V4L/DVB (13576): ir-common: fix an oops caused by the usage of an initialized drvdata
[linux-2.6/linux-2.6-openrd.git] / mm / page_alloc.c
blob59d2e88fb47ceb80a5549c5d69d9c1788ecefe41
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
58 * Array of node states.
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 [N_CPU] = { { [0] = 1UL } },
69 #endif /* NUMA */
71 EXPORT_SYMBOL(node_states);
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
82 static void __free_pages_ok(struct page *page, unsigned int order);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
104 #endif
108 EXPORT_SYMBOL(totalram_pages);
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
124 int min_free_kbytes = 1024;
126 static unsigned long __meminitdata nr_kernel_pages;
127 static unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
171 int page_group_by_mobility_disabled __read_mostly;
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
183 bool oom_killer_disabled __read_mostly;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
200 return ret;
203 static int page_is_consistent(struct zone *zone, struct page *page)
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
210 return 1;
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone *zone, struct page *page)
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
222 return 0;
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
227 return 0;
229 #endif
231 static void bad_page(struct page *page)
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
237 /* Don't complain about poisoned pages */
238 if (PageHWPoison(page)) {
239 __ClearPageBuddy(page);
240 return;
244 * Allow a burst of 60 reports, then keep quiet for that minute;
245 * or allow a steady drip of one report per second.
247 if (nr_shown == 60) {
248 if (time_before(jiffies, resume)) {
249 nr_unshown++;
250 goto out;
252 if (nr_unshown) {
253 printk(KERN_ALERT
254 "BUG: Bad page state: %lu messages suppressed\n",
255 nr_unshown);
256 nr_unshown = 0;
258 nr_shown = 0;
260 if (nr_shown++ == 0)
261 resume = jiffies + 60 * HZ;
263 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
264 current->comm, page_to_pfn(page));
265 printk(KERN_ALERT
266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 page, (void *)page->flags, page_count(page),
268 page_mapcount(page), page->mapping, page->index);
270 dump_stack();
271 out:
272 /* Leave bad fields for debug, except PageBuddy could make trouble */
273 __ClearPageBuddy(page);
274 add_taint(TAINT_BAD_PAGE);
278 * Higher-order pages are called "compound pages". They are structured thusly:
280 * The first PAGE_SIZE page is called the "head page".
282 * The remaining PAGE_SIZE pages are called "tail pages".
284 * All pages have PG_compound set. All pages have their ->private pointing at
285 * the head page (even the head page has this).
287 * The first tail page's ->lru.next holds the address of the compound page's
288 * put_page() function. Its ->lru.prev holds the order of allocation.
289 * This usage means that zero-order pages may not be compound.
292 static void free_compound_page(struct page *page)
294 __free_pages_ok(page, compound_order(page));
297 void prep_compound_page(struct page *page, unsigned long order)
299 int i;
300 int nr_pages = 1 << order;
302 set_compound_page_dtor(page, free_compound_page);
303 set_compound_order(page, order);
304 __SetPageHead(page);
305 for (i = 1; i < nr_pages; i++) {
306 struct page *p = page + i;
308 __SetPageTail(p);
309 p->first_page = page;
313 static int destroy_compound_page(struct page *page, unsigned long order)
315 int i;
316 int nr_pages = 1 << order;
317 int bad = 0;
319 if (unlikely(compound_order(page) != order) ||
320 unlikely(!PageHead(page))) {
321 bad_page(page);
322 bad++;
325 __ClearPageHead(page);
327 for (i = 1; i < nr_pages; i++) {
328 struct page *p = page + i;
330 if (unlikely(!PageTail(p) || (p->first_page != page))) {
331 bad_page(page);
332 bad++;
334 __ClearPageTail(p);
337 return bad;
340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342 int i;
345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
349 for (i = 0; i < (1 << order); i++)
350 clear_highpage(page + i);
353 static inline void set_page_order(struct page *page, int order)
355 set_page_private(page, order);
356 __SetPageBuddy(page);
359 static inline void rmv_page_order(struct page *page)
361 __ClearPageBuddy(page);
362 set_page_private(page, 0);
366 * Locate the struct page for both the matching buddy in our
367 * pair (buddy1) and the combined O(n+1) page they form (page).
369 * 1) Any buddy B1 will have an order O twin B2 which satisfies
370 * the following equation:
371 * B2 = B1 ^ (1 << O)
372 * For example, if the starting buddy (buddy2) is #8 its order
373 * 1 buddy is #10:
374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 * 2) Any buddy B will have an order O+1 parent P which
377 * satisfies the following equation:
378 * P = B & ~(1 << O)
380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
382 static inline struct page *
383 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
385 unsigned long buddy_idx = page_idx ^ (1 << order);
387 return page + (buddy_idx - page_idx);
390 static inline unsigned long
391 __find_combined_index(unsigned long page_idx, unsigned int order)
393 return (page_idx & ~(1 << order));
397 * This function checks whether a page is free && is the buddy
398 * we can do coalesce a page and its buddy if
399 * (a) the buddy is not in a hole &&
400 * (b) the buddy is in the buddy system &&
401 * (c) a page and its buddy have the same order &&
402 * (d) a page and its buddy are in the same zone.
404 * For recording whether a page is in the buddy system, we use PG_buddy.
405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
407 * For recording page's order, we use page_private(page).
409 static inline int page_is_buddy(struct page *page, struct page *buddy,
410 int order)
412 if (!pfn_valid_within(page_to_pfn(buddy)))
413 return 0;
415 if (page_zone_id(page) != page_zone_id(buddy))
416 return 0;
418 if (PageBuddy(buddy) && page_order(buddy) == order) {
419 VM_BUG_ON(page_count(buddy) != 0);
420 return 1;
422 return 0;
426 * Freeing function for a buddy system allocator.
428 * The concept of a buddy system is to maintain direct-mapped table
429 * (containing bit values) for memory blocks of various "orders".
430 * The bottom level table contains the map for the smallest allocatable
431 * units of memory (here, pages), and each level above it describes
432 * pairs of units from the levels below, hence, "buddies".
433 * At a high level, all that happens here is marking the table entry
434 * at the bottom level available, and propagating the changes upward
435 * as necessary, plus some accounting needed to play nicely with other
436 * parts of the VM system.
437 * At each level, we keep a list of pages, which are heads of continuous
438 * free pages of length of (1 << order) and marked with PG_buddy. Page's
439 * order is recorded in page_private(page) field.
440 * So when we are allocating or freeing one, we can derive the state of the
441 * other. That is, if we allocate a small block, and both were
442 * free, the remainder of the region must be split into blocks.
443 * If a block is freed, and its buddy is also free, then this
444 * triggers coalescing into a block of larger size.
446 * -- wli
449 static inline void __free_one_page(struct page *page,
450 struct zone *zone, unsigned int order,
451 int migratetype)
453 unsigned long page_idx;
455 if (unlikely(PageCompound(page)))
456 if (unlikely(destroy_compound_page(page, order)))
457 return;
459 VM_BUG_ON(migratetype == -1);
461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
463 VM_BUG_ON(page_idx & ((1 << order) - 1));
464 VM_BUG_ON(bad_range(zone, page));
466 while (order < MAX_ORDER-1) {
467 unsigned long combined_idx;
468 struct page *buddy;
470 buddy = __page_find_buddy(page, page_idx, order);
471 if (!page_is_buddy(page, buddy, order))
472 break;
474 /* Our buddy is free, merge with it and move up one order. */
475 list_del(&buddy->lru);
476 zone->free_area[order].nr_free--;
477 rmv_page_order(buddy);
478 combined_idx = __find_combined_index(page_idx, order);
479 page = page + (combined_idx - page_idx);
480 page_idx = combined_idx;
481 order++;
483 set_page_order(page, order);
484 list_add(&page->lru,
485 &zone->free_area[order].free_list[migratetype]);
486 zone->free_area[order].nr_free++;
490 * free_page_mlock() -- clean up attempts to free and mlocked() page.
491 * Page should not be on lru, so no need to fix that up.
492 * free_pages_check() will verify...
494 static inline void free_page_mlock(struct page *page)
496 __dec_zone_page_state(page, NR_MLOCK);
497 __count_vm_event(UNEVICTABLE_MLOCKFREED);
500 static inline int free_pages_check(struct page *page)
502 if (unlikely(page_mapcount(page) |
503 (page->mapping != NULL) |
504 (atomic_read(&page->_count) != 0) |
505 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
506 bad_page(page);
507 return 1;
509 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
510 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
511 return 0;
515 * Frees a number of pages from the PCP lists
516 * Assumes all pages on list are in same zone, and of same order.
517 * count is the number of pages to free.
519 * If the zone was previously in an "all pages pinned" state then look to
520 * see if this freeing clears that state.
522 * And clear the zone's pages_scanned counter, to hold off the "all pages are
523 * pinned" detection logic.
525 static void free_pcppages_bulk(struct zone *zone, int count,
526 struct per_cpu_pages *pcp)
528 int migratetype = 0;
529 int batch_free = 0;
531 spin_lock(&zone->lock);
532 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
533 zone->pages_scanned = 0;
535 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
536 while (count) {
537 struct page *page;
538 struct list_head *list;
541 * Remove pages from lists in a round-robin fashion. A
542 * batch_free count is maintained that is incremented when an
543 * empty list is encountered. This is so more pages are freed
544 * off fuller lists instead of spinning excessively around empty
545 * lists
547 do {
548 batch_free++;
549 if (++migratetype == MIGRATE_PCPTYPES)
550 migratetype = 0;
551 list = &pcp->lists[migratetype];
552 } while (list_empty(list));
554 do {
555 page = list_entry(list->prev, struct page, lru);
556 /* must delete as __free_one_page list manipulates */
557 list_del(&page->lru);
558 __free_one_page(page, zone, 0, migratetype);
559 trace_mm_page_pcpu_drain(page, 0, migratetype);
560 } while (--count && --batch_free && !list_empty(list));
562 spin_unlock(&zone->lock);
565 static void free_one_page(struct zone *zone, struct page *page, int order,
566 int migratetype)
568 spin_lock(&zone->lock);
569 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
570 zone->pages_scanned = 0;
572 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
573 __free_one_page(page, zone, order, migratetype);
574 spin_unlock(&zone->lock);
577 static void __free_pages_ok(struct page *page, unsigned int order)
579 unsigned long flags;
580 int i;
581 int bad = 0;
582 int wasMlocked = __TestClearPageMlocked(page);
584 kmemcheck_free_shadow(page, order);
586 for (i = 0 ; i < (1 << order) ; ++i)
587 bad += free_pages_check(page + i);
588 if (bad)
589 return;
591 if (!PageHighMem(page)) {
592 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
593 debug_check_no_obj_freed(page_address(page),
594 PAGE_SIZE << order);
596 arch_free_page(page, order);
597 kernel_map_pages(page, 1 << order, 0);
599 local_irq_save(flags);
600 if (unlikely(wasMlocked))
601 free_page_mlock(page);
602 __count_vm_events(PGFREE, 1 << order);
603 free_one_page(page_zone(page), page, order,
604 get_pageblock_migratetype(page));
605 local_irq_restore(flags);
609 * permit the bootmem allocator to evade page validation on high-order frees
611 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
613 if (order == 0) {
614 __ClearPageReserved(page);
615 set_page_count(page, 0);
616 set_page_refcounted(page);
617 __free_page(page);
618 } else {
619 int loop;
621 prefetchw(page);
622 for (loop = 0; loop < BITS_PER_LONG; loop++) {
623 struct page *p = &page[loop];
625 if (loop + 1 < BITS_PER_LONG)
626 prefetchw(p + 1);
627 __ClearPageReserved(p);
628 set_page_count(p, 0);
631 set_page_refcounted(page);
632 __free_pages(page, order);
638 * The order of subdivision here is critical for the IO subsystem.
639 * Please do not alter this order without good reasons and regression
640 * testing. Specifically, as large blocks of memory are subdivided,
641 * the order in which smaller blocks are delivered depends on the order
642 * they're subdivided in this function. This is the primary factor
643 * influencing the order in which pages are delivered to the IO
644 * subsystem according to empirical testing, and this is also justified
645 * by considering the behavior of a buddy system containing a single
646 * large block of memory acted on by a series of small allocations.
647 * This behavior is a critical factor in sglist merging's success.
649 * -- wli
651 static inline void expand(struct zone *zone, struct page *page,
652 int low, int high, struct free_area *area,
653 int migratetype)
655 unsigned long size = 1 << high;
657 while (high > low) {
658 area--;
659 high--;
660 size >>= 1;
661 VM_BUG_ON(bad_range(zone, &page[size]));
662 list_add(&page[size].lru, &area->free_list[migratetype]);
663 area->nr_free++;
664 set_page_order(&page[size], high);
669 * This page is about to be returned from the page allocator
671 static inline int check_new_page(struct page *page)
673 if (unlikely(page_mapcount(page) |
674 (page->mapping != NULL) |
675 (atomic_read(&page->_count) != 0) |
676 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
677 bad_page(page);
678 return 1;
680 return 0;
683 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
685 int i;
687 for (i = 0; i < (1 << order); i++) {
688 struct page *p = page + i;
689 if (unlikely(check_new_page(p)))
690 return 1;
693 set_page_private(page, 0);
694 set_page_refcounted(page);
696 arch_alloc_page(page, order);
697 kernel_map_pages(page, 1 << order, 1);
699 if (gfp_flags & __GFP_ZERO)
700 prep_zero_page(page, order, gfp_flags);
702 if (order && (gfp_flags & __GFP_COMP))
703 prep_compound_page(page, order);
705 return 0;
709 * Go through the free lists for the given migratetype and remove
710 * the smallest available page from the freelists
712 static inline
713 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
714 int migratetype)
716 unsigned int current_order;
717 struct free_area * area;
718 struct page *page;
720 /* Find a page of the appropriate size in the preferred list */
721 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
722 area = &(zone->free_area[current_order]);
723 if (list_empty(&area->free_list[migratetype]))
724 continue;
726 page = list_entry(area->free_list[migratetype].next,
727 struct page, lru);
728 list_del(&page->lru);
729 rmv_page_order(page);
730 area->nr_free--;
731 expand(zone, page, order, current_order, area, migratetype);
732 return page;
735 return NULL;
740 * This array describes the order lists are fallen back to when
741 * the free lists for the desirable migrate type are depleted
743 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
744 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
745 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
746 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
747 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
751 * Move the free pages in a range to the free lists of the requested type.
752 * Note that start_page and end_pages are not aligned on a pageblock
753 * boundary. If alignment is required, use move_freepages_block()
755 static int move_freepages(struct zone *zone,
756 struct page *start_page, struct page *end_page,
757 int migratetype)
759 struct page *page;
760 unsigned long order;
761 int pages_moved = 0;
763 #ifndef CONFIG_HOLES_IN_ZONE
765 * page_zone is not safe to call in this context when
766 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
767 * anyway as we check zone boundaries in move_freepages_block().
768 * Remove at a later date when no bug reports exist related to
769 * grouping pages by mobility
771 BUG_ON(page_zone(start_page) != page_zone(end_page));
772 #endif
774 for (page = start_page; page <= end_page;) {
775 /* Make sure we are not inadvertently changing nodes */
776 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
778 if (!pfn_valid_within(page_to_pfn(page))) {
779 page++;
780 continue;
783 if (!PageBuddy(page)) {
784 page++;
785 continue;
788 order = page_order(page);
789 list_del(&page->lru);
790 list_add(&page->lru,
791 &zone->free_area[order].free_list[migratetype]);
792 page += 1 << order;
793 pages_moved += 1 << order;
796 return pages_moved;
799 static int move_freepages_block(struct zone *zone, struct page *page,
800 int migratetype)
802 unsigned long start_pfn, end_pfn;
803 struct page *start_page, *end_page;
805 start_pfn = page_to_pfn(page);
806 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
807 start_page = pfn_to_page(start_pfn);
808 end_page = start_page + pageblock_nr_pages - 1;
809 end_pfn = start_pfn + pageblock_nr_pages - 1;
811 /* Do not cross zone boundaries */
812 if (start_pfn < zone->zone_start_pfn)
813 start_page = page;
814 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
815 return 0;
817 return move_freepages(zone, start_page, end_page, migratetype);
820 static void change_pageblock_range(struct page *pageblock_page,
821 int start_order, int migratetype)
823 int nr_pageblocks = 1 << (start_order - pageblock_order);
825 while (nr_pageblocks--) {
826 set_pageblock_migratetype(pageblock_page, migratetype);
827 pageblock_page += pageblock_nr_pages;
831 /* Remove an element from the buddy allocator from the fallback list */
832 static inline struct page *
833 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
835 struct free_area * area;
836 int current_order;
837 struct page *page;
838 int migratetype, i;
840 /* Find the largest possible block of pages in the other list */
841 for (current_order = MAX_ORDER-1; current_order >= order;
842 --current_order) {
843 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
844 migratetype = fallbacks[start_migratetype][i];
846 /* MIGRATE_RESERVE handled later if necessary */
847 if (migratetype == MIGRATE_RESERVE)
848 continue;
850 area = &(zone->free_area[current_order]);
851 if (list_empty(&area->free_list[migratetype]))
852 continue;
854 page = list_entry(area->free_list[migratetype].next,
855 struct page, lru);
856 area->nr_free--;
859 * If breaking a large block of pages, move all free
860 * pages to the preferred allocation list. If falling
861 * back for a reclaimable kernel allocation, be more
862 * agressive about taking ownership of free pages
864 if (unlikely(current_order >= (pageblock_order >> 1)) ||
865 start_migratetype == MIGRATE_RECLAIMABLE ||
866 page_group_by_mobility_disabled) {
867 unsigned long pages;
868 pages = move_freepages_block(zone, page,
869 start_migratetype);
871 /* Claim the whole block if over half of it is free */
872 if (pages >= (1 << (pageblock_order-1)) ||
873 page_group_by_mobility_disabled)
874 set_pageblock_migratetype(page,
875 start_migratetype);
877 migratetype = start_migratetype;
880 /* Remove the page from the freelists */
881 list_del(&page->lru);
882 rmv_page_order(page);
884 /* Take ownership for orders >= pageblock_order */
885 if (current_order >= pageblock_order)
886 change_pageblock_range(page, current_order,
887 start_migratetype);
889 expand(zone, page, order, current_order, area, migratetype);
891 trace_mm_page_alloc_extfrag(page, order, current_order,
892 start_migratetype, migratetype);
894 return page;
898 return NULL;
902 * Do the hard work of removing an element from the buddy allocator.
903 * Call me with the zone->lock already held.
905 static struct page *__rmqueue(struct zone *zone, unsigned int order,
906 int migratetype)
908 struct page *page;
910 retry_reserve:
911 page = __rmqueue_smallest(zone, order, migratetype);
913 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
914 page = __rmqueue_fallback(zone, order, migratetype);
917 * Use MIGRATE_RESERVE rather than fail an allocation. goto
918 * is used because __rmqueue_smallest is an inline function
919 * and we want just one call site
921 if (!page) {
922 migratetype = MIGRATE_RESERVE;
923 goto retry_reserve;
927 trace_mm_page_alloc_zone_locked(page, order, migratetype);
928 return page;
932 * Obtain a specified number of elements from the buddy allocator, all under
933 * a single hold of the lock, for efficiency. Add them to the supplied list.
934 * Returns the number of new pages which were placed at *list.
936 static int rmqueue_bulk(struct zone *zone, unsigned int order,
937 unsigned long count, struct list_head *list,
938 int migratetype, int cold)
940 int i;
942 spin_lock(&zone->lock);
943 for (i = 0; i < count; ++i) {
944 struct page *page = __rmqueue(zone, order, migratetype);
945 if (unlikely(page == NULL))
946 break;
949 * Split buddy pages returned by expand() are received here
950 * in physical page order. The page is added to the callers and
951 * list and the list head then moves forward. From the callers
952 * perspective, the linked list is ordered by page number in
953 * some conditions. This is useful for IO devices that can
954 * merge IO requests if the physical pages are ordered
955 * properly.
957 if (likely(cold == 0))
958 list_add(&page->lru, list);
959 else
960 list_add_tail(&page->lru, list);
961 set_page_private(page, migratetype);
962 list = &page->lru;
964 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
965 spin_unlock(&zone->lock);
966 return i;
969 #ifdef CONFIG_NUMA
971 * Called from the vmstat counter updater to drain pagesets of this
972 * currently executing processor on remote nodes after they have
973 * expired.
975 * Note that this function must be called with the thread pinned to
976 * a single processor.
978 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
980 unsigned long flags;
981 int to_drain;
983 local_irq_save(flags);
984 if (pcp->count >= pcp->batch)
985 to_drain = pcp->batch;
986 else
987 to_drain = pcp->count;
988 free_pcppages_bulk(zone, to_drain, pcp);
989 pcp->count -= to_drain;
990 local_irq_restore(flags);
992 #endif
995 * Drain pages of the indicated processor.
997 * The processor must either be the current processor and the
998 * thread pinned to the current processor or a processor that
999 * is not online.
1001 static void drain_pages(unsigned int cpu)
1003 unsigned long flags;
1004 struct zone *zone;
1006 for_each_populated_zone(zone) {
1007 struct per_cpu_pageset *pset;
1008 struct per_cpu_pages *pcp;
1010 pset = zone_pcp(zone, cpu);
1012 pcp = &pset->pcp;
1013 local_irq_save(flags);
1014 free_pcppages_bulk(zone, pcp->count, pcp);
1015 pcp->count = 0;
1016 local_irq_restore(flags);
1021 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1023 void drain_local_pages(void *arg)
1025 drain_pages(smp_processor_id());
1029 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1031 void drain_all_pages(void)
1033 on_each_cpu(drain_local_pages, NULL, 1);
1036 #ifdef CONFIG_HIBERNATION
1038 void mark_free_pages(struct zone *zone)
1040 unsigned long pfn, max_zone_pfn;
1041 unsigned long flags;
1042 int order, t;
1043 struct list_head *curr;
1045 if (!zone->spanned_pages)
1046 return;
1048 spin_lock_irqsave(&zone->lock, flags);
1050 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052 if (pfn_valid(pfn)) {
1053 struct page *page = pfn_to_page(pfn);
1055 if (!swsusp_page_is_forbidden(page))
1056 swsusp_unset_page_free(page);
1059 for_each_migratetype_order(order, t) {
1060 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1061 unsigned long i;
1063 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1064 for (i = 0; i < (1UL << order); i++)
1065 swsusp_set_page_free(pfn_to_page(pfn + i));
1068 spin_unlock_irqrestore(&zone->lock, flags);
1070 #endif /* CONFIG_PM */
1073 * Free a 0-order page
1075 static void free_hot_cold_page(struct page *page, int cold)
1077 struct zone *zone = page_zone(page);
1078 struct per_cpu_pages *pcp;
1079 unsigned long flags;
1080 int migratetype;
1081 int wasMlocked = __TestClearPageMlocked(page);
1083 kmemcheck_free_shadow(page, 0);
1085 if (PageAnon(page))
1086 page->mapping = NULL;
1087 if (free_pages_check(page))
1088 return;
1090 if (!PageHighMem(page)) {
1091 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1092 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1094 arch_free_page(page, 0);
1095 kernel_map_pages(page, 1, 0);
1097 pcp = &zone_pcp(zone, get_cpu())->pcp;
1098 migratetype = get_pageblock_migratetype(page);
1099 set_page_private(page, migratetype);
1100 local_irq_save(flags);
1101 if (unlikely(wasMlocked))
1102 free_page_mlock(page);
1103 __count_vm_event(PGFREE);
1106 * We only track unmovable, reclaimable and movable on pcp lists.
1107 * Free ISOLATE pages back to the allocator because they are being
1108 * offlined but treat RESERVE as movable pages so we can get those
1109 * areas back if necessary. Otherwise, we may have to free
1110 * excessively into the page allocator
1112 if (migratetype >= MIGRATE_PCPTYPES) {
1113 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1114 free_one_page(zone, page, 0, migratetype);
1115 goto out;
1117 migratetype = MIGRATE_MOVABLE;
1120 if (cold)
1121 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1122 else
1123 list_add(&page->lru, &pcp->lists[migratetype]);
1124 pcp->count++;
1125 if (pcp->count >= pcp->high) {
1126 free_pcppages_bulk(zone, pcp->batch, pcp);
1127 pcp->count -= pcp->batch;
1130 out:
1131 local_irq_restore(flags);
1132 put_cpu();
1135 void free_hot_page(struct page *page)
1137 trace_mm_page_free_direct(page, 0);
1138 free_hot_cold_page(page, 0);
1142 * split_page takes a non-compound higher-order page, and splits it into
1143 * n (1<<order) sub-pages: page[0..n]
1144 * Each sub-page must be freed individually.
1146 * Note: this is probably too low level an operation for use in drivers.
1147 * Please consult with lkml before using this in your driver.
1149 void split_page(struct page *page, unsigned int order)
1151 int i;
1153 VM_BUG_ON(PageCompound(page));
1154 VM_BUG_ON(!page_count(page));
1156 #ifdef CONFIG_KMEMCHECK
1158 * Split shadow pages too, because free(page[0]) would
1159 * otherwise free the whole shadow.
1161 if (kmemcheck_page_is_tracked(page))
1162 split_page(virt_to_page(page[0].shadow), order);
1163 #endif
1165 for (i = 1; i < (1 << order); i++)
1166 set_page_refcounted(page + i);
1170 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1171 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1172 * or two.
1174 static inline
1175 struct page *buffered_rmqueue(struct zone *preferred_zone,
1176 struct zone *zone, int order, gfp_t gfp_flags,
1177 int migratetype)
1179 unsigned long flags;
1180 struct page *page;
1181 int cold = !!(gfp_flags & __GFP_COLD);
1182 int cpu;
1184 again:
1185 cpu = get_cpu();
1186 if (likely(order == 0)) {
1187 struct per_cpu_pages *pcp;
1188 struct list_head *list;
1190 pcp = &zone_pcp(zone, cpu)->pcp;
1191 list = &pcp->lists[migratetype];
1192 local_irq_save(flags);
1193 if (list_empty(list)) {
1194 pcp->count += rmqueue_bulk(zone, 0,
1195 pcp->batch, list,
1196 migratetype, cold);
1197 if (unlikely(list_empty(list)))
1198 goto failed;
1201 if (cold)
1202 page = list_entry(list->prev, struct page, lru);
1203 else
1204 page = list_entry(list->next, struct page, lru);
1206 list_del(&page->lru);
1207 pcp->count--;
1208 } else {
1209 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1211 * __GFP_NOFAIL is not to be used in new code.
1213 * All __GFP_NOFAIL callers should be fixed so that they
1214 * properly detect and handle allocation failures.
1216 * We most definitely don't want callers attempting to
1217 * allocate greater than order-1 page units with
1218 * __GFP_NOFAIL.
1220 WARN_ON_ONCE(order > 1);
1222 spin_lock_irqsave(&zone->lock, flags);
1223 page = __rmqueue(zone, order, migratetype);
1224 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1225 spin_unlock(&zone->lock);
1226 if (!page)
1227 goto failed;
1230 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1231 zone_statistics(preferred_zone, zone);
1232 local_irq_restore(flags);
1233 put_cpu();
1235 VM_BUG_ON(bad_range(zone, page));
1236 if (prep_new_page(page, order, gfp_flags))
1237 goto again;
1238 return page;
1240 failed:
1241 local_irq_restore(flags);
1242 put_cpu();
1243 return NULL;
1246 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1247 #define ALLOC_WMARK_MIN WMARK_MIN
1248 #define ALLOC_WMARK_LOW WMARK_LOW
1249 #define ALLOC_WMARK_HIGH WMARK_HIGH
1250 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1252 /* Mask to get the watermark bits */
1253 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1255 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1256 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1257 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1259 #ifdef CONFIG_FAIL_PAGE_ALLOC
1261 static struct fail_page_alloc_attr {
1262 struct fault_attr attr;
1264 u32 ignore_gfp_highmem;
1265 u32 ignore_gfp_wait;
1266 u32 min_order;
1268 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1270 struct dentry *ignore_gfp_highmem_file;
1271 struct dentry *ignore_gfp_wait_file;
1272 struct dentry *min_order_file;
1274 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1276 } fail_page_alloc = {
1277 .attr = FAULT_ATTR_INITIALIZER,
1278 .ignore_gfp_wait = 1,
1279 .ignore_gfp_highmem = 1,
1280 .min_order = 1,
1283 static int __init setup_fail_page_alloc(char *str)
1285 return setup_fault_attr(&fail_page_alloc.attr, str);
1287 __setup("fail_page_alloc=", setup_fail_page_alloc);
1289 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1291 if (order < fail_page_alloc.min_order)
1292 return 0;
1293 if (gfp_mask & __GFP_NOFAIL)
1294 return 0;
1295 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1296 return 0;
1297 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1298 return 0;
1300 return should_fail(&fail_page_alloc.attr, 1 << order);
1303 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1305 static int __init fail_page_alloc_debugfs(void)
1307 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1308 struct dentry *dir;
1309 int err;
1311 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1312 "fail_page_alloc");
1313 if (err)
1314 return err;
1315 dir = fail_page_alloc.attr.dentries.dir;
1317 fail_page_alloc.ignore_gfp_wait_file =
1318 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1319 &fail_page_alloc.ignore_gfp_wait);
1321 fail_page_alloc.ignore_gfp_highmem_file =
1322 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1323 &fail_page_alloc.ignore_gfp_highmem);
1324 fail_page_alloc.min_order_file =
1325 debugfs_create_u32("min-order", mode, dir,
1326 &fail_page_alloc.min_order);
1328 if (!fail_page_alloc.ignore_gfp_wait_file ||
1329 !fail_page_alloc.ignore_gfp_highmem_file ||
1330 !fail_page_alloc.min_order_file) {
1331 err = -ENOMEM;
1332 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1333 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1334 debugfs_remove(fail_page_alloc.min_order_file);
1335 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1338 return err;
1341 late_initcall(fail_page_alloc_debugfs);
1343 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1345 #else /* CONFIG_FAIL_PAGE_ALLOC */
1347 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1349 return 0;
1352 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1355 * Return 1 if free pages are above 'mark'. This takes into account the order
1356 * of the allocation.
1358 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1359 int classzone_idx, int alloc_flags)
1361 /* free_pages my go negative - that's OK */
1362 long min = mark;
1363 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1364 int o;
1366 if (alloc_flags & ALLOC_HIGH)
1367 min -= min / 2;
1368 if (alloc_flags & ALLOC_HARDER)
1369 min -= min / 4;
1371 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1372 return 0;
1373 for (o = 0; o < order; o++) {
1374 /* At the next order, this order's pages become unavailable */
1375 free_pages -= z->free_area[o].nr_free << o;
1377 /* Require fewer higher order pages to be free */
1378 min >>= 1;
1380 if (free_pages <= min)
1381 return 0;
1383 return 1;
1386 #ifdef CONFIG_NUMA
1388 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1389 * skip over zones that are not allowed by the cpuset, or that have
1390 * been recently (in last second) found to be nearly full. See further
1391 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1392 * that have to skip over a lot of full or unallowed zones.
1394 * If the zonelist cache is present in the passed in zonelist, then
1395 * returns a pointer to the allowed node mask (either the current
1396 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1398 * If the zonelist cache is not available for this zonelist, does
1399 * nothing and returns NULL.
1401 * If the fullzones BITMAP in the zonelist cache is stale (more than
1402 * a second since last zap'd) then we zap it out (clear its bits.)
1404 * We hold off even calling zlc_setup, until after we've checked the
1405 * first zone in the zonelist, on the theory that most allocations will
1406 * be satisfied from that first zone, so best to examine that zone as
1407 * quickly as we can.
1409 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1411 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1412 nodemask_t *allowednodes; /* zonelist_cache approximation */
1414 zlc = zonelist->zlcache_ptr;
1415 if (!zlc)
1416 return NULL;
1418 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1419 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1420 zlc->last_full_zap = jiffies;
1423 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1424 &cpuset_current_mems_allowed :
1425 &node_states[N_HIGH_MEMORY];
1426 return allowednodes;
1430 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1431 * if it is worth looking at further for free memory:
1432 * 1) Check that the zone isn't thought to be full (doesn't have its
1433 * bit set in the zonelist_cache fullzones BITMAP).
1434 * 2) Check that the zones node (obtained from the zonelist_cache
1435 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1436 * Return true (non-zero) if zone is worth looking at further, or
1437 * else return false (zero) if it is not.
1439 * This check -ignores- the distinction between various watermarks,
1440 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1441 * found to be full for any variation of these watermarks, it will
1442 * be considered full for up to one second by all requests, unless
1443 * we are so low on memory on all allowed nodes that we are forced
1444 * into the second scan of the zonelist.
1446 * In the second scan we ignore this zonelist cache and exactly
1447 * apply the watermarks to all zones, even it is slower to do so.
1448 * We are low on memory in the second scan, and should leave no stone
1449 * unturned looking for a free page.
1451 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1452 nodemask_t *allowednodes)
1454 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1455 int i; /* index of *z in zonelist zones */
1456 int n; /* node that zone *z is on */
1458 zlc = zonelist->zlcache_ptr;
1459 if (!zlc)
1460 return 1;
1462 i = z - zonelist->_zonerefs;
1463 n = zlc->z_to_n[i];
1465 /* This zone is worth trying if it is allowed but not full */
1466 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1470 * Given 'z' scanning a zonelist, set the corresponding bit in
1471 * zlc->fullzones, so that subsequent attempts to allocate a page
1472 * from that zone don't waste time re-examining it.
1474 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1476 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1477 int i; /* index of *z in zonelist zones */
1479 zlc = zonelist->zlcache_ptr;
1480 if (!zlc)
1481 return;
1483 i = z - zonelist->_zonerefs;
1485 set_bit(i, zlc->fullzones);
1488 #else /* CONFIG_NUMA */
1490 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1492 return NULL;
1495 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1496 nodemask_t *allowednodes)
1498 return 1;
1501 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1504 #endif /* CONFIG_NUMA */
1507 * get_page_from_freelist goes through the zonelist trying to allocate
1508 * a page.
1510 static struct page *
1511 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1512 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1513 struct zone *preferred_zone, int migratetype)
1515 struct zoneref *z;
1516 struct page *page = NULL;
1517 int classzone_idx;
1518 struct zone *zone;
1519 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1520 int zlc_active = 0; /* set if using zonelist_cache */
1521 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1523 classzone_idx = zone_idx(preferred_zone);
1524 zonelist_scan:
1526 * Scan zonelist, looking for a zone with enough free.
1527 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1529 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1530 high_zoneidx, nodemask) {
1531 if (NUMA_BUILD && zlc_active &&
1532 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1533 continue;
1534 if ((alloc_flags & ALLOC_CPUSET) &&
1535 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1536 goto try_next_zone;
1538 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1539 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1540 unsigned long mark;
1541 int ret;
1543 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1544 if (zone_watermark_ok(zone, order, mark,
1545 classzone_idx, alloc_flags))
1546 goto try_this_zone;
1548 if (zone_reclaim_mode == 0)
1549 goto this_zone_full;
1551 ret = zone_reclaim(zone, gfp_mask, order);
1552 switch (ret) {
1553 case ZONE_RECLAIM_NOSCAN:
1554 /* did not scan */
1555 goto try_next_zone;
1556 case ZONE_RECLAIM_FULL:
1557 /* scanned but unreclaimable */
1558 goto this_zone_full;
1559 default:
1560 /* did we reclaim enough */
1561 if (!zone_watermark_ok(zone, order, mark,
1562 classzone_idx, alloc_flags))
1563 goto this_zone_full;
1567 try_this_zone:
1568 page = buffered_rmqueue(preferred_zone, zone, order,
1569 gfp_mask, migratetype);
1570 if (page)
1571 break;
1572 this_zone_full:
1573 if (NUMA_BUILD)
1574 zlc_mark_zone_full(zonelist, z);
1575 try_next_zone:
1576 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1578 * we do zlc_setup after the first zone is tried but only
1579 * if there are multiple nodes make it worthwhile
1581 allowednodes = zlc_setup(zonelist, alloc_flags);
1582 zlc_active = 1;
1583 did_zlc_setup = 1;
1587 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1588 /* Disable zlc cache for second zonelist scan */
1589 zlc_active = 0;
1590 goto zonelist_scan;
1592 return page;
1595 static inline int
1596 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1597 unsigned long pages_reclaimed)
1599 /* Do not loop if specifically requested */
1600 if (gfp_mask & __GFP_NORETRY)
1601 return 0;
1604 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1605 * means __GFP_NOFAIL, but that may not be true in other
1606 * implementations.
1608 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1609 return 1;
1612 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1613 * specified, then we retry until we no longer reclaim any pages
1614 * (above), or we've reclaimed an order of pages at least as
1615 * large as the allocation's order. In both cases, if the
1616 * allocation still fails, we stop retrying.
1618 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1619 return 1;
1622 * Don't let big-order allocations loop unless the caller
1623 * explicitly requests that.
1625 if (gfp_mask & __GFP_NOFAIL)
1626 return 1;
1628 return 0;
1631 static inline struct page *
1632 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1633 struct zonelist *zonelist, enum zone_type high_zoneidx,
1634 nodemask_t *nodemask, struct zone *preferred_zone,
1635 int migratetype)
1637 struct page *page;
1639 /* Acquire the OOM killer lock for the zones in zonelist */
1640 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1641 schedule_timeout_uninterruptible(1);
1642 return NULL;
1646 * Go through the zonelist yet one more time, keep very high watermark
1647 * here, this is only to catch a parallel oom killing, we must fail if
1648 * we're still under heavy pressure.
1650 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1651 order, zonelist, high_zoneidx,
1652 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1653 preferred_zone, migratetype);
1654 if (page)
1655 goto out;
1657 /* The OOM killer will not help higher order allocs */
1658 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1659 goto out;
1661 /* Exhausted what can be done so it's blamo time */
1662 out_of_memory(zonelist, gfp_mask, order);
1664 out:
1665 clear_zonelist_oom(zonelist, gfp_mask);
1666 return page;
1669 /* The really slow allocator path where we enter direct reclaim */
1670 static inline struct page *
1671 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1672 struct zonelist *zonelist, enum zone_type high_zoneidx,
1673 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1674 int migratetype, unsigned long *did_some_progress)
1676 struct page *page = NULL;
1677 struct reclaim_state reclaim_state;
1678 struct task_struct *p = current;
1680 cond_resched();
1682 /* We now go into synchronous reclaim */
1683 cpuset_memory_pressure_bump();
1684 p->flags |= PF_MEMALLOC;
1685 lockdep_set_current_reclaim_state(gfp_mask);
1686 reclaim_state.reclaimed_slab = 0;
1687 p->reclaim_state = &reclaim_state;
1689 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1691 p->reclaim_state = NULL;
1692 lockdep_clear_current_reclaim_state();
1693 p->flags &= ~PF_MEMALLOC;
1695 cond_resched();
1697 if (order != 0)
1698 drain_all_pages();
1700 if (likely(*did_some_progress))
1701 page = get_page_from_freelist(gfp_mask, nodemask, order,
1702 zonelist, high_zoneidx,
1703 alloc_flags, preferred_zone,
1704 migratetype);
1705 return page;
1709 * This is called in the allocator slow-path if the allocation request is of
1710 * sufficient urgency to ignore watermarks and take other desperate measures
1712 static inline struct page *
1713 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1714 struct zonelist *zonelist, enum zone_type high_zoneidx,
1715 nodemask_t *nodemask, struct zone *preferred_zone,
1716 int migratetype)
1718 struct page *page;
1720 do {
1721 page = get_page_from_freelist(gfp_mask, nodemask, order,
1722 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1723 preferred_zone, migratetype);
1725 if (!page && gfp_mask & __GFP_NOFAIL)
1726 congestion_wait(BLK_RW_ASYNC, HZ/50);
1727 } while (!page && (gfp_mask & __GFP_NOFAIL));
1729 return page;
1732 static inline
1733 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1734 enum zone_type high_zoneidx)
1736 struct zoneref *z;
1737 struct zone *zone;
1739 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1740 wakeup_kswapd(zone, order);
1743 static inline int
1744 gfp_to_alloc_flags(gfp_t gfp_mask)
1746 struct task_struct *p = current;
1747 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1748 const gfp_t wait = gfp_mask & __GFP_WAIT;
1750 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1751 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1754 * The caller may dip into page reserves a bit more if the caller
1755 * cannot run direct reclaim, or if the caller has realtime scheduling
1756 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1757 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1759 alloc_flags |= (gfp_mask & __GFP_HIGH);
1761 if (!wait) {
1762 alloc_flags |= ALLOC_HARDER;
1764 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1765 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1767 alloc_flags &= ~ALLOC_CPUSET;
1768 } else if (unlikely(rt_task(p)) && !in_interrupt())
1769 alloc_flags |= ALLOC_HARDER;
1771 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1772 if (!in_interrupt() &&
1773 ((p->flags & PF_MEMALLOC) ||
1774 unlikely(test_thread_flag(TIF_MEMDIE))))
1775 alloc_flags |= ALLOC_NO_WATERMARKS;
1778 return alloc_flags;
1781 static inline struct page *
1782 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1783 struct zonelist *zonelist, enum zone_type high_zoneidx,
1784 nodemask_t *nodemask, struct zone *preferred_zone,
1785 int migratetype)
1787 const gfp_t wait = gfp_mask & __GFP_WAIT;
1788 struct page *page = NULL;
1789 int alloc_flags;
1790 unsigned long pages_reclaimed = 0;
1791 unsigned long did_some_progress;
1792 struct task_struct *p = current;
1795 * In the slowpath, we sanity check order to avoid ever trying to
1796 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1797 * be using allocators in order of preference for an area that is
1798 * too large.
1800 if (order >= MAX_ORDER) {
1801 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1802 return NULL;
1806 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1807 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1808 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1809 * using a larger set of nodes after it has established that the
1810 * allowed per node queues are empty and that nodes are
1811 * over allocated.
1813 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1814 goto nopage;
1816 restart:
1817 wake_all_kswapd(order, zonelist, high_zoneidx);
1820 * OK, we're below the kswapd watermark and have kicked background
1821 * reclaim. Now things get more complex, so set up alloc_flags according
1822 * to how we want to proceed.
1824 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1826 /* This is the last chance, in general, before the goto nopage. */
1827 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1828 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1829 preferred_zone, migratetype);
1830 if (page)
1831 goto got_pg;
1833 rebalance:
1834 /* Allocate without watermarks if the context allows */
1835 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1836 page = __alloc_pages_high_priority(gfp_mask, order,
1837 zonelist, high_zoneidx, nodemask,
1838 preferred_zone, migratetype);
1839 if (page)
1840 goto got_pg;
1843 /* Atomic allocations - we can't balance anything */
1844 if (!wait)
1845 goto nopage;
1847 /* Avoid recursion of direct reclaim */
1848 if (p->flags & PF_MEMALLOC)
1849 goto nopage;
1851 /* Avoid allocations with no watermarks from looping endlessly */
1852 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1853 goto nopage;
1855 /* Try direct reclaim and then allocating */
1856 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1857 zonelist, high_zoneidx,
1858 nodemask,
1859 alloc_flags, preferred_zone,
1860 migratetype, &did_some_progress);
1861 if (page)
1862 goto got_pg;
1865 * If we failed to make any progress reclaiming, then we are
1866 * running out of options and have to consider going OOM
1868 if (!did_some_progress) {
1869 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1870 if (oom_killer_disabled)
1871 goto nopage;
1872 page = __alloc_pages_may_oom(gfp_mask, order,
1873 zonelist, high_zoneidx,
1874 nodemask, preferred_zone,
1875 migratetype);
1876 if (page)
1877 goto got_pg;
1880 * The OOM killer does not trigger for high-order
1881 * ~__GFP_NOFAIL allocations so if no progress is being
1882 * made, there are no other options and retrying is
1883 * unlikely to help.
1885 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1886 !(gfp_mask & __GFP_NOFAIL))
1887 goto nopage;
1889 goto restart;
1893 /* Check if we should retry the allocation */
1894 pages_reclaimed += did_some_progress;
1895 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1896 /* Wait for some write requests to complete then retry */
1897 congestion_wait(BLK_RW_ASYNC, HZ/50);
1898 goto rebalance;
1901 nopage:
1902 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1903 printk(KERN_WARNING "%s: page allocation failure."
1904 " order:%d, mode:0x%x\n",
1905 p->comm, order, gfp_mask);
1906 dump_stack();
1907 show_mem();
1909 return page;
1910 got_pg:
1911 if (kmemcheck_enabled)
1912 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1913 return page;
1918 * This is the 'heart' of the zoned buddy allocator.
1920 struct page *
1921 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1922 struct zonelist *zonelist, nodemask_t *nodemask)
1924 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1925 struct zone *preferred_zone;
1926 struct page *page;
1927 int migratetype = allocflags_to_migratetype(gfp_mask);
1929 gfp_mask &= gfp_allowed_mask;
1931 lockdep_trace_alloc(gfp_mask);
1933 might_sleep_if(gfp_mask & __GFP_WAIT);
1935 if (should_fail_alloc_page(gfp_mask, order))
1936 return NULL;
1939 * Check the zones suitable for the gfp_mask contain at least one
1940 * valid zone. It's possible to have an empty zonelist as a result
1941 * of GFP_THISNODE and a memoryless node
1943 if (unlikely(!zonelist->_zonerefs->zone))
1944 return NULL;
1946 /* The preferred zone is used for statistics later */
1947 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1948 if (!preferred_zone)
1949 return NULL;
1951 /* First allocation attempt */
1952 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1953 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1954 preferred_zone, migratetype);
1955 if (unlikely(!page))
1956 page = __alloc_pages_slowpath(gfp_mask, order,
1957 zonelist, high_zoneidx, nodemask,
1958 preferred_zone, migratetype);
1960 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1961 return page;
1963 EXPORT_SYMBOL(__alloc_pages_nodemask);
1966 * Common helper functions.
1968 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1970 struct page *page;
1973 * __get_free_pages() returns a 32-bit address, which cannot represent
1974 * a highmem page
1976 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1978 page = alloc_pages(gfp_mask, order);
1979 if (!page)
1980 return 0;
1981 return (unsigned long) page_address(page);
1983 EXPORT_SYMBOL(__get_free_pages);
1985 unsigned long get_zeroed_page(gfp_t gfp_mask)
1987 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1989 EXPORT_SYMBOL(get_zeroed_page);
1991 void __pagevec_free(struct pagevec *pvec)
1993 int i = pagevec_count(pvec);
1995 while (--i >= 0) {
1996 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1997 free_hot_cold_page(pvec->pages[i], pvec->cold);
2001 void __free_pages(struct page *page, unsigned int order)
2003 if (put_page_testzero(page)) {
2004 trace_mm_page_free_direct(page, order);
2005 if (order == 0)
2006 free_hot_page(page);
2007 else
2008 __free_pages_ok(page, order);
2012 EXPORT_SYMBOL(__free_pages);
2014 void free_pages(unsigned long addr, unsigned int order)
2016 if (addr != 0) {
2017 VM_BUG_ON(!virt_addr_valid((void *)addr));
2018 __free_pages(virt_to_page((void *)addr), order);
2022 EXPORT_SYMBOL(free_pages);
2025 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2026 * @size: the number of bytes to allocate
2027 * @gfp_mask: GFP flags for the allocation
2029 * This function is similar to alloc_pages(), except that it allocates the
2030 * minimum number of pages to satisfy the request. alloc_pages() can only
2031 * allocate memory in power-of-two pages.
2033 * This function is also limited by MAX_ORDER.
2035 * Memory allocated by this function must be released by free_pages_exact().
2037 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2039 unsigned int order = get_order(size);
2040 unsigned long addr;
2042 addr = __get_free_pages(gfp_mask, order);
2043 if (addr) {
2044 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2045 unsigned long used = addr + PAGE_ALIGN(size);
2047 split_page(virt_to_page((void *)addr), order);
2048 while (used < alloc_end) {
2049 free_page(used);
2050 used += PAGE_SIZE;
2054 return (void *)addr;
2056 EXPORT_SYMBOL(alloc_pages_exact);
2059 * free_pages_exact - release memory allocated via alloc_pages_exact()
2060 * @virt: the value returned by alloc_pages_exact.
2061 * @size: size of allocation, same value as passed to alloc_pages_exact().
2063 * Release the memory allocated by a previous call to alloc_pages_exact.
2065 void free_pages_exact(void *virt, size_t size)
2067 unsigned long addr = (unsigned long)virt;
2068 unsigned long end = addr + PAGE_ALIGN(size);
2070 while (addr < end) {
2071 free_page(addr);
2072 addr += PAGE_SIZE;
2075 EXPORT_SYMBOL(free_pages_exact);
2077 static unsigned int nr_free_zone_pages(int offset)
2079 struct zoneref *z;
2080 struct zone *zone;
2082 /* Just pick one node, since fallback list is circular */
2083 unsigned int sum = 0;
2085 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2087 for_each_zone_zonelist(zone, z, zonelist, offset) {
2088 unsigned long size = zone->present_pages;
2089 unsigned long high = high_wmark_pages(zone);
2090 if (size > high)
2091 sum += size - high;
2094 return sum;
2098 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2100 unsigned int nr_free_buffer_pages(void)
2102 return nr_free_zone_pages(gfp_zone(GFP_USER));
2104 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2107 * Amount of free RAM allocatable within all zones
2109 unsigned int nr_free_pagecache_pages(void)
2111 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2114 static inline void show_node(struct zone *zone)
2116 if (NUMA_BUILD)
2117 printk("Node %d ", zone_to_nid(zone));
2120 void si_meminfo(struct sysinfo *val)
2122 val->totalram = totalram_pages;
2123 val->sharedram = 0;
2124 val->freeram = global_page_state(NR_FREE_PAGES);
2125 val->bufferram = nr_blockdev_pages();
2126 val->totalhigh = totalhigh_pages;
2127 val->freehigh = nr_free_highpages();
2128 val->mem_unit = PAGE_SIZE;
2131 EXPORT_SYMBOL(si_meminfo);
2133 #ifdef CONFIG_NUMA
2134 void si_meminfo_node(struct sysinfo *val, int nid)
2136 pg_data_t *pgdat = NODE_DATA(nid);
2138 val->totalram = pgdat->node_present_pages;
2139 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2140 #ifdef CONFIG_HIGHMEM
2141 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2142 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2143 NR_FREE_PAGES);
2144 #else
2145 val->totalhigh = 0;
2146 val->freehigh = 0;
2147 #endif
2148 val->mem_unit = PAGE_SIZE;
2150 #endif
2152 #define K(x) ((x) << (PAGE_SHIFT-10))
2155 * Show free area list (used inside shift_scroll-lock stuff)
2156 * We also calculate the percentage fragmentation. We do this by counting the
2157 * memory on each free list with the exception of the first item on the list.
2159 void show_free_areas(void)
2161 int cpu;
2162 struct zone *zone;
2164 for_each_populated_zone(zone) {
2165 show_node(zone);
2166 printk("%s per-cpu:\n", zone->name);
2168 for_each_online_cpu(cpu) {
2169 struct per_cpu_pageset *pageset;
2171 pageset = zone_pcp(zone, cpu);
2173 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2174 cpu, pageset->pcp.high,
2175 pageset->pcp.batch, pageset->pcp.count);
2179 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2180 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2181 " unevictable:%lu"
2182 " dirty:%lu writeback:%lu unstable:%lu\n"
2183 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2184 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2185 global_page_state(NR_ACTIVE_ANON),
2186 global_page_state(NR_INACTIVE_ANON),
2187 global_page_state(NR_ISOLATED_ANON),
2188 global_page_state(NR_ACTIVE_FILE),
2189 global_page_state(NR_INACTIVE_FILE),
2190 global_page_state(NR_ISOLATED_FILE),
2191 global_page_state(NR_UNEVICTABLE),
2192 global_page_state(NR_FILE_DIRTY),
2193 global_page_state(NR_WRITEBACK),
2194 global_page_state(NR_UNSTABLE_NFS),
2195 global_page_state(NR_FREE_PAGES),
2196 global_page_state(NR_SLAB_RECLAIMABLE),
2197 global_page_state(NR_SLAB_UNRECLAIMABLE),
2198 global_page_state(NR_FILE_MAPPED),
2199 global_page_state(NR_SHMEM),
2200 global_page_state(NR_PAGETABLE),
2201 global_page_state(NR_BOUNCE));
2203 for_each_populated_zone(zone) {
2204 int i;
2206 show_node(zone);
2207 printk("%s"
2208 " free:%lukB"
2209 " min:%lukB"
2210 " low:%lukB"
2211 " high:%lukB"
2212 " active_anon:%lukB"
2213 " inactive_anon:%lukB"
2214 " active_file:%lukB"
2215 " inactive_file:%lukB"
2216 " unevictable:%lukB"
2217 " isolated(anon):%lukB"
2218 " isolated(file):%lukB"
2219 " present:%lukB"
2220 " mlocked:%lukB"
2221 " dirty:%lukB"
2222 " writeback:%lukB"
2223 " mapped:%lukB"
2224 " shmem:%lukB"
2225 " slab_reclaimable:%lukB"
2226 " slab_unreclaimable:%lukB"
2227 " kernel_stack:%lukB"
2228 " pagetables:%lukB"
2229 " unstable:%lukB"
2230 " bounce:%lukB"
2231 " writeback_tmp:%lukB"
2232 " pages_scanned:%lu"
2233 " all_unreclaimable? %s"
2234 "\n",
2235 zone->name,
2236 K(zone_page_state(zone, NR_FREE_PAGES)),
2237 K(min_wmark_pages(zone)),
2238 K(low_wmark_pages(zone)),
2239 K(high_wmark_pages(zone)),
2240 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2241 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2242 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2243 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2244 K(zone_page_state(zone, NR_UNEVICTABLE)),
2245 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2246 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2247 K(zone->present_pages),
2248 K(zone_page_state(zone, NR_MLOCK)),
2249 K(zone_page_state(zone, NR_FILE_DIRTY)),
2250 K(zone_page_state(zone, NR_WRITEBACK)),
2251 K(zone_page_state(zone, NR_FILE_MAPPED)),
2252 K(zone_page_state(zone, NR_SHMEM)),
2253 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2254 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2255 zone_page_state(zone, NR_KERNEL_STACK) *
2256 THREAD_SIZE / 1024,
2257 K(zone_page_state(zone, NR_PAGETABLE)),
2258 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2259 K(zone_page_state(zone, NR_BOUNCE)),
2260 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2261 zone->pages_scanned,
2262 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2264 printk("lowmem_reserve[]:");
2265 for (i = 0; i < MAX_NR_ZONES; i++)
2266 printk(" %lu", zone->lowmem_reserve[i]);
2267 printk("\n");
2270 for_each_populated_zone(zone) {
2271 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2273 show_node(zone);
2274 printk("%s: ", zone->name);
2276 spin_lock_irqsave(&zone->lock, flags);
2277 for (order = 0; order < MAX_ORDER; order++) {
2278 nr[order] = zone->free_area[order].nr_free;
2279 total += nr[order] << order;
2281 spin_unlock_irqrestore(&zone->lock, flags);
2282 for (order = 0; order < MAX_ORDER; order++)
2283 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2284 printk("= %lukB\n", K(total));
2287 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2289 show_swap_cache_info();
2292 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2294 zoneref->zone = zone;
2295 zoneref->zone_idx = zone_idx(zone);
2299 * Builds allocation fallback zone lists.
2301 * Add all populated zones of a node to the zonelist.
2303 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2304 int nr_zones, enum zone_type zone_type)
2306 struct zone *zone;
2308 BUG_ON(zone_type >= MAX_NR_ZONES);
2309 zone_type++;
2311 do {
2312 zone_type--;
2313 zone = pgdat->node_zones + zone_type;
2314 if (populated_zone(zone)) {
2315 zoneref_set_zone(zone,
2316 &zonelist->_zonerefs[nr_zones++]);
2317 check_highest_zone(zone_type);
2320 } while (zone_type);
2321 return nr_zones;
2326 * zonelist_order:
2327 * 0 = automatic detection of better ordering.
2328 * 1 = order by ([node] distance, -zonetype)
2329 * 2 = order by (-zonetype, [node] distance)
2331 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2332 * the same zonelist. So only NUMA can configure this param.
2334 #define ZONELIST_ORDER_DEFAULT 0
2335 #define ZONELIST_ORDER_NODE 1
2336 #define ZONELIST_ORDER_ZONE 2
2338 /* zonelist order in the kernel.
2339 * set_zonelist_order() will set this to NODE or ZONE.
2341 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2342 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2345 #ifdef CONFIG_NUMA
2346 /* The value user specified ....changed by config */
2347 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2348 /* string for sysctl */
2349 #define NUMA_ZONELIST_ORDER_LEN 16
2350 char numa_zonelist_order[16] = "default";
2353 * interface for configure zonelist ordering.
2354 * command line option "numa_zonelist_order"
2355 * = "[dD]efault - default, automatic configuration.
2356 * = "[nN]ode - order by node locality, then by zone within node
2357 * = "[zZ]one - order by zone, then by locality within zone
2360 static int __parse_numa_zonelist_order(char *s)
2362 if (*s == 'd' || *s == 'D') {
2363 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2364 } else if (*s == 'n' || *s == 'N') {
2365 user_zonelist_order = ZONELIST_ORDER_NODE;
2366 } else if (*s == 'z' || *s == 'Z') {
2367 user_zonelist_order = ZONELIST_ORDER_ZONE;
2368 } else {
2369 printk(KERN_WARNING
2370 "Ignoring invalid numa_zonelist_order value: "
2371 "%s\n", s);
2372 return -EINVAL;
2374 return 0;
2377 static __init int setup_numa_zonelist_order(char *s)
2379 if (s)
2380 return __parse_numa_zonelist_order(s);
2381 return 0;
2383 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2386 * sysctl handler for numa_zonelist_order
2388 int numa_zonelist_order_handler(ctl_table *table, int write,
2389 void __user *buffer, size_t *length,
2390 loff_t *ppos)
2392 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2393 int ret;
2395 if (write)
2396 strncpy(saved_string, (char*)table->data,
2397 NUMA_ZONELIST_ORDER_LEN);
2398 ret = proc_dostring(table, write, buffer, length, ppos);
2399 if (ret)
2400 return ret;
2401 if (write) {
2402 int oldval = user_zonelist_order;
2403 if (__parse_numa_zonelist_order((char*)table->data)) {
2405 * bogus value. restore saved string
2407 strncpy((char*)table->data, saved_string,
2408 NUMA_ZONELIST_ORDER_LEN);
2409 user_zonelist_order = oldval;
2410 } else if (oldval != user_zonelist_order)
2411 build_all_zonelists();
2413 return 0;
2417 #define MAX_NODE_LOAD (nr_online_nodes)
2418 static int node_load[MAX_NUMNODES];
2421 * find_next_best_node - find the next node that should appear in a given node's fallback list
2422 * @node: node whose fallback list we're appending
2423 * @used_node_mask: nodemask_t of already used nodes
2425 * We use a number of factors to determine which is the next node that should
2426 * appear on a given node's fallback list. The node should not have appeared
2427 * already in @node's fallback list, and it should be the next closest node
2428 * according to the distance array (which contains arbitrary distance values
2429 * from each node to each node in the system), and should also prefer nodes
2430 * with no CPUs, since presumably they'll have very little allocation pressure
2431 * on them otherwise.
2432 * It returns -1 if no node is found.
2434 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2436 int n, val;
2437 int min_val = INT_MAX;
2438 int best_node = -1;
2439 const struct cpumask *tmp = cpumask_of_node(0);
2441 /* Use the local node if we haven't already */
2442 if (!node_isset(node, *used_node_mask)) {
2443 node_set(node, *used_node_mask);
2444 return node;
2447 for_each_node_state(n, N_HIGH_MEMORY) {
2449 /* Don't want a node to appear more than once */
2450 if (node_isset(n, *used_node_mask))
2451 continue;
2453 /* Use the distance array to find the distance */
2454 val = node_distance(node, n);
2456 /* Penalize nodes under us ("prefer the next node") */
2457 val += (n < node);
2459 /* Give preference to headless and unused nodes */
2460 tmp = cpumask_of_node(n);
2461 if (!cpumask_empty(tmp))
2462 val += PENALTY_FOR_NODE_WITH_CPUS;
2464 /* Slight preference for less loaded node */
2465 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2466 val += node_load[n];
2468 if (val < min_val) {
2469 min_val = val;
2470 best_node = n;
2474 if (best_node >= 0)
2475 node_set(best_node, *used_node_mask);
2477 return best_node;
2482 * Build zonelists ordered by node and zones within node.
2483 * This results in maximum locality--normal zone overflows into local
2484 * DMA zone, if any--but risks exhausting DMA zone.
2486 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2488 int j;
2489 struct zonelist *zonelist;
2491 zonelist = &pgdat->node_zonelists[0];
2492 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2494 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2495 MAX_NR_ZONES - 1);
2496 zonelist->_zonerefs[j].zone = NULL;
2497 zonelist->_zonerefs[j].zone_idx = 0;
2501 * Build gfp_thisnode zonelists
2503 static void build_thisnode_zonelists(pg_data_t *pgdat)
2505 int j;
2506 struct zonelist *zonelist;
2508 zonelist = &pgdat->node_zonelists[1];
2509 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2510 zonelist->_zonerefs[j].zone = NULL;
2511 zonelist->_zonerefs[j].zone_idx = 0;
2515 * Build zonelists ordered by zone and nodes within zones.
2516 * This results in conserving DMA zone[s] until all Normal memory is
2517 * exhausted, but results in overflowing to remote node while memory
2518 * may still exist in local DMA zone.
2520 static int node_order[MAX_NUMNODES];
2522 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2524 int pos, j, node;
2525 int zone_type; /* needs to be signed */
2526 struct zone *z;
2527 struct zonelist *zonelist;
2529 zonelist = &pgdat->node_zonelists[0];
2530 pos = 0;
2531 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2532 for (j = 0; j < nr_nodes; j++) {
2533 node = node_order[j];
2534 z = &NODE_DATA(node)->node_zones[zone_type];
2535 if (populated_zone(z)) {
2536 zoneref_set_zone(z,
2537 &zonelist->_zonerefs[pos++]);
2538 check_highest_zone(zone_type);
2542 zonelist->_zonerefs[pos].zone = NULL;
2543 zonelist->_zonerefs[pos].zone_idx = 0;
2546 static int default_zonelist_order(void)
2548 int nid, zone_type;
2549 unsigned long low_kmem_size,total_size;
2550 struct zone *z;
2551 int average_size;
2553 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2554 * If they are really small and used heavily, the system can fall
2555 * into OOM very easily.
2556 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2558 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2559 low_kmem_size = 0;
2560 total_size = 0;
2561 for_each_online_node(nid) {
2562 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2563 z = &NODE_DATA(nid)->node_zones[zone_type];
2564 if (populated_zone(z)) {
2565 if (zone_type < ZONE_NORMAL)
2566 low_kmem_size += z->present_pages;
2567 total_size += z->present_pages;
2571 if (!low_kmem_size || /* there are no DMA area. */
2572 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2573 return ZONELIST_ORDER_NODE;
2575 * look into each node's config.
2576 * If there is a node whose DMA/DMA32 memory is very big area on
2577 * local memory, NODE_ORDER may be suitable.
2579 average_size = total_size /
2580 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2581 for_each_online_node(nid) {
2582 low_kmem_size = 0;
2583 total_size = 0;
2584 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2585 z = &NODE_DATA(nid)->node_zones[zone_type];
2586 if (populated_zone(z)) {
2587 if (zone_type < ZONE_NORMAL)
2588 low_kmem_size += z->present_pages;
2589 total_size += z->present_pages;
2592 if (low_kmem_size &&
2593 total_size > average_size && /* ignore small node */
2594 low_kmem_size > total_size * 70/100)
2595 return ZONELIST_ORDER_NODE;
2597 return ZONELIST_ORDER_ZONE;
2600 static void set_zonelist_order(void)
2602 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2603 current_zonelist_order = default_zonelist_order();
2604 else
2605 current_zonelist_order = user_zonelist_order;
2608 static void build_zonelists(pg_data_t *pgdat)
2610 int j, node, load;
2611 enum zone_type i;
2612 nodemask_t used_mask;
2613 int local_node, prev_node;
2614 struct zonelist *zonelist;
2615 int order = current_zonelist_order;
2617 /* initialize zonelists */
2618 for (i = 0; i < MAX_ZONELISTS; i++) {
2619 zonelist = pgdat->node_zonelists + i;
2620 zonelist->_zonerefs[0].zone = NULL;
2621 zonelist->_zonerefs[0].zone_idx = 0;
2624 /* NUMA-aware ordering of nodes */
2625 local_node = pgdat->node_id;
2626 load = nr_online_nodes;
2627 prev_node = local_node;
2628 nodes_clear(used_mask);
2630 memset(node_order, 0, sizeof(node_order));
2631 j = 0;
2633 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2634 int distance = node_distance(local_node, node);
2637 * If another node is sufficiently far away then it is better
2638 * to reclaim pages in a zone before going off node.
2640 if (distance > RECLAIM_DISTANCE)
2641 zone_reclaim_mode = 1;
2644 * We don't want to pressure a particular node.
2645 * So adding penalty to the first node in same
2646 * distance group to make it round-robin.
2648 if (distance != node_distance(local_node, prev_node))
2649 node_load[node] = load;
2651 prev_node = node;
2652 load--;
2653 if (order == ZONELIST_ORDER_NODE)
2654 build_zonelists_in_node_order(pgdat, node);
2655 else
2656 node_order[j++] = node; /* remember order */
2659 if (order == ZONELIST_ORDER_ZONE) {
2660 /* calculate node order -- i.e., DMA last! */
2661 build_zonelists_in_zone_order(pgdat, j);
2664 build_thisnode_zonelists(pgdat);
2667 /* Construct the zonelist performance cache - see further mmzone.h */
2668 static void build_zonelist_cache(pg_data_t *pgdat)
2670 struct zonelist *zonelist;
2671 struct zonelist_cache *zlc;
2672 struct zoneref *z;
2674 zonelist = &pgdat->node_zonelists[0];
2675 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2676 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2677 for (z = zonelist->_zonerefs; z->zone; z++)
2678 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2682 #else /* CONFIG_NUMA */
2684 static void set_zonelist_order(void)
2686 current_zonelist_order = ZONELIST_ORDER_ZONE;
2689 static void build_zonelists(pg_data_t *pgdat)
2691 int node, local_node;
2692 enum zone_type j;
2693 struct zonelist *zonelist;
2695 local_node = pgdat->node_id;
2697 zonelist = &pgdat->node_zonelists[0];
2698 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2701 * Now we build the zonelist so that it contains the zones
2702 * of all the other nodes.
2703 * We don't want to pressure a particular node, so when
2704 * building the zones for node N, we make sure that the
2705 * zones coming right after the local ones are those from
2706 * node N+1 (modulo N)
2708 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2709 if (!node_online(node))
2710 continue;
2711 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2712 MAX_NR_ZONES - 1);
2714 for (node = 0; node < local_node; node++) {
2715 if (!node_online(node))
2716 continue;
2717 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2718 MAX_NR_ZONES - 1);
2721 zonelist->_zonerefs[j].zone = NULL;
2722 zonelist->_zonerefs[j].zone_idx = 0;
2725 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2726 static void build_zonelist_cache(pg_data_t *pgdat)
2728 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2731 #endif /* CONFIG_NUMA */
2733 /* return values int ....just for stop_machine() */
2734 static int __build_all_zonelists(void *dummy)
2736 int nid;
2738 #ifdef CONFIG_NUMA
2739 memset(node_load, 0, sizeof(node_load));
2740 #endif
2741 for_each_online_node(nid) {
2742 pg_data_t *pgdat = NODE_DATA(nid);
2744 build_zonelists(pgdat);
2745 build_zonelist_cache(pgdat);
2747 return 0;
2750 void build_all_zonelists(void)
2752 set_zonelist_order();
2754 if (system_state == SYSTEM_BOOTING) {
2755 __build_all_zonelists(NULL);
2756 mminit_verify_zonelist();
2757 cpuset_init_current_mems_allowed();
2758 } else {
2759 /* we have to stop all cpus to guarantee there is no user
2760 of zonelist */
2761 stop_machine(__build_all_zonelists, NULL, NULL);
2762 /* cpuset refresh routine should be here */
2764 vm_total_pages = nr_free_pagecache_pages();
2766 * Disable grouping by mobility if the number of pages in the
2767 * system is too low to allow the mechanism to work. It would be
2768 * more accurate, but expensive to check per-zone. This check is
2769 * made on memory-hotadd so a system can start with mobility
2770 * disabled and enable it later
2772 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2773 page_group_by_mobility_disabled = 1;
2774 else
2775 page_group_by_mobility_disabled = 0;
2777 printk("Built %i zonelists in %s order, mobility grouping %s. "
2778 "Total pages: %ld\n",
2779 nr_online_nodes,
2780 zonelist_order_name[current_zonelist_order],
2781 page_group_by_mobility_disabled ? "off" : "on",
2782 vm_total_pages);
2783 #ifdef CONFIG_NUMA
2784 printk("Policy zone: %s\n", zone_names[policy_zone]);
2785 #endif
2789 * Helper functions to size the waitqueue hash table.
2790 * Essentially these want to choose hash table sizes sufficiently
2791 * large so that collisions trying to wait on pages are rare.
2792 * But in fact, the number of active page waitqueues on typical
2793 * systems is ridiculously low, less than 200. So this is even
2794 * conservative, even though it seems large.
2796 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2797 * waitqueues, i.e. the size of the waitq table given the number of pages.
2799 #define PAGES_PER_WAITQUEUE 256
2801 #ifndef CONFIG_MEMORY_HOTPLUG
2802 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2804 unsigned long size = 1;
2806 pages /= PAGES_PER_WAITQUEUE;
2808 while (size < pages)
2809 size <<= 1;
2812 * Once we have dozens or even hundreds of threads sleeping
2813 * on IO we've got bigger problems than wait queue collision.
2814 * Limit the size of the wait table to a reasonable size.
2816 size = min(size, 4096UL);
2818 return max(size, 4UL);
2820 #else
2822 * A zone's size might be changed by hot-add, so it is not possible to determine
2823 * a suitable size for its wait_table. So we use the maximum size now.
2825 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2827 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2828 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2829 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2831 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2832 * or more by the traditional way. (See above). It equals:
2834 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2835 * ia64(16K page size) : = ( 8G + 4M)byte.
2836 * powerpc (64K page size) : = (32G +16M)byte.
2838 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2840 return 4096UL;
2842 #endif
2845 * This is an integer logarithm so that shifts can be used later
2846 * to extract the more random high bits from the multiplicative
2847 * hash function before the remainder is taken.
2849 static inline unsigned long wait_table_bits(unsigned long size)
2851 return ffz(~size);
2854 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2857 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2858 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2859 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2860 * higher will lead to a bigger reserve which will get freed as contiguous
2861 * blocks as reclaim kicks in
2863 static void setup_zone_migrate_reserve(struct zone *zone)
2865 unsigned long start_pfn, pfn, end_pfn;
2866 struct page *page;
2867 unsigned long block_migratetype;
2868 int reserve;
2870 /* Get the start pfn, end pfn and the number of blocks to reserve */
2871 start_pfn = zone->zone_start_pfn;
2872 end_pfn = start_pfn + zone->spanned_pages;
2873 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2874 pageblock_order;
2877 * Reserve blocks are generally in place to help high-order atomic
2878 * allocations that are short-lived. A min_free_kbytes value that
2879 * would result in more than 2 reserve blocks for atomic allocations
2880 * is assumed to be in place to help anti-fragmentation for the
2881 * future allocation of hugepages at runtime.
2883 reserve = min(2, reserve);
2885 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2886 if (!pfn_valid(pfn))
2887 continue;
2888 page = pfn_to_page(pfn);
2890 /* Watch out for overlapping nodes */
2891 if (page_to_nid(page) != zone_to_nid(zone))
2892 continue;
2894 /* Blocks with reserved pages will never free, skip them. */
2895 if (PageReserved(page))
2896 continue;
2898 block_migratetype = get_pageblock_migratetype(page);
2900 /* If this block is reserved, account for it */
2901 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2902 reserve--;
2903 continue;
2906 /* Suitable for reserving if this block is movable */
2907 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2908 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2909 move_freepages_block(zone, page, MIGRATE_RESERVE);
2910 reserve--;
2911 continue;
2915 * If the reserve is met and this is a previous reserved block,
2916 * take it back
2918 if (block_migratetype == MIGRATE_RESERVE) {
2919 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2920 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2926 * Initially all pages are reserved - free ones are freed
2927 * up by free_all_bootmem() once the early boot process is
2928 * done. Non-atomic initialization, single-pass.
2930 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2931 unsigned long start_pfn, enum memmap_context context)
2933 struct page *page;
2934 unsigned long end_pfn = start_pfn + size;
2935 unsigned long pfn;
2936 struct zone *z;
2938 if (highest_memmap_pfn < end_pfn - 1)
2939 highest_memmap_pfn = end_pfn - 1;
2941 z = &NODE_DATA(nid)->node_zones[zone];
2942 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2944 * There can be holes in boot-time mem_map[]s
2945 * handed to this function. They do not
2946 * exist on hotplugged memory.
2948 if (context == MEMMAP_EARLY) {
2949 if (!early_pfn_valid(pfn))
2950 continue;
2951 if (!early_pfn_in_nid(pfn, nid))
2952 continue;
2954 page = pfn_to_page(pfn);
2955 set_page_links(page, zone, nid, pfn);
2956 mminit_verify_page_links(page, zone, nid, pfn);
2957 init_page_count(page);
2958 reset_page_mapcount(page);
2959 SetPageReserved(page);
2961 * Mark the block movable so that blocks are reserved for
2962 * movable at startup. This will force kernel allocations
2963 * to reserve their blocks rather than leaking throughout
2964 * the address space during boot when many long-lived
2965 * kernel allocations are made. Later some blocks near
2966 * the start are marked MIGRATE_RESERVE by
2967 * setup_zone_migrate_reserve()
2969 * bitmap is created for zone's valid pfn range. but memmap
2970 * can be created for invalid pages (for alignment)
2971 * check here not to call set_pageblock_migratetype() against
2972 * pfn out of zone.
2974 if ((z->zone_start_pfn <= pfn)
2975 && (pfn < z->zone_start_pfn + z->spanned_pages)
2976 && !(pfn & (pageblock_nr_pages - 1)))
2977 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2979 INIT_LIST_HEAD(&page->lru);
2980 #ifdef WANT_PAGE_VIRTUAL
2981 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2982 if (!is_highmem_idx(zone))
2983 set_page_address(page, __va(pfn << PAGE_SHIFT));
2984 #endif
2988 static void __meminit zone_init_free_lists(struct zone *zone)
2990 int order, t;
2991 for_each_migratetype_order(order, t) {
2992 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2993 zone->free_area[order].nr_free = 0;
2997 #ifndef __HAVE_ARCH_MEMMAP_INIT
2998 #define memmap_init(size, nid, zone, start_pfn) \
2999 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3000 #endif
3002 static int zone_batchsize(struct zone *zone)
3004 #ifdef CONFIG_MMU
3005 int batch;
3008 * The per-cpu-pages pools are set to around 1000th of the
3009 * size of the zone. But no more than 1/2 of a meg.
3011 * OK, so we don't know how big the cache is. So guess.
3013 batch = zone->present_pages / 1024;
3014 if (batch * PAGE_SIZE > 512 * 1024)
3015 batch = (512 * 1024) / PAGE_SIZE;
3016 batch /= 4; /* We effectively *= 4 below */
3017 if (batch < 1)
3018 batch = 1;
3021 * Clamp the batch to a 2^n - 1 value. Having a power
3022 * of 2 value was found to be more likely to have
3023 * suboptimal cache aliasing properties in some cases.
3025 * For example if 2 tasks are alternately allocating
3026 * batches of pages, one task can end up with a lot
3027 * of pages of one half of the possible page colors
3028 * and the other with pages of the other colors.
3030 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3032 return batch;
3034 #else
3035 /* The deferral and batching of frees should be suppressed under NOMMU
3036 * conditions.
3038 * The problem is that NOMMU needs to be able to allocate large chunks
3039 * of contiguous memory as there's no hardware page translation to
3040 * assemble apparent contiguous memory from discontiguous pages.
3042 * Queueing large contiguous runs of pages for batching, however,
3043 * causes the pages to actually be freed in smaller chunks. As there
3044 * can be a significant delay between the individual batches being
3045 * recycled, this leads to the once large chunks of space being
3046 * fragmented and becoming unavailable for high-order allocations.
3048 return 0;
3049 #endif
3052 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3054 struct per_cpu_pages *pcp;
3055 int migratetype;
3057 memset(p, 0, sizeof(*p));
3059 pcp = &p->pcp;
3060 pcp->count = 0;
3061 pcp->high = 6 * batch;
3062 pcp->batch = max(1UL, 1 * batch);
3063 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3064 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3068 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3069 * to the value high for the pageset p.
3072 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3073 unsigned long high)
3075 struct per_cpu_pages *pcp;
3077 pcp = &p->pcp;
3078 pcp->high = high;
3079 pcp->batch = max(1UL, high/4);
3080 if ((high/4) > (PAGE_SHIFT * 8))
3081 pcp->batch = PAGE_SHIFT * 8;
3085 #ifdef CONFIG_NUMA
3087 * Boot pageset table. One per cpu which is going to be used for all
3088 * zones and all nodes. The parameters will be set in such a way
3089 * that an item put on a list will immediately be handed over to
3090 * the buddy list. This is safe since pageset manipulation is done
3091 * with interrupts disabled.
3093 * Some NUMA counter updates may also be caught by the boot pagesets.
3095 * The boot_pagesets must be kept even after bootup is complete for
3096 * unused processors and/or zones. They do play a role for bootstrapping
3097 * hotplugged processors.
3099 * zoneinfo_show() and maybe other functions do
3100 * not check if the processor is online before following the pageset pointer.
3101 * Other parts of the kernel may not check if the zone is available.
3103 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3106 * Dynamically allocate memory for the
3107 * per cpu pageset array in struct zone.
3109 static int __cpuinit process_zones(int cpu)
3111 struct zone *zone, *dzone;
3112 int node = cpu_to_node(cpu);
3114 node_set_state(node, N_CPU); /* this node has a cpu */
3116 for_each_populated_zone(zone) {
3117 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3118 GFP_KERNEL, node);
3119 if (!zone_pcp(zone, cpu))
3120 goto bad;
3122 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3124 if (percpu_pagelist_fraction)
3125 setup_pagelist_highmark(zone_pcp(zone, cpu),
3126 (zone->present_pages / percpu_pagelist_fraction));
3129 return 0;
3130 bad:
3131 for_each_zone(dzone) {
3132 if (!populated_zone(dzone))
3133 continue;
3134 if (dzone == zone)
3135 break;
3136 kfree(zone_pcp(dzone, cpu));
3137 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3139 return -ENOMEM;
3142 static inline void free_zone_pagesets(int cpu)
3144 struct zone *zone;
3146 for_each_zone(zone) {
3147 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3149 /* Free per_cpu_pageset if it is slab allocated */
3150 if (pset != &boot_pageset[cpu])
3151 kfree(pset);
3152 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3156 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3157 unsigned long action,
3158 void *hcpu)
3160 int cpu = (long)hcpu;
3161 int ret = NOTIFY_OK;
3163 switch (action) {
3164 case CPU_UP_PREPARE:
3165 case CPU_UP_PREPARE_FROZEN:
3166 if (process_zones(cpu))
3167 ret = NOTIFY_BAD;
3168 break;
3169 case CPU_UP_CANCELED:
3170 case CPU_UP_CANCELED_FROZEN:
3171 case CPU_DEAD:
3172 case CPU_DEAD_FROZEN:
3173 free_zone_pagesets(cpu);
3174 break;
3175 default:
3176 break;
3178 return ret;
3181 static struct notifier_block __cpuinitdata pageset_notifier =
3182 { &pageset_cpuup_callback, NULL, 0 };
3184 void __init setup_per_cpu_pageset(void)
3186 int err;
3188 /* Initialize per_cpu_pageset for cpu 0.
3189 * A cpuup callback will do this for every cpu
3190 * as it comes online
3192 err = process_zones(smp_processor_id());
3193 BUG_ON(err);
3194 register_cpu_notifier(&pageset_notifier);
3197 #endif
3199 static noinline __init_refok
3200 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3202 int i;
3203 struct pglist_data *pgdat = zone->zone_pgdat;
3204 size_t alloc_size;
3207 * The per-page waitqueue mechanism uses hashed waitqueues
3208 * per zone.
3210 zone->wait_table_hash_nr_entries =
3211 wait_table_hash_nr_entries(zone_size_pages);
3212 zone->wait_table_bits =
3213 wait_table_bits(zone->wait_table_hash_nr_entries);
3214 alloc_size = zone->wait_table_hash_nr_entries
3215 * sizeof(wait_queue_head_t);
3217 if (!slab_is_available()) {
3218 zone->wait_table = (wait_queue_head_t *)
3219 alloc_bootmem_node(pgdat, alloc_size);
3220 } else {
3222 * This case means that a zone whose size was 0 gets new memory
3223 * via memory hot-add.
3224 * But it may be the case that a new node was hot-added. In
3225 * this case vmalloc() will not be able to use this new node's
3226 * memory - this wait_table must be initialized to use this new
3227 * node itself as well.
3228 * To use this new node's memory, further consideration will be
3229 * necessary.
3231 zone->wait_table = vmalloc(alloc_size);
3233 if (!zone->wait_table)
3234 return -ENOMEM;
3236 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3237 init_waitqueue_head(zone->wait_table + i);
3239 return 0;
3242 static int __zone_pcp_update(void *data)
3244 struct zone *zone = data;
3245 int cpu;
3246 unsigned long batch = zone_batchsize(zone), flags;
3248 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3249 struct per_cpu_pageset *pset;
3250 struct per_cpu_pages *pcp;
3252 pset = zone_pcp(zone, cpu);
3253 pcp = &pset->pcp;
3255 local_irq_save(flags);
3256 free_pcppages_bulk(zone, pcp->count, pcp);
3257 setup_pageset(pset, batch);
3258 local_irq_restore(flags);
3260 return 0;
3263 void zone_pcp_update(struct zone *zone)
3265 stop_machine(__zone_pcp_update, zone, NULL);
3268 static __meminit void zone_pcp_init(struct zone *zone)
3270 int cpu;
3271 unsigned long batch = zone_batchsize(zone);
3273 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3274 #ifdef CONFIG_NUMA
3275 /* Early boot. Slab allocator not functional yet */
3276 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3277 setup_pageset(&boot_pageset[cpu],0);
3278 #else
3279 setup_pageset(zone_pcp(zone,cpu), batch);
3280 #endif
3282 if (zone->present_pages)
3283 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3284 zone->name, zone->present_pages, batch);
3287 __meminit int init_currently_empty_zone(struct zone *zone,
3288 unsigned long zone_start_pfn,
3289 unsigned long size,
3290 enum memmap_context context)
3292 struct pglist_data *pgdat = zone->zone_pgdat;
3293 int ret;
3294 ret = zone_wait_table_init(zone, size);
3295 if (ret)
3296 return ret;
3297 pgdat->nr_zones = zone_idx(zone) + 1;
3299 zone->zone_start_pfn = zone_start_pfn;
3301 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3302 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3303 pgdat->node_id,
3304 (unsigned long)zone_idx(zone),
3305 zone_start_pfn, (zone_start_pfn + size));
3307 zone_init_free_lists(zone);
3309 return 0;
3312 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3314 * Basic iterator support. Return the first range of PFNs for a node
3315 * Note: nid == MAX_NUMNODES returns first region regardless of node
3317 static int __meminit first_active_region_index_in_nid(int nid)
3319 int i;
3321 for (i = 0; i < nr_nodemap_entries; i++)
3322 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3323 return i;
3325 return -1;
3329 * Basic iterator support. Return the next active range of PFNs for a node
3330 * Note: nid == MAX_NUMNODES returns next region regardless of node
3332 static int __meminit next_active_region_index_in_nid(int index, int nid)
3334 for (index = index + 1; index < nr_nodemap_entries; index++)
3335 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3336 return index;
3338 return -1;
3341 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3343 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3344 * Architectures may implement their own version but if add_active_range()
3345 * was used and there are no special requirements, this is a convenient
3346 * alternative
3348 int __meminit __early_pfn_to_nid(unsigned long pfn)
3350 int i;
3352 for (i = 0; i < nr_nodemap_entries; i++) {
3353 unsigned long start_pfn = early_node_map[i].start_pfn;
3354 unsigned long end_pfn = early_node_map[i].end_pfn;
3356 if (start_pfn <= pfn && pfn < end_pfn)
3357 return early_node_map[i].nid;
3359 /* This is a memory hole */
3360 return -1;
3362 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3364 int __meminit early_pfn_to_nid(unsigned long pfn)
3366 int nid;
3368 nid = __early_pfn_to_nid(pfn);
3369 if (nid >= 0)
3370 return nid;
3371 /* just returns 0 */
3372 return 0;
3375 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3376 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3378 int nid;
3380 nid = __early_pfn_to_nid(pfn);
3381 if (nid >= 0 && nid != node)
3382 return false;
3383 return true;
3385 #endif
3387 /* Basic iterator support to walk early_node_map[] */
3388 #define for_each_active_range_index_in_nid(i, nid) \
3389 for (i = first_active_region_index_in_nid(nid); i != -1; \
3390 i = next_active_region_index_in_nid(i, nid))
3393 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3394 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3395 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3397 * If an architecture guarantees that all ranges registered with
3398 * add_active_ranges() contain no holes and may be freed, this
3399 * this function may be used instead of calling free_bootmem() manually.
3401 void __init free_bootmem_with_active_regions(int nid,
3402 unsigned long max_low_pfn)
3404 int i;
3406 for_each_active_range_index_in_nid(i, nid) {
3407 unsigned long size_pages = 0;
3408 unsigned long end_pfn = early_node_map[i].end_pfn;
3410 if (early_node_map[i].start_pfn >= max_low_pfn)
3411 continue;
3413 if (end_pfn > max_low_pfn)
3414 end_pfn = max_low_pfn;
3416 size_pages = end_pfn - early_node_map[i].start_pfn;
3417 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3418 PFN_PHYS(early_node_map[i].start_pfn),
3419 size_pages << PAGE_SHIFT);
3423 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3425 int i;
3426 int ret;
3428 for_each_active_range_index_in_nid(i, nid) {
3429 ret = work_fn(early_node_map[i].start_pfn,
3430 early_node_map[i].end_pfn, data);
3431 if (ret)
3432 break;
3436 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3437 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3439 * If an architecture guarantees that all ranges registered with
3440 * add_active_ranges() contain no holes and may be freed, this
3441 * function may be used instead of calling memory_present() manually.
3443 void __init sparse_memory_present_with_active_regions(int nid)
3445 int i;
3447 for_each_active_range_index_in_nid(i, nid)
3448 memory_present(early_node_map[i].nid,
3449 early_node_map[i].start_pfn,
3450 early_node_map[i].end_pfn);
3454 * get_pfn_range_for_nid - Return the start and end page frames for a node
3455 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3456 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3457 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3459 * It returns the start and end page frame of a node based on information
3460 * provided by an arch calling add_active_range(). If called for a node
3461 * with no available memory, a warning is printed and the start and end
3462 * PFNs will be 0.
3464 void __meminit get_pfn_range_for_nid(unsigned int nid,
3465 unsigned long *start_pfn, unsigned long *end_pfn)
3467 int i;
3468 *start_pfn = -1UL;
3469 *end_pfn = 0;
3471 for_each_active_range_index_in_nid(i, nid) {
3472 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3473 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3476 if (*start_pfn == -1UL)
3477 *start_pfn = 0;
3481 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3482 * assumption is made that zones within a node are ordered in monotonic
3483 * increasing memory addresses so that the "highest" populated zone is used
3485 static void __init find_usable_zone_for_movable(void)
3487 int zone_index;
3488 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3489 if (zone_index == ZONE_MOVABLE)
3490 continue;
3492 if (arch_zone_highest_possible_pfn[zone_index] >
3493 arch_zone_lowest_possible_pfn[zone_index])
3494 break;
3497 VM_BUG_ON(zone_index == -1);
3498 movable_zone = zone_index;
3502 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3503 * because it is sized independant of architecture. Unlike the other zones,
3504 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3505 * in each node depending on the size of each node and how evenly kernelcore
3506 * is distributed. This helper function adjusts the zone ranges
3507 * provided by the architecture for a given node by using the end of the
3508 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3509 * zones within a node are in order of monotonic increases memory addresses
3511 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3512 unsigned long zone_type,
3513 unsigned long node_start_pfn,
3514 unsigned long node_end_pfn,
3515 unsigned long *zone_start_pfn,
3516 unsigned long *zone_end_pfn)
3518 /* Only adjust if ZONE_MOVABLE is on this node */
3519 if (zone_movable_pfn[nid]) {
3520 /* Size ZONE_MOVABLE */
3521 if (zone_type == ZONE_MOVABLE) {
3522 *zone_start_pfn = zone_movable_pfn[nid];
3523 *zone_end_pfn = min(node_end_pfn,
3524 arch_zone_highest_possible_pfn[movable_zone]);
3526 /* Adjust for ZONE_MOVABLE starting within this range */
3527 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3528 *zone_end_pfn > zone_movable_pfn[nid]) {
3529 *zone_end_pfn = zone_movable_pfn[nid];
3531 /* Check if this whole range is within ZONE_MOVABLE */
3532 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3533 *zone_start_pfn = *zone_end_pfn;
3538 * Return the number of pages a zone spans in a node, including holes
3539 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3541 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3542 unsigned long zone_type,
3543 unsigned long *ignored)
3545 unsigned long node_start_pfn, node_end_pfn;
3546 unsigned long zone_start_pfn, zone_end_pfn;
3548 /* Get the start and end of the node and zone */
3549 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3550 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3551 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3552 adjust_zone_range_for_zone_movable(nid, zone_type,
3553 node_start_pfn, node_end_pfn,
3554 &zone_start_pfn, &zone_end_pfn);
3556 /* Check that this node has pages within the zone's required range */
3557 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3558 return 0;
3560 /* Move the zone boundaries inside the node if necessary */
3561 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3562 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3564 /* Return the spanned pages */
3565 return zone_end_pfn - zone_start_pfn;
3569 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3570 * then all holes in the requested range will be accounted for.
3572 static unsigned long __meminit __absent_pages_in_range(int nid,
3573 unsigned long range_start_pfn,
3574 unsigned long range_end_pfn)
3576 int i = 0;
3577 unsigned long prev_end_pfn = 0, hole_pages = 0;
3578 unsigned long start_pfn;
3580 /* Find the end_pfn of the first active range of pfns in the node */
3581 i = first_active_region_index_in_nid(nid);
3582 if (i == -1)
3583 return 0;
3585 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3587 /* Account for ranges before physical memory on this node */
3588 if (early_node_map[i].start_pfn > range_start_pfn)
3589 hole_pages = prev_end_pfn - range_start_pfn;
3591 /* Find all holes for the zone within the node */
3592 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3594 /* No need to continue if prev_end_pfn is outside the zone */
3595 if (prev_end_pfn >= range_end_pfn)
3596 break;
3598 /* Make sure the end of the zone is not within the hole */
3599 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3600 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3602 /* Update the hole size cound and move on */
3603 if (start_pfn > range_start_pfn) {
3604 BUG_ON(prev_end_pfn > start_pfn);
3605 hole_pages += start_pfn - prev_end_pfn;
3607 prev_end_pfn = early_node_map[i].end_pfn;
3610 /* Account for ranges past physical memory on this node */
3611 if (range_end_pfn > prev_end_pfn)
3612 hole_pages += range_end_pfn -
3613 max(range_start_pfn, prev_end_pfn);
3615 return hole_pages;
3619 * absent_pages_in_range - Return number of page frames in holes within a range
3620 * @start_pfn: The start PFN to start searching for holes
3621 * @end_pfn: The end PFN to stop searching for holes
3623 * It returns the number of pages frames in memory holes within a range.
3625 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3626 unsigned long end_pfn)
3628 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3631 /* Return the number of page frames in holes in a zone on a node */
3632 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3633 unsigned long zone_type,
3634 unsigned long *ignored)
3636 unsigned long node_start_pfn, node_end_pfn;
3637 unsigned long zone_start_pfn, zone_end_pfn;
3639 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3640 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3641 node_start_pfn);
3642 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3643 node_end_pfn);
3645 adjust_zone_range_for_zone_movable(nid, zone_type,
3646 node_start_pfn, node_end_pfn,
3647 &zone_start_pfn, &zone_end_pfn);
3648 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3651 #else
3652 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3653 unsigned long zone_type,
3654 unsigned long *zones_size)
3656 return zones_size[zone_type];
3659 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3660 unsigned long zone_type,
3661 unsigned long *zholes_size)
3663 if (!zholes_size)
3664 return 0;
3666 return zholes_size[zone_type];
3669 #endif
3671 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3672 unsigned long *zones_size, unsigned long *zholes_size)
3674 unsigned long realtotalpages, totalpages = 0;
3675 enum zone_type i;
3677 for (i = 0; i < MAX_NR_ZONES; i++)
3678 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3679 zones_size);
3680 pgdat->node_spanned_pages = totalpages;
3682 realtotalpages = totalpages;
3683 for (i = 0; i < MAX_NR_ZONES; i++)
3684 realtotalpages -=
3685 zone_absent_pages_in_node(pgdat->node_id, i,
3686 zholes_size);
3687 pgdat->node_present_pages = realtotalpages;
3688 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3689 realtotalpages);
3692 #ifndef CONFIG_SPARSEMEM
3694 * Calculate the size of the zone->blockflags rounded to an unsigned long
3695 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3696 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3697 * round what is now in bits to nearest long in bits, then return it in
3698 * bytes.
3700 static unsigned long __init usemap_size(unsigned long zonesize)
3702 unsigned long usemapsize;
3704 usemapsize = roundup(zonesize, pageblock_nr_pages);
3705 usemapsize = usemapsize >> pageblock_order;
3706 usemapsize *= NR_PAGEBLOCK_BITS;
3707 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3709 return usemapsize / 8;
3712 static void __init setup_usemap(struct pglist_data *pgdat,
3713 struct zone *zone, unsigned long zonesize)
3715 unsigned long usemapsize = usemap_size(zonesize);
3716 zone->pageblock_flags = NULL;
3717 if (usemapsize)
3718 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3720 #else
3721 static void inline setup_usemap(struct pglist_data *pgdat,
3722 struct zone *zone, unsigned long zonesize) {}
3723 #endif /* CONFIG_SPARSEMEM */
3725 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3727 /* Return a sensible default order for the pageblock size. */
3728 static inline int pageblock_default_order(void)
3730 if (HPAGE_SHIFT > PAGE_SHIFT)
3731 return HUGETLB_PAGE_ORDER;
3733 return MAX_ORDER-1;
3736 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3737 static inline void __init set_pageblock_order(unsigned int order)
3739 /* Check that pageblock_nr_pages has not already been setup */
3740 if (pageblock_order)
3741 return;
3744 * Assume the largest contiguous order of interest is a huge page.
3745 * This value may be variable depending on boot parameters on IA64
3747 pageblock_order = order;
3749 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3752 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3753 * and pageblock_default_order() are unused as pageblock_order is set
3754 * at compile-time. See include/linux/pageblock-flags.h for the values of
3755 * pageblock_order based on the kernel config
3757 static inline int pageblock_default_order(unsigned int order)
3759 return MAX_ORDER-1;
3761 #define set_pageblock_order(x) do {} while (0)
3763 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3766 * Set up the zone data structures:
3767 * - mark all pages reserved
3768 * - mark all memory queues empty
3769 * - clear the memory bitmaps
3771 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3772 unsigned long *zones_size, unsigned long *zholes_size)
3774 enum zone_type j;
3775 int nid = pgdat->node_id;
3776 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3777 int ret;
3779 pgdat_resize_init(pgdat);
3780 pgdat->nr_zones = 0;
3781 init_waitqueue_head(&pgdat->kswapd_wait);
3782 pgdat->kswapd_max_order = 0;
3783 pgdat_page_cgroup_init(pgdat);
3785 for (j = 0; j < MAX_NR_ZONES; j++) {
3786 struct zone *zone = pgdat->node_zones + j;
3787 unsigned long size, realsize, memmap_pages;
3788 enum lru_list l;
3790 size = zone_spanned_pages_in_node(nid, j, zones_size);
3791 realsize = size - zone_absent_pages_in_node(nid, j,
3792 zholes_size);
3795 * Adjust realsize so that it accounts for how much memory
3796 * is used by this zone for memmap. This affects the watermark
3797 * and per-cpu initialisations
3799 memmap_pages =
3800 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3801 if (realsize >= memmap_pages) {
3802 realsize -= memmap_pages;
3803 if (memmap_pages)
3804 printk(KERN_DEBUG
3805 " %s zone: %lu pages used for memmap\n",
3806 zone_names[j], memmap_pages);
3807 } else
3808 printk(KERN_WARNING
3809 " %s zone: %lu pages exceeds realsize %lu\n",
3810 zone_names[j], memmap_pages, realsize);
3812 /* Account for reserved pages */
3813 if (j == 0 && realsize > dma_reserve) {
3814 realsize -= dma_reserve;
3815 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3816 zone_names[0], dma_reserve);
3819 if (!is_highmem_idx(j))
3820 nr_kernel_pages += realsize;
3821 nr_all_pages += realsize;
3823 zone->spanned_pages = size;
3824 zone->present_pages = realsize;
3825 #ifdef CONFIG_NUMA
3826 zone->node = nid;
3827 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3828 / 100;
3829 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3830 #endif
3831 zone->name = zone_names[j];
3832 spin_lock_init(&zone->lock);
3833 spin_lock_init(&zone->lru_lock);
3834 zone_seqlock_init(zone);
3835 zone->zone_pgdat = pgdat;
3837 zone->prev_priority = DEF_PRIORITY;
3839 zone_pcp_init(zone);
3840 for_each_lru(l) {
3841 INIT_LIST_HEAD(&zone->lru[l].list);
3842 zone->reclaim_stat.nr_saved_scan[l] = 0;
3844 zone->reclaim_stat.recent_rotated[0] = 0;
3845 zone->reclaim_stat.recent_rotated[1] = 0;
3846 zone->reclaim_stat.recent_scanned[0] = 0;
3847 zone->reclaim_stat.recent_scanned[1] = 0;
3848 zap_zone_vm_stats(zone);
3849 zone->flags = 0;
3850 if (!size)
3851 continue;
3853 set_pageblock_order(pageblock_default_order());
3854 setup_usemap(pgdat, zone, size);
3855 ret = init_currently_empty_zone(zone, zone_start_pfn,
3856 size, MEMMAP_EARLY);
3857 BUG_ON(ret);
3858 memmap_init(size, nid, j, zone_start_pfn);
3859 zone_start_pfn += size;
3863 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3865 /* Skip empty nodes */
3866 if (!pgdat->node_spanned_pages)
3867 return;
3869 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3870 /* ia64 gets its own node_mem_map, before this, without bootmem */
3871 if (!pgdat->node_mem_map) {
3872 unsigned long size, start, end;
3873 struct page *map;
3876 * The zone's endpoints aren't required to be MAX_ORDER
3877 * aligned but the node_mem_map endpoints must be in order
3878 * for the buddy allocator to function correctly.
3880 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3881 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3882 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3883 size = (end - start) * sizeof(struct page);
3884 map = alloc_remap(pgdat->node_id, size);
3885 if (!map)
3886 map = alloc_bootmem_node(pgdat, size);
3887 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3889 #ifndef CONFIG_NEED_MULTIPLE_NODES
3891 * With no DISCONTIG, the global mem_map is just set as node 0's
3893 if (pgdat == NODE_DATA(0)) {
3894 mem_map = NODE_DATA(0)->node_mem_map;
3895 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3896 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3897 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3898 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3900 #endif
3901 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3904 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3905 unsigned long node_start_pfn, unsigned long *zholes_size)
3907 pg_data_t *pgdat = NODE_DATA(nid);
3909 pgdat->node_id = nid;
3910 pgdat->node_start_pfn = node_start_pfn;
3911 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3913 alloc_node_mem_map(pgdat);
3914 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3915 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3916 nid, (unsigned long)pgdat,
3917 (unsigned long)pgdat->node_mem_map);
3918 #endif
3920 free_area_init_core(pgdat, zones_size, zholes_size);
3923 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3925 #if MAX_NUMNODES > 1
3927 * Figure out the number of possible node ids.
3929 static void __init setup_nr_node_ids(void)
3931 unsigned int node;
3932 unsigned int highest = 0;
3934 for_each_node_mask(node, node_possible_map)
3935 highest = node;
3936 nr_node_ids = highest + 1;
3938 #else
3939 static inline void setup_nr_node_ids(void)
3942 #endif
3945 * add_active_range - Register a range of PFNs backed by physical memory
3946 * @nid: The node ID the range resides on
3947 * @start_pfn: The start PFN of the available physical memory
3948 * @end_pfn: The end PFN of the available physical memory
3950 * These ranges are stored in an early_node_map[] and later used by
3951 * free_area_init_nodes() to calculate zone sizes and holes. If the
3952 * range spans a memory hole, it is up to the architecture to ensure
3953 * the memory is not freed by the bootmem allocator. If possible
3954 * the range being registered will be merged with existing ranges.
3956 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3957 unsigned long end_pfn)
3959 int i;
3961 mminit_dprintk(MMINIT_TRACE, "memory_register",
3962 "Entering add_active_range(%d, %#lx, %#lx) "
3963 "%d entries of %d used\n",
3964 nid, start_pfn, end_pfn,
3965 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3967 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3969 /* Merge with existing active regions if possible */
3970 for (i = 0; i < nr_nodemap_entries; i++) {
3971 if (early_node_map[i].nid != nid)
3972 continue;
3974 /* Skip if an existing region covers this new one */
3975 if (start_pfn >= early_node_map[i].start_pfn &&
3976 end_pfn <= early_node_map[i].end_pfn)
3977 return;
3979 /* Merge forward if suitable */
3980 if (start_pfn <= early_node_map[i].end_pfn &&
3981 end_pfn > early_node_map[i].end_pfn) {
3982 early_node_map[i].end_pfn = end_pfn;
3983 return;
3986 /* Merge backward if suitable */
3987 if (start_pfn < early_node_map[i].end_pfn &&
3988 end_pfn >= early_node_map[i].start_pfn) {
3989 early_node_map[i].start_pfn = start_pfn;
3990 return;
3994 /* Check that early_node_map is large enough */
3995 if (i >= MAX_ACTIVE_REGIONS) {
3996 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3997 MAX_ACTIVE_REGIONS);
3998 return;
4001 early_node_map[i].nid = nid;
4002 early_node_map[i].start_pfn = start_pfn;
4003 early_node_map[i].end_pfn = end_pfn;
4004 nr_nodemap_entries = i + 1;
4008 * remove_active_range - Shrink an existing registered range of PFNs
4009 * @nid: The node id the range is on that should be shrunk
4010 * @start_pfn: The new PFN of the range
4011 * @end_pfn: The new PFN of the range
4013 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4014 * The map is kept near the end physical page range that has already been
4015 * registered. This function allows an arch to shrink an existing registered
4016 * range.
4018 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4019 unsigned long end_pfn)
4021 int i, j;
4022 int removed = 0;
4024 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4025 nid, start_pfn, end_pfn);
4027 /* Find the old active region end and shrink */
4028 for_each_active_range_index_in_nid(i, nid) {
4029 if (early_node_map[i].start_pfn >= start_pfn &&
4030 early_node_map[i].end_pfn <= end_pfn) {
4031 /* clear it */
4032 early_node_map[i].start_pfn = 0;
4033 early_node_map[i].end_pfn = 0;
4034 removed = 1;
4035 continue;
4037 if (early_node_map[i].start_pfn < start_pfn &&
4038 early_node_map[i].end_pfn > start_pfn) {
4039 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4040 early_node_map[i].end_pfn = start_pfn;
4041 if (temp_end_pfn > end_pfn)
4042 add_active_range(nid, end_pfn, temp_end_pfn);
4043 continue;
4045 if (early_node_map[i].start_pfn >= start_pfn &&
4046 early_node_map[i].end_pfn > end_pfn &&
4047 early_node_map[i].start_pfn < end_pfn) {
4048 early_node_map[i].start_pfn = end_pfn;
4049 continue;
4053 if (!removed)
4054 return;
4056 /* remove the blank ones */
4057 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4058 if (early_node_map[i].nid != nid)
4059 continue;
4060 if (early_node_map[i].end_pfn)
4061 continue;
4062 /* we found it, get rid of it */
4063 for (j = i; j < nr_nodemap_entries - 1; j++)
4064 memcpy(&early_node_map[j], &early_node_map[j+1],
4065 sizeof(early_node_map[j]));
4066 j = nr_nodemap_entries - 1;
4067 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4068 nr_nodemap_entries--;
4073 * remove_all_active_ranges - Remove all currently registered regions
4075 * During discovery, it may be found that a table like SRAT is invalid
4076 * and an alternative discovery method must be used. This function removes
4077 * all currently registered regions.
4079 void __init remove_all_active_ranges(void)
4081 memset(early_node_map, 0, sizeof(early_node_map));
4082 nr_nodemap_entries = 0;
4085 /* Compare two active node_active_regions */
4086 static int __init cmp_node_active_region(const void *a, const void *b)
4088 struct node_active_region *arange = (struct node_active_region *)a;
4089 struct node_active_region *brange = (struct node_active_region *)b;
4091 /* Done this way to avoid overflows */
4092 if (arange->start_pfn > brange->start_pfn)
4093 return 1;
4094 if (arange->start_pfn < brange->start_pfn)
4095 return -1;
4097 return 0;
4100 /* sort the node_map by start_pfn */
4101 static void __init sort_node_map(void)
4103 sort(early_node_map, (size_t)nr_nodemap_entries,
4104 sizeof(struct node_active_region),
4105 cmp_node_active_region, NULL);
4108 /* Find the lowest pfn for a node */
4109 static unsigned long __init find_min_pfn_for_node(int nid)
4111 int i;
4112 unsigned long min_pfn = ULONG_MAX;
4114 /* Assuming a sorted map, the first range found has the starting pfn */
4115 for_each_active_range_index_in_nid(i, nid)
4116 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4118 if (min_pfn == ULONG_MAX) {
4119 printk(KERN_WARNING
4120 "Could not find start_pfn for node %d\n", nid);
4121 return 0;
4124 return min_pfn;
4128 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4130 * It returns the minimum PFN based on information provided via
4131 * add_active_range().
4133 unsigned long __init find_min_pfn_with_active_regions(void)
4135 return find_min_pfn_for_node(MAX_NUMNODES);
4139 * early_calculate_totalpages()
4140 * Sum pages in active regions for movable zone.
4141 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4143 static unsigned long __init early_calculate_totalpages(void)
4145 int i;
4146 unsigned long totalpages = 0;
4148 for (i = 0; i < nr_nodemap_entries; i++) {
4149 unsigned long pages = early_node_map[i].end_pfn -
4150 early_node_map[i].start_pfn;
4151 totalpages += pages;
4152 if (pages)
4153 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4155 return totalpages;
4159 * Find the PFN the Movable zone begins in each node. Kernel memory
4160 * is spread evenly between nodes as long as the nodes have enough
4161 * memory. When they don't, some nodes will have more kernelcore than
4162 * others
4164 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4166 int i, nid;
4167 unsigned long usable_startpfn;
4168 unsigned long kernelcore_node, kernelcore_remaining;
4169 /* save the state before borrow the nodemask */
4170 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4171 unsigned long totalpages = early_calculate_totalpages();
4172 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4175 * If movablecore was specified, calculate what size of
4176 * kernelcore that corresponds so that memory usable for
4177 * any allocation type is evenly spread. If both kernelcore
4178 * and movablecore are specified, then the value of kernelcore
4179 * will be used for required_kernelcore if it's greater than
4180 * what movablecore would have allowed.
4182 if (required_movablecore) {
4183 unsigned long corepages;
4186 * Round-up so that ZONE_MOVABLE is at least as large as what
4187 * was requested by the user
4189 required_movablecore =
4190 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4191 corepages = totalpages - required_movablecore;
4193 required_kernelcore = max(required_kernelcore, corepages);
4196 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4197 if (!required_kernelcore)
4198 goto out;
4200 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4201 find_usable_zone_for_movable();
4202 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4204 restart:
4205 /* Spread kernelcore memory as evenly as possible throughout nodes */
4206 kernelcore_node = required_kernelcore / usable_nodes;
4207 for_each_node_state(nid, N_HIGH_MEMORY) {
4209 * Recalculate kernelcore_node if the division per node
4210 * now exceeds what is necessary to satisfy the requested
4211 * amount of memory for the kernel
4213 if (required_kernelcore < kernelcore_node)
4214 kernelcore_node = required_kernelcore / usable_nodes;
4217 * As the map is walked, we track how much memory is usable
4218 * by the kernel using kernelcore_remaining. When it is
4219 * 0, the rest of the node is usable by ZONE_MOVABLE
4221 kernelcore_remaining = kernelcore_node;
4223 /* Go through each range of PFNs within this node */
4224 for_each_active_range_index_in_nid(i, nid) {
4225 unsigned long start_pfn, end_pfn;
4226 unsigned long size_pages;
4228 start_pfn = max(early_node_map[i].start_pfn,
4229 zone_movable_pfn[nid]);
4230 end_pfn = early_node_map[i].end_pfn;
4231 if (start_pfn >= end_pfn)
4232 continue;
4234 /* Account for what is only usable for kernelcore */
4235 if (start_pfn < usable_startpfn) {
4236 unsigned long kernel_pages;
4237 kernel_pages = min(end_pfn, usable_startpfn)
4238 - start_pfn;
4240 kernelcore_remaining -= min(kernel_pages,
4241 kernelcore_remaining);
4242 required_kernelcore -= min(kernel_pages,
4243 required_kernelcore);
4245 /* Continue if range is now fully accounted */
4246 if (end_pfn <= usable_startpfn) {
4249 * Push zone_movable_pfn to the end so
4250 * that if we have to rebalance
4251 * kernelcore across nodes, we will
4252 * not double account here
4254 zone_movable_pfn[nid] = end_pfn;
4255 continue;
4257 start_pfn = usable_startpfn;
4261 * The usable PFN range for ZONE_MOVABLE is from
4262 * start_pfn->end_pfn. Calculate size_pages as the
4263 * number of pages used as kernelcore
4265 size_pages = end_pfn - start_pfn;
4266 if (size_pages > kernelcore_remaining)
4267 size_pages = kernelcore_remaining;
4268 zone_movable_pfn[nid] = start_pfn + size_pages;
4271 * Some kernelcore has been met, update counts and
4272 * break if the kernelcore for this node has been
4273 * satisified
4275 required_kernelcore -= min(required_kernelcore,
4276 size_pages);
4277 kernelcore_remaining -= size_pages;
4278 if (!kernelcore_remaining)
4279 break;
4284 * If there is still required_kernelcore, we do another pass with one
4285 * less node in the count. This will push zone_movable_pfn[nid] further
4286 * along on the nodes that still have memory until kernelcore is
4287 * satisified
4289 usable_nodes--;
4290 if (usable_nodes && required_kernelcore > usable_nodes)
4291 goto restart;
4293 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4294 for (nid = 0; nid < MAX_NUMNODES; nid++)
4295 zone_movable_pfn[nid] =
4296 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4298 out:
4299 /* restore the node_state */
4300 node_states[N_HIGH_MEMORY] = saved_node_state;
4303 /* Any regular memory on that node ? */
4304 static void check_for_regular_memory(pg_data_t *pgdat)
4306 #ifdef CONFIG_HIGHMEM
4307 enum zone_type zone_type;
4309 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4310 struct zone *zone = &pgdat->node_zones[zone_type];
4311 if (zone->present_pages)
4312 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4314 #endif
4318 * free_area_init_nodes - Initialise all pg_data_t and zone data
4319 * @max_zone_pfn: an array of max PFNs for each zone
4321 * This will call free_area_init_node() for each active node in the system.
4322 * Using the page ranges provided by add_active_range(), the size of each
4323 * zone in each node and their holes is calculated. If the maximum PFN
4324 * between two adjacent zones match, it is assumed that the zone is empty.
4325 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4326 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4327 * starts where the previous one ended. For example, ZONE_DMA32 starts
4328 * at arch_max_dma_pfn.
4330 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4332 unsigned long nid;
4333 int i;
4335 /* Sort early_node_map as initialisation assumes it is sorted */
4336 sort_node_map();
4338 /* Record where the zone boundaries are */
4339 memset(arch_zone_lowest_possible_pfn, 0,
4340 sizeof(arch_zone_lowest_possible_pfn));
4341 memset(arch_zone_highest_possible_pfn, 0,
4342 sizeof(arch_zone_highest_possible_pfn));
4343 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4344 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4345 for (i = 1; i < MAX_NR_ZONES; i++) {
4346 if (i == ZONE_MOVABLE)
4347 continue;
4348 arch_zone_lowest_possible_pfn[i] =
4349 arch_zone_highest_possible_pfn[i-1];
4350 arch_zone_highest_possible_pfn[i] =
4351 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4353 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4354 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4356 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4357 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4358 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4360 /* Print out the zone ranges */
4361 printk("Zone PFN ranges:\n");
4362 for (i = 0; i < MAX_NR_ZONES; i++) {
4363 if (i == ZONE_MOVABLE)
4364 continue;
4365 printk(" %-8s %0#10lx -> %0#10lx\n",
4366 zone_names[i],
4367 arch_zone_lowest_possible_pfn[i],
4368 arch_zone_highest_possible_pfn[i]);
4371 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4372 printk("Movable zone start PFN for each node\n");
4373 for (i = 0; i < MAX_NUMNODES; i++) {
4374 if (zone_movable_pfn[i])
4375 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4378 /* Print out the early_node_map[] */
4379 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4380 for (i = 0; i < nr_nodemap_entries; i++)
4381 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4382 early_node_map[i].start_pfn,
4383 early_node_map[i].end_pfn);
4385 /* Initialise every node */
4386 mminit_verify_pageflags_layout();
4387 setup_nr_node_ids();
4388 for_each_online_node(nid) {
4389 pg_data_t *pgdat = NODE_DATA(nid);
4390 free_area_init_node(nid, NULL,
4391 find_min_pfn_for_node(nid), NULL);
4393 /* Any memory on that node */
4394 if (pgdat->node_present_pages)
4395 node_set_state(nid, N_HIGH_MEMORY);
4396 check_for_regular_memory(pgdat);
4400 static int __init cmdline_parse_core(char *p, unsigned long *core)
4402 unsigned long long coremem;
4403 if (!p)
4404 return -EINVAL;
4406 coremem = memparse(p, &p);
4407 *core = coremem >> PAGE_SHIFT;
4409 /* Paranoid check that UL is enough for the coremem value */
4410 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4412 return 0;
4416 * kernelcore=size sets the amount of memory for use for allocations that
4417 * cannot be reclaimed or migrated.
4419 static int __init cmdline_parse_kernelcore(char *p)
4421 return cmdline_parse_core(p, &required_kernelcore);
4425 * movablecore=size sets the amount of memory for use for allocations that
4426 * can be reclaimed or migrated.
4428 static int __init cmdline_parse_movablecore(char *p)
4430 return cmdline_parse_core(p, &required_movablecore);
4433 early_param("kernelcore", cmdline_parse_kernelcore);
4434 early_param("movablecore", cmdline_parse_movablecore);
4436 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4439 * set_dma_reserve - set the specified number of pages reserved in the first zone
4440 * @new_dma_reserve: The number of pages to mark reserved
4442 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4443 * In the DMA zone, a significant percentage may be consumed by kernel image
4444 * and other unfreeable allocations which can skew the watermarks badly. This
4445 * function may optionally be used to account for unfreeable pages in the
4446 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4447 * smaller per-cpu batchsize.
4449 void __init set_dma_reserve(unsigned long new_dma_reserve)
4451 dma_reserve = new_dma_reserve;
4454 #ifndef CONFIG_NEED_MULTIPLE_NODES
4455 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4456 EXPORT_SYMBOL(contig_page_data);
4457 #endif
4459 void __init free_area_init(unsigned long *zones_size)
4461 free_area_init_node(0, zones_size,
4462 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4465 static int page_alloc_cpu_notify(struct notifier_block *self,
4466 unsigned long action, void *hcpu)
4468 int cpu = (unsigned long)hcpu;
4470 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4471 drain_pages(cpu);
4474 * Spill the event counters of the dead processor
4475 * into the current processors event counters.
4476 * This artificially elevates the count of the current
4477 * processor.
4479 vm_events_fold_cpu(cpu);
4482 * Zero the differential counters of the dead processor
4483 * so that the vm statistics are consistent.
4485 * This is only okay since the processor is dead and cannot
4486 * race with what we are doing.
4488 refresh_cpu_vm_stats(cpu);
4490 return NOTIFY_OK;
4493 void __init page_alloc_init(void)
4495 hotcpu_notifier(page_alloc_cpu_notify, 0);
4499 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4500 * or min_free_kbytes changes.
4502 static void calculate_totalreserve_pages(void)
4504 struct pglist_data *pgdat;
4505 unsigned long reserve_pages = 0;
4506 enum zone_type i, j;
4508 for_each_online_pgdat(pgdat) {
4509 for (i = 0; i < MAX_NR_ZONES; i++) {
4510 struct zone *zone = pgdat->node_zones + i;
4511 unsigned long max = 0;
4513 /* Find valid and maximum lowmem_reserve in the zone */
4514 for (j = i; j < MAX_NR_ZONES; j++) {
4515 if (zone->lowmem_reserve[j] > max)
4516 max = zone->lowmem_reserve[j];
4519 /* we treat the high watermark as reserved pages. */
4520 max += high_wmark_pages(zone);
4522 if (max > zone->present_pages)
4523 max = zone->present_pages;
4524 reserve_pages += max;
4527 totalreserve_pages = reserve_pages;
4531 * setup_per_zone_lowmem_reserve - called whenever
4532 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4533 * has a correct pages reserved value, so an adequate number of
4534 * pages are left in the zone after a successful __alloc_pages().
4536 static void setup_per_zone_lowmem_reserve(void)
4538 struct pglist_data *pgdat;
4539 enum zone_type j, idx;
4541 for_each_online_pgdat(pgdat) {
4542 for (j = 0; j < MAX_NR_ZONES; j++) {
4543 struct zone *zone = pgdat->node_zones + j;
4544 unsigned long present_pages = zone->present_pages;
4546 zone->lowmem_reserve[j] = 0;
4548 idx = j;
4549 while (idx) {
4550 struct zone *lower_zone;
4552 idx--;
4554 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4555 sysctl_lowmem_reserve_ratio[idx] = 1;
4557 lower_zone = pgdat->node_zones + idx;
4558 lower_zone->lowmem_reserve[j] = present_pages /
4559 sysctl_lowmem_reserve_ratio[idx];
4560 present_pages += lower_zone->present_pages;
4565 /* update totalreserve_pages */
4566 calculate_totalreserve_pages();
4570 * setup_per_zone_wmarks - called when min_free_kbytes changes
4571 * or when memory is hot-{added|removed}
4573 * Ensures that the watermark[min,low,high] values for each zone are set
4574 * correctly with respect to min_free_kbytes.
4576 void setup_per_zone_wmarks(void)
4578 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4579 unsigned long lowmem_pages = 0;
4580 struct zone *zone;
4581 unsigned long flags;
4583 /* Calculate total number of !ZONE_HIGHMEM pages */
4584 for_each_zone(zone) {
4585 if (!is_highmem(zone))
4586 lowmem_pages += zone->present_pages;
4589 for_each_zone(zone) {
4590 u64 tmp;
4592 spin_lock_irqsave(&zone->lock, flags);
4593 tmp = (u64)pages_min * zone->present_pages;
4594 do_div(tmp, lowmem_pages);
4595 if (is_highmem(zone)) {
4597 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4598 * need highmem pages, so cap pages_min to a small
4599 * value here.
4601 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4602 * deltas controls asynch page reclaim, and so should
4603 * not be capped for highmem.
4605 int min_pages;
4607 min_pages = zone->present_pages / 1024;
4608 if (min_pages < SWAP_CLUSTER_MAX)
4609 min_pages = SWAP_CLUSTER_MAX;
4610 if (min_pages > 128)
4611 min_pages = 128;
4612 zone->watermark[WMARK_MIN] = min_pages;
4613 } else {
4615 * If it's a lowmem zone, reserve a number of pages
4616 * proportionate to the zone's size.
4618 zone->watermark[WMARK_MIN] = tmp;
4621 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4622 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4623 setup_zone_migrate_reserve(zone);
4624 spin_unlock_irqrestore(&zone->lock, flags);
4627 /* update totalreserve_pages */
4628 calculate_totalreserve_pages();
4632 * The inactive anon list should be small enough that the VM never has to
4633 * do too much work, but large enough that each inactive page has a chance
4634 * to be referenced again before it is swapped out.
4636 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4637 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4638 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4639 * the anonymous pages are kept on the inactive list.
4641 * total target max
4642 * memory ratio inactive anon
4643 * -------------------------------------
4644 * 10MB 1 5MB
4645 * 100MB 1 50MB
4646 * 1GB 3 250MB
4647 * 10GB 10 0.9GB
4648 * 100GB 31 3GB
4649 * 1TB 101 10GB
4650 * 10TB 320 32GB
4652 void calculate_zone_inactive_ratio(struct zone *zone)
4654 unsigned int gb, ratio;
4656 /* Zone size in gigabytes */
4657 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4658 if (gb)
4659 ratio = int_sqrt(10 * gb);
4660 else
4661 ratio = 1;
4663 zone->inactive_ratio = ratio;
4666 static void __init setup_per_zone_inactive_ratio(void)
4668 struct zone *zone;
4670 for_each_zone(zone)
4671 calculate_zone_inactive_ratio(zone);
4675 * Initialise min_free_kbytes.
4677 * For small machines we want it small (128k min). For large machines
4678 * we want it large (64MB max). But it is not linear, because network
4679 * bandwidth does not increase linearly with machine size. We use
4681 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4682 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4684 * which yields
4686 * 16MB: 512k
4687 * 32MB: 724k
4688 * 64MB: 1024k
4689 * 128MB: 1448k
4690 * 256MB: 2048k
4691 * 512MB: 2896k
4692 * 1024MB: 4096k
4693 * 2048MB: 5792k
4694 * 4096MB: 8192k
4695 * 8192MB: 11584k
4696 * 16384MB: 16384k
4698 static int __init init_per_zone_wmark_min(void)
4700 unsigned long lowmem_kbytes;
4702 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4704 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4705 if (min_free_kbytes < 128)
4706 min_free_kbytes = 128;
4707 if (min_free_kbytes > 65536)
4708 min_free_kbytes = 65536;
4709 setup_per_zone_wmarks();
4710 setup_per_zone_lowmem_reserve();
4711 setup_per_zone_inactive_ratio();
4712 return 0;
4714 module_init(init_per_zone_wmark_min)
4717 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4718 * that we can call two helper functions whenever min_free_kbytes
4719 * changes.
4721 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4722 void __user *buffer, size_t *length, loff_t *ppos)
4724 proc_dointvec(table, write, buffer, length, ppos);
4725 if (write)
4726 setup_per_zone_wmarks();
4727 return 0;
4730 #ifdef CONFIG_NUMA
4731 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4732 void __user *buffer, size_t *length, loff_t *ppos)
4734 struct zone *zone;
4735 int rc;
4737 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4738 if (rc)
4739 return rc;
4741 for_each_zone(zone)
4742 zone->min_unmapped_pages = (zone->present_pages *
4743 sysctl_min_unmapped_ratio) / 100;
4744 return 0;
4747 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4748 void __user *buffer, size_t *length, loff_t *ppos)
4750 struct zone *zone;
4751 int rc;
4753 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4754 if (rc)
4755 return rc;
4757 for_each_zone(zone)
4758 zone->min_slab_pages = (zone->present_pages *
4759 sysctl_min_slab_ratio) / 100;
4760 return 0;
4762 #endif
4765 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4766 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4767 * whenever sysctl_lowmem_reserve_ratio changes.
4769 * The reserve ratio obviously has absolutely no relation with the
4770 * minimum watermarks. The lowmem reserve ratio can only make sense
4771 * if in function of the boot time zone sizes.
4773 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4774 void __user *buffer, size_t *length, loff_t *ppos)
4776 proc_dointvec_minmax(table, write, buffer, length, ppos);
4777 setup_per_zone_lowmem_reserve();
4778 return 0;
4782 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4783 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4784 * can have before it gets flushed back to buddy allocator.
4787 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4788 void __user *buffer, size_t *length, loff_t *ppos)
4790 struct zone *zone;
4791 unsigned int cpu;
4792 int ret;
4794 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4795 if (!write || (ret == -EINVAL))
4796 return ret;
4797 for_each_populated_zone(zone) {
4798 for_each_online_cpu(cpu) {
4799 unsigned long high;
4800 high = zone->present_pages / percpu_pagelist_fraction;
4801 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4804 return 0;
4807 int hashdist = HASHDIST_DEFAULT;
4809 #ifdef CONFIG_NUMA
4810 static int __init set_hashdist(char *str)
4812 if (!str)
4813 return 0;
4814 hashdist = simple_strtoul(str, &str, 0);
4815 return 1;
4817 __setup("hashdist=", set_hashdist);
4818 #endif
4821 * allocate a large system hash table from bootmem
4822 * - it is assumed that the hash table must contain an exact power-of-2
4823 * quantity of entries
4824 * - limit is the number of hash buckets, not the total allocation size
4826 void *__init alloc_large_system_hash(const char *tablename,
4827 unsigned long bucketsize,
4828 unsigned long numentries,
4829 int scale,
4830 int flags,
4831 unsigned int *_hash_shift,
4832 unsigned int *_hash_mask,
4833 unsigned long limit)
4835 unsigned long long max = limit;
4836 unsigned long log2qty, size;
4837 void *table = NULL;
4839 /* allow the kernel cmdline to have a say */
4840 if (!numentries) {
4841 /* round applicable memory size up to nearest megabyte */
4842 numentries = nr_kernel_pages;
4843 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4844 numentries >>= 20 - PAGE_SHIFT;
4845 numentries <<= 20 - PAGE_SHIFT;
4847 /* limit to 1 bucket per 2^scale bytes of low memory */
4848 if (scale > PAGE_SHIFT)
4849 numentries >>= (scale - PAGE_SHIFT);
4850 else
4851 numentries <<= (PAGE_SHIFT - scale);
4853 /* Make sure we've got at least a 0-order allocation.. */
4854 if (unlikely(flags & HASH_SMALL)) {
4855 /* Makes no sense without HASH_EARLY */
4856 WARN_ON(!(flags & HASH_EARLY));
4857 if (!(numentries >> *_hash_shift)) {
4858 numentries = 1UL << *_hash_shift;
4859 BUG_ON(!numentries);
4861 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4862 numentries = PAGE_SIZE / bucketsize;
4864 numentries = roundup_pow_of_two(numentries);
4866 /* limit allocation size to 1/16 total memory by default */
4867 if (max == 0) {
4868 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4869 do_div(max, bucketsize);
4872 if (numentries > max)
4873 numentries = max;
4875 log2qty = ilog2(numentries);
4877 do {
4878 size = bucketsize << log2qty;
4879 if (flags & HASH_EARLY)
4880 table = alloc_bootmem_nopanic(size);
4881 else if (hashdist)
4882 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4883 else {
4885 * If bucketsize is not a power-of-two, we may free
4886 * some pages at the end of hash table which
4887 * alloc_pages_exact() automatically does
4889 if (get_order(size) < MAX_ORDER) {
4890 table = alloc_pages_exact(size, GFP_ATOMIC);
4891 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4894 } while (!table && size > PAGE_SIZE && --log2qty);
4896 if (!table)
4897 panic("Failed to allocate %s hash table\n", tablename);
4899 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4900 tablename,
4901 (1U << log2qty),
4902 ilog2(size) - PAGE_SHIFT,
4903 size);
4905 if (_hash_shift)
4906 *_hash_shift = log2qty;
4907 if (_hash_mask)
4908 *_hash_mask = (1 << log2qty) - 1;
4910 return table;
4913 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4914 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4915 unsigned long pfn)
4917 #ifdef CONFIG_SPARSEMEM
4918 return __pfn_to_section(pfn)->pageblock_flags;
4919 #else
4920 return zone->pageblock_flags;
4921 #endif /* CONFIG_SPARSEMEM */
4924 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4926 #ifdef CONFIG_SPARSEMEM
4927 pfn &= (PAGES_PER_SECTION-1);
4928 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4929 #else
4930 pfn = pfn - zone->zone_start_pfn;
4931 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4932 #endif /* CONFIG_SPARSEMEM */
4936 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4937 * @page: The page within the block of interest
4938 * @start_bitidx: The first bit of interest to retrieve
4939 * @end_bitidx: The last bit of interest
4940 * returns pageblock_bits flags
4942 unsigned long get_pageblock_flags_group(struct page *page,
4943 int start_bitidx, int end_bitidx)
4945 struct zone *zone;
4946 unsigned long *bitmap;
4947 unsigned long pfn, bitidx;
4948 unsigned long flags = 0;
4949 unsigned long value = 1;
4951 zone = page_zone(page);
4952 pfn = page_to_pfn(page);
4953 bitmap = get_pageblock_bitmap(zone, pfn);
4954 bitidx = pfn_to_bitidx(zone, pfn);
4956 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4957 if (test_bit(bitidx + start_bitidx, bitmap))
4958 flags |= value;
4960 return flags;
4964 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4965 * @page: The page within the block of interest
4966 * @start_bitidx: The first bit of interest
4967 * @end_bitidx: The last bit of interest
4968 * @flags: The flags to set
4970 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4971 int start_bitidx, int end_bitidx)
4973 struct zone *zone;
4974 unsigned long *bitmap;
4975 unsigned long pfn, bitidx;
4976 unsigned long value = 1;
4978 zone = page_zone(page);
4979 pfn = page_to_pfn(page);
4980 bitmap = get_pageblock_bitmap(zone, pfn);
4981 bitidx = pfn_to_bitidx(zone, pfn);
4982 VM_BUG_ON(pfn < zone->zone_start_pfn);
4983 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4985 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4986 if (flags & value)
4987 __set_bit(bitidx + start_bitidx, bitmap);
4988 else
4989 __clear_bit(bitidx + start_bitidx, bitmap);
4993 * This is designed as sub function...plz see page_isolation.c also.
4994 * set/clear page block's type to be ISOLATE.
4995 * page allocater never alloc memory from ISOLATE block.
4998 int set_migratetype_isolate(struct page *page)
5000 struct zone *zone;
5001 unsigned long flags;
5002 int ret = -EBUSY;
5003 int zone_idx;
5005 zone = page_zone(page);
5006 zone_idx = zone_idx(zone);
5007 spin_lock_irqsave(&zone->lock, flags);
5009 * In future, more migrate types will be able to be isolation target.
5011 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5012 zone_idx != ZONE_MOVABLE)
5013 goto out;
5014 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5015 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5016 ret = 0;
5017 out:
5018 spin_unlock_irqrestore(&zone->lock, flags);
5019 if (!ret)
5020 drain_all_pages();
5021 return ret;
5024 void unset_migratetype_isolate(struct page *page)
5026 struct zone *zone;
5027 unsigned long flags;
5028 zone = page_zone(page);
5029 spin_lock_irqsave(&zone->lock, flags);
5030 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5031 goto out;
5032 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5033 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5034 out:
5035 spin_unlock_irqrestore(&zone->lock, flags);
5038 #ifdef CONFIG_MEMORY_HOTREMOVE
5040 * All pages in the range must be isolated before calling this.
5042 void
5043 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5045 struct page *page;
5046 struct zone *zone;
5047 int order, i;
5048 unsigned long pfn;
5049 unsigned long flags;
5050 /* find the first valid pfn */
5051 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5052 if (pfn_valid(pfn))
5053 break;
5054 if (pfn == end_pfn)
5055 return;
5056 zone = page_zone(pfn_to_page(pfn));
5057 spin_lock_irqsave(&zone->lock, flags);
5058 pfn = start_pfn;
5059 while (pfn < end_pfn) {
5060 if (!pfn_valid(pfn)) {
5061 pfn++;
5062 continue;
5064 page = pfn_to_page(pfn);
5065 BUG_ON(page_count(page));
5066 BUG_ON(!PageBuddy(page));
5067 order = page_order(page);
5068 #ifdef CONFIG_DEBUG_VM
5069 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5070 pfn, 1 << order, end_pfn);
5071 #endif
5072 list_del(&page->lru);
5073 rmv_page_order(page);
5074 zone->free_area[order].nr_free--;
5075 __mod_zone_page_state(zone, NR_FREE_PAGES,
5076 - (1UL << order));
5077 for (i = 0; i < (1 << order); i++)
5078 SetPageReserved((page+i));
5079 pfn += (1 << order);
5081 spin_unlock_irqrestore(&zone->lock, flags);
5083 #endif