and reused yet,
463 * so we can safely take mapping->i_mmap_lock.
465 BUG_ON(!PageLocked(page
));
467 spin_lock(&mapping
->i_mmap_lock
);
470 * i_mmap_lock does not stabilize mapcount at all, but mapcount
471 * is more likely to be accurate if we note it after spinning.
473 mapcount
= page_mapcount(page
);
475 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
476 unsigned long address
= vma_address(page
, vma
);
477 if (address
== -EFAULT
)
480 * If we are reclaiming on behalf of a cgroup, skip
481 * counting on behalf of references from different
484 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
486 referenced
+= page_referenced_one(page
, vma
, address
,
487 &mapcount
, vm_flags
);
492 spin_unlock(&mapping
->i_mmap_lock
);
497 * page_referenced - test if the page was referenced
498 * @page: the page to test
499 * @is_locked: caller holds lock on the page
500 * @mem_cont: target memory controller
501 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
503 * Quick test_and_clear_referenced for all mappings to a page,
504 * returns the number of ptes which referenced the page.
506 int page_referenced(struct page
*page
,
508 struct mem_cgroup
*mem_cont
,
509 unsigned long *vm_flags
)
514 if (TestClearPageReferenced(page
))
518 if (page_mapped(page
) && page_rmapping(page
)) {
519 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
520 we_locked
= trylock_page(page
);
526 if (unlikely(PageKsm(page
)))
527 referenced
+= page_referenced_ksm(page
, mem_cont
,
529 else if (PageAnon(page
))
530 referenced
+= page_referenced_anon(page
, mem_cont
,
532 else if (page
->mapping
)
533 referenced
+= page_referenced_file(page
, mem_cont
,
539 if (page_test_and_clear_young(page
))
545 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
546 unsigned long address
)
548 struct mm_struct
*mm
= vma
->vm_mm
;
553 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
557 if (pte_dirty(*pte
) || pte_write(*pte
)) {
560 flush_cache_page(vma
, address
, pte_pfn(*pte
));
561 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
562 entry
= pte_wrprotect(entry
);
563 entry
= pte_mkclean(entry
);
564 set_pte_at(mm
, address
, pte
, entry
);
568 pte_unmap_unlock(pte
, ptl
);
573 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
575 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
576 struct vm_area_struct
*vma
;
577 struct prio_tree_iter iter
;
580 BUG_ON(PageAnon(page
));
582 spin_lock(&mapping
->i_mmap_lock
);
583 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
584 if (vma
->vm_flags
& VM_SHARED
) {
585 unsigned long address
= vma_address(page
, vma
);
586 if (address
== -EFAULT
)
588 ret
+= page_mkclean_one(page
, vma
, address
);
591 spin_unlock(&mapping
->i_mmap_lock
);
595 int page_mkclean(struct page
*page
)
599 BUG_ON(!PageLocked(page
));
601 if (page_mapped(page
)) {
602 struct address_space
*mapping
= page_mapping(page
);
604 ret
= page_mkclean_file(mapping
, page
);
605 if (page_test_dirty(page
)) {
606 page_clear_dirty(page
);
614 EXPORT_SYMBOL_GPL(page_mkclean
);
617 * __page_set_anon_rmap - setup new anonymous rmap
618 * @page: the page to add the mapping to
619 * @vma: the vm area in which the mapping is added
620 * @address: the user virtual address mapped
622 static void __page_set_anon_rmap(struct page
*page
,
623 struct vm_area_struct
*vma
, unsigned long address
)
625 struct anon_vma
*anon_vma
= vma
->anon_vma
;
628 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
629 page
->mapping
= (struct address_space
*) anon_vma
;
630 page
->index
= linear_page_index(vma
, address
);
634 * __page_check_anon_rmap - sanity check anonymous rmap addition
635 * @page: the page to add the mapping to
636 * @vma: the vm area in which the mapping is added
637 * @address: the user virtual address mapped
639 static void __page_check_anon_rmap(struct page
*page
,
640 struct vm_area_struct
*vma
, unsigned long address
)
642 #ifdef CONFIG_DEBUG_VM
644 * The page's anon-rmap details (mapping and index) are guaranteed to
645 * be set up correctly at this point.
647 * We have exclusion against page_add_anon_rmap because the caller
648 * always holds the page locked, except if called from page_dup_rmap,
649 * in which case the page is already known to be setup.
651 * We have exclusion against page_add_new_anon_rmap because those pages
652 * are initially only visible via the pagetables, and the pte is locked
653 * over the call to page_add_new_anon_rmap.
655 struct anon_vma
*anon_vma
= vma
->anon_vma
;
656 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
657 BUG_ON(page
->mapping
!= (struct address_space
*)anon_vma
);
658 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
663 * page_add_anon_rmap - add pte mapping to an anonymous page
664 * @page: the page to add the mapping to
665 * @vma: the vm area in which the mapping is added
666 * @address: the user virtual address mapped
668 * The caller needs to hold the pte lock, and the page must be locked in
669 * the anon_vma case: to serialize mapping,index checking after setting,
670 * and to ensure that PageAnon is not being upgraded racily to PageKsm
671 * (but PageKsm is never downgraded to PageAnon).
673 void page_add_anon_rmap(struct page
*page
,
674 struct vm_area_struct
*vma
, unsigned long address
)
676 int first
= atomic_inc_and_test(&page
->_mapcount
);
678 __inc_zone_page_state(page
, NR_ANON_PAGES
);
679 if (unlikely(PageKsm(page
)))
682 VM_BUG_ON(!PageLocked(page
));
683 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
685 __page_set_anon_rmap(page
, vma
, address
);
687 __page_check_anon_rmap(page
, vma
, address
);
691 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
692 * @page: the page to add the mapping to
693 * @vma: the vm area in which the mapping is added
694 * @address: the user virtual address mapped
696 * Same as page_add_anon_rmap but must only be called on *new* pages.
697 * This means the inc-and-test can be bypassed.
698 * Page does not have to be locked.
700 void page_add_new_anon_rmap(struct page
*page
,
701 struct vm_area_struct
*vma
, unsigned long address
)
703 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
704 SetPageSwapBacked(page
);
705 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
706 __inc_zone_page_state(page
, NR_ANON_PAGES
);
707 __page_set_anon_rmap(page
, vma
, address
);
708 if (page_evictable(page
, vma
))
709 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
711 add_page_to_unevictable_list(page
);
715 * page_add_file_rmap - add pte mapping to a file page
716 * @page: the page to add the mapping to
718 * The caller needs to hold the pte lock.
720 void page_add_file_rmap(struct page
*page
)
722 if (atomic_inc_and_test(&page
->_mapcount
)) {
723 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
724 mem_cgroup_update_mapped_file_stat(page
, 1);
729 * page_remove_rmap - take down pte mapping from a page
730 * @page: page to remove mapping from
732 * The caller needs to hold the pte lock.
734 void page_remove_rmap(struct page
*page
)
736 /* page still mapped by someone else? */
737 if (!atomic_add_negative(-1, &page
->_mapcount
))
741 * Now that the last pte has gone, s390 must transfer dirty
742 * flag from storage key to struct page. We can usually skip
743 * this if the page is anon, so about to be freed; but perhaps
744 * not if it's in swapcache - there might be another pte slot
745 * containing the swap entry, but page not yet written to swap.
747 if ((!PageAnon(page
) || PageSwapCache(page
)) && page_test_dirty(page
)) {
748 page_clear_dirty(page
);
749 set_page_dirty(page
);
751 if (PageAnon(page
)) {
752 mem_cgroup_uncharge_page(page
);
753 __dec_zone_page_state(page
, NR_ANON_PAGES
);
755 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
757 mem_cgroup_update_mapped_file_stat(page
, -1);
759 * It would be tidy to reset the PageAnon mapping here,
760 * but that might overwrite a racing page_add_anon_rmap
761 * which increments mapcount after us but sets mapping
762 * before us: so leave the reset to free_hot_cold_page,
763 * and remember that it's only reliable while mapped.
764 * Leaving it set also helps swapoff to reinstate ptes
765 * faster for those pages still in swapcache.
770 * Subfunctions of try_to_unmap: try_to_unmap_one called
771 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
773 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
774 unsigned long address
, enum ttu_flags flags
)
776 struct mm_struct
*mm
= vma
->vm_mm
;
780 int ret
= SWAP_AGAIN
;
782 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
787 * If the page is mlock()d, we cannot swap it out.
788 * If it's recently referenced (perhaps page_referenced
789 * skipped over this mm) then we should reactivate it.
791 if (!(flags
& TTU_IGNORE_MLOCK
)) {
792 if (vma
->vm_flags
& VM_LOCKED
)
795 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
798 if (!(flags
& TTU_IGNORE_ACCESS
)) {
799 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
805 /* Nuke the page table entry. */
806 flush_cache_page(vma
, address
, page_to_pfn(page
));
807 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
809 /* Move the dirty bit to the physical page now the pte is gone. */
810 if (pte_dirty(pteval
))
811 set_page_dirty(page
);
813 /* Update high watermark before we lower rss */
814 update_hiwater_rss(mm
);
816 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
818 dec_mm_counter(mm
, anon_rss
);
820 dec_mm_counter(mm
, file_rss
);
821 set_pte_at(mm
, address
, pte
,
822 swp_entry_to_pte(make_hwpoison_entry(page
)));
823 } else if (PageAnon(page
)) {
824 swp_entry_t entry
= { .val
= page_private(page
) };
826 if (PageSwapCache(page
)) {
828 * Store the swap location in the pte.
829 * See handle_pte_fault() ...
831 if (swap_duplicate(entry
) < 0) {
832 set_pte_at(mm
, address
, pte
, pteval
);
836 if (list_empty(&mm
->mmlist
)) {
837 spin_lock(&mmlist_lock
);
838 if (list_empty(&mm
->mmlist
))
839 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
840 spin_unlock(&mmlist_lock
);
842 dec_mm_counter(mm
, anon_rss
);
843 } else if (PAGE_MIGRATION
) {
845 * Store the pfn of the page in a special migration
846 * pte. do_swap_page() will wait until the migration
847 * pte is removed and then restart fault handling.
849 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
850 entry
= make_migration_entry(page
, pte_write(pteval
));
852 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
853 BUG_ON(pte_file(*pte
));
854 } else if (PAGE_MIGRATION
&& (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
855 /* Establish migration entry for a file page */
857 entry
= make_migration_entry(page
, pte_write(pteval
));
858 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
860 dec_mm_counter(mm
, file_rss
);
862 page_remove_rmap(page
);
863 page_cache_release(page
);
866 pte_unmap_unlock(pte
, ptl
);
871 pte_unmap_unlock(pte
, ptl
);
875 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
876 * unstable result and race. Plus, We can't wait here because
877 * we now hold anon_vma->lock or mapping->i_mmap_lock.
878 * if trylock failed, the page remain in evictable lru and later
879 * vmscan could retry to move the page to unevictable lru if the
880 * page is actually mlocked.
882 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
883 if (vma
->vm_flags
& VM_LOCKED
) {
884 mlock_vma_page(page
);
887 up_read(&vma
->vm_mm
->mmap_sem
);
893 * objrmap doesn't work for nonlinear VMAs because the assumption that
894 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
895 * Consequently, given a particular page and its ->index, we cannot locate the
896 * ptes which are mapping that page without an exhaustive linear search.
898 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
899 * maps the file to which the target page belongs. The ->vm_private_data field
900 * holds the current cursor into that scan. Successive searches will circulate
901 * around the vma's virtual address space.
903 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
904 * more scanning pressure is placed against them as well. Eventually pages
905 * will become fully unmapped and are eligible for eviction.
907 * For very sparsely populated VMAs this is a little inefficient - chances are
908 * there there won't be many ptes located within the scan cluster. In this case
909 * maybe we could scan further - to the end of the pte page, perhaps.
911 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
912 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
913 * rather than unmapping them. If we encounter the "check_page" that vmscan is
914 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
916 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
917 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
919 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
920 struct vm_area_struct
*vma
, struct page
*check_page
)
922 struct mm_struct
*mm
= vma
->vm_mm
;
930 unsigned long address
;
932 int ret
= SWAP_AGAIN
;
935 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
936 end
= address
+ CLUSTER_SIZE
;
937 if (address
< vma
->vm_start
)
938 address
= vma
->vm_start
;
939 if (end
> vma
->vm_end
)
942 pgd
= pgd_offset(mm
, address
);
943 if (!pgd_present(*pgd
))
946 pud
= pud_offset(pgd
, address
);
947 if (!pud_present(*pud
))
950 pmd
= pmd_offset(pud
, address
);
951 if (!pmd_present(*pmd
))
955 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
956 * keep the sem while scanning the cluster for mlocking pages.
958 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
959 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
961 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
964 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
966 /* Update high watermark before we lower rss */
967 update_hiwater_rss(mm
);
969 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
970 if (!pte_present(*pte
))
972 page
= vm_normal_page(vma
, address
, *pte
);
973 BUG_ON(!page
|| PageAnon(page
));
976 mlock_vma_page(page
); /* no-op if already mlocked */
977 if (page
== check_page
)
979 continue; /* don't unmap */
982 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
985 /* Nuke the page table entry. */
986 flush_cache_page(vma
, address
, pte_pfn(*pte
));
987 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
989 /* If nonlinear, store the file page offset in the pte. */
990 if (page
->index
!= linear_page_index(vma
, address
))
991 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
993 /* Move the dirty bit to the physical page now the pte is gone. */
994 if (pte_dirty(pteval
))
995 set_page_dirty(page
);
997 page_remove_rmap(page
);
998 page_cache_release(page
);
999 dec_mm_counter(mm
, file_rss
);
1002 pte_unmap_unlock(pte
- 1, ptl
);
1004 up_read(&vma
->vm_mm
->mmap_sem
);
1009 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1011 * @page: the page to unmap/unlock
1012 * @flags: action and flags
1014 * Find all the mappings of a page using the mapping pointer and the vma chains
1015 * contained in the anon_vma struct it points to.
1017 * This function is only called from try_to_unmap/try_to_munlock for
1019 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1020 * where the page was found will be held for write. So, we won't recheck
1021 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1024 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1026 struct anon_vma
*anon_vma
;
1027 struct vm_area_struct
*vma
;
1028 int ret
= SWAP_AGAIN
;
1030 anon_vma
= page_lock_anon_vma(page
);
1034 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
1035 unsigned long address
= vma_address(page
, vma
);
1036 if (address
== -EFAULT
)
1038 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1039 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1043 page_unlock_anon_vma(anon_vma
);
1048 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1049 * @page: the page to unmap/unlock
1050 * @flags: action and flags
1052 * Find all the mappings of a page using the mapping pointer and the vma chains
1053 * contained in the address_space struct it points to.
1055 * This function is only called from try_to_unmap/try_to_munlock for
1056 * object-based pages.
1057 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1058 * where the page was found will be held for write. So, we won't recheck
1059 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1062 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1064 struct address_space
*mapping
= page
->mapping
;
1065 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1066 struct vm_area_struct
*vma
;
1067 struct prio_tree_iter iter
;
1068 int ret
= SWAP_AGAIN
;
1069 unsigned long cursor
;
1070 unsigned long max_nl_cursor
= 0;
1071 unsigned long max_nl_size
= 0;
1072 unsigned int mapcount
;
1074 spin_lock(&mapping
->i_mmap_lock
);
1075 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1076 unsigned long address
= vma_address(page
, vma
);
1077 if (address
== -EFAULT
)
1079 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1080 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1084 if (list_empty(&mapping
->i_mmap_nonlinear
))
1088 * We don't bother to try to find the munlocked page in nonlinears.
1089 * It's costly. Instead, later, page reclaim logic may call
1090 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1092 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1095 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1096 shared
.vm_set
.list
) {
1097 cursor
= (unsigned long) vma
->vm_private_data
;
1098 if (cursor
> max_nl_cursor
)
1099 max_nl_cursor
= cursor
;
1100 cursor
= vma
->vm_end
- vma
->vm_start
;
1101 if (cursor
> max_nl_size
)
1102 max_nl_size
= cursor
;
1105 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1111 * We don't try to search for this page in the nonlinear vmas,
1112 * and page_referenced wouldn't have found it anyway. Instead
1113 * just walk the nonlinear vmas trying to age and unmap some.
1114 * The mapcount of the page we came in with is irrelevant,
1115 * but even so use it as a guide to how hard we should try?
1117 mapcount
= page_mapcount(page
);
1120 cond_resched_lock(&mapping
->i_mmap_lock
);
1122 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1123 if (max_nl_cursor
== 0)
1124 max_nl_cursor
= CLUSTER_SIZE
;
1127 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1128 shared
.vm_set
.list
) {
1129 cursor
= (unsigned long) vma
->vm_private_data
;
1130 while ( cursor
< max_nl_cursor
&&
1131 cursor
< vma
->vm_end
- vma
->vm_start
) {
1132 if (try_to_unmap_cluster(cursor
, &mapcount
,
1133 vma
, page
) == SWAP_MLOCK
)
1135 cursor
+= CLUSTER_SIZE
;
1136 vma
->vm_private_data
= (void *) cursor
;
1137 if ((int)mapcount
<= 0)
1140 vma
->vm_private_data
= (void *) max_nl_cursor
;
1142 cond_resched_lock(&mapping
->i_mmap_lock
);
1143 max_nl_cursor
+= CLUSTER_SIZE
;
1144 } while (max_nl_cursor
<= max_nl_size
);
1147 * Don't loop forever (perhaps all the remaining pages are
1148 * in locked vmas). Reset cursor on all unreserved nonlinear
1149 * vmas, now forgetting on which ones it had fallen behind.
1151 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1152 vma
->vm_private_data
= NULL
;
1154 spin_unlock(&mapping
->i_mmap_lock
);
1159 * try_to_unmap - try to remove all page table mappings to a page
1160 * @page: the page to get unmapped
1161 * @flags: action and flags
1163 * Tries to remove all the page table entries which are mapping this
1164 * page, used in the pageout path. Caller must hold the page lock.
1165 * Return values are:
1167 * SWAP_SUCCESS - we succeeded in removing all mappings
1168 * SWAP_AGAIN - we missed a mapping, try again later
1169 * SWAP_FAIL - the page is unswappable
1170 * SWAP_MLOCK - page is mlocked.
1172 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1176 BUG_ON(!PageLocked(page
));
1178 if (unlikely(PageKsm(page
)))
1179 ret
= try_to_unmap_ksm(page
, flags
);
1180 else if (PageAnon(page
))
1181 ret
= try_to_unmap_anon(page
, flags
);
1183 ret
= try_to_unmap_file(page
, flags
);
1184 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1190 * try_to_munlock - try to munlock a page
1191 * @page: the page to be munlocked
1193 * Called from munlock code. Checks all of the VMAs mapping the page
1194 * to make sure nobody else has this page mlocked. The page will be
1195 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1197 * Return values are:
1199 * SWAP_AGAIN - no vma is holding page mlocked, or,
1200 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1201 * SWAP_FAIL - page cannot be located at present
1202 * SWAP_MLOCK - page is now mlocked.
1204 int try_to_munlock(struct page
*page
)
1206 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1208 if (unlikely(PageKsm(page
)))
1209 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1210 else if (PageAnon(page
))
1211 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1213 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1216 #ifdef CONFIG_MIGRATION
1218 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1219 * Called by migrate.c to remove migration ptes, but might be used more later.
1221 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1222 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1224 struct anon_vma
*anon_vma
;
1225 struct vm_area_struct
*vma
;
1226 int ret
= SWAP_AGAIN
;
1229 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1230 * because that depends on page_mapped(); but not all its usages
1231 * are holding mmap_sem, which also gave the necessary guarantee
1232 * (that this anon_vma's slab has not already been destroyed).
1233 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1234 * is risky, and currently limits the usefulness of rmap_walk().
1236 anon_vma
= page_anon_vma(page
);
1239 spin_lock(&anon_vma
->lock
);
1240 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
1241 unsigned long address
= vma_address(page
, vma
);
1242 if (address
== -EFAULT
)
1244 ret
= rmap_one(page
, vma
, address
, arg
);
1245 if (ret
!= SWAP_AGAIN
)
1248 spin_unlock(&anon_vma
->lock
);
1252 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1253 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1255 struct address_space
*mapping
= page
->mapping
;
1256 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1257 struct vm_area_struct
*vma
;
1258 struct prio_tree_iter iter
;
1259 int ret
= SWAP_AGAIN
;
1263 spin_lock(&mapping
->i_mmap_lock
);
1264 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1265 unsigned long address
= vma_address(page
, vma
);
1266 if (address
== -EFAULT
)
1268 ret
= rmap_one(page
, vma
, address
, arg
);
1269 if (ret
!= SWAP_AGAIN
)
1273 * No nonlinear handling: being always shared, nonlinear vmas
1274 * never contain migration ptes. Decide what to do about this
1275 * limitation to linear when we need rmap_walk() on nonlinear.
1277 spin_unlock(&mapping
->i_mmap_lock
);
1281 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1282 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1284 VM_BUG_ON(!PageLocked(page
));
1286 if (unlikely(PageKsm(page
)))
1287 return rmap_walk_ksm(page
, rmap_one
, arg
);
1288 else if (PageAnon(page
))
1289 return rmap_walk_anon(page
, rmap_one
, arg
);
1291 return rmap_walk_file(page
, rmap_one
, arg
);
1293 #endif /* CONFIG_MIGRATION */