2 * lib/prio_tree.c - priority search tree
4 * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
6 * This file is released under the GPL v2.
8 * Based on the radix priority search tree proposed by Edward M. McCreight
9 * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
11 * 02Feb2004 Initial version
14 #include <linux/init.h>
16 #include <linux/prio_tree.h>
19 * A clever mix of heap and radix trees forms a radix priority search tree (PST)
20 * which is useful for storing intervals, e.g, we can consider a vma as a closed
21 * interval of file pages [offset_begin, offset_end], and store all vmas that
22 * map a file in a PST. Then, using the PST, we can answer a stabbing query,
23 * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
24 * given input interval X (a set of consecutive file pages), in "O(log n + m)"
25 * time where 'log n' is the height of the PST, and 'm' is the number of stored
26 * intervals (vmas) that overlap (map) with the input interval X (the set of
27 * consecutive file pages).
29 * In our implementation, we store closed intervals of the form [radix_index,
30 * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
31 * is designed for storing intervals with unique radix indices, i.e., each
32 * interval have different radix_index. However, this limitation can be easily
33 * overcome by using the size, i.e., heap_index - radix_index, as part of the
34 * index, so we index the tree using [(radix_index,size), heap_index].
36 * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
37 * machine, the maximum height of a PST can be 64. We can use a balanced version
38 * of the priority search tree to optimize the tree height, but the balanced
39 * tree proposed by McCreight is too complex and memory-hungry for our purpose.
43 * The following macros are used for implementing prio_tree for i_mmap
46 #define RADIX_INDEX(vma) ((vma)->vm_pgoff)
47 #define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
49 #define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
52 static void get_index(const struct prio_tree_root
*root
,
53 const struct prio_tree_node
*node
,
54 unsigned long *radix
, unsigned long *heap
)
57 struct vm_area_struct
*vma
= prio_tree_entry(
58 node
, struct vm_area_struct
, shared
.prio_tree_node
);
60 *radix
= RADIX_INDEX(vma
);
61 *heap
= HEAP_INDEX(vma
);
69 static unsigned long index_bits_to_maxindex
[BITS_PER_LONG
];
71 void __init
prio_tree_init(void)
75 for (i
= 0; i
< ARRAY_SIZE(index_bits_to_maxindex
) - 1; i
++)
76 index_bits_to_maxindex
[i
] = (1UL << (i
+ 1)) - 1;
77 index_bits_to_maxindex
[ARRAY_SIZE(index_bits_to_maxindex
) - 1] = ~0UL;
81 * Maximum heap_index that can be stored in a PST with index_bits bits
83 static inline unsigned long prio_tree_maxindex(unsigned int bits
)
85 return index_bits_to_maxindex
[bits
- 1];
88 static void prio_set_parent(struct prio_tree_node
*parent
,
89 struct prio_tree_node
*child
, bool left
)
94 parent
->right
= child
;
96 child
->parent
= parent
;
100 * Extend a priority search tree so that it can store a node with heap_index
101 * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
102 * However, this function is used rarely and the common case performance is
105 static struct prio_tree_node
*prio_tree_expand(struct prio_tree_root
*root
,
106 struct prio_tree_node
*node
, unsigned long max_heap_index
)
108 struct prio_tree_node
*prev
;
110 if (max_heap_index
> prio_tree_maxindex(root
->index_bits
))
114 INIT_PRIO_TREE_NODE(node
);
116 while (max_heap_index
> prio_tree_maxindex(root
->index_bits
)) {
117 struct prio_tree_node
*tmp
= root
->prio_tree_node
;
121 if (prio_tree_empty(root
))
124 prio_tree_remove(root
, root
->prio_tree_node
);
125 INIT_PRIO_TREE_NODE(tmp
);
127 prio_set_parent(prev
, tmp
, true);
131 if (!prio_tree_empty(root
))
132 prio_set_parent(prev
, root
->prio_tree_node
, true);
134 root
->prio_tree_node
= node
;
139 * Replace a prio_tree_node with a new node and return the old node
141 struct prio_tree_node
*prio_tree_replace(struct prio_tree_root
*root
,
142 struct prio_tree_node
*old
, struct prio_tree_node
*node
)
144 INIT_PRIO_TREE_NODE(node
);
146 if (prio_tree_root(old
)) {
147 BUG_ON(root
->prio_tree_node
!= old
);
149 * We can reduce root->index_bits here. However, it is complex
150 * and does not help much to improve performance (IMO).
152 root
->prio_tree_node
= node
;
154 prio_set_parent(old
->parent
, node
, old
->parent
->left
== old
);
156 if (!prio_tree_left_empty(old
))
157 prio_set_parent(node
, old
->left
, true);
159 if (!prio_tree_right_empty(old
))
160 prio_set_parent(node
, old
->right
, false);
166 * Insert a prio_tree_node @node into a radix priority search tree @root. The
167 * algorithm typically takes O(log n) time where 'log n' is the number of bits
168 * required to represent the maximum heap_index. In the worst case, the algo
169 * can take O((log n)^2) - check prio_tree_expand.
171 * If a prior node with same radix_index and heap_index is already found in
172 * the tree, then returns the address of the prior node. Otherwise, inserts
173 * @node into the tree and returns @node.
175 struct prio_tree_node
*prio_tree_insert(struct prio_tree_root
*root
,
176 struct prio_tree_node
*node
)
178 struct prio_tree_node
*cur
, *res
= node
;
179 unsigned long radix_index
, heap_index
;
180 unsigned long r_index
, h_index
, index
, mask
;
183 get_index(root
, node
, &radix_index
, &heap_index
);
185 if (prio_tree_empty(root
) ||
186 heap_index
> prio_tree_maxindex(root
->index_bits
))
187 return prio_tree_expand(root
, node
, heap_index
);
189 cur
= root
->prio_tree_node
;
190 mask
= 1UL << (root
->index_bits
- 1);
193 get_index(root
, cur
, &r_index
, &h_index
);
195 if (r_index
== radix_index
&& h_index
== heap_index
)
198 if (h_index
< heap_index
||
199 (h_index
== heap_index
&& r_index
> radix_index
)) {
200 struct prio_tree_node
*tmp
= node
;
201 node
= prio_tree_replace(root
, cur
, node
);
205 r_index
= radix_index
;
208 h_index
= heap_index
;
213 index
= heap_index
- radix_index
;
218 if (prio_tree_right_empty(cur
)) {
219 INIT_PRIO_TREE_NODE(node
);
220 prio_set_parent(cur
, node
, false);
225 if (prio_tree_left_empty(cur
)) {
226 INIT_PRIO_TREE_NODE(node
);
227 prio_set_parent(cur
, node
, true);
236 mask
= 1UL << (BITS_PER_LONG
- 1);
240 /* Should not reach here */
246 * Remove a prio_tree_node @node from a radix priority search tree @root. The
247 * algorithm takes O(log n) time where 'log n' is the number of bits required
248 * to represent the maximum heap_index.
250 void prio_tree_remove(struct prio_tree_root
*root
, struct prio_tree_node
*node
)
252 struct prio_tree_node
*cur
;
253 unsigned long r_index
, h_index_right
, h_index_left
;
257 while (!prio_tree_left_empty(cur
) || !prio_tree_right_empty(cur
)) {
258 if (!prio_tree_left_empty(cur
))
259 get_index(root
, cur
->left
, &r_index
, &h_index_left
);
265 if (!prio_tree_right_empty(cur
))
266 get_index(root
, cur
->right
, &r_index
, &h_index_right
);
272 /* both h_index_left and h_index_right cannot be 0 */
273 if (h_index_left
>= h_index_right
)
279 if (prio_tree_root(cur
)) {
280 BUG_ON(root
->prio_tree_node
!= cur
);
281 __INIT_PRIO_TREE_ROOT(root
, root
->raw
);
285 if (cur
->parent
->right
== cur
)
286 cur
->parent
->right
= cur
->parent
;
288 cur
->parent
->left
= cur
->parent
;
291 cur
= prio_tree_replace(root
, cur
->parent
, cur
);
294 static void iter_walk_down(struct prio_tree_iter
*iter
)
298 if (iter
->size_level
)
303 if (iter
->size_level
) {
304 BUG_ON(!prio_tree_left_empty(iter
->cur
));
305 BUG_ON(!prio_tree_right_empty(iter
->cur
));
307 iter
->mask
= ULONG_MAX
;
309 iter
->size_level
= 1;
310 iter
->mask
= 1UL << (BITS_PER_LONG
- 1);
314 static void iter_walk_up(struct prio_tree_iter
*iter
)
316 if (iter
->mask
== ULONG_MAX
)
318 else if (iter
->size_level
== 1)
322 if (iter
->size_level
)
324 if (!iter
->size_level
&& (iter
->value
& iter
->mask
))
325 iter
->value
^= iter
->mask
;
329 * Following functions help to enumerate all prio_tree_nodes in the tree that
330 * overlap with the input interval X [radix_index, heap_index]. The enumeration
331 * takes O(log n + m) time where 'log n' is the height of the tree (which is
332 * proportional to # of bits required to represent the maximum heap_index) and
333 * 'm' is the number of prio_tree_nodes that overlap the interval X.
336 static struct prio_tree_node
*prio_tree_left(struct prio_tree_iter
*iter
,
337 unsigned long *r_index
, unsigned long *h_index
)
339 if (prio_tree_left_empty(iter
->cur
))
342 get_index(iter
->root
, iter
->cur
->left
, r_index
, h_index
);
344 if (iter
->r_index
<= *h_index
) {
345 iter
->cur
= iter
->cur
->left
;
346 iter_walk_down(iter
);
353 static struct prio_tree_node
*prio_tree_right(struct prio_tree_iter
*iter
,
354 unsigned long *r_index
, unsigned long *h_index
)
358 if (prio_tree_right_empty(iter
->cur
))
361 if (iter
->size_level
)
364 value
= iter
->value
| iter
->mask
;
366 if (iter
->h_index
< value
)
369 get_index(iter
->root
, iter
->cur
->right
, r_index
, h_index
);
371 if (iter
->r_index
<= *h_index
) {
372 iter
->cur
= iter
->cur
->right
;
373 iter_walk_down(iter
);
380 static struct prio_tree_node
*prio_tree_parent(struct prio_tree_iter
*iter
)
382 iter
->cur
= iter
->cur
->parent
;
387 static inline int overlap(struct prio_tree_iter
*iter
,
388 unsigned long r_index
, unsigned long h_index
)
390 return iter
->h_index
>= r_index
&& iter
->r_index
<= h_index
;
396 * Get the first prio_tree_node that overlaps with the interval [radix_index,
397 * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
398 * traversal of the tree.
400 static struct prio_tree_node
*prio_tree_first(struct prio_tree_iter
*iter
)
402 struct prio_tree_root
*root
;
403 unsigned long r_index
, h_index
;
405 INIT_PRIO_TREE_ITER(iter
);
408 if (prio_tree_empty(root
))
411 get_index(root
, root
->prio_tree_node
, &r_index
, &h_index
);
413 if (iter
->r_index
> h_index
)
416 iter
->mask
= 1UL << (root
->index_bits
- 1);
417 iter
->cur
= root
->prio_tree_node
;
420 if (overlap(iter
, r_index
, h_index
))
423 if (prio_tree_left(iter
, &r_index
, &h_index
))
426 if (prio_tree_right(iter
, &r_index
, &h_index
))
437 * Get the next prio_tree_node that overlaps with the input interval in iter
439 struct prio_tree_node
*prio_tree_next(struct prio_tree_iter
*iter
)
441 unsigned long r_index
, h_index
;
443 if (iter
->cur
== NULL
)
444 return prio_tree_first(iter
);
447 while (prio_tree_left(iter
, &r_index
, &h_index
))
448 if (overlap(iter
, r_index
, h_index
))
451 while (!prio_tree_right(iter
, &r_index
, &h_index
)) {
452 while (!prio_tree_root(iter
->cur
) &&
453 iter
->cur
->parent
->right
== iter
->cur
)
454 prio_tree_parent(iter
);
456 if (prio_tree_root(iter
->cur
))
459 prio_tree_parent(iter
);
462 if (overlap(iter
, r_index
, h_index
))