sparc: convert old cpumask API into new one
[linux-2.6/libata-dev.git] / arch / sparc / kernel / smp_32.c
blob139c312a41f73c04edc06e58c7e6510f3304fa5f
1 /* smp.c: Sparc SMP support.
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
8 #include <asm/head.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
37 #include "irq.h"
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
41 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
43 /* The only guaranteed locking primitive available on all Sparc
44 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
45 * places the current byte at the effective address into dest_reg and
46 * places 0xff there afterwards. Pretty lame locking primitive
47 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
48 * instruction which is much better...
51 void __cpuinit smp_store_cpu_info(int id)
53 int cpu_node;
55 cpu_data(id).udelay_val = loops_per_jiffy;
57 cpu_find_by_mid(id, &cpu_node);
58 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
59 "clock-frequency", 0);
60 cpu_data(id).prom_node = cpu_node;
61 cpu_data(id).mid = cpu_get_hwmid(cpu_node);
63 if (cpu_data(id).mid < 0)
64 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
67 void __init smp_cpus_done(unsigned int max_cpus)
69 extern void smp4m_smp_done(void);
70 extern void smp4d_smp_done(void);
71 unsigned long bogosum = 0;
72 int cpu, num = 0;
74 for_each_online_cpu(cpu) {
75 num++;
76 bogosum += cpu_data(cpu).udelay_val;
79 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
80 num, bogosum/(500000/HZ),
81 (bogosum/(5000/HZ))%100);
83 switch(sparc_cpu_model) {
84 case sun4:
85 printk("SUN4\n");
86 BUG();
87 break;
88 case sun4c:
89 printk("SUN4C\n");
90 BUG();
91 break;
92 case sun4m:
93 smp4m_smp_done();
94 break;
95 case sun4d:
96 smp4d_smp_done();
97 break;
98 case sparc_leon:
99 leon_smp_done();
100 break;
101 case sun4e:
102 printk("SUN4E\n");
103 BUG();
104 break;
105 case sun4u:
106 printk("SUN4U\n");
107 BUG();
108 break;
109 default:
110 printk("UNKNOWN!\n");
111 BUG();
112 break;
116 void cpu_panic(void)
118 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
119 panic("SMP bolixed\n");
122 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
124 void smp_send_reschedule(int cpu)
127 * CPU model dependent way of implementing IPI generation targeting
128 * a single CPU. The trap handler needs only to do trap entry/return
129 * to call schedule.
131 BTFIXUP_CALL(smp_ipi_resched)(cpu);
134 void smp_send_stop(void)
138 void arch_send_call_function_single_ipi(int cpu)
140 /* trigger one IPI single call on one CPU */
141 BTFIXUP_CALL(smp_ipi_single)(cpu);
144 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
146 int cpu;
148 /* trigger IPI mask call on each CPU */
149 for_each_cpu(cpu, mask)
150 BTFIXUP_CALL(smp_ipi_mask_one)(cpu);
153 void smp_resched_interrupt(void)
155 local_cpu_data().irq_resched_count++;
157 * do nothing, since it all was about calling re-schedule
158 * routine called by interrupt return code.
162 void smp_call_function_single_interrupt(void)
164 irq_enter();
165 generic_smp_call_function_single_interrupt();
166 local_cpu_data().irq_call_count++;
167 irq_exit();
170 void smp_call_function_interrupt(void)
172 irq_enter();
173 generic_smp_call_function_interrupt();
174 local_cpu_data().irq_call_count++;
175 irq_exit();
178 void smp_flush_cache_all(void)
180 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
181 local_flush_cache_all();
184 void smp_flush_tlb_all(void)
186 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
187 local_flush_tlb_all();
190 void smp_flush_cache_mm(struct mm_struct *mm)
192 if(mm->context != NO_CONTEXT) {
193 cpumask_t cpu_mask;
194 cpumask_copy(&cpu_mask, mm_cpumask(mm));
195 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
196 if (!cpumask_empty(&cpu_mask))
197 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
198 local_flush_cache_mm(mm);
202 void smp_flush_tlb_mm(struct mm_struct *mm)
204 if(mm->context != NO_CONTEXT) {
205 cpumask_t cpu_mask;
206 cpumask_copy(&cpu_mask, mm_cpumask(mm));
207 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
208 if (!cpumask_empty(&cpu_mask)) {
209 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
210 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
211 cpumask_copy(mm_cpumask(mm),
212 cpumask_of(smp_processor_id()));
214 local_flush_tlb_mm(mm);
218 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
219 unsigned long end)
221 struct mm_struct *mm = vma->vm_mm;
223 if (mm->context != NO_CONTEXT) {
224 cpumask_t cpu_mask;
225 cpumask_copy(&cpu_mask, mm_cpumask(mm));
226 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
227 if (!cpumask_empty(&cpu_mask))
228 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
229 local_flush_cache_range(vma, start, end);
233 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
234 unsigned long end)
236 struct mm_struct *mm = vma->vm_mm;
238 if (mm->context != NO_CONTEXT) {
239 cpumask_t cpu_mask;
240 cpumask_copy(&cpu_mask, mm_cpumask(mm));
241 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
242 if (!cpumask_empty(&cpu_mask))
243 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
244 local_flush_tlb_range(vma, start, end);
248 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
250 struct mm_struct *mm = vma->vm_mm;
252 if(mm->context != NO_CONTEXT) {
253 cpumask_t cpu_mask;
254 cpumask_copy(&cpu_mask, mm_cpumask(mm));
255 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
256 if (!cpumask_empty(&cpu_mask))
257 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
258 local_flush_cache_page(vma, page);
262 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
264 struct mm_struct *mm = vma->vm_mm;
266 if(mm->context != NO_CONTEXT) {
267 cpumask_t cpu_mask;
268 cpumask_copy(&cpu_mask, mm_cpumask(mm));
269 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
270 if (!cpumask_empty(&cpu_mask))
271 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
272 local_flush_tlb_page(vma, page);
276 void smp_flush_page_to_ram(unsigned long page)
278 /* Current theory is that those who call this are the one's
279 * who have just dirtied their cache with the pages contents
280 * in kernel space, therefore we only run this on local cpu.
282 * XXX This experiment failed, research further... -DaveM
284 #if 1
285 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
286 #endif
287 local_flush_page_to_ram(page);
290 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
292 cpumask_t cpu_mask;
293 cpumask_copy(&cpu_mask, mm_cpumask(mm));
294 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
295 if (!cpumask_empty(&cpu_mask))
296 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
297 local_flush_sig_insns(mm, insn_addr);
300 extern unsigned int lvl14_resolution;
302 /* /proc/profile writes can call this, don't __init it please. */
303 static DEFINE_SPINLOCK(prof_setup_lock);
305 int setup_profiling_timer(unsigned int multiplier)
307 int i;
308 unsigned long flags;
310 /* Prevent level14 ticker IRQ flooding. */
311 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
312 return -EINVAL;
314 spin_lock_irqsave(&prof_setup_lock, flags);
315 for_each_possible_cpu(i) {
316 load_profile_irq(i, lvl14_resolution / multiplier);
317 prof_multiplier(i) = multiplier;
319 spin_unlock_irqrestore(&prof_setup_lock, flags);
321 return 0;
324 void __init smp_prepare_cpus(unsigned int max_cpus)
326 extern void __init smp4m_boot_cpus(void);
327 extern void __init smp4d_boot_cpus(void);
328 int i, cpuid, extra;
330 printk("Entering SMP Mode...\n");
332 extra = 0;
333 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
334 if (cpuid >= NR_CPUS)
335 extra++;
337 /* i = number of cpus */
338 if (extra && max_cpus > i - extra)
339 printk("Warning: NR_CPUS is too low to start all cpus\n");
341 smp_store_cpu_info(boot_cpu_id);
343 switch(sparc_cpu_model) {
344 case sun4:
345 printk("SUN4\n");
346 BUG();
347 break;
348 case sun4c:
349 printk("SUN4C\n");
350 BUG();
351 break;
352 case sun4m:
353 smp4m_boot_cpus();
354 break;
355 case sun4d:
356 smp4d_boot_cpus();
357 break;
358 case sparc_leon:
359 leon_boot_cpus();
360 break;
361 case sun4e:
362 printk("SUN4E\n");
363 BUG();
364 break;
365 case sun4u:
366 printk("SUN4U\n");
367 BUG();
368 break;
369 default:
370 printk("UNKNOWN!\n");
371 BUG();
372 break;
376 /* Set this up early so that things like the scheduler can init
377 * properly. We use the same cpu mask for both the present and
378 * possible cpu map.
380 void __init smp_setup_cpu_possible_map(void)
382 int instance, mid;
384 instance = 0;
385 while (!cpu_find_by_instance(instance, NULL, &mid)) {
386 if (mid < NR_CPUS) {
387 set_cpu_possible(mid, true);
388 set_cpu_present(mid, true);
390 instance++;
394 void __init smp_prepare_boot_cpu(void)
396 int cpuid = hard_smp_processor_id();
398 if (cpuid >= NR_CPUS) {
399 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
400 prom_halt();
402 if (cpuid != 0)
403 printk("boot cpu id != 0, this could work but is untested\n");
405 current_thread_info()->cpu = cpuid;
406 set_cpu_online(cpuid, true);
407 set_cpu_possible(cpuid, true);
410 int __cpuinit __cpu_up(unsigned int cpu)
412 extern int __cpuinit smp4m_boot_one_cpu(int);
413 extern int __cpuinit smp4d_boot_one_cpu(int);
414 int ret=0;
416 switch(sparc_cpu_model) {
417 case sun4:
418 printk("SUN4\n");
419 BUG();
420 break;
421 case sun4c:
422 printk("SUN4C\n");
423 BUG();
424 break;
425 case sun4m:
426 ret = smp4m_boot_one_cpu(cpu);
427 break;
428 case sun4d:
429 ret = smp4d_boot_one_cpu(cpu);
430 break;
431 case sparc_leon:
432 ret = leon_boot_one_cpu(cpu);
433 break;
434 case sun4e:
435 printk("SUN4E\n");
436 BUG();
437 break;
438 case sun4u:
439 printk("SUN4U\n");
440 BUG();
441 break;
442 default:
443 printk("UNKNOWN!\n");
444 BUG();
445 break;
448 if (!ret) {
449 cpumask_set_cpu(cpu, &smp_commenced_mask);
450 while (!cpu_online(cpu))
451 mb();
453 return ret;
456 void smp_bogo(struct seq_file *m)
458 int i;
460 for_each_online_cpu(i) {
461 seq_printf(m,
462 "Cpu%dBogo\t: %lu.%02lu\n",
464 cpu_data(i).udelay_val/(500000/HZ),
465 (cpu_data(i).udelay_val/(5000/HZ))%100);
469 void smp_info(struct seq_file *m)
471 int i;
473 seq_printf(m, "State:\n");
474 for_each_online_cpu(i)
475 seq_printf(m, "CPU%d\t\t: online\n", i);