Merge tag 'sound-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[linux-2.6/libata-dev.git] / net / sunrpc / sched.c
blob994cfea2bad66f814432c2fcbb1227d0a321d34f
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
23 #include <linux/sunrpc/clnt.h>
25 #include "sunrpc.h"
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY RPCDBG_SCHED
29 #endif
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
35 * RPC slabs and memory pools
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache *rpc_task_slabp __read_mostly;
41 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42 static mempool_t *rpc_task_mempool __read_mostly;
43 static mempool_t *rpc_buffer_mempool __read_mostly;
45 static void rpc_async_schedule(struct work_struct *);
46 static void rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
50 * RPC tasks sit here while waiting for conditions to improve.
52 static struct rpc_wait_queue delay_queue;
55 * rpciod-related stuff
57 struct workqueue_struct *rpciod_workqueue;
60 * Disable the timer for a given RPC task. Should be called with
61 * queue->lock and bh_disabled in order to avoid races within
62 * rpc_run_timer().
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 if (task->tk_timeout == 0)
68 return;
69 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 task->tk_timeout = 0;
71 list_del(&task->u.tk_wait.timer_list);
72 if (list_empty(&queue->timer_list.list))
73 del_timer(&queue->timer_list.timer);
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 queue->timer_list.expires = expires;
80 mod_timer(&queue->timer_list.timer, expires);
84 * Set up a timer for the current task.
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 if (!task->tk_timeout)
90 return;
92 dprintk("RPC: %5u setting alarm for %lu ms\n",
93 task->tk_pid, task->tk_timeout * 1000 / HZ);
95 task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
102 * Add new request to a priority queue.
104 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
105 struct rpc_task *task,
106 unsigned char queue_priority)
108 struct list_head *q;
109 struct rpc_task *t;
111 INIT_LIST_HEAD(&task->u.tk_wait.links);
112 q = &queue->tasks[queue_priority];
113 if (unlikely(queue_priority > queue->maxpriority))
114 q = &queue->tasks[queue->maxpriority];
115 list_for_each_entry(t, q, u.tk_wait.list) {
116 if (t->tk_owner == task->tk_owner) {
117 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
118 return;
121 list_add_tail(&task->u.tk_wait.list, q);
125 * Add new request to wait queue.
127 * Swapper tasks always get inserted at the head of the queue.
128 * This should avoid many nasty memory deadlocks and hopefully
129 * improve overall performance.
130 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
132 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
133 struct rpc_task *task,
134 unsigned char queue_priority)
136 BUG_ON (RPC_IS_QUEUED(task));
138 if (RPC_IS_PRIORITY(queue))
139 __rpc_add_wait_queue_priority(queue, task, queue_priority);
140 else if (RPC_IS_SWAPPER(task))
141 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
142 else
143 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
144 task->tk_waitqueue = queue;
145 queue->qlen++;
146 rpc_set_queued(task);
148 dprintk("RPC: %5u added to queue %p \"%s\"\n",
149 task->tk_pid, queue, rpc_qname(queue));
153 * Remove request from a priority queue.
155 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
157 struct rpc_task *t;
159 if (!list_empty(&task->u.tk_wait.links)) {
160 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
161 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
162 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
167 * Remove request from queue.
168 * Note: must be called with spin lock held.
170 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
172 __rpc_disable_timer(queue, task);
173 if (RPC_IS_PRIORITY(queue))
174 __rpc_remove_wait_queue_priority(task);
175 list_del(&task->u.tk_wait.list);
176 queue->qlen--;
177 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
178 task->tk_pid, queue, rpc_qname(queue));
181 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
183 queue->priority = priority;
184 queue->count = 1 << (priority * 2);
187 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
189 queue->owner = pid;
190 queue->nr = RPC_BATCH_COUNT;
193 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
195 rpc_set_waitqueue_priority(queue, queue->maxpriority);
196 rpc_set_waitqueue_owner(queue, 0);
199 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
201 int i;
203 spin_lock_init(&queue->lock);
204 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
205 INIT_LIST_HEAD(&queue->tasks[i]);
206 queue->maxpriority = nr_queues - 1;
207 rpc_reset_waitqueue_priority(queue);
208 queue->qlen = 0;
209 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
210 INIT_LIST_HEAD(&queue->timer_list.list);
211 rpc_assign_waitqueue_name(queue, qname);
214 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
216 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
218 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
220 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
222 __rpc_init_priority_wait_queue(queue, qname, 1);
224 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
226 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
228 del_timer_sync(&queue->timer_list.timer);
230 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
232 static int rpc_wait_bit_killable(void *word)
234 if (fatal_signal_pending(current))
235 return -ERESTARTSYS;
236 freezable_schedule();
237 return 0;
240 #ifdef RPC_DEBUG
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
243 static atomic_t rpc_pid;
245 task->tk_pid = atomic_inc_return(&rpc_pid);
247 #else
248 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
251 #endif
253 static void rpc_set_active(struct rpc_task *task)
255 trace_rpc_task_begin(task->tk_client, task, NULL);
257 rpc_task_set_debuginfo(task);
258 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
262 * Mark an RPC call as having completed by clearing the 'active' bit
263 * and then waking up all tasks that were sleeping.
265 static int rpc_complete_task(struct rpc_task *task)
267 void *m = &task->tk_runstate;
268 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
269 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
270 unsigned long flags;
271 int ret;
273 trace_rpc_task_complete(task->tk_client, task, NULL);
275 spin_lock_irqsave(&wq->lock, flags);
276 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
277 ret = atomic_dec_and_test(&task->tk_count);
278 if (waitqueue_active(wq))
279 __wake_up_locked_key(wq, TASK_NORMAL, &k);
280 spin_unlock_irqrestore(&wq->lock, flags);
281 return ret;
285 * Allow callers to wait for completion of an RPC call
287 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
288 * to enforce taking of the wq->lock and hence avoid races with
289 * rpc_complete_task().
291 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
293 if (action == NULL)
294 action = rpc_wait_bit_killable;
295 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
296 action, TASK_KILLABLE);
298 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
301 * Make an RPC task runnable.
303 * Note: If the task is ASYNC, this must be called with
304 * the spinlock held to protect the wait queue operation.
306 static void rpc_make_runnable(struct rpc_task *task)
308 rpc_clear_queued(task);
309 if (rpc_test_and_set_running(task))
310 return;
311 if (RPC_IS_ASYNC(task)) {
312 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
313 queue_work(rpciod_workqueue, &task->u.tk_work);
314 } else
315 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
319 * Prepare for sleeping on a wait queue.
320 * By always appending tasks to the list we ensure FIFO behavior.
321 * NB: An RPC task will only receive interrupt-driven events as long
322 * as it's on a wait queue.
324 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
325 struct rpc_task *task,
326 rpc_action action,
327 unsigned char queue_priority)
329 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
330 task->tk_pid, rpc_qname(q), jiffies);
332 trace_rpc_task_sleep(task->tk_client, task, q);
334 __rpc_add_wait_queue(q, task, queue_priority);
336 BUG_ON(task->tk_callback != NULL);
337 task->tk_callback = action;
338 __rpc_add_timer(q, task);
341 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
342 rpc_action action)
344 /* We shouldn't ever put an inactive task to sleep */
345 BUG_ON(!RPC_IS_ACTIVATED(task));
348 * Protect the queue operations.
350 spin_lock_bh(&q->lock);
351 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
352 spin_unlock_bh(&q->lock);
354 EXPORT_SYMBOL_GPL(rpc_sleep_on);
356 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
357 rpc_action action, int priority)
359 /* We shouldn't ever put an inactive task to sleep */
360 BUG_ON(!RPC_IS_ACTIVATED(task));
363 * Protect the queue operations.
365 spin_lock_bh(&q->lock);
366 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
367 spin_unlock_bh(&q->lock);
371 * __rpc_do_wake_up_task - wake up a single rpc_task
372 * @queue: wait queue
373 * @task: task to be woken up
375 * Caller must hold queue->lock, and have cleared the task queued flag.
377 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
379 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
380 task->tk_pid, jiffies);
382 /* Has the task been executed yet? If not, we cannot wake it up! */
383 if (!RPC_IS_ACTIVATED(task)) {
384 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
385 return;
388 trace_rpc_task_wakeup(task->tk_client, task, queue);
390 __rpc_remove_wait_queue(queue, task);
392 rpc_make_runnable(task);
394 dprintk("RPC: __rpc_wake_up_task done\n");
398 * Wake up a queued task while the queue lock is being held
400 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
402 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
403 __rpc_do_wake_up_task(queue, task);
407 * Tests whether rpc queue is empty
409 int rpc_queue_empty(struct rpc_wait_queue *queue)
411 int res;
413 spin_lock_bh(&queue->lock);
414 res = queue->qlen;
415 spin_unlock_bh(&queue->lock);
416 return res == 0;
418 EXPORT_SYMBOL_GPL(rpc_queue_empty);
421 * Wake up a task on a specific queue
423 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
425 spin_lock_bh(&queue->lock);
426 rpc_wake_up_task_queue_locked(queue, task);
427 spin_unlock_bh(&queue->lock);
429 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
432 * Wake up the next task on a priority queue.
434 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
436 struct list_head *q;
437 struct rpc_task *task;
440 * Service a batch of tasks from a single owner.
442 q = &queue->tasks[queue->priority];
443 if (!list_empty(q)) {
444 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
445 if (queue->owner == task->tk_owner) {
446 if (--queue->nr)
447 goto out;
448 list_move_tail(&task->u.tk_wait.list, q);
451 * Check if we need to switch queues.
453 if (--queue->count)
454 goto new_owner;
458 * Service the next queue.
460 do {
461 if (q == &queue->tasks[0])
462 q = &queue->tasks[queue->maxpriority];
463 else
464 q = q - 1;
465 if (!list_empty(q)) {
466 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
467 goto new_queue;
469 } while (q != &queue->tasks[queue->priority]);
471 rpc_reset_waitqueue_priority(queue);
472 return NULL;
474 new_queue:
475 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
476 new_owner:
477 rpc_set_waitqueue_owner(queue, task->tk_owner);
478 out:
479 return task;
482 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
484 if (RPC_IS_PRIORITY(queue))
485 return __rpc_find_next_queued_priority(queue);
486 if (!list_empty(&queue->tasks[0]))
487 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
488 return NULL;
492 * Wake up the first task on the wait queue.
494 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
495 bool (*func)(struct rpc_task *, void *), void *data)
497 struct rpc_task *task = NULL;
499 dprintk("RPC: wake_up_first(%p \"%s\")\n",
500 queue, rpc_qname(queue));
501 spin_lock_bh(&queue->lock);
502 task = __rpc_find_next_queued(queue);
503 if (task != NULL) {
504 if (func(task, data))
505 rpc_wake_up_task_queue_locked(queue, task);
506 else
507 task = NULL;
509 spin_unlock_bh(&queue->lock);
511 return task;
513 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
515 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
517 return true;
521 * Wake up the next task on the wait queue.
523 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
525 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
527 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
530 * rpc_wake_up - wake up all rpc_tasks
531 * @queue: rpc_wait_queue on which the tasks are sleeping
533 * Grabs queue->lock
535 void rpc_wake_up(struct rpc_wait_queue *queue)
537 struct list_head *head;
539 spin_lock_bh(&queue->lock);
540 head = &queue->tasks[queue->maxpriority];
541 for (;;) {
542 while (!list_empty(head)) {
543 struct rpc_task *task;
544 task = list_first_entry(head,
545 struct rpc_task,
546 u.tk_wait.list);
547 rpc_wake_up_task_queue_locked(queue, task);
549 if (head == &queue->tasks[0])
550 break;
551 head--;
553 spin_unlock_bh(&queue->lock);
555 EXPORT_SYMBOL_GPL(rpc_wake_up);
558 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
559 * @queue: rpc_wait_queue on which the tasks are sleeping
560 * @status: status value to set
562 * Grabs queue->lock
564 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
566 struct list_head *head;
568 spin_lock_bh(&queue->lock);
569 head = &queue->tasks[queue->maxpriority];
570 for (;;) {
571 while (!list_empty(head)) {
572 struct rpc_task *task;
573 task = list_first_entry(head,
574 struct rpc_task,
575 u.tk_wait.list);
576 task->tk_status = status;
577 rpc_wake_up_task_queue_locked(queue, task);
579 if (head == &queue->tasks[0])
580 break;
581 head--;
583 spin_unlock_bh(&queue->lock);
585 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
587 static void __rpc_queue_timer_fn(unsigned long ptr)
589 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
590 struct rpc_task *task, *n;
591 unsigned long expires, now, timeo;
593 spin_lock(&queue->lock);
594 expires = now = jiffies;
595 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
596 timeo = task->u.tk_wait.expires;
597 if (time_after_eq(now, timeo)) {
598 dprintk("RPC: %5u timeout\n", task->tk_pid);
599 task->tk_status = -ETIMEDOUT;
600 rpc_wake_up_task_queue_locked(queue, task);
601 continue;
603 if (expires == now || time_after(expires, timeo))
604 expires = timeo;
606 if (!list_empty(&queue->timer_list.list))
607 rpc_set_queue_timer(queue, expires);
608 spin_unlock(&queue->lock);
611 static void __rpc_atrun(struct rpc_task *task)
613 task->tk_status = 0;
617 * Run a task at a later time
619 void rpc_delay(struct rpc_task *task, unsigned long delay)
621 task->tk_timeout = delay;
622 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
624 EXPORT_SYMBOL_GPL(rpc_delay);
627 * Helper to call task->tk_ops->rpc_call_prepare
629 void rpc_prepare_task(struct rpc_task *task)
631 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
634 static void
635 rpc_init_task_statistics(struct rpc_task *task)
637 /* Initialize retry counters */
638 task->tk_garb_retry = 2;
639 task->tk_cred_retry = 2;
640 task->tk_rebind_retry = 2;
642 /* starting timestamp */
643 task->tk_start = ktime_get();
646 static void
647 rpc_reset_task_statistics(struct rpc_task *task)
649 task->tk_timeouts = 0;
650 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
652 rpc_init_task_statistics(task);
656 * Helper that calls task->tk_ops->rpc_call_done if it exists
658 void rpc_exit_task(struct rpc_task *task)
660 task->tk_action = NULL;
661 if (task->tk_ops->rpc_call_done != NULL) {
662 task->tk_ops->rpc_call_done(task, task->tk_calldata);
663 if (task->tk_action != NULL) {
664 WARN_ON(RPC_ASSASSINATED(task));
665 /* Always release the RPC slot and buffer memory */
666 xprt_release(task);
667 rpc_reset_task_statistics(task);
672 void rpc_exit(struct rpc_task *task, int status)
674 task->tk_status = status;
675 task->tk_action = rpc_exit_task;
676 if (RPC_IS_QUEUED(task))
677 rpc_wake_up_queued_task(task->tk_waitqueue, task);
679 EXPORT_SYMBOL_GPL(rpc_exit);
681 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
683 if (ops->rpc_release != NULL)
684 ops->rpc_release(calldata);
688 * This is the RPC `scheduler' (or rather, the finite state machine).
690 static void __rpc_execute(struct rpc_task *task)
692 struct rpc_wait_queue *queue;
693 int task_is_async = RPC_IS_ASYNC(task);
694 int status = 0;
696 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
697 task->tk_pid, task->tk_flags);
699 BUG_ON(RPC_IS_QUEUED(task));
701 for (;;) {
702 void (*do_action)(struct rpc_task *);
705 * Execute any pending callback first.
707 do_action = task->tk_callback;
708 task->tk_callback = NULL;
709 if (do_action == NULL) {
711 * Perform the next FSM step.
712 * tk_action may be NULL if the task has been killed.
713 * In particular, note that rpc_killall_tasks may
714 * do this at any time, so beware when dereferencing.
716 do_action = task->tk_action;
717 if (do_action == NULL)
718 break;
720 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
721 do_action(task);
724 * Lockless check for whether task is sleeping or not.
726 if (!RPC_IS_QUEUED(task))
727 continue;
729 * The queue->lock protects against races with
730 * rpc_make_runnable().
732 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
733 * rpc_task, rpc_make_runnable() can assign it to a
734 * different workqueue. We therefore cannot assume that the
735 * rpc_task pointer may still be dereferenced.
737 queue = task->tk_waitqueue;
738 spin_lock_bh(&queue->lock);
739 if (!RPC_IS_QUEUED(task)) {
740 spin_unlock_bh(&queue->lock);
741 continue;
743 rpc_clear_running(task);
744 spin_unlock_bh(&queue->lock);
745 if (task_is_async)
746 return;
748 /* sync task: sleep here */
749 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
750 status = out_of_line_wait_on_bit(&task->tk_runstate,
751 RPC_TASK_QUEUED, rpc_wait_bit_killable,
752 TASK_KILLABLE);
753 if (status == -ERESTARTSYS) {
755 * When a sync task receives a signal, it exits with
756 * -ERESTARTSYS. In order to catch any callbacks that
757 * clean up after sleeping on some queue, we don't
758 * break the loop here, but go around once more.
760 dprintk("RPC: %5u got signal\n", task->tk_pid);
761 task->tk_flags |= RPC_TASK_KILLED;
762 rpc_exit(task, -ERESTARTSYS);
764 rpc_set_running(task);
765 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
768 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
769 task->tk_status);
770 /* Release all resources associated with the task */
771 rpc_release_task(task);
775 * User-visible entry point to the scheduler.
777 * This may be called recursively if e.g. an async NFS task updates
778 * the attributes and finds that dirty pages must be flushed.
779 * NOTE: Upon exit of this function the task is guaranteed to be
780 * released. In particular note that tk_release() will have
781 * been called, so your task memory may have been freed.
783 void rpc_execute(struct rpc_task *task)
785 rpc_set_active(task);
786 rpc_make_runnable(task);
787 if (!RPC_IS_ASYNC(task))
788 __rpc_execute(task);
791 static void rpc_async_schedule(struct work_struct *work)
793 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
797 * rpc_malloc - allocate an RPC buffer
798 * @task: RPC task that will use this buffer
799 * @size: requested byte size
801 * To prevent rpciod from hanging, this allocator never sleeps,
802 * returning NULL if the request cannot be serviced immediately.
803 * The caller can arrange to sleep in a way that is safe for rpciod.
805 * Most requests are 'small' (under 2KiB) and can be serviced from a
806 * mempool, ensuring that NFS reads and writes can always proceed,
807 * and that there is good locality of reference for these buffers.
809 * In order to avoid memory starvation triggering more writebacks of
810 * NFS requests, we avoid using GFP_KERNEL.
812 void *rpc_malloc(struct rpc_task *task, size_t size)
814 struct rpc_buffer *buf;
815 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
817 size += sizeof(struct rpc_buffer);
818 if (size <= RPC_BUFFER_MAXSIZE)
819 buf = mempool_alloc(rpc_buffer_mempool, gfp);
820 else
821 buf = kmalloc(size, gfp);
823 if (!buf)
824 return NULL;
826 buf->len = size;
827 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
828 task->tk_pid, size, buf);
829 return &buf->data;
831 EXPORT_SYMBOL_GPL(rpc_malloc);
834 * rpc_free - free buffer allocated via rpc_malloc
835 * @buffer: buffer to free
838 void rpc_free(void *buffer)
840 size_t size;
841 struct rpc_buffer *buf;
843 if (!buffer)
844 return;
846 buf = container_of(buffer, struct rpc_buffer, data);
847 size = buf->len;
849 dprintk("RPC: freeing buffer of size %zu at %p\n",
850 size, buf);
852 if (size <= RPC_BUFFER_MAXSIZE)
853 mempool_free(buf, rpc_buffer_mempool);
854 else
855 kfree(buf);
857 EXPORT_SYMBOL_GPL(rpc_free);
860 * Creation and deletion of RPC task structures
862 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
864 memset(task, 0, sizeof(*task));
865 atomic_set(&task->tk_count, 1);
866 task->tk_flags = task_setup_data->flags;
867 task->tk_ops = task_setup_data->callback_ops;
868 task->tk_calldata = task_setup_data->callback_data;
869 INIT_LIST_HEAD(&task->tk_task);
871 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
872 task->tk_owner = current->tgid;
874 /* Initialize workqueue for async tasks */
875 task->tk_workqueue = task_setup_data->workqueue;
877 if (task->tk_ops->rpc_call_prepare != NULL)
878 task->tk_action = rpc_prepare_task;
880 rpc_init_task_statistics(task);
882 dprintk("RPC: new task initialized, procpid %u\n",
883 task_pid_nr(current));
886 static struct rpc_task *
887 rpc_alloc_task(void)
889 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
893 * Create a new task for the specified client.
895 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
897 struct rpc_task *task = setup_data->task;
898 unsigned short flags = 0;
900 if (task == NULL) {
901 task = rpc_alloc_task();
902 if (task == NULL) {
903 rpc_release_calldata(setup_data->callback_ops,
904 setup_data->callback_data);
905 return ERR_PTR(-ENOMEM);
907 flags = RPC_TASK_DYNAMIC;
910 rpc_init_task(task, setup_data);
911 task->tk_flags |= flags;
912 dprintk("RPC: allocated task %p\n", task);
913 return task;
916 static void rpc_free_task(struct rpc_task *task)
918 const struct rpc_call_ops *tk_ops = task->tk_ops;
919 void *calldata = task->tk_calldata;
921 if (task->tk_flags & RPC_TASK_DYNAMIC) {
922 dprintk("RPC: %5u freeing task\n", task->tk_pid);
923 mempool_free(task, rpc_task_mempool);
925 rpc_release_calldata(tk_ops, calldata);
928 static void rpc_async_release(struct work_struct *work)
930 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
933 static void rpc_release_resources_task(struct rpc_task *task)
935 if (task->tk_rqstp)
936 xprt_release(task);
937 if (task->tk_msg.rpc_cred) {
938 put_rpccred(task->tk_msg.rpc_cred);
939 task->tk_msg.rpc_cred = NULL;
941 rpc_task_release_client(task);
944 static void rpc_final_put_task(struct rpc_task *task,
945 struct workqueue_struct *q)
947 if (q != NULL) {
948 INIT_WORK(&task->u.tk_work, rpc_async_release);
949 queue_work(q, &task->u.tk_work);
950 } else
951 rpc_free_task(task);
954 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
956 if (atomic_dec_and_test(&task->tk_count)) {
957 rpc_release_resources_task(task);
958 rpc_final_put_task(task, q);
962 void rpc_put_task(struct rpc_task *task)
964 rpc_do_put_task(task, NULL);
966 EXPORT_SYMBOL_GPL(rpc_put_task);
968 void rpc_put_task_async(struct rpc_task *task)
970 rpc_do_put_task(task, task->tk_workqueue);
972 EXPORT_SYMBOL_GPL(rpc_put_task_async);
974 static void rpc_release_task(struct rpc_task *task)
976 dprintk("RPC: %5u release task\n", task->tk_pid);
978 BUG_ON (RPC_IS_QUEUED(task));
980 rpc_release_resources_task(task);
983 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
984 * so it should be safe to use task->tk_count as a test for whether
985 * or not any other processes still hold references to our rpc_task.
987 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
988 /* Wake up anyone who may be waiting for task completion */
989 if (!rpc_complete_task(task))
990 return;
991 } else {
992 if (!atomic_dec_and_test(&task->tk_count))
993 return;
995 rpc_final_put_task(task, task->tk_workqueue);
998 int rpciod_up(void)
1000 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1003 void rpciod_down(void)
1005 module_put(THIS_MODULE);
1009 * Start up the rpciod workqueue.
1011 static int rpciod_start(void)
1013 struct workqueue_struct *wq;
1016 * Create the rpciod thread and wait for it to start.
1018 dprintk("RPC: creating workqueue rpciod\n");
1019 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1020 rpciod_workqueue = wq;
1021 return rpciod_workqueue != NULL;
1024 static void rpciod_stop(void)
1026 struct workqueue_struct *wq = NULL;
1028 if (rpciod_workqueue == NULL)
1029 return;
1030 dprintk("RPC: destroying workqueue rpciod\n");
1032 wq = rpciod_workqueue;
1033 rpciod_workqueue = NULL;
1034 destroy_workqueue(wq);
1037 void
1038 rpc_destroy_mempool(void)
1040 rpciod_stop();
1041 if (rpc_buffer_mempool)
1042 mempool_destroy(rpc_buffer_mempool);
1043 if (rpc_task_mempool)
1044 mempool_destroy(rpc_task_mempool);
1045 if (rpc_task_slabp)
1046 kmem_cache_destroy(rpc_task_slabp);
1047 if (rpc_buffer_slabp)
1048 kmem_cache_destroy(rpc_buffer_slabp);
1049 rpc_destroy_wait_queue(&delay_queue);
1053 rpc_init_mempool(void)
1056 * The following is not strictly a mempool initialisation,
1057 * but there is no harm in doing it here
1059 rpc_init_wait_queue(&delay_queue, "delayq");
1060 if (!rpciod_start())
1061 goto err_nomem;
1063 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1064 sizeof(struct rpc_task),
1065 0, SLAB_HWCACHE_ALIGN,
1066 NULL);
1067 if (!rpc_task_slabp)
1068 goto err_nomem;
1069 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1070 RPC_BUFFER_MAXSIZE,
1071 0, SLAB_HWCACHE_ALIGN,
1072 NULL);
1073 if (!rpc_buffer_slabp)
1074 goto err_nomem;
1075 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1076 rpc_task_slabp);
1077 if (!rpc_task_mempool)
1078 goto err_nomem;
1079 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1080 rpc_buffer_slabp);
1081 if (!rpc_buffer_mempool)
1082 goto err_nomem;
1083 return 0;
1084 err_nomem:
1085 rpc_destroy_mempool();
1086 return -ENOMEM;