KVM: Add accessor for reading cr4 (or some bits of cr4)
[linux-2.6/libata-dev.git] / arch / x86 / kvm / x86.c
blob84dd33e717fd01976927142f7653e4df501e6f36
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <trace/events/kvm.h>
42 #undef TRACE_INCLUDE_FILE
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
46 #include <asm/debugreg.h>
47 #include <asm/uaccess.h>
48 #include <asm/msr.h>
49 #include <asm/desc.h>
50 #include <asm/mtrr.h>
51 #include <asm/mce.h>
53 #define MAX_IO_MSRS 256
54 #define CR0_RESERVED_BITS \
55 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
56 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
57 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
58 #define CR4_RESERVED_BITS \
59 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
60 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
61 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
62 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
64 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
69 /* EFER defaults:
70 * - enable syscall per default because its emulated by KVM
71 * - enable LME and LMA per default on 64 bit KVM
73 #ifdef CONFIG_X86_64
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
75 #else
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
77 #endif
79 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
80 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
83 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
84 struct kvm_cpuid_entry2 __user *entries);
86 struct kvm_x86_ops *kvm_x86_ops;
87 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89 int ignore_msrs = 0;
90 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92 #define KVM_NR_SHARED_MSRS 16
94 struct kvm_shared_msrs_global {
95 int nr;
96 struct kvm_shared_msr {
97 u32 msr;
98 u64 value;
99 } msrs[KVM_NR_SHARED_MSRS];
102 struct kvm_shared_msrs {
103 struct user_return_notifier urn;
104 bool registered;
105 u64 current_value[KVM_NR_SHARED_MSRS];
108 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
109 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
111 struct kvm_stats_debugfs_item debugfs_entries[] = {
112 { "pf_fixed", VCPU_STAT(pf_fixed) },
113 { "pf_guest", VCPU_STAT(pf_guest) },
114 { "tlb_flush", VCPU_STAT(tlb_flush) },
115 { "invlpg", VCPU_STAT(invlpg) },
116 { "exits", VCPU_STAT(exits) },
117 { "io_exits", VCPU_STAT(io_exits) },
118 { "mmio_exits", VCPU_STAT(mmio_exits) },
119 { "signal_exits", VCPU_STAT(signal_exits) },
120 { "irq_window", VCPU_STAT(irq_window_exits) },
121 { "nmi_window", VCPU_STAT(nmi_window_exits) },
122 { "halt_exits", VCPU_STAT(halt_exits) },
123 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
124 { "hypercalls", VCPU_STAT(hypercalls) },
125 { "request_irq", VCPU_STAT(request_irq_exits) },
126 { "irq_exits", VCPU_STAT(irq_exits) },
127 { "host_state_reload", VCPU_STAT(host_state_reload) },
128 { "efer_reload", VCPU_STAT(efer_reload) },
129 { "fpu_reload", VCPU_STAT(fpu_reload) },
130 { "insn_emulation", VCPU_STAT(insn_emulation) },
131 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
132 { "irq_injections", VCPU_STAT(irq_injections) },
133 { "nmi_injections", VCPU_STAT(nmi_injections) },
134 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
135 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
136 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
137 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
138 { "mmu_flooded", VM_STAT(mmu_flooded) },
139 { "mmu_recycled", VM_STAT(mmu_recycled) },
140 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
141 { "mmu_unsync", VM_STAT(mmu_unsync) },
142 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
143 { "largepages", VM_STAT(lpages) },
144 { NULL }
147 static void kvm_on_user_return(struct user_return_notifier *urn)
149 unsigned slot;
150 struct kvm_shared_msr *global;
151 struct kvm_shared_msrs *locals
152 = container_of(urn, struct kvm_shared_msrs, urn);
154 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
155 global = &shared_msrs_global.msrs[slot];
156 if (global->value != locals->current_value[slot]) {
157 wrmsrl(global->msr, global->value);
158 locals->current_value[slot] = global->value;
161 locals->registered = false;
162 user_return_notifier_unregister(urn);
165 void kvm_define_shared_msr(unsigned slot, u32 msr)
167 int cpu;
168 u64 value;
170 if (slot >= shared_msrs_global.nr)
171 shared_msrs_global.nr = slot + 1;
172 shared_msrs_global.msrs[slot].msr = msr;
173 rdmsrl_safe(msr, &value);
174 shared_msrs_global.msrs[slot].value = value;
175 for_each_online_cpu(cpu)
176 per_cpu(shared_msrs, cpu).current_value[slot] = value;
178 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
180 static void kvm_shared_msr_cpu_online(void)
182 unsigned i;
183 struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
185 for (i = 0; i < shared_msrs_global.nr; ++i)
186 locals->current_value[i] = shared_msrs_global.msrs[i].value;
189 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
191 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
193 if (((value ^ smsr->current_value[slot]) & mask) == 0)
194 return;
195 smsr->current_value[slot] = value;
196 wrmsrl(shared_msrs_global.msrs[slot].msr, value);
197 if (!smsr->registered) {
198 smsr->urn.on_user_return = kvm_on_user_return;
199 user_return_notifier_register(&smsr->urn);
200 smsr->registered = true;
203 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
205 static void drop_user_return_notifiers(void *ignore)
207 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
209 if (smsr->registered)
210 kvm_on_user_return(&smsr->urn);
213 unsigned long segment_base(u16 selector)
215 struct descriptor_table gdt;
216 struct desc_struct *d;
217 unsigned long table_base;
218 unsigned long v;
220 if (selector == 0)
221 return 0;
223 kvm_get_gdt(&gdt);
224 table_base = gdt.base;
226 if (selector & 4) { /* from ldt */
227 u16 ldt_selector = kvm_read_ldt();
229 table_base = segment_base(ldt_selector);
231 d = (struct desc_struct *)(table_base + (selector & ~7));
232 v = get_desc_base(d);
233 #ifdef CONFIG_X86_64
234 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
235 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
236 #endif
237 return v;
239 EXPORT_SYMBOL_GPL(segment_base);
241 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
243 if (irqchip_in_kernel(vcpu->kvm))
244 return vcpu->arch.apic_base;
245 else
246 return vcpu->arch.apic_base;
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
250 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
252 /* TODO: reserve bits check */
253 if (irqchip_in_kernel(vcpu->kvm))
254 kvm_lapic_set_base(vcpu, data);
255 else
256 vcpu->arch.apic_base = data;
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
260 #define EXCPT_BENIGN 0
261 #define EXCPT_CONTRIBUTORY 1
262 #define EXCPT_PF 2
264 static int exception_class(int vector)
266 switch (vector) {
267 case PF_VECTOR:
268 return EXCPT_PF;
269 case DE_VECTOR:
270 case TS_VECTOR:
271 case NP_VECTOR:
272 case SS_VECTOR:
273 case GP_VECTOR:
274 return EXCPT_CONTRIBUTORY;
275 default:
276 break;
278 return EXCPT_BENIGN;
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282 unsigned nr, bool has_error, u32 error_code)
284 u32 prev_nr;
285 int class1, class2;
287 if (!vcpu->arch.exception.pending) {
288 queue:
289 vcpu->arch.exception.pending = true;
290 vcpu->arch.exception.has_error_code = has_error;
291 vcpu->arch.exception.nr = nr;
292 vcpu->arch.exception.error_code = error_code;
293 return;
296 /* to check exception */
297 prev_nr = vcpu->arch.exception.nr;
298 if (prev_nr == DF_VECTOR) {
299 /* triple fault -> shutdown */
300 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
301 return;
303 class1 = exception_class(prev_nr);
304 class2 = exception_class(nr);
305 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
306 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
307 /* generate double fault per SDM Table 5-5 */
308 vcpu->arch.exception.pending = true;
309 vcpu->arch.exception.has_error_code = true;
310 vcpu->arch.exception.nr = DF_VECTOR;
311 vcpu->arch.exception.error_code = 0;
312 } else
313 /* replace previous exception with a new one in a hope
314 that instruction re-execution will regenerate lost
315 exception */
316 goto queue;
319 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
321 kvm_multiple_exception(vcpu, nr, false, 0);
323 EXPORT_SYMBOL_GPL(kvm_queue_exception);
325 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
326 u32 error_code)
328 ++vcpu->stat.pf_guest;
329 vcpu->arch.cr2 = addr;
330 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
333 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
335 vcpu->arch.nmi_pending = 1;
337 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
339 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
341 kvm_multiple_exception(vcpu, nr, true, error_code);
343 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
346 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
347 * a #GP and return false.
349 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
351 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
352 return true;
353 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
354 return false;
356 EXPORT_SYMBOL_GPL(kvm_require_cpl);
359 * Load the pae pdptrs. Return true is they are all valid.
361 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
363 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
364 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
365 int i;
366 int ret;
367 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
369 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
370 offset * sizeof(u64), sizeof(pdpte));
371 if (ret < 0) {
372 ret = 0;
373 goto out;
375 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
376 if (is_present_gpte(pdpte[i]) &&
377 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
378 ret = 0;
379 goto out;
382 ret = 1;
384 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
385 __set_bit(VCPU_EXREG_PDPTR,
386 (unsigned long *)&vcpu->arch.regs_avail);
387 __set_bit(VCPU_EXREG_PDPTR,
388 (unsigned long *)&vcpu->arch.regs_dirty);
389 out:
391 return ret;
393 EXPORT_SYMBOL_GPL(load_pdptrs);
395 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
397 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
398 bool changed = true;
399 int r;
401 if (is_long_mode(vcpu) || !is_pae(vcpu))
402 return false;
404 if (!test_bit(VCPU_EXREG_PDPTR,
405 (unsigned long *)&vcpu->arch.regs_avail))
406 return true;
408 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
409 if (r < 0)
410 goto out;
411 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
412 out:
414 return changed;
417 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
419 if (cr0 & CR0_RESERVED_BITS) {
420 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
421 cr0, vcpu->arch.cr0);
422 kvm_inject_gp(vcpu, 0);
423 return;
426 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
427 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
428 kvm_inject_gp(vcpu, 0);
429 return;
432 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
433 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
434 "and a clear PE flag\n");
435 kvm_inject_gp(vcpu, 0);
436 return;
439 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
440 #ifdef CONFIG_X86_64
441 if ((vcpu->arch.shadow_efer & EFER_LME)) {
442 int cs_db, cs_l;
444 if (!is_pae(vcpu)) {
445 printk(KERN_DEBUG "set_cr0: #GP, start paging "
446 "in long mode while PAE is disabled\n");
447 kvm_inject_gp(vcpu, 0);
448 return;
450 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
451 if (cs_l) {
452 printk(KERN_DEBUG "set_cr0: #GP, start paging "
453 "in long mode while CS.L == 1\n");
454 kvm_inject_gp(vcpu, 0);
455 return;
458 } else
459 #endif
460 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
461 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
462 "reserved bits\n");
463 kvm_inject_gp(vcpu, 0);
464 return;
469 kvm_x86_ops->set_cr0(vcpu, cr0);
470 vcpu->arch.cr0 = cr0;
472 kvm_mmu_reset_context(vcpu);
473 return;
475 EXPORT_SYMBOL_GPL(kvm_set_cr0);
477 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
479 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
481 EXPORT_SYMBOL_GPL(kvm_lmsw);
483 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
485 unsigned long old_cr4 = kvm_read_cr4(vcpu);
486 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
488 if (cr4 & CR4_RESERVED_BITS) {
489 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
490 kvm_inject_gp(vcpu, 0);
491 return;
494 if (is_long_mode(vcpu)) {
495 if (!(cr4 & X86_CR4_PAE)) {
496 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
497 "in long mode\n");
498 kvm_inject_gp(vcpu, 0);
499 return;
501 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
502 && ((cr4 ^ old_cr4) & pdptr_bits)
503 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
504 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
505 kvm_inject_gp(vcpu, 0);
506 return;
509 if (cr4 & X86_CR4_VMXE) {
510 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
511 kvm_inject_gp(vcpu, 0);
512 return;
514 kvm_x86_ops->set_cr4(vcpu, cr4);
515 vcpu->arch.cr4 = cr4;
516 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
517 kvm_mmu_reset_context(vcpu);
519 EXPORT_SYMBOL_GPL(kvm_set_cr4);
521 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
523 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
524 kvm_mmu_sync_roots(vcpu);
525 kvm_mmu_flush_tlb(vcpu);
526 return;
529 if (is_long_mode(vcpu)) {
530 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
531 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
532 kvm_inject_gp(vcpu, 0);
533 return;
535 } else {
536 if (is_pae(vcpu)) {
537 if (cr3 & CR3_PAE_RESERVED_BITS) {
538 printk(KERN_DEBUG
539 "set_cr3: #GP, reserved bits\n");
540 kvm_inject_gp(vcpu, 0);
541 return;
543 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
544 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
545 "reserved bits\n");
546 kvm_inject_gp(vcpu, 0);
547 return;
551 * We don't check reserved bits in nonpae mode, because
552 * this isn't enforced, and VMware depends on this.
557 * Does the new cr3 value map to physical memory? (Note, we
558 * catch an invalid cr3 even in real-mode, because it would
559 * cause trouble later on when we turn on paging anyway.)
561 * A real CPU would silently accept an invalid cr3 and would
562 * attempt to use it - with largely undefined (and often hard
563 * to debug) behavior on the guest side.
565 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
566 kvm_inject_gp(vcpu, 0);
567 else {
568 vcpu->arch.cr3 = cr3;
569 vcpu->arch.mmu.new_cr3(vcpu);
572 EXPORT_SYMBOL_GPL(kvm_set_cr3);
574 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
576 if (cr8 & CR8_RESERVED_BITS) {
577 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
578 kvm_inject_gp(vcpu, 0);
579 return;
581 if (irqchip_in_kernel(vcpu->kvm))
582 kvm_lapic_set_tpr(vcpu, cr8);
583 else
584 vcpu->arch.cr8 = cr8;
586 EXPORT_SYMBOL_GPL(kvm_set_cr8);
588 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
590 if (irqchip_in_kernel(vcpu->kvm))
591 return kvm_lapic_get_cr8(vcpu);
592 else
593 return vcpu->arch.cr8;
595 EXPORT_SYMBOL_GPL(kvm_get_cr8);
597 static inline u32 bit(int bitno)
599 return 1 << (bitno & 31);
603 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
604 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
606 * This list is modified at module load time to reflect the
607 * capabilities of the host cpu. This capabilities test skips MSRs that are
608 * kvm-specific. Those are put in the beginning of the list.
611 #define KVM_SAVE_MSRS_BEGIN 2
612 static u32 msrs_to_save[] = {
613 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
614 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
615 MSR_K6_STAR,
616 #ifdef CONFIG_X86_64
617 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
618 #endif
619 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
622 static unsigned num_msrs_to_save;
624 static u32 emulated_msrs[] = {
625 MSR_IA32_MISC_ENABLE,
628 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
630 if (efer & efer_reserved_bits) {
631 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
632 efer);
633 kvm_inject_gp(vcpu, 0);
634 return;
637 if (is_paging(vcpu)
638 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
639 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
640 kvm_inject_gp(vcpu, 0);
641 return;
644 if (efer & EFER_FFXSR) {
645 struct kvm_cpuid_entry2 *feat;
647 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
648 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
649 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
650 kvm_inject_gp(vcpu, 0);
651 return;
655 if (efer & EFER_SVME) {
656 struct kvm_cpuid_entry2 *feat;
658 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
659 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
660 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
661 kvm_inject_gp(vcpu, 0);
662 return;
666 kvm_x86_ops->set_efer(vcpu, efer);
668 efer &= ~EFER_LMA;
669 efer |= vcpu->arch.shadow_efer & EFER_LMA;
671 vcpu->arch.shadow_efer = efer;
673 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
674 kvm_mmu_reset_context(vcpu);
677 void kvm_enable_efer_bits(u64 mask)
679 efer_reserved_bits &= ~mask;
681 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
685 * Writes msr value into into the appropriate "register".
686 * Returns 0 on success, non-0 otherwise.
687 * Assumes vcpu_load() was already called.
689 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
691 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
695 * Adapt set_msr() to msr_io()'s calling convention
697 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
699 return kvm_set_msr(vcpu, index, *data);
702 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
704 static int version;
705 struct pvclock_wall_clock wc;
706 struct timespec boot;
708 if (!wall_clock)
709 return;
711 version++;
713 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
716 * The guest calculates current wall clock time by adding
717 * system time (updated by kvm_write_guest_time below) to the
718 * wall clock specified here. guest system time equals host
719 * system time for us, thus we must fill in host boot time here.
721 getboottime(&boot);
723 wc.sec = boot.tv_sec;
724 wc.nsec = boot.tv_nsec;
725 wc.version = version;
727 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
729 version++;
730 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
733 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
735 uint32_t quotient, remainder;
737 /* Don't try to replace with do_div(), this one calculates
738 * "(dividend << 32) / divisor" */
739 __asm__ ( "divl %4"
740 : "=a" (quotient), "=d" (remainder)
741 : "0" (0), "1" (dividend), "r" (divisor) );
742 return quotient;
745 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
747 uint64_t nsecs = 1000000000LL;
748 int32_t shift = 0;
749 uint64_t tps64;
750 uint32_t tps32;
752 tps64 = tsc_khz * 1000LL;
753 while (tps64 > nsecs*2) {
754 tps64 >>= 1;
755 shift--;
758 tps32 = (uint32_t)tps64;
759 while (tps32 <= (uint32_t)nsecs) {
760 tps32 <<= 1;
761 shift++;
764 hv_clock->tsc_shift = shift;
765 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
767 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
768 __func__, tsc_khz, hv_clock->tsc_shift,
769 hv_clock->tsc_to_system_mul);
772 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
774 static void kvm_write_guest_time(struct kvm_vcpu *v)
776 struct timespec ts;
777 unsigned long flags;
778 struct kvm_vcpu_arch *vcpu = &v->arch;
779 void *shared_kaddr;
780 unsigned long this_tsc_khz;
782 if ((!vcpu->time_page))
783 return;
785 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
786 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
787 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
788 vcpu->hv_clock_tsc_khz = this_tsc_khz;
790 put_cpu_var(cpu_tsc_khz);
792 /* Keep irq disabled to prevent changes to the clock */
793 local_irq_save(flags);
794 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
795 ktime_get_ts(&ts);
796 monotonic_to_bootbased(&ts);
797 local_irq_restore(flags);
799 /* With all the info we got, fill in the values */
801 vcpu->hv_clock.system_time = ts.tv_nsec +
802 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
805 * The interface expects us to write an even number signaling that the
806 * update is finished. Since the guest won't see the intermediate
807 * state, we just increase by 2 at the end.
809 vcpu->hv_clock.version += 2;
811 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
813 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
814 sizeof(vcpu->hv_clock));
816 kunmap_atomic(shared_kaddr, KM_USER0);
818 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
821 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
823 struct kvm_vcpu_arch *vcpu = &v->arch;
825 if (!vcpu->time_page)
826 return 0;
827 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
828 return 1;
831 static bool msr_mtrr_valid(unsigned msr)
833 switch (msr) {
834 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
835 case MSR_MTRRfix64K_00000:
836 case MSR_MTRRfix16K_80000:
837 case MSR_MTRRfix16K_A0000:
838 case MSR_MTRRfix4K_C0000:
839 case MSR_MTRRfix4K_C8000:
840 case MSR_MTRRfix4K_D0000:
841 case MSR_MTRRfix4K_D8000:
842 case MSR_MTRRfix4K_E0000:
843 case MSR_MTRRfix4K_E8000:
844 case MSR_MTRRfix4K_F0000:
845 case MSR_MTRRfix4K_F8000:
846 case MSR_MTRRdefType:
847 case MSR_IA32_CR_PAT:
848 return true;
849 case 0x2f8:
850 return true;
852 return false;
855 static bool valid_pat_type(unsigned t)
857 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
860 static bool valid_mtrr_type(unsigned t)
862 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
865 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
867 int i;
869 if (!msr_mtrr_valid(msr))
870 return false;
872 if (msr == MSR_IA32_CR_PAT) {
873 for (i = 0; i < 8; i++)
874 if (!valid_pat_type((data >> (i * 8)) & 0xff))
875 return false;
876 return true;
877 } else if (msr == MSR_MTRRdefType) {
878 if (data & ~0xcff)
879 return false;
880 return valid_mtrr_type(data & 0xff);
881 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
882 for (i = 0; i < 8 ; i++)
883 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
884 return false;
885 return true;
888 /* variable MTRRs */
889 return valid_mtrr_type(data & 0xff);
892 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
894 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
896 if (!mtrr_valid(vcpu, msr, data))
897 return 1;
899 if (msr == MSR_MTRRdefType) {
900 vcpu->arch.mtrr_state.def_type = data;
901 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
902 } else if (msr == MSR_MTRRfix64K_00000)
903 p[0] = data;
904 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
905 p[1 + msr - MSR_MTRRfix16K_80000] = data;
906 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
907 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
908 else if (msr == MSR_IA32_CR_PAT)
909 vcpu->arch.pat = data;
910 else { /* Variable MTRRs */
911 int idx, is_mtrr_mask;
912 u64 *pt;
914 idx = (msr - 0x200) / 2;
915 is_mtrr_mask = msr - 0x200 - 2 * idx;
916 if (!is_mtrr_mask)
917 pt =
918 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
919 else
920 pt =
921 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
922 *pt = data;
925 kvm_mmu_reset_context(vcpu);
926 return 0;
929 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
931 u64 mcg_cap = vcpu->arch.mcg_cap;
932 unsigned bank_num = mcg_cap & 0xff;
934 switch (msr) {
935 case MSR_IA32_MCG_STATUS:
936 vcpu->arch.mcg_status = data;
937 break;
938 case MSR_IA32_MCG_CTL:
939 if (!(mcg_cap & MCG_CTL_P))
940 return 1;
941 if (data != 0 && data != ~(u64)0)
942 return -1;
943 vcpu->arch.mcg_ctl = data;
944 break;
945 default:
946 if (msr >= MSR_IA32_MC0_CTL &&
947 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
948 u32 offset = msr - MSR_IA32_MC0_CTL;
949 /* only 0 or all 1s can be written to IA32_MCi_CTL */
950 if ((offset & 0x3) == 0 &&
951 data != 0 && data != ~(u64)0)
952 return -1;
953 vcpu->arch.mce_banks[offset] = data;
954 break;
956 return 1;
958 return 0;
961 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
963 struct kvm *kvm = vcpu->kvm;
964 int lm = is_long_mode(vcpu);
965 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
966 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
967 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
968 : kvm->arch.xen_hvm_config.blob_size_32;
969 u32 page_num = data & ~PAGE_MASK;
970 u64 page_addr = data & PAGE_MASK;
971 u8 *page;
972 int r;
974 r = -E2BIG;
975 if (page_num >= blob_size)
976 goto out;
977 r = -ENOMEM;
978 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
979 if (!page)
980 goto out;
981 r = -EFAULT;
982 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
983 goto out_free;
984 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
985 goto out_free;
986 r = 0;
987 out_free:
988 kfree(page);
989 out:
990 return r;
993 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
995 switch (msr) {
996 case MSR_EFER:
997 set_efer(vcpu, data);
998 break;
999 case MSR_K7_HWCR:
1000 data &= ~(u64)0x40; /* ignore flush filter disable */
1001 if (data != 0) {
1002 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1003 data);
1004 return 1;
1006 break;
1007 case MSR_FAM10H_MMIO_CONF_BASE:
1008 if (data != 0) {
1009 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1010 "0x%llx\n", data);
1011 return 1;
1013 break;
1014 case MSR_AMD64_NB_CFG:
1015 break;
1016 case MSR_IA32_DEBUGCTLMSR:
1017 if (!data) {
1018 /* We support the non-activated case already */
1019 break;
1020 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1021 /* Values other than LBR and BTF are vendor-specific,
1022 thus reserved and should throw a #GP */
1023 return 1;
1025 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1026 __func__, data);
1027 break;
1028 case MSR_IA32_UCODE_REV:
1029 case MSR_IA32_UCODE_WRITE:
1030 case MSR_VM_HSAVE_PA:
1031 case MSR_AMD64_PATCH_LOADER:
1032 break;
1033 case 0x200 ... 0x2ff:
1034 return set_msr_mtrr(vcpu, msr, data);
1035 case MSR_IA32_APICBASE:
1036 kvm_set_apic_base(vcpu, data);
1037 break;
1038 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1039 return kvm_x2apic_msr_write(vcpu, msr, data);
1040 case MSR_IA32_MISC_ENABLE:
1041 vcpu->arch.ia32_misc_enable_msr = data;
1042 break;
1043 case MSR_KVM_WALL_CLOCK:
1044 vcpu->kvm->arch.wall_clock = data;
1045 kvm_write_wall_clock(vcpu->kvm, data);
1046 break;
1047 case MSR_KVM_SYSTEM_TIME: {
1048 if (vcpu->arch.time_page) {
1049 kvm_release_page_dirty(vcpu->arch.time_page);
1050 vcpu->arch.time_page = NULL;
1053 vcpu->arch.time = data;
1055 /* we verify if the enable bit is set... */
1056 if (!(data & 1))
1057 break;
1059 /* ...but clean it before doing the actual write */
1060 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1062 vcpu->arch.time_page =
1063 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1065 if (is_error_page(vcpu->arch.time_page)) {
1066 kvm_release_page_clean(vcpu->arch.time_page);
1067 vcpu->arch.time_page = NULL;
1070 kvm_request_guest_time_update(vcpu);
1071 break;
1073 case MSR_IA32_MCG_CTL:
1074 case MSR_IA32_MCG_STATUS:
1075 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1076 return set_msr_mce(vcpu, msr, data);
1078 /* Performance counters are not protected by a CPUID bit,
1079 * so we should check all of them in the generic path for the sake of
1080 * cross vendor migration.
1081 * Writing a zero into the event select MSRs disables them,
1082 * which we perfectly emulate ;-). Any other value should be at least
1083 * reported, some guests depend on them.
1085 case MSR_P6_EVNTSEL0:
1086 case MSR_P6_EVNTSEL1:
1087 case MSR_K7_EVNTSEL0:
1088 case MSR_K7_EVNTSEL1:
1089 case MSR_K7_EVNTSEL2:
1090 case MSR_K7_EVNTSEL3:
1091 if (data != 0)
1092 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1093 "0x%x data 0x%llx\n", msr, data);
1094 break;
1095 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1096 * so we ignore writes to make it happy.
1098 case MSR_P6_PERFCTR0:
1099 case MSR_P6_PERFCTR1:
1100 case MSR_K7_PERFCTR0:
1101 case MSR_K7_PERFCTR1:
1102 case MSR_K7_PERFCTR2:
1103 case MSR_K7_PERFCTR3:
1104 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1105 "0x%x data 0x%llx\n", msr, data);
1106 break;
1107 default:
1108 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1109 return xen_hvm_config(vcpu, data);
1110 if (!ignore_msrs) {
1111 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1112 msr, data);
1113 return 1;
1114 } else {
1115 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1116 msr, data);
1117 break;
1120 return 0;
1122 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1126 * Reads an msr value (of 'msr_index') into 'pdata'.
1127 * Returns 0 on success, non-0 otherwise.
1128 * Assumes vcpu_load() was already called.
1130 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1132 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1135 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1137 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1139 if (!msr_mtrr_valid(msr))
1140 return 1;
1142 if (msr == MSR_MTRRdefType)
1143 *pdata = vcpu->arch.mtrr_state.def_type +
1144 (vcpu->arch.mtrr_state.enabled << 10);
1145 else if (msr == MSR_MTRRfix64K_00000)
1146 *pdata = p[0];
1147 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1148 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1149 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1150 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1151 else if (msr == MSR_IA32_CR_PAT)
1152 *pdata = vcpu->arch.pat;
1153 else { /* Variable MTRRs */
1154 int idx, is_mtrr_mask;
1155 u64 *pt;
1157 idx = (msr - 0x200) / 2;
1158 is_mtrr_mask = msr - 0x200 - 2 * idx;
1159 if (!is_mtrr_mask)
1160 pt =
1161 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1162 else
1163 pt =
1164 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1165 *pdata = *pt;
1168 return 0;
1171 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1173 u64 data;
1174 u64 mcg_cap = vcpu->arch.mcg_cap;
1175 unsigned bank_num = mcg_cap & 0xff;
1177 switch (msr) {
1178 case MSR_IA32_P5_MC_ADDR:
1179 case MSR_IA32_P5_MC_TYPE:
1180 data = 0;
1181 break;
1182 case MSR_IA32_MCG_CAP:
1183 data = vcpu->arch.mcg_cap;
1184 break;
1185 case MSR_IA32_MCG_CTL:
1186 if (!(mcg_cap & MCG_CTL_P))
1187 return 1;
1188 data = vcpu->arch.mcg_ctl;
1189 break;
1190 case MSR_IA32_MCG_STATUS:
1191 data = vcpu->arch.mcg_status;
1192 break;
1193 default:
1194 if (msr >= MSR_IA32_MC0_CTL &&
1195 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1196 u32 offset = msr - MSR_IA32_MC0_CTL;
1197 data = vcpu->arch.mce_banks[offset];
1198 break;
1200 return 1;
1202 *pdata = data;
1203 return 0;
1206 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1208 u64 data;
1210 switch (msr) {
1211 case MSR_IA32_PLATFORM_ID:
1212 case MSR_IA32_UCODE_REV:
1213 case MSR_IA32_EBL_CR_POWERON:
1214 case MSR_IA32_DEBUGCTLMSR:
1215 case MSR_IA32_LASTBRANCHFROMIP:
1216 case MSR_IA32_LASTBRANCHTOIP:
1217 case MSR_IA32_LASTINTFROMIP:
1218 case MSR_IA32_LASTINTTOIP:
1219 case MSR_K8_SYSCFG:
1220 case MSR_K7_HWCR:
1221 case MSR_VM_HSAVE_PA:
1222 case MSR_P6_PERFCTR0:
1223 case MSR_P6_PERFCTR1:
1224 case MSR_P6_EVNTSEL0:
1225 case MSR_P6_EVNTSEL1:
1226 case MSR_K7_EVNTSEL0:
1227 case MSR_K7_PERFCTR0:
1228 case MSR_K8_INT_PENDING_MSG:
1229 case MSR_AMD64_NB_CFG:
1230 case MSR_FAM10H_MMIO_CONF_BASE:
1231 data = 0;
1232 break;
1233 case MSR_MTRRcap:
1234 data = 0x500 | KVM_NR_VAR_MTRR;
1235 break;
1236 case 0x200 ... 0x2ff:
1237 return get_msr_mtrr(vcpu, msr, pdata);
1238 case 0xcd: /* fsb frequency */
1239 data = 3;
1240 break;
1241 case MSR_IA32_APICBASE:
1242 data = kvm_get_apic_base(vcpu);
1243 break;
1244 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1245 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1246 break;
1247 case MSR_IA32_MISC_ENABLE:
1248 data = vcpu->arch.ia32_misc_enable_msr;
1249 break;
1250 case MSR_IA32_PERF_STATUS:
1251 /* TSC increment by tick */
1252 data = 1000ULL;
1253 /* CPU multiplier */
1254 data |= (((uint64_t)4ULL) << 40);
1255 break;
1256 case MSR_EFER:
1257 data = vcpu->arch.shadow_efer;
1258 break;
1259 case MSR_KVM_WALL_CLOCK:
1260 data = vcpu->kvm->arch.wall_clock;
1261 break;
1262 case MSR_KVM_SYSTEM_TIME:
1263 data = vcpu->arch.time;
1264 break;
1265 case MSR_IA32_P5_MC_ADDR:
1266 case MSR_IA32_P5_MC_TYPE:
1267 case MSR_IA32_MCG_CAP:
1268 case MSR_IA32_MCG_CTL:
1269 case MSR_IA32_MCG_STATUS:
1270 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1271 return get_msr_mce(vcpu, msr, pdata);
1272 default:
1273 if (!ignore_msrs) {
1274 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1275 return 1;
1276 } else {
1277 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1278 data = 0;
1280 break;
1282 *pdata = data;
1283 return 0;
1285 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1288 * Read or write a bunch of msrs. All parameters are kernel addresses.
1290 * @return number of msrs set successfully.
1292 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1293 struct kvm_msr_entry *entries,
1294 int (*do_msr)(struct kvm_vcpu *vcpu,
1295 unsigned index, u64 *data))
1297 int i;
1299 vcpu_load(vcpu);
1301 down_read(&vcpu->kvm->slots_lock);
1302 for (i = 0; i < msrs->nmsrs; ++i)
1303 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1304 break;
1305 up_read(&vcpu->kvm->slots_lock);
1307 vcpu_put(vcpu);
1309 return i;
1313 * Read or write a bunch of msrs. Parameters are user addresses.
1315 * @return number of msrs set successfully.
1317 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1318 int (*do_msr)(struct kvm_vcpu *vcpu,
1319 unsigned index, u64 *data),
1320 int writeback)
1322 struct kvm_msrs msrs;
1323 struct kvm_msr_entry *entries;
1324 int r, n;
1325 unsigned size;
1327 r = -EFAULT;
1328 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1329 goto out;
1331 r = -E2BIG;
1332 if (msrs.nmsrs >= MAX_IO_MSRS)
1333 goto out;
1335 r = -ENOMEM;
1336 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1337 entries = vmalloc(size);
1338 if (!entries)
1339 goto out;
1341 r = -EFAULT;
1342 if (copy_from_user(entries, user_msrs->entries, size))
1343 goto out_free;
1345 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1346 if (r < 0)
1347 goto out_free;
1349 r = -EFAULT;
1350 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1351 goto out_free;
1353 r = n;
1355 out_free:
1356 vfree(entries);
1357 out:
1358 return r;
1361 int kvm_dev_ioctl_check_extension(long ext)
1363 int r;
1365 switch (ext) {
1366 case KVM_CAP_IRQCHIP:
1367 case KVM_CAP_HLT:
1368 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1369 case KVM_CAP_SET_TSS_ADDR:
1370 case KVM_CAP_EXT_CPUID:
1371 case KVM_CAP_CLOCKSOURCE:
1372 case KVM_CAP_PIT:
1373 case KVM_CAP_NOP_IO_DELAY:
1374 case KVM_CAP_MP_STATE:
1375 case KVM_CAP_SYNC_MMU:
1376 case KVM_CAP_REINJECT_CONTROL:
1377 case KVM_CAP_IRQ_INJECT_STATUS:
1378 case KVM_CAP_ASSIGN_DEV_IRQ:
1379 case KVM_CAP_IRQFD:
1380 case KVM_CAP_IOEVENTFD:
1381 case KVM_CAP_PIT2:
1382 case KVM_CAP_PIT_STATE2:
1383 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1384 case KVM_CAP_XEN_HVM:
1385 case KVM_CAP_ADJUST_CLOCK:
1386 case KVM_CAP_VCPU_EVENTS:
1387 r = 1;
1388 break;
1389 case KVM_CAP_COALESCED_MMIO:
1390 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1391 break;
1392 case KVM_CAP_VAPIC:
1393 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1394 break;
1395 case KVM_CAP_NR_VCPUS:
1396 r = KVM_MAX_VCPUS;
1397 break;
1398 case KVM_CAP_NR_MEMSLOTS:
1399 r = KVM_MEMORY_SLOTS;
1400 break;
1401 case KVM_CAP_PV_MMU: /* obsolete */
1402 r = 0;
1403 break;
1404 case KVM_CAP_IOMMU:
1405 r = iommu_found();
1406 break;
1407 case KVM_CAP_MCE:
1408 r = KVM_MAX_MCE_BANKS;
1409 break;
1410 default:
1411 r = 0;
1412 break;
1414 return r;
1418 long kvm_arch_dev_ioctl(struct file *filp,
1419 unsigned int ioctl, unsigned long arg)
1421 void __user *argp = (void __user *)arg;
1422 long r;
1424 switch (ioctl) {
1425 case KVM_GET_MSR_INDEX_LIST: {
1426 struct kvm_msr_list __user *user_msr_list = argp;
1427 struct kvm_msr_list msr_list;
1428 unsigned n;
1430 r = -EFAULT;
1431 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1432 goto out;
1433 n = msr_list.nmsrs;
1434 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1435 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1436 goto out;
1437 r = -E2BIG;
1438 if (n < msr_list.nmsrs)
1439 goto out;
1440 r = -EFAULT;
1441 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1442 num_msrs_to_save * sizeof(u32)))
1443 goto out;
1444 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1445 &emulated_msrs,
1446 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1447 goto out;
1448 r = 0;
1449 break;
1451 case KVM_GET_SUPPORTED_CPUID: {
1452 struct kvm_cpuid2 __user *cpuid_arg = argp;
1453 struct kvm_cpuid2 cpuid;
1455 r = -EFAULT;
1456 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1457 goto out;
1458 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1459 cpuid_arg->entries);
1460 if (r)
1461 goto out;
1463 r = -EFAULT;
1464 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1465 goto out;
1466 r = 0;
1467 break;
1469 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1470 u64 mce_cap;
1472 mce_cap = KVM_MCE_CAP_SUPPORTED;
1473 r = -EFAULT;
1474 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1475 goto out;
1476 r = 0;
1477 break;
1479 default:
1480 r = -EINVAL;
1482 out:
1483 return r;
1486 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1488 kvm_x86_ops->vcpu_load(vcpu, cpu);
1489 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1490 unsigned long khz = cpufreq_quick_get(cpu);
1491 if (!khz)
1492 khz = tsc_khz;
1493 per_cpu(cpu_tsc_khz, cpu) = khz;
1495 kvm_request_guest_time_update(vcpu);
1498 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1500 kvm_x86_ops->vcpu_put(vcpu);
1501 kvm_put_guest_fpu(vcpu);
1504 static int is_efer_nx(void)
1506 unsigned long long efer = 0;
1508 rdmsrl_safe(MSR_EFER, &efer);
1509 return efer & EFER_NX;
1512 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1514 int i;
1515 struct kvm_cpuid_entry2 *e, *entry;
1517 entry = NULL;
1518 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1519 e = &vcpu->arch.cpuid_entries[i];
1520 if (e->function == 0x80000001) {
1521 entry = e;
1522 break;
1525 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1526 entry->edx &= ~(1 << 20);
1527 printk(KERN_INFO "kvm: guest NX capability removed\n");
1531 /* when an old userspace process fills a new kernel module */
1532 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1533 struct kvm_cpuid *cpuid,
1534 struct kvm_cpuid_entry __user *entries)
1536 int r, i;
1537 struct kvm_cpuid_entry *cpuid_entries;
1539 r = -E2BIG;
1540 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1541 goto out;
1542 r = -ENOMEM;
1543 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1544 if (!cpuid_entries)
1545 goto out;
1546 r = -EFAULT;
1547 if (copy_from_user(cpuid_entries, entries,
1548 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1549 goto out_free;
1550 for (i = 0; i < cpuid->nent; i++) {
1551 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1552 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1553 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1554 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1555 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1556 vcpu->arch.cpuid_entries[i].index = 0;
1557 vcpu->arch.cpuid_entries[i].flags = 0;
1558 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1559 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1560 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1562 vcpu->arch.cpuid_nent = cpuid->nent;
1563 cpuid_fix_nx_cap(vcpu);
1564 r = 0;
1565 kvm_apic_set_version(vcpu);
1567 out_free:
1568 vfree(cpuid_entries);
1569 out:
1570 return r;
1573 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1574 struct kvm_cpuid2 *cpuid,
1575 struct kvm_cpuid_entry2 __user *entries)
1577 int r;
1579 r = -E2BIG;
1580 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1581 goto out;
1582 r = -EFAULT;
1583 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1584 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1585 goto out;
1586 vcpu->arch.cpuid_nent = cpuid->nent;
1587 kvm_apic_set_version(vcpu);
1588 return 0;
1590 out:
1591 return r;
1594 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1595 struct kvm_cpuid2 *cpuid,
1596 struct kvm_cpuid_entry2 __user *entries)
1598 int r;
1600 r = -E2BIG;
1601 if (cpuid->nent < vcpu->arch.cpuid_nent)
1602 goto out;
1603 r = -EFAULT;
1604 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1605 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1606 goto out;
1607 return 0;
1609 out:
1610 cpuid->nent = vcpu->arch.cpuid_nent;
1611 return r;
1614 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1615 u32 index)
1617 entry->function = function;
1618 entry->index = index;
1619 cpuid_count(entry->function, entry->index,
1620 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1621 entry->flags = 0;
1624 #define F(x) bit(X86_FEATURE_##x)
1626 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1627 u32 index, int *nent, int maxnent)
1629 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1630 unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1631 #ifdef CONFIG_X86_64
1632 unsigned f_lm = F(LM);
1633 #else
1634 unsigned f_lm = 0;
1635 #endif
1637 /* cpuid 1.edx */
1638 const u32 kvm_supported_word0_x86_features =
1639 F(FPU) | F(VME) | F(DE) | F(PSE) |
1640 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1641 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1642 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1643 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1644 0 /* Reserved, DS, ACPI */ | F(MMX) |
1645 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1646 0 /* HTT, TM, Reserved, PBE */;
1647 /* cpuid 0x80000001.edx */
1648 const u32 kvm_supported_word1_x86_features =
1649 F(FPU) | F(VME) | F(DE) | F(PSE) |
1650 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1651 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1652 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1653 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1654 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1655 F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1656 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1657 /* cpuid 1.ecx */
1658 const u32 kvm_supported_word4_x86_features =
1659 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1660 0 /* DS-CPL, VMX, SMX, EST */ |
1661 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1662 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1663 0 /* Reserved, DCA */ | F(XMM4_1) |
1664 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1665 0 /* Reserved, XSAVE, OSXSAVE */;
1666 /* cpuid 0x80000001.ecx */
1667 const u32 kvm_supported_word6_x86_features =
1668 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1669 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1670 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1671 0 /* SKINIT */ | 0 /* WDT */;
1673 /* all calls to cpuid_count() should be made on the same cpu */
1674 get_cpu();
1675 do_cpuid_1_ent(entry, function, index);
1676 ++*nent;
1678 switch (function) {
1679 case 0:
1680 entry->eax = min(entry->eax, (u32)0xb);
1681 break;
1682 case 1:
1683 entry->edx &= kvm_supported_word0_x86_features;
1684 entry->ecx &= kvm_supported_word4_x86_features;
1685 /* we support x2apic emulation even if host does not support
1686 * it since we emulate x2apic in software */
1687 entry->ecx |= F(X2APIC);
1688 break;
1689 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1690 * may return different values. This forces us to get_cpu() before
1691 * issuing the first command, and also to emulate this annoying behavior
1692 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1693 case 2: {
1694 int t, times = entry->eax & 0xff;
1696 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1697 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1698 for (t = 1; t < times && *nent < maxnent; ++t) {
1699 do_cpuid_1_ent(&entry[t], function, 0);
1700 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1701 ++*nent;
1703 break;
1705 /* function 4 and 0xb have additional index. */
1706 case 4: {
1707 int i, cache_type;
1709 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1710 /* read more entries until cache_type is zero */
1711 for (i = 1; *nent < maxnent; ++i) {
1712 cache_type = entry[i - 1].eax & 0x1f;
1713 if (!cache_type)
1714 break;
1715 do_cpuid_1_ent(&entry[i], function, i);
1716 entry[i].flags |=
1717 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1718 ++*nent;
1720 break;
1722 case 0xb: {
1723 int i, level_type;
1725 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1726 /* read more entries until level_type is zero */
1727 for (i = 1; *nent < maxnent; ++i) {
1728 level_type = entry[i - 1].ecx & 0xff00;
1729 if (!level_type)
1730 break;
1731 do_cpuid_1_ent(&entry[i], function, i);
1732 entry[i].flags |=
1733 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1734 ++*nent;
1736 break;
1738 case 0x80000000:
1739 entry->eax = min(entry->eax, 0x8000001a);
1740 break;
1741 case 0x80000001:
1742 entry->edx &= kvm_supported_word1_x86_features;
1743 entry->ecx &= kvm_supported_word6_x86_features;
1744 break;
1746 put_cpu();
1749 #undef F
1751 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1752 struct kvm_cpuid_entry2 __user *entries)
1754 struct kvm_cpuid_entry2 *cpuid_entries;
1755 int limit, nent = 0, r = -E2BIG;
1756 u32 func;
1758 if (cpuid->nent < 1)
1759 goto out;
1760 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1761 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1762 r = -ENOMEM;
1763 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1764 if (!cpuid_entries)
1765 goto out;
1767 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1768 limit = cpuid_entries[0].eax;
1769 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1770 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1771 &nent, cpuid->nent);
1772 r = -E2BIG;
1773 if (nent >= cpuid->nent)
1774 goto out_free;
1776 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1777 limit = cpuid_entries[nent - 1].eax;
1778 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1779 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1780 &nent, cpuid->nent);
1781 r = -E2BIG;
1782 if (nent >= cpuid->nent)
1783 goto out_free;
1785 r = -EFAULT;
1786 if (copy_to_user(entries, cpuid_entries,
1787 nent * sizeof(struct kvm_cpuid_entry2)))
1788 goto out_free;
1789 cpuid->nent = nent;
1790 r = 0;
1792 out_free:
1793 vfree(cpuid_entries);
1794 out:
1795 return r;
1798 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1799 struct kvm_lapic_state *s)
1801 vcpu_load(vcpu);
1802 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1803 vcpu_put(vcpu);
1805 return 0;
1808 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1809 struct kvm_lapic_state *s)
1811 vcpu_load(vcpu);
1812 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1813 kvm_apic_post_state_restore(vcpu);
1814 update_cr8_intercept(vcpu);
1815 vcpu_put(vcpu);
1817 return 0;
1820 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1821 struct kvm_interrupt *irq)
1823 if (irq->irq < 0 || irq->irq >= 256)
1824 return -EINVAL;
1825 if (irqchip_in_kernel(vcpu->kvm))
1826 return -ENXIO;
1827 vcpu_load(vcpu);
1829 kvm_queue_interrupt(vcpu, irq->irq, false);
1831 vcpu_put(vcpu);
1833 return 0;
1836 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1838 vcpu_load(vcpu);
1839 kvm_inject_nmi(vcpu);
1840 vcpu_put(vcpu);
1842 return 0;
1845 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1846 struct kvm_tpr_access_ctl *tac)
1848 if (tac->flags)
1849 return -EINVAL;
1850 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1851 return 0;
1854 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1855 u64 mcg_cap)
1857 int r;
1858 unsigned bank_num = mcg_cap & 0xff, bank;
1860 r = -EINVAL;
1861 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1862 goto out;
1863 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1864 goto out;
1865 r = 0;
1866 vcpu->arch.mcg_cap = mcg_cap;
1867 /* Init IA32_MCG_CTL to all 1s */
1868 if (mcg_cap & MCG_CTL_P)
1869 vcpu->arch.mcg_ctl = ~(u64)0;
1870 /* Init IA32_MCi_CTL to all 1s */
1871 for (bank = 0; bank < bank_num; bank++)
1872 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1873 out:
1874 return r;
1877 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1878 struct kvm_x86_mce *mce)
1880 u64 mcg_cap = vcpu->arch.mcg_cap;
1881 unsigned bank_num = mcg_cap & 0xff;
1882 u64 *banks = vcpu->arch.mce_banks;
1884 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1885 return -EINVAL;
1887 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1888 * reporting is disabled
1890 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1891 vcpu->arch.mcg_ctl != ~(u64)0)
1892 return 0;
1893 banks += 4 * mce->bank;
1895 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1896 * reporting is disabled for the bank
1898 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1899 return 0;
1900 if (mce->status & MCI_STATUS_UC) {
1901 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1902 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
1903 printk(KERN_DEBUG "kvm: set_mce: "
1904 "injects mce exception while "
1905 "previous one is in progress!\n");
1906 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1907 return 0;
1909 if (banks[1] & MCI_STATUS_VAL)
1910 mce->status |= MCI_STATUS_OVER;
1911 banks[2] = mce->addr;
1912 banks[3] = mce->misc;
1913 vcpu->arch.mcg_status = mce->mcg_status;
1914 banks[1] = mce->status;
1915 kvm_queue_exception(vcpu, MC_VECTOR);
1916 } else if (!(banks[1] & MCI_STATUS_VAL)
1917 || !(banks[1] & MCI_STATUS_UC)) {
1918 if (banks[1] & MCI_STATUS_VAL)
1919 mce->status |= MCI_STATUS_OVER;
1920 banks[2] = mce->addr;
1921 banks[3] = mce->misc;
1922 banks[1] = mce->status;
1923 } else
1924 banks[1] |= MCI_STATUS_OVER;
1925 return 0;
1928 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
1929 struct kvm_vcpu_events *events)
1931 vcpu_load(vcpu);
1933 events->exception.injected = vcpu->arch.exception.pending;
1934 events->exception.nr = vcpu->arch.exception.nr;
1935 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
1936 events->exception.error_code = vcpu->arch.exception.error_code;
1938 events->interrupt.injected = vcpu->arch.interrupt.pending;
1939 events->interrupt.nr = vcpu->arch.interrupt.nr;
1940 events->interrupt.soft = vcpu->arch.interrupt.soft;
1942 events->nmi.injected = vcpu->arch.nmi_injected;
1943 events->nmi.pending = vcpu->arch.nmi_pending;
1944 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
1946 events->sipi_vector = vcpu->arch.sipi_vector;
1948 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
1949 | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
1951 vcpu_put(vcpu);
1954 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
1955 struct kvm_vcpu_events *events)
1957 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
1958 | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
1959 return -EINVAL;
1961 vcpu_load(vcpu);
1963 vcpu->arch.exception.pending = events->exception.injected;
1964 vcpu->arch.exception.nr = events->exception.nr;
1965 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
1966 vcpu->arch.exception.error_code = events->exception.error_code;
1968 vcpu->arch.interrupt.pending = events->interrupt.injected;
1969 vcpu->arch.interrupt.nr = events->interrupt.nr;
1970 vcpu->arch.interrupt.soft = events->interrupt.soft;
1971 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
1972 kvm_pic_clear_isr_ack(vcpu->kvm);
1974 vcpu->arch.nmi_injected = events->nmi.injected;
1975 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
1976 vcpu->arch.nmi_pending = events->nmi.pending;
1977 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
1979 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
1980 vcpu->arch.sipi_vector = events->sipi_vector;
1982 vcpu_put(vcpu);
1984 return 0;
1987 long kvm_arch_vcpu_ioctl(struct file *filp,
1988 unsigned int ioctl, unsigned long arg)
1990 struct kvm_vcpu *vcpu = filp->private_data;
1991 void __user *argp = (void __user *)arg;
1992 int r;
1993 struct kvm_lapic_state *lapic = NULL;
1995 switch (ioctl) {
1996 case KVM_GET_LAPIC: {
1997 r = -EINVAL;
1998 if (!vcpu->arch.apic)
1999 goto out;
2000 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2002 r = -ENOMEM;
2003 if (!lapic)
2004 goto out;
2005 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2006 if (r)
2007 goto out;
2008 r = -EFAULT;
2009 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2010 goto out;
2011 r = 0;
2012 break;
2014 case KVM_SET_LAPIC: {
2015 r = -EINVAL;
2016 if (!vcpu->arch.apic)
2017 goto out;
2018 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2019 r = -ENOMEM;
2020 if (!lapic)
2021 goto out;
2022 r = -EFAULT;
2023 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2024 goto out;
2025 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2026 if (r)
2027 goto out;
2028 r = 0;
2029 break;
2031 case KVM_INTERRUPT: {
2032 struct kvm_interrupt irq;
2034 r = -EFAULT;
2035 if (copy_from_user(&irq, argp, sizeof irq))
2036 goto out;
2037 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2038 if (r)
2039 goto out;
2040 r = 0;
2041 break;
2043 case KVM_NMI: {
2044 r = kvm_vcpu_ioctl_nmi(vcpu);
2045 if (r)
2046 goto out;
2047 r = 0;
2048 break;
2050 case KVM_SET_CPUID: {
2051 struct kvm_cpuid __user *cpuid_arg = argp;
2052 struct kvm_cpuid cpuid;
2054 r = -EFAULT;
2055 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2056 goto out;
2057 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2058 if (r)
2059 goto out;
2060 break;
2062 case KVM_SET_CPUID2: {
2063 struct kvm_cpuid2 __user *cpuid_arg = argp;
2064 struct kvm_cpuid2 cpuid;
2066 r = -EFAULT;
2067 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2068 goto out;
2069 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2070 cpuid_arg->entries);
2071 if (r)
2072 goto out;
2073 break;
2075 case KVM_GET_CPUID2: {
2076 struct kvm_cpuid2 __user *cpuid_arg = argp;
2077 struct kvm_cpuid2 cpuid;
2079 r = -EFAULT;
2080 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2081 goto out;
2082 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2083 cpuid_arg->entries);
2084 if (r)
2085 goto out;
2086 r = -EFAULT;
2087 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2088 goto out;
2089 r = 0;
2090 break;
2092 case KVM_GET_MSRS:
2093 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2094 break;
2095 case KVM_SET_MSRS:
2096 r = msr_io(vcpu, argp, do_set_msr, 0);
2097 break;
2098 case KVM_TPR_ACCESS_REPORTING: {
2099 struct kvm_tpr_access_ctl tac;
2101 r = -EFAULT;
2102 if (copy_from_user(&tac, argp, sizeof tac))
2103 goto out;
2104 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2105 if (r)
2106 goto out;
2107 r = -EFAULT;
2108 if (copy_to_user(argp, &tac, sizeof tac))
2109 goto out;
2110 r = 0;
2111 break;
2113 case KVM_SET_VAPIC_ADDR: {
2114 struct kvm_vapic_addr va;
2116 r = -EINVAL;
2117 if (!irqchip_in_kernel(vcpu->kvm))
2118 goto out;
2119 r = -EFAULT;
2120 if (copy_from_user(&va, argp, sizeof va))
2121 goto out;
2122 r = 0;
2123 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2124 break;
2126 case KVM_X86_SETUP_MCE: {
2127 u64 mcg_cap;
2129 r = -EFAULT;
2130 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2131 goto out;
2132 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2133 break;
2135 case KVM_X86_SET_MCE: {
2136 struct kvm_x86_mce mce;
2138 r = -EFAULT;
2139 if (copy_from_user(&mce, argp, sizeof mce))
2140 goto out;
2141 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2142 break;
2144 case KVM_GET_VCPU_EVENTS: {
2145 struct kvm_vcpu_events events;
2147 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2149 r = -EFAULT;
2150 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2151 break;
2152 r = 0;
2153 break;
2155 case KVM_SET_VCPU_EVENTS: {
2156 struct kvm_vcpu_events events;
2158 r = -EFAULT;
2159 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2160 break;
2162 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2163 break;
2165 default:
2166 r = -EINVAL;
2168 out:
2169 kfree(lapic);
2170 return r;
2173 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2175 int ret;
2177 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2178 return -1;
2179 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2180 return ret;
2183 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2184 u64 ident_addr)
2186 kvm->arch.ept_identity_map_addr = ident_addr;
2187 return 0;
2190 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2191 u32 kvm_nr_mmu_pages)
2193 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2194 return -EINVAL;
2196 down_write(&kvm->slots_lock);
2197 spin_lock(&kvm->mmu_lock);
2199 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2200 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2202 spin_unlock(&kvm->mmu_lock);
2203 up_write(&kvm->slots_lock);
2204 return 0;
2207 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2209 return kvm->arch.n_alloc_mmu_pages;
2212 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2214 int i;
2215 struct kvm_mem_alias *alias;
2217 for (i = 0; i < kvm->arch.naliases; ++i) {
2218 alias = &kvm->arch.aliases[i];
2219 if (gfn >= alias->base_gfn
2220 && gfn < alias->base_gfn + alias->npages)
2221 return alias->target_gfn + gfn - alias->base_gfn;
2223 return gfn;
2227 * Set a new alias region. Aliases map a portion of physical memory into
2228 * another portion. This is useful for memory windows, for example the PC
2229 * VGA region.
2231 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2232 struct kvm_memory_alias *alias)
2234 int r, n;
2235 struct kvm_mem_alias *p;
2237 r = -EINVAL;
2238 /* General sanity checks */
2239 if (alias->memory_size & (PAGE_SIZE - 1))
2240 goto out;
2241 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2242 goto out;
2243 if (alias->slot >= KVM_ALIAS_SLOTS)
2244 goto out;
2245 if (alias->guest_phys_addr + alias->memory_size
2246 < alias->guest_phys_addr)
2247 goto out;
2248 if (alias->target_phys_addr + alias->memory_size
2249 < alias->target_phys_addr)
2250 goto out;
2252 down_write(&kvm->slots_lock);
2253 spin_lock(&kvm->mmu_lock);
2255 p = &kvm->arch.aliases[alias->slot];
2256 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2257 p->npages = alias->memory_size >> PAGE_SHIFT;
2258 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2260 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2261 if (kvm->arch.aliases[n - 1].npages)
2262 break;
2263 kvm->arch.naliases = n;
2265 spin_unlock(&kvm->mmu_lock);
2266 kvm_mmu_zap_all(kvm);
2268 up_write(&kvm->slots_lock);
2270 return 0;
2272 out:
2273 return r;
2276 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2278 int r;
2280 r = 0;
2281 switch (chip->chip_id) {
2282 case KVM_IRQCHIP_PIC_MASTER:
2283 memcpy(&chip->chip.pic,
2284 &pic_irqchip(kvm)->pics[0],
2285 sizeof(struct kvm_pic_state));
2286 break;
2287 case KVM_IRQCHIP_PIC_SLAVE:
2288 memcpy(&chip->chip.pic,
2289 &pic_irqchip(kvm)->pics[1],
2290 sizeof(struct kvm_pic_state));
2291 break;
2292 case KVM_IRQCHIP_IOAPIC:
2293 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2294 break;
2295 default:
2296 r = -EINVAL;
2297 break;
2299 return r;
2302 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2304 int r;
2306 r = 0;
2307 switch (chip->chip_id) {
2308 case KVM_IRQCHIP_PIC_MASTER:
2309 spin_lock(&pic_irqchip(kvm)->lock);
2310 memcpy(&pic_irqchip(kvm)->pics[0],
2311 &chip->chip.pic,
2312 sizeof(struct kvm_pic_state));
2313 spin_unlock(&pic_irqchip(kvm)->lock);
2314 break;
2315 case KVM_IRQCHIP_PIC_SLAVE:
2316 spin_lock(&pic_irqchip(kvm)->lock);
2317 memcpy(&pic_irqchip(kvm)->pics[1],
2318 &chip->chip.pic,
2319 sizeof(struct kvm_pic_state));
2320 spin_unlock(&pic_irqchip(kvm)->lock);
2321 break;
2322 case KVM_IRQCHIP_IOAPIC:
2323 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2324 break;
2325 default:
2326 r = -EINVAL;
2327 break;
2329 kvm_pic_update_irq(pic_irqchip(kvm));
2330 return r;
2333 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2335 int r = 0;
2337 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2338 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2339 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2340 return r;
2343 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2345 int r = 0;
2347 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2348 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2349 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2350 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2351 return r;
2354 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2356 int r = 0;
2358 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2359 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2360 sizeof(ps->channels));
2361 ps->flags = kvm->arch.vpit->pit_state.flags;
2362 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2363 return r;
2366 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2368 int r = 0, start = 0;
2369 u32 prev_legacy, cur_legacy;
2370 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2371 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2372 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2373 if (!prev_legacy && cur_legacy)
2374 start = 1;
2375 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2376 sizeof(kvm->arch.vpit->pit_state.channels));
2377 kvm->arch.vpit->pit_state.flags = ps->flags;
2378 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2379 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2380 return r;
2383 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2384 struct kvm_reinject_control *control)
2386 if (!kvm->arch.vpit)
2387 return -ENXIO;
2388 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2389 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2390 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2391 return 0;
2395 * Get (and clear) the dirty memory log for a memory slot.
2397 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2398 struct kvm_dirty_log *log)
2400 int r;
2401 int n;
2402 struct kvm_memory_slot *memslot;
2403 int is_dirty = 0;
2405 down_write(&kvm->slots_lock);
2407 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2408 if (r)
2409 goto out;
2411 /* If nothing is dirty, don't bother messing with page tables. */
2412 if (is_dirty) {
2413 spin_lock(&kvm->mmu_lock);
2414 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2415 spin_unlock(&kvm->mmu_lock);
2416 memslot = &kvm->memslots[log->slot];
2417 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2418 memset(memslot->dirty_bitmap, 0, n);
2420 r = 0;
2421 out:
2422 up_write(&kvm->slots_lock);
2423 return r;
2426 long kvm_arch_vm_ioctl(struct file *filp,
2427 unsigned int ioctl, unsigned long arg)
2429 struct kvm *kvm = filp->private_data;
2430 void __user *argp = (void __user *)arg;
2431 int r = -ENOTTY;
2433 * This union makes it completely explicit to gcc-3.x
2434 * that these two variables' stack usage should be
2435 * combined, not added together.
2437 union {
2438 struct kvm_pit_state ps;
2439 struct kvm_pit_state2 ps2;
2440 struct kvm_memory_alias alias;
2441 struct kvm_pit_config pit_config;
2442 } u;
2444 switch (ioctl) {
2445 case KVM_SET_TSS_ADDR:
2446 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2447 if (r < 0)
2448 goto out;
2449 break;
2450 case KVM_SET_IDENTITY_MAP_ADDR: {
2451 u64 ident_addr;
2453 r = -EFAULT;
2454 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2455 goto out;
2456 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2457 if (r < 0)
2458 goto out;
2459 break;
2461 case KVM_SET_MEMORY_REGION: {
2462 struct kvm_memory_region kvm_mem;
2463 struct kvm_userspace_memory_region kvm_userspace_mem;
2465 r = -EFAULT;
2466 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2467 goto out;
2468 kvm_userspace_mem.slot = kvm_mem.slot;
2469 kvm_userspace_mem.flags = kvm_mem.flags;
2470 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2471 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2472 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2473 if (r)
2474 goto out;
2475 break;
2477 case KVM_SET_NR_MMU_PAGES:
2478 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2479 if (r)
2480 goto out;
2481 break;
2482 case KVM_GET_NR_MMU_PAGES:
2483 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2484 break;
2485 case KVM_SET_MEMORY_ALIAS:
2486 r = -EFAULT;
2487 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2488 goto out;
2489 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2490 if (r)
2491 goto out;
2492 break;
2493 case KVM_CREATE_IRQCHIP: {
2494 struct kvm_pic *vpic;
2496 mutex_lock(&kvm->lock);
2497 r = -EEXIST;
2498 if (kvm->arch.vpic)
2499 goto create_irqchip_unlock;
2500 r = -ENOMEM;
2501 vpic = kvm_create_pic(kvm);
2502 if (vpic) {
2503 r = kvm_ioapic_init(kvm);
2504 if (r) {
2505 kfree(vpic);
2506 goto create_irqchip_unlock;
2508 } else
2509 goto create_irqchip_unlock;
2510 smp_wmb();
2511 kvm->arch.vpic = vpic;
2512 smp_wmb();
2513 r = kvm_setup_default_irq_routing(kvm);
2514 if (r) {
2515 mutex_lock(&kvm->irq_lock);
2516 kfree(kvm->arch.vpic);
2517 kfree(kvm->arch.vioapic);
2518 kvm->arch.vpic = NULL;
2519 kvm->arch.vioapic = NULL;
2520 mutex_unlock(&kvm->irq_lock);
2522 create_irqchip_unlock:
2523 mutex_unlock(&kvm->lock);
2524 break;
2526 case KVM_CREATE_PIT:
2527 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2528 goto create_pit;
2529 case KVM_CREATE_PIT2:
2530 r = -EFAULT;
2531 if (copy_from_user(&u.pit_config, argp,
2532 sizeof(struct kvm_pit_config)))
2533 goto out;
2534 create_pit:
2535 down_write(&kvm->slots_lock);
2536 r = -EEXIST;
2537 if (kvm->arch.vpit)
2538 goto create_pit_unlock;
2539 r = -ENOMEM;
2540 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2541 if (kvm->arch.vpit)
2542 r = 0;
2543 create_pit_unlock:
2544 up_write(&kvm->slots_lock);
2545 break;
2546 case KVM_IRQ_LINE_STATUS:
2547 case KVM_IRQ_LINE: {
2548 struct kvm_irq_level irq_event;
2550 r = -EFAULT;
2551 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2552 goto out;
2553 if (irqchip_in_kernel(kvm)) {
2554 __s32 status;
2555 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2556 irq_event.irq, irq_event.level);
2557 if (ioctl == KVM_IRQ_LINE_STATUS) {
2558 irq_event.status = status;
2559 if (copy_to_user(argp, &irq_event,
2560 sizeof irq_event))
2561 goto out;
2563 r = 0;
2565 break;
2567 case KVM_GET_IRQCHIP: {
2568 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2569 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2571 r = -ENOMEM;
2572 if (!chip)
2573 goto out;
2574 r = -EFAULT;
2575 if (copy_from_user(chip, argp, sizeof *chip))
2576 goto get_irqchip_out;
2577 r = -ENXIO;
2578 if (!irqchip_in_kernel(kvm))
2579 goto get_irqchip_out;
2580 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2581 if (r)
2582 goto get_irqchip_out;
2583 r = -EFAULT;
2584 if (copy_to_user(argp, chip, sizeof *chip))
2585 goto get_irqchip_out;
2586 r = 0;
2587 get_irqchip_out:
2588 kfree(chip);
2589 if (r)
2590 goto out;
2591 break;
2593 case KVM_SET_IRQCHIP: {
2594 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2595 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2597 r = -ENOMEM;
2598 if (!chip)
2599 goto out;
2600 r = -EFAULT;
2601 if (copy_from_user(chip, argp, sizeof *chip))
2602 goto set_irqchip_out;
2603 r = -ENXIO;
2604 if (!irqchip_in_kernel(kvm))
2605 goto set_irqchip_out;
2606 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2607 if (r)
2608 goto set_irqchip_out;
2609 r = 0;
2610 set_irqchip_out:
2611 kfree(chip);
2612 if (r)
2613 goto out;
2614 break;
2616 case KVM_GET_PIT: {
2617 r = -EFAULT;
2618 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2619 goto out;
2620 r = -ENXIO;
2621 if (!kvm->arch.vpit)
2622 goto out;
2623 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2624 if (r)
2625 goto out;
2626 r = -EFAULT;
2627 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2628 goto out;
2629 r = 0;
2630 break;
2632 case KVM_SET_PIT: {
2633 r = -EFAULT;
2634 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2635 goto out;
2636 r = -ENXIO;
2637 if (!kvm->arch.vpit)
2638 goto out;
2639 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2640 if (r)
2641 goto out;
2642 r = 0;
2643 break;
2645 case KVM_GET_PIT2: {
2646 r = -ENXIO;
2647 if (!kvm->arch.vpit)
2648 goto out;
2649 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2650 if (r)
2651 goto out;
2652 r = -EFAULT;
2653 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2654 goto out;
2655 r = 0;
2656 break;
2658 case KVM_SET_PIT2: {
2659 r = -EFAULT;
2660 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2661 goto out;
2662 r = -ENXIO;
2663 if (!kvm->arch.vpit)
2664 goto out;
2665 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2666 if (r)
2667 goto out;
2668 r = 0;
2669 break;
2671 case KVM_REINJECT_CONTROL: {
2672 struct kvm_reinject_control control;
2673 r = -EFAULT;
2674 if (copy_from_user(&control, argp, sizeof(control)))
2675 goto out;
2676 r = kvm_vm_ioctl_reinject(kvm, &control);
2677 if (r)
2678 goto out;
2679 r = 0;
2680 break;
2682 case KVM_XEN_HVM_CONFIG: {
2683 r = -EFAULT;
2684 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2685 sizeof(struct kvm_xen_hvm_config)))
2686 goto out;
2687 r = -EINVAL;
2688 if (kvm->arch.xen_hvm_config.flags)
2689 goto out;
2690 r = 0;
2691 break;
2693 case KVM_SET_CLOCK: {
2694 struct timespec now;
2695 struct kvm_clock_data user_ns;
2696 u64 now_ns;
2697 s64 delta;
2699 r = -EFAULT;
2700 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2701 goto out;
2703 r = -EINVAL;
2704 if (user_ns.flags)
2705 goto out;
2707 r = 0;
2708 ktime_get_ts(&now);
2709 now_ns = timespec_to_ns(&now);
2710 delta = user_ns.clock - now_ns;
2711 kvm->arch.kvmclock_offset = delta;
2712 break;
2714 case KVM_GET_CLOCK: {
2715 struct timespec now;
2716 struct kvm_clock_data user_ns;
2717 u64 now_ns;
2719 ktime_get_ts(&now);
2720 now_ns = timespec_to_ns(&now);
2721 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2722 user_ns.flags = 0;
2724 r = -EFAULT;
2725 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2726 goto out;
2727 r = 0;
2728 break;
2731 default:
2734 out:
2735 return r;
2738 static void kvm_init_msr_list(void)
2740 u32 dummy[2];
2741 unsigned i, j;
2743 /* skip the first msrs in the list. KVM-specific */
2744 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2745 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2746 continue;
2747 if (j < i)
2748 msrs_to_save[j] = msrs_to_save[i];
2749 j++;
2751 num_msrs_to_save = j;
2754 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2755 const void *v)
2757 if (vcpu->arch.apic &&
2758 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2759 return 0;
2761 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2764 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2766 if (vcpu->arch.apic &&
2767 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2768 return 0;
2770 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2773 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2774 struct kvm_vcpu *vcpu)
2776 void *data = val;
2777 int r = X86EMUL_CONTINUE;
2779 while (bytes) {
2780 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2781 unsigned offset = addr & (PAGE_SIZE-1);
2782 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2783 int ret;
2785 if (gpa == UNMAPPED_GVA) {
2786 r = X86EMUL_PROPAGATE_FAULT;
2787 goto out;
2789 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2790 if (ret < 0) {
2791 r = X86EMUL_UNHANDLEABLE;
2792 goto out;
2795 bytes -= toread;
2796 data += toread;
2797 addr += toread;
2799 out:
2800 return r;
2803 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2804 struct kvm_vcpu *vcpu)
2806 void *data = val;
2807 int r = X86EMUL_CONTINUE;
2809 while (bytes) {
2810 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2811 unsigned offset = addr & (PAGE_SIZE-1);
2812 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2813 int ret;
2815 if (gpa == UNMAPPED_GVA) {
2816 r = X86EMUL_PROPAGATE_FAULT;
2817 goto out;
2819 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2820 if (ret < 0) {
2821 r = X86EMUL_UNHANDLEABLE;
2822 goto out;
2825 bytes -= towrite;
2826 data += towrite;
2827 addr += towrite;
2829 out:
2830 return r;
2834 static int emulator_read_emulated(unsigned long addr,
2835 void *val,
2836 unsigned int bytes,
2837 struct kvm_vcpu *vcpu)
2839 gpa_t gpa;
2841 if (vcpu->mmio_read_completed) {
2842 memcpy(val, vcpu->mmio_data, bytes);
2843 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2844 vcpu->mmio_phys_addr, *(u64 *)val);
2845 vcpu->mmio_read_completed = 0;
2846 return X86EMUL_CONTINUE;
2849 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2851 /* For APIC access vmexit */
2852 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2853 goto mmio;
2855 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2856 == X86EMUL_CONTINUE)
2857 return X86EMUL_CONTINUE;
2858 if (gpa == UNMAPPED_GVA)
2859 return X86EMUL_PROPAGATE_FAULT;
2861 mmio:
2863 * Is this MMIO handled locally?
2865 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2866 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2867 return X86EMUL_CONTINUE;
2870 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2872 vcpu->mmio_needed = 1;
2873 vcpu->mmio_phys_addr = gpa;
2874 vcpu->mmio_size = bytes;
2875 vcpu->mmio_is_write = 0;
2877 return X86EMUL_UNHANDLEABLE;
2880 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2881 const void *val, int bytes)
2883 int ret;
2885 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2886 if (ret < 0)
2887 return 0;
2888 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2889 return 1;
2892 static int emulator_write_emulated_onepage(unsigned long addr,
2893 const void *val,
2894 unsigned int bytes,
2895 struct kvm_vcpu *vcpu)
2897 gpa_t gpa;
2899 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2901 if (gpa == UNMAPPED_GVA) {
2902 kvm_inject_page_fault(vcpu, addr, 2);
2903 return X86EMUL_PROPAGATE_FAULT;
2906 /* For APIC access vmexit */
2907 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2908 goto mmio;
2910 if (emulator_write_phys(vcpu, gpa, val, bytes))
2911 return X86EMUL_CONTINUE;
2913 mmio:
2914 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2916 * Is this MMIO handled locally?
2918 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2919 return X86EMUL_CONTINUE;
2921 vcpu->mmio_needed = 1;
2922 vcpu->mmio_phys_addr = gpa;
2923 vcpu->mmio_size = bytes;
2924 vcpu->mmio_is_write = 1;
2925 memcpy(vcpu->mmio_data, val, bytes);
2927 return X86EMUL_CONTINUE;
2930 int emulator_write_emulated(unsigned long addr,
2931 const void *val,
2932 unsigned int bytes,
2933 struct kvm_vcpu *vcpu)
2935 /* Crossing a page boundary? */
2936 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2937 int rc, now;
2939 now = -addr & ~PAGE_MASK;
2940 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2941 if (rc != X86EMUL_CONTINUE)
2942 return rc;
2943 addr += now;
2944 val += now;
2945 bytes -= now;
2947 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2949 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2951 static int emulator_cmpxchg_emulated(unsigned long addr,
2952 const void *old,
2953 const void *new,
2954 unsigned int bytes,
2955 struct kvm_vcpu *vcpu)
2957 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2958 #ifndef CONFIG_X86_64
2959 /* guests cmpxchg8b have to be emulated atomically */
2960 if (bytes == 8) {
2961 gpa_t gpa;
2962 struct page *page;
2963 char *kaddr;
2964 u64 val;
2966 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2968 if (gpa == UNMAPPED_GVA ||
2969 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2970 goto emul_write;
2972 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2973 goto emul_write;
2975 val = *(u64 *)new;
2977 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2979 kaddr = kmap_atomic(page, KM_USER0);
2980 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2981 kunmap_atomic(kaddr, KM_USER0);
2982 kvm_release_page_dirty(page);
2984 emul_write:
2985 #endif
2987 return emulator_write_emulated(addr, new, bytes, vcpu);
2990 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2992 return kvm_x86_ops->get_segment_base(vcpu, seg);
2995 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2997 kvm_mmu_invlpg(vcpu, address);
2998 return X86EMUL_CONTINUE;
3001 int emulate_clts(struct kvm_vcpu *vcpu)
3003 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
3004 return X86EMUL_CONTINUE;
3007 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3009 struct kvm_vcpu *vcpu = ctxt->vcpu;
3011 switch (dr) {
3012 case 0 ... 3:
3013 *dest = kvm_x86_ops->get_dr(vcpu, dr);
3014 return X86EMUL_CONTINUE;
3015 default:
3016 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
3017 return X86EMUL_UNHANDLEABLE;
3021 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3023 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3024 int exception;
3026 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
3027 if (exception) {
3028 /* FIXME: better handling */
3029 return X86EMUL_UNHANDLEABLE;
3031 return X86EMUL_CONTINUE;
3034 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3036 u8 opcodes[4];
3037 unsigned long rip = kvm_rip_read(vcpu);
3038 unsigned long rip_linear;
3040 if (!printk_ratelimit())
3041 return;
3043 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3045 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
3047 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3048 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3050 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3052 static struct x86_emulate_ops emulate_ops = {
3053 .read_std = kvm_read_guest_virt,
3054 .read_emulated = emulator_read_emulated,
3055 .write_emulated = emulator_write_emulated,
3056 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3059 static void cache_all_regs(struct kvm_vcpu *vcpu)
3061 kvm_register_read(vcpu, VCPU_REGS_RAX);
3062 kvm_register_read(vcpu, VCPU_REGS_RSP);
3063 kvm_register_read(vcpu, VCPU_REGS_RIP);
3064 vcpu->arch.regs_dirty = ~0;
3067 int emulate_instruction(struct kvm_vcpu *vcpu,
3068 unsigned long cr2,
3069 u16 error_code,
3070 int emulation_type)
3072 int r, shadow_mask;
3073 struct decode_cache *c;
3074 struct kvm_run *run = vcpu->run;
3076 kvm_clear_exception_queue(vcpu);
3077 vcpu->arch.mmio_fault_cr2 = cr2;
3079 * TODO: fix emulate.c to use guest_read/write_register
3080 * instead of direct ->regs accesses, can save hundred cycles
3081 * on Intel for instructions that don't read/change RSP, for
3082 * for example.
3084 cache_all_regs(vcpu);
3086 vcpu->mmio_is_write = 0;
3087 vcpu->arch.pio.string = 0;
3089 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3090 int cs_db, cs_l;
3091 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3093 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3094 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3095 vcpu->arch.emulate_ctxt.mode =
3096 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3097 ? X86EMUL_MODE_REAL : cs_l
3098 ? X86EMUL_MODE_PROT64 : cs_db
3099 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3101 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3103 /* Only allow emulation of specific instructions on #UD
3104 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3105 c = &vcpu->arch.emulate_ctxt.decode;
3106 if (emulation_type & EMULTYPE_TRAP_UD) {
3107 if (!c->twobyte)
3108 return EMULATE_FAIL;
3109 switch (c->b) {
3110 case 0x01: /* VMMCALL */
3111 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3112 return EMULATE_FAIL;
3113 break;
3114 case 0x34: /* sysenter */
3115 case 0x35: /* sysexit */
3116 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3117 return EMULATE_FAIL;
3118 break;
3119 case 0x05: /* syscall */
3120 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3121 return EMULATE_FAIL;
3122 break;
3123 default:
3124 return EMULATE_FAIL;
3127 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3128 return EMULATE_FAIL;
3131 ++vcpu->stat.insn_emulation;
3132 if (r) {
3133 ++vcpu->stat.insn_emulation_fail;
3134 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3135 return EMULATE_DONE;
3136 return EMULATE_FAIL;
3140 if (emulation_type & EMULTYPE_SKIP) {
3141 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3142 return EMULATE_DONE;
3145 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3146 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3148 if (r == 0)
3149 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3151 if (vcpu->arch.pio.string)
3152 return EMULATE_DO_MMIO;
3154 if ((r || vcpu->mmio_is_write) && run) {
3155 run->exit_reason = KVM_EXIT_MMIO;
3156 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3157 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3158 run->mmio.len = vcpu->mmio_size;
3159 run->mmio.is_write = vcpu->mmio_is_write;
3162 if (r) {
3163 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3164 return EMULATE_DONE;
3165 if (!vcpu->mmio_needed) {
3166 kvm_report_emulation_failure(vcpu, "mmio");
3167 return EMULATE_FAIL;
3169 return EMULATE_DO_MMIO;
3172 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3174 if (vcpu->mmio_is_write) {
3175 vcpu->mmio_needed = 0;
3176 return EMULATE_DO_MMIO;
3179 return EMULATE_DONE;
3181 EXPORT_SYMBOL_GPL(emulate_instruction);
3183 static int pio_copy_data(struct kvm_vcpu *vcpu)
3185 void *p = vcpu->arch.pio_data;
3186 gva_t q = vcpu->arch.pio.guest_gva;
3187 unsigned bytes;
3188 int ret;
3190 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3191 if (vcpu->arch.pio.in)
3192 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3193 else
3194 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3195 return ret;
3198 int complete_pio(struct kvm_vcpu *vcpu)
3200 struct kvm_pio_request *io = &vcpu->arch.pio;
3201 long delta;
3202 int r;
3203 unsigned long val;
3205 if (!io->string) {
3206 if (io->in) {
3207 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3208 memcpy(&val, vcpu->arch.pio_data, io->size);
3209 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3211 } else {
3212 if (io->in) {
3213 r = pio_copy_data(vcpu);
3214 if (r)
3215 return r;
3218 delta = 1;
3219 if (io->rep) {
3220 delta *= io->cur_count;
3222 * The size of the register should really depend on
3223 * current address size.
3225 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3226 val -= delta;
3227 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3229 if (io->down)
3230 delta = -delta;
3231 delta *= io->size;
3232 if (io->in) {
3233 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3234 val += delta;
3235 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3236 } else {
3237 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3238 val += delta;
3239 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3243 io->count -= io->cur_count;
3244 io->cur_count = 0;
3246 return 0;
3249 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3251 /* TODO: String I/O for in kernel device */
3252 int r;
3254 if (vcpu->arch.pio.in)
3255 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3256 vcpu->arch.pio.size, pd);
3257 else
3258 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3259 vcpu->arch.pio.size, pd);
3260 return r;
3263 static int pio_string_write(struct kvm_vcpu *vcpu)
3265 struct kvm_pio_request *io = &vcpu->arch.pio;
3266 void *pd = vcpu->arch.pio_data;
3267 int i, r = 0;
3269 for (i = 0; i < io->cur_count; i++) {
3270 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
3271 io->port, io->size, pd)) {
3272 r = -EOPNOTSUPP;
3273 break;
3275 pd += io->size;
3277 return r;
3280 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3282 unsigned long val;
3284 vcpu->run->exit_reason = KVM_EXIT_IO;
3285 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3286 vcpu->run->io.size = vcpu->arch.pio.size = size;
3287 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3288 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3289 vcpu->run->io.port = vcpu->arch.pio.port = port;
3290 vcpu->arch.pio.in = in;
3291 vcpu->arch.pio.string = 0;
3292 vcpu->arch.pio.down = 0;
3293 vcpu->arch.pio.rep = 0;
3295 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3296 size, 1);
3298 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3299 memcpy(vcpu->arch.pio_data, &val, 4);
3301 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3302 complete_pio(vcpu);
3303 return 1;
3305 return 0;
3307 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3309 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3310 int size, unsigned long count, int down,
3311 gva_t address, int rep, unsigned port)
3313 unsigned now, in_page;
3314 int ret = 0;
3316 vcpu->run->exit_reason = KVM_EXIT_IO;
3317 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3318 vcpu->run->io.size = vcpu->arch.pio.size = size;
3319 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3320 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3321 vcpu->run->io.port = vcpu->arch.pio.port = port;
3322 vcpu->arch.pio.in = in;
3323 vcpu->arch.pio.string = 1;
3324 vcpu->arch.pio.down = down;
3325 vcpu->arch.pio.rep = rep;
3327 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3328 size, count);
3330 if (!count) {
3331 kvm_x86_ops->skip_emulated_instruction(vcpu);
3332 return 1;
3335 if (!down)
3336 in_page = PAGE_SIZE - offset_in_page(address);
3337 else
3338 in_page = offset_in_page(address) + size;
3339 now = min(count, (unsigned long)in_page / size);
3340 if (!now)
3341 now = 1;
3342 if (down) {
3344 * String I/O in reverse. Yuck. Kill the guest, fix later.
3346 pr_unimpl(vcpu, "guest string pio down\n");
3347 kvm_inject_gp(vcpu, 0);
3348 return 1;
3350 vcpu->run->io.count = now;
3351 vcpu->arch.pio.cur_count = now;
3353 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3354 kvm_x86_ops->skip_emulated_instruction(vcpu);
3356 vcpu->arch.pio.guest_gva = address;
3358 if (!vcpu->arch.pio.in) {
3359 /* string PIO write */
3360 ret = pio_copy_data(vcpu);
3361 if (ret == X86EMUL_PROPAGATE_FAULT) {
3362 kvm_inject_gp(vcpu, 0);
3363 return 1;
3365 if (ret == 0 && !pio_string_write(vcpu)) {
3366 complete_pio(vcpu);
3367 if (vcpu->arch.pio.count == 0)
3368 ret = 1;
3371 /* no string PIO read support yet */
3373 return ret;
3375 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3377 static void bounce_off(void *info)
3379 /* nothing */
3382 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3383 void *data)
3385 struct cpufreq_freqs *freq = data;
3386 struct kvm *kvm;
3387 struct kvm_vcpu *vcpu;
3388 int i, send_ipi = 0;
3390 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3391 return 0;
3392 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3393 return 0;
3394 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3396 spin_lock(&kvm_lock);
3397 list_for_each_entry(kvm, &vm_list, vm_list) {
3398 kvm_for_each_vcpu(i, vcpu, kvm) {
3399 if (vcpu->cpu != freq->cpu)
3400 continue;
3401 if (!kvm_request_guest_time_update(vcpu))
3402 continue;
3403 if (vcpu->cpu != smp_processor_id())
3404 send_ipi++;
3407 spin_unlock(&kvm_lock);
3409 if (freq->old < freq->new && send_ipi) {
3411 * We upscale the frequency. Must make the guest
3412 * doesn't see old kvmclock values while running with
3413 * the new frequency, otherwise we risk the guest sees
3414 * time go backwards.
3416 * In case we update the frequency for another cpu
3417 * (which might be in guest context) send an interrupt
3418 * to kick the cpu out of guest context. Next time
3419 * guest context is entered kvmclock will be updated,
3420 * so the guest will not see stale values.
3422 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3424 return 0;
3427 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3428 .notifier_call = kvmclock_cpufreq_notifier
3431 static void kvm_timer_init(void)
3433 int cpu;
3435 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3436 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3437 CPUFREQ_TRANSITION_NOTIFIER);
3438 for_each_online_cpu(cpu) {
3439 unsigned long khz = cpufreq_get(cpu);
3440 if (!khz)
3441 khz = tsc_khz;
3442 per_cpu(cpu_tsc_khz, cpu) = khz;
3444 } else {
3445 for_each_possible_cpu(cpu)
3446 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3450 int kvm_arch_init(void *opaque)
3452 int r;
3453 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3455 if (kvm_x86_ops) {
3456 printk(KERN_ERR "kvm: already loaded the other module\n");
3457 r = -EEXIST;
3458 goto out;
3461 if (!ops->cpu_has_kvm_support()) {
3462 printk(KERN_ERR "kvm: no hardware support\n");
3463 r = -EOPNOTSUPP;
3464 goto out;
3466 if (ops->disabled_by_bios()) {
3467 printk(KERN_ERR "kvm: disabled by bios\n");
3468 r = -EOPNOTSUPP;
3469 goto out;
3472 r = kvm_mmu_module_init();
3473 if (r)
3474 goto out;
3476 kvm_init_msr_list();
3478 kvm_x86_ops = ops;
3479 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3480 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3481 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3482 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3484 kvm_timer_init();
3486 return 0;
3488 out:
3489 return r;
3492 void kvm_arch_exit(void)
3494 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3495 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3496 CPUFREQ_TRANSITION_NOTIFIER);
3497 kvm_x86_ops = NULL;
3498 kvm_mmu_module_exit();
3501 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3503 ++vcpu->stat.halt_exits;
3504 if (irqchip_in_kernel(vcpu->kvm)) {
3505 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3506 return 1;
3507 } else {
3508 vcpu->run->exit_reason = KVM_EXIT_HLT;
3509 return 0;
3512 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3514 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3515 unsigned long a1)
3517 if (is_long_mode(vcpu))
3518 return a0;
3519 else
3520 return a0 | ((gpa_t)a1 << 32);
3523 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3525 unsigned long nr, a0, a1, a2, a3, ret;
3526 int r = 1;
3528 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3529 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3530 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3531 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3532 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3534 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3536 if (!is_long_mode(vcpu)) {
3537 nr &= 0xFFFFFFFF;
3538 a0 &= 0xFFFFFFFF;
3539 a1 &= 0xFFFFFFFF;
3540 a2 &= 0xFFFFFFFF;
3541 a3 &= 0xFFFFFFFF;
3544 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3545 ret = -KVM_EPERM;
3546 goto out;
3549 switch (nr) {
3550 case KVM_HC_VAPIC_POLL_IRQ:
3551 ret = 0;
3552 break;
3553 case KVM_HC_MMU_OP:
3554 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3555 break;
3556 default:
3557 ret = -KVM_ENOSYS;
3558 break;
3560 out:
3561 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3562 ++vcpu->stat.hypercalls;
3563 return r;
3565 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3567 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3569 char instruction[3];
3570 int ret = 0;
3571 unsigned long rip = kvm_rip_read(vcpu);
3575 * Blow out the MMU to ensure that no other VCPU has an active mapping
3576 * to ensure that the updated hypercall appears atomically across all
3577 * VCPUs.
3579 kvm_mmu_zap_all(vcpu->kvm);
3581 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3582 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3583 != X86EMUL_CONTINUE)
3584 ret = -EFAULT;
3586 return ret;
3589 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3591 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3594 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3596 struct descriptor_table dt = { limit, base };
3598 kvm_x86_ops->set_gdt(vcpu, &dt);
3601 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3603 struct descriptor_table dt = { limit, base };
3605 kvm_x86_ops->set_idt(vcpu, &dt);
3608 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3609 unsigned long *rflags)
3611 kvm_lmsw(vcpu, msw);
3612 *rflags = kvm_get_rflags(vcpu);
3615 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3617 unsigned long value;
3619 switch (cr) {
3620 case 0:
3621 value = vcpu->arch.cr0;
3622 break;
3623 case 2:
3624 value = vcpu->arch.cr2;
3625 break;
3626 case 3:
3627 value = vcpu->arch.cr3;
3628 break;
3629 case 4:
3630 value = kvm_read_cr4(vcpu);
3631 break;
3632 case 8:
3633 value = kvm_get_cr8(vcpu);
3634 break;
3635 default:
3636 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3637 return 0;
3640 return value;
3643 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3644 unsigned long *rflags)
3646 switch (cr) {
3647 case 0:
3648 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3649 *rflags = kvm_get_rflags(vcpu);
3650 break;
3651 case 2:
3652 vcpu->arch.cr2 = val;
3653 break;
3654 case 3:
3655 kvm_set_cr3(vcpu, val);
3656 break;
3657 case 4:
3658 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3659 break;
3660 case 8:
3661 kvm_set_cr8(vcpu, val & 0xfUL);
3662 break;
3663 default:
3664 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3668 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3670 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3671 int j, nent = vcpu->arch.cpuid_nent;
3673 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3674 /* when no next entry is found, the current entry[i] is reselected */
3675 for (j = i + 1; ; j = (j + 1) % nent) {
3676 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3677 if (ej->function == e->function) {
3678 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3679 return j;
3682 return 0; /* silence gcc, even though control never reaches here */
3685 /* find an entry with matching function, matching index (if needed), and that
3686 * should be read next (if it's stateful) */
3687 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3688 u32 function, u32 index)
3690 if (e->function != function)
3691 return 0;
3692 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3693 return 0;
3694 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3695 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3696 return 0;
3697 return 1;
3700 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3701 u32 function, u32 index)
3703 int i;
3704 struct kvm_cpuid_entry2 *best = NULL;
3706 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3707 struct kvm_cpuid_entry2 *e;
3709 e = &vcpu->arch.cpuid_entries[i];
3710 if (is_matching_cpuid_entry(e, function, index)) {
3711 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3712 move_to_next_stateful_cpuid_entry(vcpu, i);
3713 best = e;
3714 break;
3717 * Both basic or both extended?
3719 if (((e->function ^ function) & 0x80000000) == 0)
3720 if (!best || e->function > best->function)
3721 best = e;
3723 return best;
3726 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3728 struct kvm_cpuid_entry2 *best;
3730 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3731 if (best)
3732 return best->eax & 0xff;
3733 return 36;
3736 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3738 u32 function, index;
3739 struct kvm_cpuid_entry2 *best;
3741 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3742 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3743 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3744 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3745 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3746 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3747 best = kvm_find_cpuid_entry(vcpu, function, index);
3748 if (best) {
3749 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3750 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3751 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3752 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3754 kvm_x86_ops->skip_emulated_instruction(vcpu);
3755 trace_kvm_cpuid(function,
3756 kvm_register_read(vcpu, VCPU_REGS_RAX),
3757 kvm_register_read(vcpu, VCPU_REGS_RBX),
3758 kvm_register_read(vcpu, VCPU_REGS_RCX),
3759 kvm_register_read(vcpu, VCPU_REGS_RDX));
3761 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3764 * Check if userspace requested an interrupt window, and that the
3765 * interrupt window is open.
3767 * No need to exit to userspace if we already have an interrupt queued.
3769 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
3771 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3772 vcpu->run->request_interrupt_window &&
3773 kvm_arch_interrupt_allowed(vcpu));
3776 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
3778 struct kvm_run *kvm_run = vcpu->run;
3780 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3781 kvm_run->cr8 = kvm_get_cr8(vcpu);
3782 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3783 if (irqchip_in_kernel(vcpu->kvm))
3784 kvm_run->ready_for_interrupt_injection = 1;
3785 else
3786 kvm_run->ready_for_interrupt_injection =
3787 kvm_arch_interrupt_allowed(vcpu) &&
3788 !kvm_cpu_has_interrupt(vcpu) &&
3789 !kvm_event_needs_reinjection(vcpu);
3792 static void vapic_enter(struct kvm_vcpu *vcpu)
3794 struct kvm_lapic *apic = vcpu->arch.apic;
3795 struct page *page;
3797 if (!apic || !apic->vapic_addr)
3798 return;
3800 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3802 vcpu->arch.apic->vapic_page = page;
3805 static void vapic_exit(struct kvm_vcpu *vcpu)
3807 struct kvm_lapic *apic = vcpu->arch.apic;
3809 if (!apic || !apic->vapic_addr)
3810 return;
3812 down_read(&vcpu->kvm->slots_lock);
3813 kvm_release_page_dirty(apic->vapic_page);
3814 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3815 up_read(&vcpu->kvm->slots_lock);
3818 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3820 int max_irr, tpr;
3822 if (!kvm_x86_ops->update_cr8_intercept)
3823 return;
3825 if (!vcpu->arch.apic)
3826 return;
3828 if (!vcpu->arch.apic->vapic_addr)
3829 max_irr = kvm_lapic_find_highest_irr(vcpu);
3830 else
3831 max_irr = -1;
3833 if (max_irr != -1)
3834 max_irr >>= 4;
3836 tpr = kvm_lapic_get_cr8(vcpu);
3838 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3841 static void inject_pending_event(struct kvm_vcpu *vcpu)
3843 /* try to reinject previous events if any */
3844 if (vcpu->arch.exception.pending) {
3845 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3846 vcpu->arch.exception.has_error_code,
3847 vcpu->arch.exception.error_code);
3848 return;
3851 if (vcpu->arch.nmi_injected) {
3852 kvm_x86_ops->set_nmi(vcpu);
3853 return;
3856 if (vcpu->arch.interrupt.pending) {
3857 kvm_x86_ops->set_irq(vcpu);
3858 return;
3861 /* try to inject new event if pending */
3862 if (vcpu->arch.nmi_pending) {
3863 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3864 vcpu->arch.nmi_pending = false;
3865 vcpu->arch.nmi_injected = true;
3866 kvm_x86_ops->set_nmi(vcpu);
3868 } else if (kvm_cpu_has_interrupt(vcpu)) {
3869 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3870 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3871 false);
3872 kvm_x86_ops->set_irq(vcpu);
3877 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
3879 int r;
3880 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3881 vcpu->run->request_interrupt_window;
3883 if (vcpu->requests)
3884 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3885 kvm_mmu_unload(vcpu);
3887 r = kvm_mmu_reload(vcpu);
3888 if (unlikely(r))
3889 goto out;
3891 if (vcpu->requests) {
3892 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3893 __kvm_migrate_timers(vcpu);
3894 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3895 kvm_write_guest_time(vcpu);
3896 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3897 kvm_mmu_sync_roots(vcpu);
3898 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3899 kvm_x86_ops->tlb_flush(vcpu);
3900 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3901 &vcpu->requests)) {
3902 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
3903 r = 0;
3904 goto out;
3906 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3907 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3908 r = 0;
3909 goto out;
3913 preempt_disable();
3915 kvm_x86_ops->prepare_guest_switch(vcpu);
3916 kvm_load_guest_fpu(vcpu);
3918 local_irq_disable();
3920 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3921 smp_mb__after_clear_bit();
3923 if (vcpu->requests || need_resched() || signal_pending(current)) {
3924 set_bit(KVM_REQ_KICK, &vcpu->requests);
3925 local_irq_enable();
3926 preempt_enable();
3927 r = 1;
3928 goto out;
3931 inject_pending_event(vcpu);
3933 /* enable NMI/IRQ window open exits if needed */
3934 if (vcpu->arch.nmi_pending)
3935 kvm_x86_ops->enable_nmi_window(vcpu);
3936 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3937 kvm_x86_ops->enable_irq_window(vcpu);
3939 if (kvm_lapic_enabled(vcpu)) {
3940 update_cr8_intercept(vcpu);
3941 kvm_lapic_sync_to_vapic(vcpu);
3944 up_read(&vcpu->kvm->slots_lock);
3946 kvm_guest_enter();
3948 if (unlikely(vcpu->arch.switch_db_regs)) {
3949 set_debugreg(0, 7);
3950 set_debugreg(vcpu->arch.eff_db[0], 0);
3951 set_debugreg(vcpu->arch.eff_db[1], 1);
3952 set_debugreg(vcpu->arch.eff_db[2], 2);
3953 set_debugreg(vcpu->arch.eff_db[3], 3);
3956 trace_kvm_entry(vcpu->vcpu_id);
3957 kvm_x86_ops->run(vcpu);
3960 * If the guest has used debug registers, at least dr7
3961 * will be disabled while returning to the host.
3962 * If we don't have active breakpoints in the host, we don't
3963 * care about the messed up debug address registers. But if
3964 * we have some of them active, restore the old state.
3966 if (hw_breakpoint_active())
3967 hw_breakpoint_restore();
3969 set_bit(KVM_REQ_KICK, &vcpu->requests);
3970 local_irq_enable();
3972 ++vcpu->stat.exits;
3975 * We must have an instruction between local_irq_enable() and
3976 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3977 * the interrupt shadow. The stat.exits increment will do nicely.
3978 * But we need to prevent reordering, hence this barrier():
3980 barrier();
3982 kvm_guest_exit();
3984 preempt_enable();
3986 down_read(&vcpu->kvm->slots_lock);
3989 * Profile KVM exit RIPs:
3991 if (unlikely(prof_on == KVM_PROFILING)) {
3992 unsigned long rip = kvm_rip_read(vcpu);
3993 profile_hit(KVM_PROFILING, (void *)rip);
3997 kvm_lapic_sync_from_vapic(vcpu);
3999 r = kvm_x86_ops->handle_exit(vcpu);
4000 out:
4001 return r;
4005 static int __vcpu_run(struct kvm_vcpu *vcpu)
4007 int r;
4009 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4010 pr_debug("vcpu %d received sipi with vector # %x\n",
4011 vcpu->vcpu_id, vcpu->arch.sipi_vector);
4012 kvm_lapic_reset(vcpu);
4013 r = kvm_arch_vcpu_reset(vcpu);
4014 if (r)
4015 return r;
4016 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4019 down_read(&vcpu->kvm->slots_lock);
4020 vapic_enter(vcpu);
4022 r = 1;
4023 while (r > 0) {
4024 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4025 r = vcpu_enter_guest(vcpu);
4026 else {
4027 up_read(&vcpu->kvm->slots_lock);
4028 kvm_vcpu_block(vcpu);
4029 down_read(&vcpu->kvm->slots_lock);
4030 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4032 switch(vcpu->arch.mp_state) {
4033 case KVM_MP_STATE_HALTED:
4034 vcpu->arch.mp_state =
4035 KVM_MP_STATE_RUNNABLE;
4036 case KVM_MP_STATE_RUNNABLE:
4037 break;
4038 case KVM_MP_STATE_SIPI_RECEIVED:
4039 default:
4040 r = -EINTR;
4041 break;
4046 if (r <= 0)
4047 break;
4049 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4050 if (kvm_cpu_has_pending_timer(vcpu))
4051 kvm_inject_pending_timer_irqs(vcpu);
4053 if (dm_request_for_irq_injection(vcpu)) {
4054 r = -EINTR;
4055 vcpu->run->exit_reason = KVM_EXIT_INTR;
4056 ++vcpu->stat.request_irq_exits;
4058 if (signal_pending(current)) {
4059 r = -EINTR;
4060 vcpu->run->exit_reason = KVM_EXIT_INTR;
4061 ++vcpu->stat.signal_exits;
4063 if (need_resched()) {
4064 up_read(&vcpu->kvm->slots_lock);
4065 kvm_resched(vcpu);
4066 down_read(&vcpu->kvm->slots_lock);
4070 up_read(&vcpu->kvm->slots_lock);
4071 post_kvm_run_save(vcpu);
4073 vapic_exit(vcpu);
4075 return r;
4078 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4080 int r;
4081 sigset_t sigsaved;
4083 vcpu_load(vcpu);
4085 if (vcpu->sigset_active)
4086 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4088 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4089 kvm_vcpu_block(vcpu);
4090 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4091 r = -EAGAIN;
4092 goto out;
4095 /* re-sync apic's tpr */
4096 if (!irqchip_in_kernel(vcpu->kvm))
4097 kvm_set_cr8(vcpu, kvm_run->cr8);
4099 if (vcpu->arch.pio.cur_count) {
4100 r = complete_pio(vcpu);
4101 if (r)
4102 goto out;
4104 if (vcpu->mmio_needed) {
4105 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4106 vcpu->mmio_read_completed = 1;
4107 vcpu->mmio_needed = 0;
4109 down_read(&vcpu->kvm->slots_lock);
4110 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4111 EMULTYPE_NO_DECODE);
4112 up_read(&vcpu->kvm->slots_lock);
4113 if (r == EMULATE_DO_MMIO) {
4115 * Read-modify-write. Back to userspace.
4117 r = 0;
4118 goto out;
4121 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4122 kvm_register_write(vcpu, VCPU_REGS_RAX,
4123 kvm_run->hypercall.ret);
4125 r = __vcpu_run(vcpu);
4127 out:
4128 if (vcpu->sigset_active)
4129 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4131 vcpu_put(vcpu);
4132 return r;
4135 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4137 vcpu_load(vcpu);
4139 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4140 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4141 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4142 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4143 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4144 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4145 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4146 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4147 #ifdef CONFIG_X86_64
4148 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4149 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4150 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4151 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4152 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4153 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4154 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4155 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4156 #endif
4158 regs->rip = kvm_rip_read(vcpu);
4159 regs->rflags = kvm_get_rflags(vcpu);
4161 vcpu_put(vcpu);
4163 return 0;
4166 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4168 vcpu_load(vcpu);
4170 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4171 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4172 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4173 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4174 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4175 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4176 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4177 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4178 #ifdef CONFIG_X86_64
4179 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4180 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4181 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4182 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4183 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4184 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4185 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4186 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4187 #endif
4189 kvm_rip_write(vcpu, regs->rip);
4190 kvm_set_rflags(vcpu, regs->rflags);
4192 vcpu->arch.exception.pending = false;
4194 vcpu_put(vcpu);
4196 return 0;
4199 void kvm_get_segment(struct kvm_vcpu *vcpu,
4200 struct kvm_segment *var, int seg)
4202 kvm_x86_ops->get_segment(vcpu, var, seg);
4205 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4207 struct kvm_segment cs;
4209 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4210 *db = cs.db;
4211 *l = cs.l;
4213 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4215 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4216 struct kvm_sregs *sregs)
4218 struct descriptor_table dt;
4220 vcpu_load(vcpu);
4222 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4223 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4224 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4225 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4226 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4227 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4229 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4230 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4232 kvm_x86_ops->get_idt(vcpu, &dt);
4233 sregs->idt.limit = dt.limit;
4234 sregs->idt.base = dt.base;
4235 kvm_x86_ops->get_gdt(vcpu, &dt);
4236 sregs->gdt.limit = dt.limit;
4237 sregs->gdt.base = dt.base;
4239 sregs->cr0 = vcpu->arch.cr0;
4240 sregs->cr2 = vcpu->arch.cr2;
4241 sregs->cr3 = vcpu->arch.cr3;
4242 sregs->cr4 = kvm_read_cr4(vcpu);
4243 sregs->cr8 = kvm_get_cr8(vcpu);
4244 sregs->efer = vcpu->arch.shadow_efer;
4245 sregs->apic_base = kvm_get_apic_base(vcpu);
4247 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4249 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4250 set_bit(vcpu->arch.interrupt.nr,
4251 (unsigned long *)sregs->interrupt_bitmap);
4253 vcpu_put(vcpu);
4255 return 0;
4258 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4259 struct kvm_mp_state *mp_state)
4261 vcpu_load(vcpu);
4262 mp_state->mp_state = vcpu->arch.mp_state;
4263 vcpu_put(vcpu);
4264 return 0;
4267 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4268 struct kvm_mp_state *mp_state)
4270 vcpu_load(vcpu);
4271 vcpu->arch.mp_state = mp_state->mp_state;
4272 vcpu_put(vcpu);
4273 return 0;
4276 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4277 struct kvm_segment *var, int seg)
4279 kvm_x86_ops->set_segment(vcpu, var, seg);
4282 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4283 struct kvm_segment *kvm_desct)
4285 kvm_desct->base = get_desc_base(seg_desc);
4286 kvm_desct->limit = get_desc_limit(seg_desc);
4287 if (seg_desc->g) {
4288 kvm_desct->limit <<= 12;
4289 kvm_desct->limit |= 0xfff;
4291 kvm_desct->selector = selector;
4292 kvm_desct->type = seg_desc->type;
4293 kvm_desct->present = seg_desc->p;
4294 kvm_desct->dpl = seg_desc->dpl;
4295 kvm_desct->db = seg_desc->d;
4296 kvm_desct->s = seg_desc->s;
4297 kvm_desct->l = seg_desc->l;
4298 kvm_desct->g = seg_desc->g;
4299 kvm_desct->avl = seg_desc->avl;
4300 if (!selector)
4301 kvm_desct->unusable = 1;
4302 else
4303 kvm_desct->unusable = 0;
4304 kvm_desct->padding = 0;
4307 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4308 u16 selector,
4309 struct descriptor_table *dtable)
4311 if (selector & 1 << 2) {
4312 struct kvm_segment kvm_seg;
4314 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4316 if (kvm_seg.unusable)
4317 dtable->limit = 0;
4318 else
4319 dtable->limit = kvm_seg.limit;
4320 dtable->base = kvm_seg.base;
4322 else
4323 kvm_x86_ops->get_gdt(vcpu, dtable);
4326 /* allowed just for 8 bytes segments */
4327 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4328 struct desc_struct *seg_desc)
4330 struct descriptor_table dtable;
4331 u16 index = selector >> 3;
4333 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4335 if (dtable.limit < index * 8 + 7) {
4336 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4337 return 1;
4339 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4342 /* allowed just for 8 bytes segments */
4343 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4344 struct desc_struct *seg_desc)
4346 struct descriptor_table dtable;
4347 u16 index = selector >> 3;
4349 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4351 if (dtable.limit < index * 8 + 7)
4352 return 1;
4353 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4356 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4357 struct desc_struct *seg_desc)
4359 u32 base_addr = get_desc_base(seg_desc);
4361 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4364 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4366 struct kvm_segment kvm_seg;
4368 kvm_get_segment(vcpu, &kvm_seg, seg);
4369 return kvm_seg.selector;
4372 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4373 u16 selector,
4374 struct kvm_segment *kvm_seg)
4376 struct desc_struct seg_desc;
4378 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4379 return 1;
4380 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4381 return 0;
4384 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4386 struct kvm_segment segvar = {
4387 .base = selector << 4,
4388 .limit = 0xffff,
4389 .selector = selector,
4390 .type = 3,
4391 .present = 1,
4392 .dpl = 3,
4393 .db = 0,
4394 .s = 1,
4395 .l = 0,
4396 .g = 0,
4397 .avl = 0,
4398 .unusable = 0,
4400 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4401 return 0;
4404 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4406 return (seg != VCPU_SREG_LDTR) &&
4407 (seg != VCPU_SREG_TR) &&
4408 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4411 static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
4412 u16 selector)
4414 /* NULL selector is not valid for CS and SS */
4415 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4416 if (!selector)
4417 kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
4420 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4421 int type_bits, int seg)
4423 struct kvm_segment kvm_seg;
4425 if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4426 return kvm_load_realmode_segment(vcpu, selector, seg);
4427 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4428 return 1;
4430 kvm_check_segment_descriptor(vcpu, seg, selector);
4431 kvm_seg.type |= type_bits;
4433 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4434 seg != VCPU_SREG_LDTR)
4435 if (!kvm_seg.s)
4436 kvm_seg.unusable = 1;
4438 kvm_set_segment(vcpu, &kvm_seg, seg);
4439 return 0;
4442 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4443 struct tss_segment_32 *tss)
4445 tss->cr3 = vcpu->arch.cr3;
4446 tss->eip = kvm_rip_read(vcpu);
4447 tss->eflags = kvm_get_rflags(vcpu);
4448 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4449 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4450 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4451 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4452 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4453 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4454 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4455 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4456 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4457 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4458 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4459 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4460 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4461 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4462 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4465 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4466 struct tss_segment_32 *tss)
4468 kvm_set_cr3(vcpu, tss->cr3);
4470 kvm_rip_write(vcpu, tss->eip);
4471 kvm_set_rflags(vcpu, tss->eflags | 2);
4473 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4474 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4475 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4476 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4477 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4478 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4479 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4480 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4482 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4483 return 1;
4485 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4486 return 1;
4488 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4489 return 1;
4491 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4492 return 1;
4494 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4495 return 1;
4497 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4498 return 1;
4500 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4501 return 1;
4502 return 0;
4505 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4506 struct tss_segment_16 *tss)
4508 tss->ip = kvm_rip_read(vcpu);
4509 tss->flag = kvm_get_rflags(vcpu);
4510 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4511 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4512 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4513 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4514 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4515 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4516 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4517 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4519 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4520 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4521 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4522 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4523 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4526 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4527 struct tss_segment_16 *tss)
4529 kvm_rip_write(vcpu, tss->ip);
4530 kvm_set_rflags(vcpu, tss->flag | 2);
4531 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4532 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4533 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4534 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4535 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4536 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4537 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4538 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4540 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4541 return 1;
4543 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4544 return 1;
4546 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4547 return 1;
4549 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4550 return 1;
4552 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4553 return 1;
4554 return 0;
4557 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4558 u16 old_tss_sel, u32 old_tss_base,
4559 struct desc_struct *nseg_desc)
4561 struct tss_segment_16 tss_segment_16;
4562 int ret = 0;
4564 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4565 sizeof tss_segment_16))
4566 goto out;
4568 save_state_to_tss16(vcpu, &tss_segment_16);
4570 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4571 sizeof tss_segment_16))
4572 goto out;
4574 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4575 &tss_segment_16, sizeof tss_segment_16))
4576 goto out;
4578 if (old_tss_sel != 0xffff) {
4579 tss_segment_16.prev_task_link = old_tss_sel;
4581 if (kvm_write_guest(vcpu->kvm,
4582 get_tss_base_addr(vcpu, nseg_desc),
4583 &tss_segment_16.prev_task_link,
4584 sizeof tss_segment_16.prev_task_link))
4585 goto out;
4588 if (load_state_from_tss16(vcpu, &tss_segment_16))
4589 goto out;
4591 ret = 1;
4592 out:
4593 return ret;
4596 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4597 u16 old_tss_sel, u32 old_tss_base,
4598 struct desc_struct *nseg_desc)
4600 struct tss_segment_32 tss_segment_32;
4601 int ret = 0;
4603 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4604 sizeof tss_segment_32))
4605 goto out;
4607 save_state_to_tss32(vcpu, &tss_segment_32);
4609 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4610 sizeof tss_segment_32))
4611 goto out;
4613 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4614 &tss_segment_32, sizeof tss_segment_32))
4615 goto out;
4617 if (old_tss_sel != 0xffff) {
4618 tss_segment_32.prev_task_link = old_tss_sel;
4620 if (kvm_write_guest(vcpu->kvm,
4621 get_tss_base_addr(vcpu, nseg_desc),
4622 &tss_segment_32.prev_task_link,
4623 sizeof tss_segment_32.prev_task_link))
4624 goto out;
4627 if (load_state_from_tss32(vcpu, &tss_segment_32))
4628 goto out;
4630 ret = 1;
4631 out:
4632 return ret;
4635 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4637 struct kvm_segment tr_seg;
4638 struct desc_struct cseg_desc;
4639 struct desc_struct nseg_desc;
4640 int ret = 0;
4641 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4642 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4644 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4646 /* FIXME: Handle errors. Failure to read either TSS or their
4647 * descriptors should generate a pagefault.
4649 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4650 goto out;
4652 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4653 goto out;
4655 if (reason != TASK_SWITCH_IRET) {
4656 int cpl;
4658 cpl = kvm_x86_ops->get_cpl(vcpu);
4659 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4660 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4661 return 1;
4665 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4666 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4667 return 1;
4670 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4671 cseg_desc.type &= ~(1 << 1); //clear the B flag
4672 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4675 if (reason == TASK_SWITCH_IRET) {
4676 u32 eflags = kvm_get_rflags(vcpu);
4677 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4680 /* set back link to prev task only if NT bit is set in eflags
4681 note that old_tss_sel is not used afetr this point */
4682 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4683 old_tss_sel = 0xffff;
4685 if (nseg_desc.type & 8)
4686 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4687 old_tss_base, &nseg_desc);
4688 else
4689 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4690 old_tss_base, &nseg_desc);
4692 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4693 u32 eflags = kvm_get_rflags(vcpu);
4694 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4697 if (reason != TASK_SWITCH_IRET) {
4698 nseg_desc.type |= (1 << 1);
4699 save_guest_segment_descriptor(vcpu, tss_selector,
4700 &nseg_desc);
4703 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4704 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4705 tr_seg.type = 11;
4706 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4707 out:
4708 return ret;
4710 EXPORT_SYMBOL_GPL(kvm_task_switch);
4712 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4713 struct kvm_sregs *sregs)
4715 int mmu_reset_needed = 0;
4716 int pending_vec, max_bits;
4717 struct descriptor_table dt;
4719 vcpu_load(vcpu);
4721 dt.limit = sregs->idt.limit;
4722 dt.base = sregs->idt.base;
4723 kvm_x86_ops->set_idt(vcpu, &dt);
4724 dt.limit = sregs->gdt.limit;
4725 dt.base = sregs->gdt.base;
4726 kvm_x86_ops->set_gdt(vcpu, &dt);
4728 vcpu->arch.cr2 = sregs->cr2;
4729 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4730 vcpu->arch.cr3 = sregs->cr3;
4732 kvm_set_cr8(vcpu, sregs->cr8);
4734 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4735 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4736 kvm_set_apic_base(vcpu, sregs->apic_base);
4738 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4739 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4740 vcpu->arch.cr0 = sregs->cr0;
4742 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
4743 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4744 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4745 load_pdptrs(vcpu, vcpu->arch.cr3);
4746 mmu_reset_needed = 1;
4749 if (mmu_reset_needed)
4750 kvm_mmu_reset_context(vcpu);
4752 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4753 pending_vec = find_first_bit(
4754 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4755 if (pending_vec < max_bits) {
4756 kvm_queue_interrupt(vcpu, pending_vec, false);
4757 pr_debug("Set back pending irq %d\n", pending_vec);
4758 if (irqchip_in_kernel(vcpu->kvm))
4759 kvm_pic_clear_isr_ack(vcpu->kvm);
4762 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4763 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4764 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4765 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4766 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4767 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4769 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4770 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4772 update_cr8_intercept(vcpu);
4774 /* Older userspace won't unhalt the vcpu on reset. */
4775 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4776 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4777 !(vcpu->arch.cr0 & X86_CR0_PE))
4778 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4780 vcpu_put(vcpu);
4782 return 0;
4785 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4786 struct kvm_guest_debug *dbg)
4788 unsigned long rflags;
4789 int i, r;
4791 vcpu_load(vcpu);
4793 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
4794 r = -EBUSY;
4795 if (vcpu->arch.exception.pending)
4796 goto unlock_out;
4797 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4798 kvm_queue_exception(vcpu, DB_VECTOR);
4799 else
4800 kvm_queue_exception(vcpu, BP_VECTOR);
4804 * Read rflags as long as potentially injected trace flags are still
4805 * filtered out.
4807 rflags = kvm_get_rflags(vcpu);
4809 vcpu->guest_debug = dbg->control;
4810 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4811 vcpu->guest_debug = 0;
4813 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4814 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4815 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4816 vcpu->arch.switch_db_regs =
4817 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4818 } else {
4819 for (i = 0; i < KVM_NR_DB_REGS; i++)
4820 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4821 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4824 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
4825 vcpu->arch.singlestep_cs =
4826 get_segment_selector(vcpu, VCPU_SREG_CS);
4827 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
4831 * Trigger an rflags update that will inject or remove the trace
4832 * flags.
4834 kvm_set_rflags(vcpu, rflags);
4836 kvm_x86_ops->set_guest_debug(vcpu, dbg);
4838 r = 0;
4840 unlock_out:
4841 vcpu_put(vcpu);
4843 return r;
4847 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4848 * we have asm/x86/processor.h
4850 struct fxsave {
4851 u16 cwd;
4852 u16 swd;
4853 u16 twd;
4854 u16 fop;
4855 u64 rip;
4856 u64 rdp;
4857 u32 mxcsr;
4858 u32 mxcsr_mask;
4859 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4860 #ifdef CONFIG_X86_64
4861 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4862 #else
4863 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4864 #endif
4868 * Translate a guest virtual address to a guest physical address.
4870 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4871 struct kvm_translation *tr)
4873 unsigned long vaddr = tr->linear_address;
4874 gpa_t gpa;
4876 vcpu_load(vcpu);
4877 down_read(&vcpu->kvm->slots_lock);
4878 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4879 up_read(&vcpu->kvm->slots_lock);
4880 tr->physical_address = gpa;
4881 tr->valid = gpa != UNMAPPED_GVA;
4882 tr->writeable = 1;
4883 tr->usermode = 0;
4884 vcpu_put(vcpu);
4886 return 0;
4889 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4891 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4893 vcpu_load(vcpu);
4895 memcpy(fpu->fpr, fxsave->st_space, 128);
4896 fpu->fcw = fxsave->cwd;
4897 fpu->fsw = fxsave->swd;
4898 fpu->ftwx = fxsave->twd;
4899 fpu->last_opcode = fxsave->fop;
4900 fpu->last_ip = fxsave->rip;
4901 fpu->last_dp = fxsave->rdp;
4902 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4904 vcpu_put(vcpu);
4906 return 0;
4909 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4911 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4913 vcpu_load(vcpu);
4915 memcpy(fxsave->st_space, fpu->fpr, 128);
4916 fxsave->cwd = fpu->fcw;
4917 fxsave->swd = fpu->fsw;
4918 fxsave->twd = fpu->ftwx;
4919 fxsave->fop = fpu->last_opcode;
4920 fxsave->rip = fpu->last_ip;
4921 fxsave->rdp = fpu->last_dp;
4922 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4924 vcpu_put(vcpu);
4926 return 0;
4929 void fx_init(struct kvm_vcpu *vcpu)
4931 unsigned after_mxcsr_mask;
4934 * Touch the fpu the first time in non atomic context as if
4935 * this is the first fpu instruction the exception handler
4936 * will fire before the instruction returns and it'll have to
4937 * allocate ram with GFP_KERNEL.
4939 if (!used_math())
4940 kvm_fx_save(&vcpu->arch.host_fx_image);
4942 /* Initialize guest FPU by resetting ours and saving into guest's */
4943 preempt_disable();
4944 kvm_fx_save(&vcpu->arch.host_fx_image);
4945 kvm_fx_finit();
4946 kvm_fx_save(&vcpu->arch.guest_fx_image);
4947 kvm_fx_restore(&vcpu->arch.host_fx_image);
4948 preempt_enable();
4950 vcpu->arch.cr0 |= X86_CR0_ET;
4951 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4952 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4953 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4954 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4956 EXPORT_SYMBOL_GPL(fx_init);
4958 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4960 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4961 return;
4963 vcpu->guest_fpu_loaded = 1;
4964 kvm_fx_save(&vcpu->arch.host_fx_image);
4965 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4967 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4969 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4971 if (!vcpu->guest_fpu_loaded)
4972 return;
4974 vcpu->guest_fpu_loaded = 0;
4975 kvm_fx_save(&vcpu->arch.guest_fx_image);
4976 kvm_fx_restore(&vcpu->arch.host_fx_image);
4977 ++vcpu->stat.fpu_reload;
4979 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4981 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4983 if (vcpu->arch.time_page) {
4984 kvm_release_page_dirty(vcpu->arch.time_page);
4985 vcpu->arch.time_page = NULL;
4988 kvm_x86_ops->vcpu_free(vcpu);
4991 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4992 unsigned int id)
4994 return kvm_x86_ops->vcpu_create(kvm, id);
4997 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4999 int r;
5001 /* We do fxsave: this must be aligned. */
5002 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5004 vcpu->arch.mtrr_state.have_fixed = 1;
5005 vcpu_load(vcpu);
5006 r = kvm_arch_vcpu_reset(vcpu);
5007 if (r == 0)
5008 r = kvm_mmu_setup(vcpu);
5009 vcpu_put(vcpu);
5010 if (r < 0)
5011 goto free_vcpu;
5013 return 0;
5014 free_vcpu:
5015 kvm_x86_ops->vcpu_free(vcpu);
5016 return r;
5019 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5021 vcpu_load(vcpu);
5022 kvm_mmu_unload(vcpu);
5023 vcpu_put(vcpu);
5025 kvm_x86_ops->vcpu_free(vcpu);
5028 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5030 vcpu->arch.nmi_pending = false;
5031 vcpu->arch.nmi_injected = false;
5033 vcpu->arch.switch_db_regs = 0;
5034 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5035 vcpu->arch.dr6 = DR6_FIXED_1;
5036 vcpu->arch.dr7 = DR7_FIXED_1;
5038 return kvm_x86_ops->vcpu_reset(vcpu);
5041 int kvm_arch_hardware_enable(void *garbage)
5044 * Since this may be called from a hotplug notifcation,
5045 * we can't get the CPU frequency directly.
5047 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5048 int cpu = raw_smp_processor_id();
5049 per_cpu(cpu_tsc_khz, cpu) = 0;
5052 kvm_shared_msr_cpu_online();
5054 return kvm_x86_ops->hardware_enable(garbage);
5057 void kvm_arch_hardware_disable(void *garbage)
5059 kvm_x86_ops->hardware_disable(garbage);
5060 drop_user_return_notifiers(garbage);
5063 int kvm_arch_hardware_setup(void)
5065 return kvm_x86_ops->hardware_setup();
5068 void kvm_arch_hardware_unsetup(void)
5070 kvm_x86_ops->hardware_unsetup();
5073 void kvm_arch_check_processor_compat(void *rtn)
5075 kvm_x86_ops->check_processor_compatibility(rtn);
5078 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5080 struct page *page;
5081 struct kvm *kvm;
5082 int r;
5084 BUG_ON(vcpu->kvm == NULL);
5085 kvm = vcpu->kvm;
5087 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5088 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5089 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5090 else
5091 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5093 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5094 if (!page) {
5095 r = -ENOMEM;
5096 goto fail;
5098 vcpu->arch.pio_data = page_address(page);
5100 r = kvm_mmu_create(vcpu);
5101 if (r < 0)
5102 goto fail_free_pio_data;
5104 if (irqchip_in_kernel(kvm)) {
5105 r = kvm_create_lapic(vcpu);
5106 if (r < 0)
5107 goto fail_mmu_destroy;
5110 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5111 GFP_KERNEL);
5112 if (!vcpu->arch.mce_banks) {
5113 r = -ENOMEM;
5114 goto fail_free_lapic;
5116 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5118 return 0;
5119 fail_free_lapic:
5120 kvm_free_lapic(vcpu);
5121 fail_mmu_destroy:
5122 kvm_mmu_destroy(vcpu);
5123 fail_free_pio_data:
5124 free_page((unsigned long)vcpu->arch.pio_data);
5125 fail:
5126 return r;
5129 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5131 kfree(vcpu->arch.mce_banks);
5132 kvm_free_lapic(vcpu);
5133 down_read(&vcpu->kvm->slots_lock);
5134 kvm_mmu_destroy(vcpu);
5135 up_read(&vcpu->kvm->slots_lock);
5136 free_page((unsigned long)vcpu->arch.pio_data);
5139 struct kvm *kvm_arch_create_vm(void)
5141 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5143 if (!kvm)
5144 return ERR_PTR(-ENOMEM);
5146 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5147 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5149 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5150 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5152 rdtscll(kvm->arch.vm_init_tsc);
5154 return kvm;
5157 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5159 vcpu_load(vcpu);
5160 kvm_mmu_unload(vcpu);
5161 vcpu_put(vcpu);
5164 static void kvm_free_vcpus(struct kvm *kvm)
5166 unsigned int i;
5167 struct kvm_vcpu *vcpu;
5170 * Unpin any mmu pages first.
5172 kvm_for_each_vcpu(i, vcpu, kvm)
5173 kvm_unload_vcpu_mmu(vcpu);
5174 kvm_for_each_vcpu(i, vcpu, kvm)
5175 kvm_arch_vcpu_free(vcpu);
5177 mutex_lock(&kvm->lock);
5178 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5179 kvm->vcpus[i] = NULL;
5181 atomic_set(&kvm->online_vcpus, 0);
5182 mutex_unlock(&kvm->lock);
5185 void kvm_arch_sync_events(struct kvm *kvm)
5187 kvm_free_all_assigned_devices(kvm);
5190 void kvm_arch_destroy_vm(struct kvm *kvm)
5192 kvm_iommu_unmap_guest(kvm);
5193 kvm_free_pit(kvm);
5194 kfree(kvm->arch.vpic);
5195 kfree(kvm->arch.vioapic);
5196 kvm_free_vcpus(kvm);
5197 kvm_free_physmem(kvm);
5198 if (kvm->arch.apic_access_page)
5199 put_page(kvm->arch.apic_access_page);
5200 if (kvm->arch.ept_identity_pagetable)
5201 put_page(kvm->arch.ept_identity_pagetable);
5202 kfree(kvm);
5205 int kvm_arch_set_memory_region(struct kvm *kvm,
5206 struct kvm_userspace_memory_region *mem,
5207 struct kvm_memory_slot old,
5208 int user_alloc)
5210 int npages = mem->memory_size >> PAGE_SHIFT;
5211 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
5213 /*To keep backward compatibility with older userspace,
5214 *x86 needs to hanlde !user_alloc case.
5216 if (!user_alloc) {
5217 if (npages && !old.rmap) {
5218 unsigned long userspace_addr;
5220 down_write(&current->mm->mmap_sem);
5221 userspace_addr = do_mmap(NULL, 0,
5222 npages * PAGE_SIZE,
5223 PROT_READ | PROT_WRITE,
5224 MAP_PRIVATE | MAP_ANONYMOUS,
5226 up_write(&current->mm->mmap_sem);
5228 if (IS_ERR((void *)userspace_addr))
5229 return PTR_ERR((void *)userspace_addr);
5231 /* set userspace_addr atomically for kvm_hva_to_rmapp */
5232 spin_lock(&kvm->mmu_lock);
5233 memslot->userspace_addr = userspace_addr;
5234 spin_unlock(&kvm->mmu_lock);
5235 } else {
5236 if (!old.user_alloc && old.rmap) {
5237 int ret;
5239 down_write(&current->mm->mmap_sem);
5240 ret = do_munmap(current->mm, old.userspace_addr,
5241 old.npages * PAGE_SIZE);
5242 up_write(&current->mm->mmap_sem);
5243 if (ret < 0)
5244 printk(KERN_WARNING
5245 "kvm_vm_ioctl_set_memory_region: "
5246 "failed to munmap memory\n");
5251 spin_lock(&kvm->mmu_lock);
5252 if (!kvm->arch.n_requested_mmu_pages) {
5253 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5254 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5257 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5258 spin_unlock(&kvm->mmu_lock);
5260 return 0;
5263 void kvm_arch_flush_shadow(struct kvm *kvm)
5265 kvm_mmu_zap_all(kvm);
5266 kvm_reload_remote_mmus(kvm);
5269 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5271 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5272 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5273 || vcpu->arch.nmi_pending ||
5274 (kvm_arch_interrupt_allowed(vcpu) &&
5275 kvm_cpu_has_interrupt(vcpu));
5278 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5280 int me;
5281 int cpu = vcpu->cpu;
5283 if (waitqueue_active(&vcpu->wq)) {
5284 wake_up_interruptible(&vcpu->wq);
5285 ++vcpu->stat.halt_wakeup;
5288 me = get_cpu();
5289 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5290 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5291 smp_send_reschedule(cpu);
5292 put_cpu();
5295 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5297 return kvm_x86_ops->interrupt_allowed(vcpu);
5300 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5302 unsigned long rflags;
5304 rflags = kvm_x86_ops->get_rflags(vcpu);
5305 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5306 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5307 return rflags;
5309 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5311 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5313 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5314 vcpu->arch.singlestep_cs ==
5315 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5316 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5317 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5318 kvm_x86_ops->set_rflags(vcpu, rflags);
5320 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5322 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5323 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5324 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5325 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5326 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5327 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5328 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5329 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5330 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5331 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5332 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);