Merge branch 'sched/urgent' into sched/core
[linux-2.6/libata-dev.git] / kernel / sched / core.c
blobbd314d7cd9f8830fd6508b36945a29561382c08e
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
84 #include "sched.h"
85 #include "../workqueue_sched.h"
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
90 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92 unsigned long delta;
93 ktime_t soft, hard, now;
95 for (;;) {
96 if (hrtimer_active(period_timer))
97 break;
99 now = hrtimer_cb_get_time(period_timer);
100 hrtimer_forward(period_timer, now, period);
102 soft = hrtimer_get_softexpires(period_timer);
103 hard = hrtimer_get_expires(period_timer);
104 delta = ktime_to_ns(ktime_sub(hard, soft));
105 __hrtimer_start_range_ns(period_timer, soft, delta,
106 HRTIMER_MODE_ABS_PINNED, 0);
110 DEFINE_MUTEX(sched_domains_mutex);
111 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113 static void update_rq_clock_task(struct rq *rq, s64 delta);
115 void update_rq_clock(struct rq *rq)
117 s64 delta;
119 if (rq->skip_clock_update > 0)
120 return;
122 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123 rq->clock += delta;
124 update_rq_clock_task(rq, delta);
128 * Debugging: various feature bits
131 #define SCHED_FEAT(name, enabled) \
132 (1UL << __SCHED_FEAT_##name) * enabled |
134 const_debug unsigned int sysctl_sched_features =
135 #include "features.h"
138 #undef SCHED_FEAT
140 #ifdef CONFIG_SCHED_DEBUG
141 #define SCHED_FEAT(name, enabled) \
142 #name ,
144 static __read_mostly char *sched_feat_names[] = {
145 #include "features.h"
146 NULL
149 #undef SCHED_FEAT
151 static int sched_feat_show(struct seq_file *m, void *v)
153 int i;
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
160 seq_puts(m, "\n");
162 return 0;
165 #ifdef HAVE_JUMP_LABEL
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
177 #undef SCHED_FEAT
179 static void sched_feat_disable(int i)
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
185 static void sched_feat_enable(int i)
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
199 char buf[64];
200 char *cmp;
201 int neg = 0;
202 int i;
204 if (cnt > 63)
205 cnt = 63;
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
210 buf[cnt] = 0;
211 cmp = strstrip(buf);
213 if (strncmp(cmp, "NO_", 3) == 0) {
214 neg = 1;
215 cmp += 3;
218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 if (neg) {
221 sysctl_sched_features &= ~(1UL << i);
222 sched_feat_disable(i);
223 } else {
224 sysctl_sched_features |= (1UL << i);
225 sched_feat_enable(i);
227 break;
231 if (i == __SCHED_FEAT_NR)
232 return -EINVAL;
234 *ppos += cnt;
236 return cnt;
239 static int sched_feat_open(struct inode *inode, struct file *filp)
241 return single_open(filp, sched_feat_show, NULL);
244 static const struct file_operations sched_feat_fops = {
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
252 static __init int sched_init_debug(void)
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
257 return 0;
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
269 * period over which we average the RT time consumption, measured
270 * in ms.
272 * default: 1s
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
280 unsigned int sysctl_sched_rt_period = 1000000;
282 __read_mostly int scheduler_running;
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
288 int sysctl_sched_rt_runtime = 950000;
293 * __task_rq_lock - lock the rq @p resides on.
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 __acquires(rq->lock)
298 struct rq *rq;
300 lockdep_assert_held(&p->pi_lock);
302 for (;;) {
303 rq = task_rq(p);
304 raw_spin_lock(&rq->lock);
305 if (likely(rq == task_rq(p)))
306 return rq;
307 raw_spin_unlock(&rq->lock);
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 __acquires(p->pi_lock)
316 __acquires(rq->lock)
318 struct rq *rq;
320 for (;;) {
321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 rq = task_rq(p);
323 raw_spin_lock(&rq->lock);
324 if (likely(rq == task_rq(p)))
325 return rq;
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
331 static void __task_rq_unlock(struct rq *rq)
332 __releases(rq->lock)
334 raw_spin_unlock(&rq->lock);
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 __releases(rq->lock)
340 __releases(p->pi_lock)
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
347 * this_rq_lock - lock this runqueue and disable interrupts.
349 static struct rq *this_rq_lock(void)
350 __acquires(rq->lock)
352 struct rq *rq;
354 local_irq_disable();
355 rq = this_rq();
356 raw_spin_lock(&rq->lock);
358 return rq;
361 #ifdef CONFIG_SCHED_HRTICK
363 * Use HR-timers to deliver accurate preemption points.
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
373 static void hrtick_clear(struct rq *rq)
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
394 return HRTIMER_NORESTART;
397 #ifdef CONFIG_SMP
399 * called from hardirq (IPI) context
401 static void __hrtick_start(void *arg)
403 struct rq *rq = arg;
405 raw_spin_lock(&rq->lock);
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
408 raw_spin_unlock(&rq->lock);
412 * Called to set the hrtick timer state.
414 * called with rq->lock held and irqs disabled
416 void hrtick_start(struct rq *rq, u64 delay)
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421 hrtimer_set_expires(timer, time);
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 rq->hrtick_csd_pending = 1;
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
434 int cpu = (int)(long)hcpu;
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 hrtick_clear(cpu_rq(cpu));
444 return NOTIFY_OK;
447 return NOTIFY_DONE;
450 static __init void init_hrtick(void)
452 hotcpu_notifier(hotplug_hrtick, 0);
454 #else
456 * Called to set the hrtick timer state.
458 * called with rq->lock held and irqs disabled
460 void hrtick_start(struct rq *rq, u64 delay)
462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 HRTIMER_MODE_REL_PINNED, 0);
466 static inline void init_hrtick(void)
469 #endif /* CONFIG_SMP */
471 static void init_rq_hrtick(struct rq *rq)
473 #ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479 #endif
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
484 #else /* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
489 static inline void init_rq_hrtick(struct rq *rq)
493 static inline void init_hrtick(void)
496 #endif /* CONFIG_SCHED_HRTICK */
499 * resched_task - mark a task 'to be rescheduled now'.
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
505 #ifdef CONFIG_SMP
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
511 void resched_task(struct task_struct *p)
513 int cpu;
515 assert_raw_spin_locked(&task_rq(p)->lock);
517 if (test_tsk_need_resched(p))
518 return;
520 set_tsk_need_resched(p);
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
532 void resched_cpu(int cpu)
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 return;
539 resched_task(cpu_curr(cpu));
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
543 #ifdef CONFIG_NO_HZ
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
552 int get_nohz_timer_target(void)
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
558 rcu_read_lock();
559 for_each_domain(cpu, sd) {
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
567 unlock:
568 rcu_read_unlock();
569 return cpu;
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
581 void wake_up_idle_cpu(int cpu)
583 struct rq *rq = cpu_rq(cpu);
585 if (cpu == smp_processor_id())
586 return;
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
595 if (rq->curr != rq->idle)
596 return;
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
603 set_tsk_need_resched(rq->idle);
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
611 static inline bool got_nohz_idle_kick(void)
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
617 #else /* CONFIG_NO_HZ */
619 static inline bool got_nohz_idle_kick(void)
621 return false;
624 #endif /* CONFIG_NO_HZ */
626 void sched_avg_update(struct rq *rq)
628 s64 period = sched_avg_period();
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
645 assert_raw_spin_locked(&task_rq(p)->lock);
646 set_tsk_need_resched(p);
648 #endif /* CONFIG_SMP */
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
656 * Caller must hold rcu_lock or sufficient equivalent.
658 int walk_tg_tree_from(struct task_group *from,
659 tg_visitor down, tg_visitor up, void *data)
661 struct task_group *parent, *child;
662 int ret;
664 parent = from;
666 down:
667 ret = (*down)(parent, data);
668 if (ret)
669 goto out;
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
675 continue;
677 ret = (*up)(parent, data);
678 if (ret || parent == from)
679 goto out;
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
685 out:
686 return ret;
689 int tg_nop(struct task_group *tg, void *data)
691 return 0;
693 #endif
695 static void set_load_weight(struct task_struct *p)
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
701 * SCHED_IDLE tasks get minimal weight:
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
732 enqueue_task(rq, p, flags);
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
740 dequeue_task(rq, p, flags);
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
762 void enable_sched_clock_irqtime(void)
764 sched_clock_irqtime = 1;
767 void disable_sched_clock_irqtime(void)
769 sched_clock_irqtime = 0;
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775 static inline void irq_time_write_begin(void)
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
781 static inline void irq_time_write_end(void)
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
787 static inline u64 irq_time_read(int cpu)
789 u64 irq_time;
790 unsigned seq;
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798 return irq_time;
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
805 static inline void irq_time_write_end(void)
809 static inline u64 irq_time_read(int cpu)
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813 #endif /* CONFIG_64BIT */
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
819 void account_system_vtime(struct task_struct *curr)
821 unsigned long flags;
822 s64 delta;
823 int cpu;
825 if (!sched_clock_irqtime)
826 return;
828 local_irq_save(flags);
830 cpu = smp_processor_id();
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
834 irq_time_write_begin();
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
841 if (hardirq_count())
842 __this_cpu_add(cpu_hardirq_time, delta);
843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time, delta);
846 irq_time_write_end();
847 local_irq_restore(flags);
849 EXPORT_SYMBOL_GPL(account_system_vtime);
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861 #endif
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
890 if (irq_delta > delta)
891 irq_delta = delta;
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_key_false((&paravirt_steal_rq_enabled))) {
898 u64 st;
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
903 if (unlikely(steal > delta))
904 steal = delta;
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
909 rq->prev_steal_time_rq += steal;
911 delta -= steal;
913 #endif
915 rq->clock_task += delta;
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
926 u64 *cpustat = kcpustat_this_cpu->cpustat;
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
939 static int irqtime_account_si_update(void)
941 u64 *cpustat = kcpustat_this_cpu->cpustat;
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
956 #define sched_clock_irqtime (0)
958 #endif
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
965 if (stop) {
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976 stop->sched_class = &stop_sched_class;
979 cpu_rq(cpu)->stop = stop;
981 if (old_stop) {
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
986 old_stop->sched_class = &rt_sched_class;
991 * __normal_prio - return the priority that is based on the static prio
993 static inline int __normal_prio(struct task_struct *p)
995 return p->static_prio;
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1005 static inline int normal_prio(struct task_struct *p)
1007 int prio;
1009 if (task_has_rt_policy(p))
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1023 static int effective_prio(struct task_struct *p)
1025 p->normal_prio = normal_prio(p);
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1040 inline int task_curr(const struct task_struct *p)
1042 return cpu_curr(task_cpu(p)) == p;
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
1047 int oldprio)
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1059 const struct sched_class *class;
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 rq->skip_clock_update = 1;
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1085 #ifdef CONFIG_SCHED_DEBUG
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1093 #ifdef CONFIG_LOCKDEP
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1109 trace_sched_migrate_task(p, new_cpu);
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116 __set_task_cpu(p, new_cpu);
1119 struct migration_arg {
1120 struct task_struct *task;
1121 int dest_cpu;
1124 static int migration_cpu_stop(void *data);
1127 * wait_task_inactive - wait for a thread to unschedule.
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1144 unsigned long flags;
1145 int running, on_rq;
1146 unsigned long ncsw;
1147 struct rq *rq;
1149 for (;;) {
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1156 rq = task_rq(p);
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
1172 cpu_relax();
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1180 rq = task_rq_lock(p, &flags);
1181 trace_sched_wait_task(p);
1182 running = task_running(rq, p);
1183 on_rq = p->on_rq;
1184 ncsw = 0;
1185 if (!match_state || p->state == match_state)
1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 task_rq_unlock(rq, p, &flags);
1190 * If it changed from the expected state, bail out now.
1192 if (unlikely(!ncsw))
1193 break;
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1199 * Oops. Go back and try again..
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1215 if (unlikely(on_rq)) {
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 continue;
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1228 break;
1231 return ncsw;
1234 /***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1247 void kick_process(struct task_struct *p)
1249 int cpu;
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1260 #ifdef CONFIG_SMP
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
1270 /* Look for allowed, online CPU in same node. */
1271 for_each_cpu(dest_cpu, nodemask) {
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 return dest_cpu;
1280 for (;;) {
1281 /* Any allowed, online CPU? */
1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1302 case fail:
1303 BUG();
1304 break;
1308 out:
1309 if (state != cpuset) {
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1321 return dest_cpu;
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1327 static inline
1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1337 * Since this is common to all placement strategies, this lives here.
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343 !cpu_online(cpu)))
1344 cpu = select_fallback_rq(task_cpu(p), p);
1346 return cpu;
1349 static void update_avg(u64 *avg, u64 sample)
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1354 #endif
1356 static void
1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1359 #ifdef CONFIG_SCHEDSTATS
1360 struct rq *rq = this_rq();
1362 #ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372 rcu_read_lock();
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1379 rcu_read_unlock();
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1385 #endif /* CONFIG_SMP */
1387 schedstat_inc(rq, ttwu_count);
1388 schedstat_inc(p, se.statistics.nr_wakeups);
1390 if (wake_flags & WF_SYNC)
1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1393 #endif /* CONFIG_SCHEDSTATS */
1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1398 activate_task(rq, p, en_flags);
1399 p->on_rq = 1;
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
1407 * Mark the task runnable and perform wakeup-preemption.
1409 static void
1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1412 trace_sched_wakeup(p, true);
1413 check_preempt_curr(rq, p, wake_flags);
1415 p->state = TASK_RUNNING;
1416 #ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1420 if (rq->idle_stamp) {
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1430 #endif
1433 static void
1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1436 #ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439 #endif
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1451 static int ttwu_remote(struct task_struct *p, int wake_flags)
1453 struct rq *rq;
1454 int ret = 0;
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1461 __task_rq_unlock(rq);
1463 return ret;
1466 #ifdef CONFIG_SMP
1467 static void sched_ttwu_pending(void)
1469 struct rq *rq = this_rq();
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
1473 raw_spin_lock(&rq->lock);
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
1478 ttwu_do_activate(rq, p, 0);
1481 raw_spin_unlock(&rq->lock);
1484 void scheduler_ipi(void)
1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 return;
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1502 irq_enter();
1503 sched_ttwu_pending();
1506 * Check if someone kicked us for doing the nohz idle load balance.
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
1512 irq_exit();
1515 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 smp_send_reschedule(cpu);
1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1524 struct rq *rq;
1525 int ret = 0;
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1533 __task_rq_unlock(rq);
1535 return ret;
1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 #endif /* CONFIG_SMP */
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1548 struct rq *rq = cpu_rq(cpu);
1550 #if defined(CONFIG_SMP)
1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 ttwu_queue_remote(p, cpu);
1554 return;
1556 #endif
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1578 static int
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 unsigned long flags;
1582 int cpu, success = 0;
1584 smp_wmb();
1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
1586 if (!(p->state & state))
1587 goto out;
1589 success = 1; /* we're going to change ->state */
1590 cpu = task_cpu(p);
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1595 #ifdef CONFIG_SMP
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
1600 while (p->on_cpu) {
1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
1609 if (ttwu_activate_remote(p, wake_flags))
1610 goto stat;
1611 #else
1612 cpu_relax();
1613 #endif
1616 * Pairs with the smp_wmb() in finish_lock_switch().
1618 smp_rmb();
1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621 p->state = TASK_WAKING;
1623 if (p->sched_class->task_waking)
1624 p->sched_class->task_waking(p);
1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
1629 set_task_cpu(p, cpu);
1631 #endif /* CONFIG_SMP */
1633 ttwu_queue(p, cpu);
1634 stat:
1635 ttwu_stat(p, cpu, wake_flags);
1636 out:
1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1639 return success;
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648 * the current task.
1650 static void try_to_wake_up_local(struct task_struct *p)
1652 struct rq *rq = task_rq(p);
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1664 if (!(p->state & TASK_NORMAL))
1665 goto out;
1667 if (!p->on_rq)
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1670 ttwu_do_wakeup(rq, p, 0);
1671 ttwu_stat(p, smp_processor_id(), 0);
1672 out:
1673 raw_spin_unlock(&p->pi_lock);
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1687 int wake_up_process(struct task_struct *p)
1689 return try_to_wake_up(p, TASK_ALL, 0);
1691 EXPORT_SYMBOL(wake_up_process);
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1695 return try_to_wake_up(p, state, 0);
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1702 * __sched_fork() is basic setup used by init_idle() too:
1704 static void __sched_fork(struct task_struct *p)
1706 p->on_rq = 0;
1708 p->se.on_rq = 0;
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
1711 p->se.prev_sum_exec_runtime = 0;
1712 p->se.nr_migrations = 0;
1713 p->se.vruntime = 0;
1714 INIT_LIST_HEAD(&p->se.group_node);
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1720 INIT_LIST_HEAD(&p->rt.run_list);
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1728 * fork()/clone()-time setup:
1730 void sched_fork(struct task_struct *p)
1732 unsigned long flags;
1733 int cpu = get_cpu();
1735 __sched_fork(p);
1737 * We mark the process as running here. This guarantees that
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1741 p->state = TASK_RUNNING;
1744 * Make sure we do not leak PI boosting priority to the child.
1746 p->prio = current->normal_prio;
1749 * Revert to default priority/policy on fork if requested.
1751 if (unlikely(p->sched_reset_on_fork)) {
1752 if (task_has_rt_policy(p)) {
1753 p->policy = SCHED_NORMAL;
1754 p->static_prio = NICE_TO_PRIO(0);
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1766 p->sched_reset_on_fork = 0;
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1780 * Silence PROVE_RCU.
1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
1783 set_task_cpu(p, cpu);
1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787 if (likely(sched_info_on()))
1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1789 #endif
1790 #if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
1792 #endif
1793 #ifdef CONFIG_PREEMPT_COUNT
1794 /* Want to start with kernel preemption disabled. */
1795 task_thread_info(p)->preempt_count = 1;
1796 #endif
1797 #ifdef CONFIG_SMP
1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799 #endif
1801 put_cpu();
1805 * wake_up_new_task - wake up a newly created task for the first time.
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1811 void wake_up_new_task(struct task_struct *p)
1813 unsigned long flags;
1814 struct rq *rq;
1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 #ifdef CONFIG_SMP
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 #endif
1826 rq = __task_rq_lock(p);
1827 activate_task(rq, p, 0);
1828 p->on_rq = 1;
1829 trace_sched_wakeup_new(p, true);
1830 check_preempt_curr(rq, p, WF_FORK);
1831 #ifdef CONFIG_SMP
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
1834 #endif
1835 task_rq_unlock(rq, p, &flags);
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1844 void preempt_notifier_register(struct preempt_notifier *notifier)
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1854 * This is safe to call from within a preemption notifier.
1856 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858 hlist_del(&notifier->link);
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871 static void
1872 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1888 static void
1889 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1909 static inline void
1910 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
1913 sched_info_switch(prev, next);
1914 perf_event_task_sched_out(prev, next);
1915 fire_sched_out_preempt_notifiers(prev, next);
1916 prepare_lock_switch(rq, next);
1917 prepare_arch_switch(next);
1918 trace_sched_switch(prev, next);
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937 __releases(rq->lock)
1939 struct mm_struct *mm = rq->prev_mm;
1940 long prev_state;
1942 rq->prev_mm = NULL;
1945 * A task struct has one reference for the use as "current".
1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
1949 * The test for TASK_DEAD must occur while the runqueue locks are
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1955 prev_state = prev->state;
1956 finish_arch_switch(prev);
1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960 perf_event_task_sched_in(prev, current);
1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964 finish_lock_switch(rq, prev);
1965 finish_arch_post_lock_switch();
1967 fire_sched_in_preempt_notifiers(current);
1968 if (mm)
1969 mmdrop(mm);
1970 if (unlikely(prev_state == TASK_DEAD)) {
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
1975 kprobe_flush_task(prev);
1976 put_task_struct(prev);
1980 #ifdef CONFIG_SMP
1982 /* assumes rq->lock is held */
1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1989 /* rq->lock is NOT held, but preemption is disabled */
1990 static inline void post_schedule(struct rq *rq)
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1995 raw_spin_lock_irqsave(&rq->lock, flags);
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
2000 rq->post_schedule = 0;
2004 #else
2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2010 static inline void post_schedule(struct rq *rq)
2014 #endif
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2020 asmlinkage void schedule_tail(struct task_struct *prev)
2021 __releases(rq->lock)
2023 struct rq *rq = this_rq();
2025 finish_task_switch(rq, prev);
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2031 post_schedule(rq);
2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036 #endif
2037 if (current->set_child_tid)
2038 put_user(task_pid_vnr(current), current->set_child_tid);
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2045 static inline void
2046 context_switch(struct rq *rq, struct task_struct *prev,
2047 struct task_struct *next)
2049 struct mm_struct *mm, *oldmm;
2051 prepare_task_switch(rq, prev, next);
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2060 arch_start_context_switch(prev);
2062 if (!mm) {
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2069 if (!prev->mm) {
2070 prev->active_mm = NULL;
2071 rq->prev_mm = oldmm;
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081 #endif
2083 /* Here we just switch the register state and the stack. */
2084 switch_to(prev, next, prev);
2086 barrier();
2088 * this_rq must be evaluated again because prev may have moved
2089 * CPUs since it called schedule(), thus the 'rq' on its stack
2090 * frame will be invalid.
2092 finish_task_switch(this_rq(), prev);
2096 * nr_running, nr_uninterruptible and nr_context_switches:
2098 * externally visible scheduler statistics: current number of runnable
2099 * threads, current number of uninterruptible-sleeping threads, total
2100 * number of context switches performed since bootup.
2102 unsigned long nr_running(void)
2104 unsigned long i, sum = 0;
2106 for_each_online_cpu(i)
2107 sum += cpu_rq(i)->nr_running;
2109 return sum;
2112 unsigned long nr_uninterruptible(void)
2114 unsigned long i, sum = 0;
2116 for_each_possible_cpu(i)
2117 sum += cpu_rq(i)->nr_uninterruptible;
2120 * Since we read the counters lockless, it might be slightly
2121 * inaccurate. Do not allow it to go below zero though:
2123 if (unlikely((long)sum < 0))
2124 sum = 0;
2126 return sum;
2129 unsigned long long nr_context_switches(void)
2131 int i;
2132 unsigned long long sum = 0;
2134 for_each_possible_cpu(i)
2135 sum += cpu_rq(i)->nr_switches;
2137 return sum;
2140 unsigned long nr_iowait(void)
2142 unsigned long i, sum = 0;
2144 for_each_possible_cpu(i)
2145 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2147 return sum;
2150 unsigned long nr_iowait_cpu(int cpu)
2152 struct rq *this = cpu_rq(cpu);
2153 return atomic_read(&this->nr_iowait);
2156 unsigned long this_cpu_load(void)
2158 struct rq *this = this_rq();
2159 return this->cpu_load[0];
2163 /* Variables and functions for calc_load */
2164 static atomic_long_t calc_load_tasks;
2165 static unsigned long calc_load_update;
2166 unsigned long avenrun[3];
2167 EXPORT_SYMBOL(avenrun);
2169 static long calc_load_fold_active(struct rq *this_rq)
2171 long nr_active, delta = 0;
2173 nr_active = this_rq->nr_running;
2174 nr_active += (long) this_rq->nr_uninterruptible;
2176 if (nr_active != this_rq->calc_load_active) {
2177 delta = nr_active - this_rq->calc_load_active;
2178 this_rq->calc_load_active = nr_active;
2181 return delta;
2184 static unsigned long
2185 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2187 load *= exp;
2188 load += active * (FIXED_1 - exp);
2189 load += 1UL << (FSHIFT - 1);
2190 return load >> FSHIFT;
2193 #ifdef CONFIG_NO_HZ
2195 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2197 * When making the ILB scale, we should try to pull this in as well.
2199 static atomic_long_t calc_load_tasks_idle;
2201 void calc_load_account_idle(struct rq *this_rq)
2203 long delta;
2205 delta = calc_load_fold_active(this_rq);
2206 if (delta)
2207 atomic_long_add(delta, &calc_load_tasks_idle);
2210 static long calc_load_fold_idle(void)
2212 long delta = 0;
2215 * Its got a race, we don't care...
2217 if (atomic_long_read(&calc_load_tasks_idle))
2218 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2220 return delta;
2224 * fixed_power_int - compute: x^n, in O(log n) time
2226 * @x: base of the power
2227 * @frac_bits: fractional bits of @x
2228 * @n: power to raise @x to.
2230 * By exploiting the relation between the definition of the natural power
2231 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2232 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2233 * (where: n_i \elem {0, 1}, the binary vector representing n),
2234 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2235 * of course trivially computable in O(log_2 n), the length of our binary
2236 * vector.
2238 static unsigned long
2239 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2241 unsigned long result = 1UL << frac_bits;
2243 if (n) for (;;) {
2244 if (n & 1) {
2245 result *= x;
2246 result += 1UL << (frac_bits - 1);
2247 result >>= frac_bits;
2249 n >>= 1;
2250 if (!n)
2251 break;
2252 x *= x;
2253 x += 1UL << (frac_bits - 1);
2254 x >>= frac_bits;
2257 return result;
2261 * a1 = a0 * e + a * (1 - e)
2263 * a2 = a1 * e + a * (1 - e)
2264 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2265 * = a0 * e^2 + a * (1 - e) * (1 + e)
2267 * a3 = a2 * e + a * (1 - e)
2268 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2269 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2271 * ...
2273 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2274 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2275 * = a0 * e^n + a * (1 - e^n)
2277 * [1] application of the geometric series:
2279 * n 1 - x^(n+1)
2280 * S_n := \Sum x^i = -------------
2281 * i=0 1 - x
2283 static unsigned long
2284 calc_load_n(unsigned long load, unsigned long exp,
2285 unsigned long active, unsigned int n)
2288 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2292 * NO_HZ can leave us missing all per-cpu ticks calling
2293 * calc_load_account_active(), but since an idle CPU folds its delta into
2294 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2295 * in the pending idle delta if our idle period crossed a load cycle boundary.
2297 * Once we've updated the global active value, we need to apply the exponential
2298 * weights adjusted to the number of cycles missed.
2300 static void calc_global_nohz(void)
2302 long delta, active, n;
2305 * If we crossed a calc_load_update boundary, make sure to fold
2306 * any pending idle changes, the respective CPUs might have
2307 * missed the tick driven calc_load_account_active() update
2308 * due to NO_HZ.
2310 delta = calc_load_fold_idle();
2311 if (delta)
2312 atomic_long_add(delta, &calc_load_tasks);
2315 * It could be the one fold was all it took, we done!
2317 if (time_before(jiffies, calc_load_update + 10))
2318 return;
2321 * Catch-up, fold however many we are behind still
2323 delta = jiffies - calc_load_update - 10;
2324 n = 1 + (delta / LOAD_FREQ);
2326 active = atomic_long_read(&calc_load_tasks);
2327 active = active > 0 ? active * FIXED_1 : 0;
2329 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2330 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2331 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2333 calc_load_update += n * LOAD_FREQ;
2335 #else
2336 void calc_load_account_idle(struct rq *this_rq)
2340 static inline long calc_load_fold_idle(void)
2342 return 0;
2345 static void calc_global_nohz(void)
2348 #endif
2351 * get_avenrun - get the load average array
2352 * @loads: pointer to dest load array
2353 * @offset: offset to add
2354 * @shift: shift count to shift the result left
2356 * These values are estimates at best, so no need for locking.
2358 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2360 loads[0] = (avenrun[0] + offset) << shift;
2361 loads[1] = (avenrun[1] + offset) << shift;
2362 loads[2] = (avenrun[2] + offset) << shift;
2366 * calc_load - update the avenrun load estimates 10 ticks after the
2367 * CPUs have updated calc_load_tasks.
2369 void calc_global_load(unsigned long ticks)
2371 long active;
2373 if (time_before(jiffies, calc_load_update + 10))
2374 return;
2376 active = atomic_long_read(&calc_load_tasks);
2377 active = active > 0 ? active * FIXED_1 : 0;
2379 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2380 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2381 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2383 calc_load_update += LOAD_FREQ;
2386 * Account one period with whatever state we found before
2387 * folding in the nohz state and ageing the entire idle period.
2389 * This avoids loosing a sample when we go idle between
2390 * calc_load_account_active() (10 ticks ago) and now and thus
2391 * under-accounting.
2393 calc_global_nohz();
2397 * Called from update_cpu_load() to periodically update this CPU's
2398 * active count.
2400 static void calc_load_account_active(struct rq *this_rq)
2402 long delta;
2404 if (time_before(jiffies, this_rq->calc_load_update))
2405 return;
2407 delta = calc_load_fold_active(this_rq);
2408 delta += calc_load_fold_idle();
2409 if (delta)
2410 atomic_long_add(delta, &calc_load_tasks);
2412 this_rq->calc_load_update += LOAD_FREQ;
2416 * The exact cpuload at various idx values, calculated at every tick would be
2417 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2419 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2420 * on nth tick when cpu may be busy, then we have:
2421 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2422 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2424 * decay_load_missed() below does efficient calculation of
2425 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2426 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2428 * The calculation is approximated on a 128 point scale.
2429 * degrade_zero_ticks is the number of ticks after which load at any
2430 * particular idx is approximated to be zero.
2431 * degrade_factor is a precomputed table, a row for each load idx.
2432 * Each column corresponds to degradation factor for a power of two ticks,
2433 * based on 128 point scale.
2434 * Example:
2435 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2436 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2438 * With this power of 2 load factors, we can degrade the load n times
2439 * by looking at 1 bits in n and doing as many mult/shift instead of
2440 * n mult/shifts needed by the exact degradation.
2442 #define DEGRADE_SHIFT 7
2443 static const unsigned char
2444 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2445 static const unsigned char
2446 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2447 {0, 0, 0, 0, 0, 0, 0, 0},
2448 {64, 32, 8, 0, 0, 0, 0, 0},
2449 {96, 72, 40, 12, 1, 0, 0},
2450 {112, 98, 75, 43, 15, 1, 0},
2451 {120, 112, 98, 76, 45, 16, 2} };
2454 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2455 * would be when CPU is idle and so we just decay the old load without
2456 * adding any new load.
2458 static unsigned long
2459 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2461 int j = 0;
2463 if (!missed_updates)
2464 return load;
2466 if (missed_updates >= degrade_zero_ticks[idx])
2467 return 0;
2469 if (idx == 1)
2470 return load >> missed_updates;
2472 while (missed_updates) {
2473 if (missed_updates % 2)
2474 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2476 missed_updates >>= 1;
2477 j++;
2479 return load;
2483 * Update rq->cpu_load[] statistics. This function is usually called every
2484 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2485 * every tick. We fix it up based on jiffies.
2487 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2488 unsigned long pending_updates)
2490 int i, scale;
2492 this_rq->nr_load_updates++;
2494 /* Update our load: */
2495 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2496 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2497 unsigned long old_load, new_load;
2499 /* scale is effectively 1 << i now, and >> i divides by scale */
2501 old_load = this_rq->cpu_load[i];
2502 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2503 new_load = this_load;
2505 * Round up the averaging division if load is increasing. This
2506 * prevents us from getting stuck on 9 if the load is 10, for
2507 * example.
2509 if (new_load > old_load)
2510 new_load += scale - 1;
2512 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2515 sched_avg_update(this_rq);
2519 * Called from nohz_idle_balance() to update the load ratings before doing the
2520 * idle balance.
2522 void update_idle_cpu_load(struct rq *this_rq)
2524 unsigned long curr_jiffies = jiffies;
2525 unsigned long load = this_rq->load.weight;
2526 unsigned long pending_updates;
2529 * Bloody broken means of dealing with nohz, but better than nothing..
2530 * jiffies is updated by one cpu, another cpu can drift wrt the jiffy
2531 * update and see 0 difference the one time and 2 the next, even though
2532 * we ticked at roughtly the same rate.
2534 * Hence we only use this from nohz_idle_balance() and skip this
2535 * nonsense when called from the scheduler_tick() since that's
2536 * guaranteed a stable rate.
2538 if (load || curr_jiffies == this_rq->last_load_update_tick)
2539 return;
2541 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2542 this_rq->last_load_update_tick = curr_jiffies;
2544 __update_cpu_load(this_rq, load, pending_updates);
2548 * Called from scheduler_tick()
2550 static void update_cpu_load_active(struct rq *this_rq)
2553 * See the mess in update_idle_cpu_load().
2555 this_rq->last_load_update_tick = jiffies;
2556 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2558 calc_load_account_active(this_rq);
2561 #ifdef CONFIG_SMP
2564 * sched_exec - execve() is a valuable balancing opportunity, because at
2565 * this point the task has the smallest effective memory and cache footprint.
2567 void sched_exec(void)
2569 struct task_struct *p = current;
2570 unsigned long flags;
2571 int dest_cpu;
2573 raw_spin_lock_irqsave(&p->pi_lock, flags);
2574 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2575 if (dest_cpu == smp_processor_id())
2576 goto unlock;
2578 if (likely(cpu_active(dest_cpu))) {
2579 struct migration_arg arg = { p, dest_cpu };
2581 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2582 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2583 return;
2585 unlock:
2586 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2589 #endif
2591 DEFINE_PER_CPU(struct kernel_stat, kstat);
2592 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2594 EXPORT_PER_CPU_SYMBOL(kstat);
2595 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2598 * Return any ns on the sched_clock that have not yet been accounted in
2599 * @p in case that task is currently running.
2601 * Called with task_rq_lock() held on @rq.
2603 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2605 u64 ns = 0;
2607 if (task_current(rq, p)) {
2608 update_rq_clock(rq);
2609 ns = rq->clock_task - p->se.exec_start;
2610 if ((s64)ns < 0)
2611 ns = 0;
2614 return ns;
2617 unsigned long long task_delta_exec(struct task_struct *p)
2619 unsigned long flags;
2620 struct rq *rq;
2621 u64 ns = 0;
2623 rq = task_rq_lock(p, &flags);
2624 ns = do_task_delta_exec(p, rq);
2625 task_rq_unlock(rq, p, &flags);
2627 return ns;
2631 * Return accounted runtime for the task.
2632 * In case the task is currently running, return the runtime plus current's
2633 * pending runtime that have not been accounted yet.
2635 unsigned long long task_sched_runtime(struct task_struct *p)
2637 unsigned long flags;
2638 struct rq *rq;
2639 u64 ns = 0;
2641 rq = task_rq_lock(p, &flags);
2642 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2643 task_rq_unlock(rq, p, &flags);
2645 return ns;
2648 #ifdef CONFIG_CGROUP_CPUACCT
2649 struct cgroup_subsys cpuacct_subsys;
2650 struct cpuacct root_cpuacct;
2651 #endif
2653 static inline void task_group_account_field(struct task_struct *p, int index,
2654 u64 tmp)
2656 #ifdef CONFIG_CGROUP_CPUACCT
2657 struct kernel_cpustat *kcpustat;
2658 struct cpuacct *ca;
2659 #endif
2661 * Since all updates are sure to touch the root cgroup, we
2662 * get ourselves ahead and touch it first. If the root cgroup
2663 * is the only cgroup, then nothing else should be necessary.
2666 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2668 #ifdef CONFIG_CGROUP_CPUACCT
2669 if (unlikely(!cpuacct_subsys.active))
2670 return;
2672 rcu_read_lock();
2673 ca = task_ca(p);
2674 while (ca && (ca != &root_cpuacct)) {
2675 kcpustat = this_cpu_ptr(ca->cpustat);
2676 kcpustat->cpustat[index] += tmp;
2677 ca = parent_ca(ca);
2679 rcu_read_unlock();
2680 #endif
2685 * Account user cpu time to a process.
2686 * @p: the process that the cpu time gets accounted to
2687 * @cputime: the cpu time spent in user space since the last update
2688 * @cputime_scaled: cputime scaled by cpu frequency
2690 void account_user_time(struct task_struct *p, cputime_t cputime,
2691 cputime_t cputime_scaled)
2693 int index;
2695 /* Add user time to process. */
2696 p->utime += cputime;
2697 p->utimescaled += cputime_scaled;
2698 account_group_user_time(p, cputime);
2700 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2702 /* Add user time to cpustat. */
2703 task_group_account_field(p, index, (__force u64) cputime);
2705 /* Account for user time used */
2706 acct_update_integrals(p);
2710 * Account guest cpu time to a process.
2711 * @p: the process that the cpu time gets accounted to
2712 * @cputime: the cpu time spent in virtual machine since the last update
2713 * @cputime_scaled: cputime scaled by cpu frequency
2715 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2716 cputime_t cputime_scaled)
2718 u64 *cpustat = kcpustat_this_cpu->cpustat;
2720 /* Add guest time to process. */
2721 p->utime += cputime;
2722 p->utimescaled += cputime_scaled;
2723 account_group_user_time(p, cputime);
2724 p->gtime += cputime;
2726 /* Add guest time to cpustat. */
2727 if (TASK_NICE(p) > 0) {
2728 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2729 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2730 } else {
2731 cpustat[CPUTIME_USER] += (__force u64) cputime;
2732 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2737 * Account system cpu time to a process and desired cpustat field
2738 * @p: the process that the cpu time gets accounted to
2739 * @cputime: the cpu time spent in kernel space since the last update
2740 * @cputime_scaled: cputime scaled by cpu frequency
2741 * @target_cputime64: pointer to cpustat field that has to be updated
2743 static inline
2744 void __account_system_time(struct task_struct *p, cputime_t cputime,
2745 cputime_t cputime_scaled, int index)
2747 /* Add system time to process. */
2748 p->stime += cputime;
2749 p->stimescaled += cputime_scaled;
2750 account_group_system_time(p, cputime);
2752 /* Add system time to cpustat. */
2753 task_group_account_field(p, index, (__force u64) cputime);
2755 /* Account for system time used */
2756 acct_update_integrals(p);
2760 * Account system cpu time to a process.
2761 * @p: the process that the cpu time gets accounted to
2762 * @hardirq_offset: the offset to subtract from hardirq_count()
2763 * @cputime: the cpu time spent in kernel space since the last update
2764 * @cputime_scaled: cputime scaled by cpu frequency
2766 void account_system_time(struct task_struct *p, int hardirq_offset,
2767 cputime_t cputime, cputime_t cputime_scaled)
2769 int index;
2771 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2772 account_guest_time(p, cputime, cputime_scaled);
2773 return;
2776 if (hardirq_count() - hardirq_offset)
2777 index = CPUTIME_IRQ;
2778 else if (in_serving_softirq())
2779 index = CPUTIME_SOFTIRQ;
2780 else
2781 index = CPUTIME_SYSTEM;
2783 __account_system_time(p, cputime, cputime_scaled, index);
2787 * Account for involuntary wait time.
2788 * @cputime: the cpu time spent in involuntary wait
2790 void account_steal_time(cputime_t cputime)
2792 u64 *cpustat = kcpustat_this_cpu->cpustat;
2794 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2798 * Account for idle time.
2799 * @cputime: the cpu time spent in idle wait
2801 void account_idle_time(cputime_t cputime)
2803 u64 *cpustat = kcpustat_this_cpu->cpustat;
2804 struct rq *rq = this_rq();
2806 if (atomic_read(&rq->nr_iowait) > 0)
2807 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2808 else
2809 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2812 static __always_inline bool steal_account_process_tick(void)
2814 #ifdef CONFIG_PARAVIRT
2815 if (static_key_false(&paravirt_steal_enabled)) {
2816 u64 steal, st = 0;
2818 steal = paravirt_steal_clock(smp_processor_id());
2819 steal -= this_rq()->prev_steal_time;
2821 st = steal_ticks(steal);
2822 this_rq()->prev_steal_time += st * TICK_NSEC;
2824 account_steal_time(st);
2825 return st;
2827 #endif
2828 return false;
2831 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2833 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2835 * Account a tick to a process and cpustat
2836 * @p: the process that the cpu time gets accounted to
2837 * @user_tick: is the tick from userspace
2838 * @rq: the pointer to rq
2840 * Tick demultiplexing follows the order
2841 * - pending hardirq update
2842 * - pending softirq update
2843 * - user_time
2844 * - idle_time
2845 * - system time
2846 * - check for guest_time
2847 * - else account as system_time
2849 * Check for hardirq is done both for system and user time as there is
2850 * no timer going off while we are on hardirq and hence we may never get an
2851 * opportunity to update it solely in system time.
2852 * p->stime and friends are only updated on system time and not on irq
2853 * softirq as those do not count in task exec_runtime any more.
2855 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2856 struct rq *rq)
2858 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2859 u64 *cpustat = kcpustat_this_cpu->cpustat;
2861 if (steal_account_process_tick())
2862 return;
2864 if (irqtime_account_hi_update()) {
2865 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2866 } else if (irqtime_account_si_update()) {
2867 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2868 } else if (this_cpu_ksoftirqd() == p) {
2870 * ksoftirqd time do not get accounted in cpu_softirq_time.
2871 * So, we have to handle it separately here.
2872 * Also, p->stime needs to be updated for ksoftirqd.
2874 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2875 CPUTIME_SOFTIRQ);
2876 } else if (user_tick) {
2877 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2878 } else if (p == rq->idle) {
2879 account_idle_time(cputime_one_jiffy);
2880 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2881 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2882 } else {
2883 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2884 CPUTIME_SYSTEM);
2888 static void irqtime_account_idle_ticks(int ticks)
2890 int i;
2891 struct rq *rq = this_rq();
2893 for (i = 0; i < ticks; i++)
2894 irqtime_account_process_tick(current, 0, rq);
2896 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2897 static void irqtime_account_idle_ticks(int ticks) {}
2898 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2899 struct rq *rq) {}
2900 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2903 * Account a single tick of cpu time.
2904 * @p: the process that the cpu time gets accounted to
2905 * @user_tick: indicates if the tick is a user or a system tick
2907 void account_process_tick(struct task_struct *p, int user_tick)
2909 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2910 struct rq *rq = this_rq();
2912 if (sched_clock_irqtime) {
2913 irqtime_account_process_tick(p, user_tick, rq);
2914 return;
2917 if (steal_account_process_tick())
2918 return;
2920 if (user_tick)
2921 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2922 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2923 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2924 one_jiffy_scaled);
2925 else
2926 account_idle_time(cputime_one_jiffy);
2930 * Account multiple ticks of steal time.
2931 * @p: the process from which the cpu time has been stolen
2932 * @ticks: number of stolen ticks
2934 void account_steal_ticks(unsigned long ticks)
2936 account_steal_time(jiffies_to_cputime(ticks));
2940 * Account multiple ticks of idle time.
2941 * @ticks: number of stolen ticks
2943 void account_idle_ticks(unsigned long ticks)
2946 if (sched_clock_irqtime) {
2947 irqtime_account_idle_ticks(ticks);
2948 return;
2951 account_idle_time(jiffies_to_cputime(ticks));
2954 #endif
2957 * Use precise platform statistics if available:
2959 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2960 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2962 *ut = p->utime;
2963 *st = p->stime;
2966 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2968 struct task_cputime cputime;
2970 thread_group_cputime(p, &cputime);
2972 *ut = cputime.utime;
2973 *st = cputime.stime;
2975 #else
2977 #ifndef nsecs_to_cputime
2978 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2979 #endif
2981 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2983 cputime_t rtime, utime = p->utime, total = utime + p->stime;
2986 * Use CFS's precise accounting:
2988 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2990 if (total) {
2991 u64 temp = (__force u64) rtime;
2993 temp *= (__force u64) utime;
2994 do_div(temp, (__force u32) total);
2995 utime = (__force cputime_t) temp;
2996 } else
2997 utime = rtime;
3000 * Compare with previous values, to keep monotonicity:
3002 p->prev_utime = max(p->prev_utime, utime);
3003 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3005 *ut = p->prev_utime;
3006 *st = p->prev_stime;
3010 * Must be called with siglock held.
3012 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3014 struct signal_struct *sig = p->signal;
3015 struct task_cputime cputime;
3016 cputime_t rtime, utime, total;
3018 thread_group_cputime(p, &cputime);
3020 total = cputime.utime + cputime.stime;
3021 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3023 if (total) {
3024 u64 temp = (__force u64) rtime;
3026 temp *= (__force u64) cputime.utime;
3027 do_div(temp, (__force u32) total);
3028 utime = (__force cputime_t) temp;
3029 } else
3030 utime = rtime;
3032 sig->prev_utime = max(sig->prev_utime, utime);
3033 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3035 *ut = sig->prev_utime;
3036 *st = sig->prev_stime;
3038 #endif
3041 * This function gets called by the timer code, with HZ frequency.
3042 * We call it with interrupts disabled.
3044 void scheduler_tick(void)
3046 int cpu = smp_processor_id();
3047 struct rq *rq = cpu_rq(cpu);
3048 struct task_struct *curr = rq->curr;
3050 sched_clock_tick();
3052 raw_spin_lock(&rq->lock);
3053 update_rq_clock(rq);
3054 update_cpu_load_active(rq);
3055 curr->sched_class->task_tick(rq, curr, 0);
3056 raw_spin_unlock(&rq->lock);
3058 perf_event_task_tick();
3060 #ifdef CONFIG_SMP
3061 rq->idle_balance = idle_cpu(cpu);
3062 trigger_load_balance(rq, cpu);
3063 #endif
3066 notrace unsigned long get_parent_ip(unsigned long addr)
3068 if (in_lock_functions(addr)) {
3069 addr = CALLER_ADDR2;
3070 if (in_lock_functions(addr))
3071 addr = CALLER_ADDR3;
3073 return addr;
3076 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3077 defined(CONFIG_PREEMPT_TRACER))
3079 void __kprobes add_preempt_count(int val)
3081 #ifdef CONFIG_DEBUG_PREEMPT
3083 * Underflow?
3085 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3086 return;
3087 #endif
3088 preempt_count() += val;
3089 #ifdef CONFIG_DEBUG_PREEMPT
3091 * Spinlock count overflowing soon?
3093 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3094 PREEMPT_MASK - 10);
3095 #endif
3096 if (preempt_count() == val)
3097 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3099 EXPORT_SYMBOL(add_preempt_count);
3101 void __kprobes sub_preempt_count(int val)
3103 #ifdef CONFIG_DEBUG_PREEMPT
3105 * Underflow?
3107 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3108 return;
3110 * Is the spinlock portion underflowing?
3112 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3113 !(preempt_count() & PREEMPT_MASK)))
3114 return;
3115 #endif
3117 if (preempt_count() == val)
3118 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3119 preempt_count() -= val;
3121 EXPORT_SYMBOL(sub_preempt_count);
3123 #endif
3126 * Print scheduling while atomic bug:
3128 static noinline void __schedule_bug(struct task_struct *prev)
3130 if (oops_in_progress)
3131 return;
3133 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3134 prev->comm, prev->pid, preempt_count());
3136 debug_show_held_locks(prev);
3137 print_modules();
3138 if (irqs_disabled())
3139 print_irqtrace_events(prev);
3140 dump_stack();
3144 * Various schedule()-time debugging checks and statistics:
3146 static inline void schedule_debug(struct task_struct *prev)
3149 * Test if we are atomic. Since do_exit() needs to call into
3150 * schedule() atomically, we ignore that path for now.
3151 * Otherwise, whine if we are scheduling when we should not be.
3153 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3154 __schedule_bug(prev);
3155 rcu_sleep_check();
3157 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3159 schedstat_inc(this_rq(), sched_count);
3162 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3164 if (prev->on_rq || rq->skip_clock_update < 0)
3165 update_rq_clock(rq);
3166 prev->sched_class->put_prev_task(rq, prev);
3170 * Pick up the highest-prio task:
3172 static inline struct task_struct *
3173 pick_next_task(struct rq *rq)
3175 const struct sched_class *class;
3176 struct task_struct *p;
3179 * Optimization: we know that if all tasks are in
3180 * the fair class we can call that function directly:
3182 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3183 p = fair_sched_class.pick_next_task(rq);
3184 if (likely(p))
3185 return p;
3188 for_each_class(class) {
3189 p = class->pick_next_task(rq);
3190 if (p)
3191 return p;
3194 BUG(); /* the idle class will always have a runnable task */
3198 * __schedule() is the main scheduler function.
3200 static void __sched __schedule(void)
3202 struct task_struct *prev, *next;
3203 unsigned long *switch_count;
3204 struct rq *rq;
3205 int cpu;
3207 need_resched:
3208 preempt_disable();
3209 cpu = smp_processor_id();
3210 rq = cpu_rq(cpu);
3211 rcu_note_context_switch(cpu);
3212 prev = rq->curr;
3214 schedule_debug(prev);
3216 if (sched_feat(HRTICK))
3217 hrtick_clear(rq);
3219 raw_spin_lock_irq(&rq->lock);
3221 switch_count = &prev->nivcsw;
3222 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3223 if (unlikely(signal_pending_state(prev->state, prev))) {
3224 prev->state = TASK_RUNNING;
3225 } else {
3226 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3227 prev->on_rq = 0;
3230 * If a worker went to sleep, notify and ask workqueue
3231 * whether it wants to wake up a task to maintain
3232 * concurrency.
3234 if (prev->flags & PF_WQ_WORKER) {
3235 struct task_struct *to_wakeup;
3237 to_wakeup = wq_worker_sleeping(prev, cpu);
3238 if (to_wakeup)
3239 try_to_wake_up_local(to_wakeup);
3242 switch_count = &prev->nvcsw;
3245 pre_schedule(rq, prev);
3247 if (unlikely(!rq->nr_running))
3248 idle_balance(cpu, rq);
3250 put_prev_task(rq, prev);
3251 next = pick_next_task(rq);
3252 clear_tsk_need_resched(prev);
3253 rq->skip_clock_update = 0;
3255 if (likely(prev != next)) {
3256 rq->nr_switches++;
3257 rq->curr = next;
3258 ++*switch_count;
3260 context_switch(rq, prev, next); /* unlocks the rq */
3262 * The context switch have flipped the stack from under us
3263 * and restored the local variables which were saved when
3264 * this task called schedule() in the past. prev == current
3265 * is still correct, but it can be moved to another cpu/rq.
3267 cpu = smp_processor_id();
3268 rq = cpu_rq(cpu);
3269 } else
3270 raw_spin_unlock_irq(&rq->lock);
3272 post_schedule(rq);
3274 sched_preempt_enable_no_resched();
3275 if (need_resched())
3276 goto need_resched;
3279 static inline void sched_submit_work(struct task_struct *tsk)
3281 if (!tsk->state || tsk_is_pi_blocked(tsk))
3282 return;
3284 * If we are going to sleep and we have plugged IO queued,
3285 * make sure to submit it to avoid deadlocks.
3287 if (blk_needs_flush_plug(tsk))
3288 blk_schedule_flush_plug(tsk);
3291 asmlinkage void __sched schedule(void)
3293 struct task_struct *tsk = current;
3295 sched_submit_work(tsk);
3296 __schedule();
3298 EXPORT_SYMBOL(schedule);
3301 * schedule_preempt_disabled - called with preemption disabled
3303 * Returns with preemption disabled. Note: preempt_count must be 1
3305 void __sched schedule_preempt_disabled(void)
3307 sched_preempt_enable_no_resched();
3308 schedule();
3309 preempt_disable();
3312 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3314 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3316 if (lock->owner != owner)
3317 return false;
3320 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3321 * lock->owner still matches owner, if that fails, owner might
3322 * point to free()d memory, if it still matches, the rcu_read_lock()
3323 * ensures the memory stays valid.
3325 barrier();
3327 return owner->on_cpu;
3331 * Look out! "owner" is an entirely speculative pointer
3332 * access and not reliable.
3334 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3336 if (!sched_feat(OWNER_SPIN))
3337 return 0;
3339 rcu_read_lock();
3340 while (owner_running(lock, owner)) {
3341 if (need_resched())
3342 break;
3344 arch_mutex_cpu_relax();
3346 rcu_read_unlock();
3349 * We break out the loop above on need_resched() and when the
3350 * owner changed, which is a sign for heavy contention. Return
3351 * success only when lock->owner is NULL.
3353 return lock->owner == NULL;
3355 #endif
3357 #ifdef CONFIG_PREEMPT
3359 * this is the entry point to schedule() from in-kernel preemption
3360 * off of preempt_enable. Kernel preemptions off return from interrupt
3361 * occur there and call schedule directly.
3363 asmlinkage void __sched notrace preempt_schedule(void)
3365 struct thread_info *ti = current_thread_info();
3368 * If there is a non-zero preempt_count or interrupts are disabled,
3369 * we do not want to preempt the current task. Just return..
3371 if (likely(ti->preempt_count || irqs_disabled()))
3372 return;
3374 do {
3375 add_preempt_count_notrace(PREEMPT_ACTIVE);
3376 __schedule();
3377 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3380 * Check again in case we missed a preemption opportunity
3381 * between schedule and now.
3383 barrier();
3384 } while (need_resched());
3386 EXPORT_SYMBOL(preempt_schedule);
3389 * this is the entry point to schedule() from kernel preemption
3390 * off of irq context.
3391 * Note, that this is called and return with irqs disabled. This will
3392 * protect us against recursive calling from irq.
3394 asmlinkage void __sched preempt_schedule_irq(void)
3396 struct thread_info *ti = current_thread_info();
3398 /* Catch callers which need to be fixed */
3399 BUG_ON(ti->preempt_count || !irqs_disabled());
3401 do {
3402 add_preempt_count(PREEMPT_ACTIVE);
3403 local_irq_enable();
3404 __schedule();
3405 local_irq_disable();
3406 sub_preempt_count(PREEMPT_ACTIVE);
3409 * Check again in case we missed a preemption opportunity
3410 * between schedule and now.
3412 barrier();
3413 } while (need_resched());
3416 #endif /* CONFIG_PREEMPT */
3418 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3419 void *key)
3421 return try_to_wake_up(curr->private, mode, wake_flags);
3423 EXPORT_SYMBOL(default_wake_function);
3426 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3427 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3428 * number) then we wake all the non-exclusive tasks and one exclusive task.
3430 * There are circumstances in which we can try to wake a task which has already
3431 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3432 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3434 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3435 int nr_exclusive, int wake_flags, void *key)
3437 wait_queue_t *curr, *next;
3439 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3440 unsigned flags = curr->flags;
3442 if (curr->func(curr, mode, wake_flags, key) &&
3443 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3444 break;
3449 * __wake_up - wake up threads blocked on a waitqueue.
3450 * @q: the waitqueue
3451 * @mode: which threads
3452 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3453 * @key: is directly passed to the wakeup function
3455 * It may be assumed that this function implies a write memory barrier before
3456 * changing the task state if and only if any tasks are woken up.
3458 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3459 int nr_exclusive, void *key)
3461 unsigned long flags;
3463 spin_lock_irqsave(&q->lock, flags);
3464 __wake_up_common(q, mode, nr_exclusive, 0, key);
3465 spin_unlock_irqrestore(&q->lock, flags);
3467 EXPORT_SYMBOL(__wake_up);
3470 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3472 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3474 __wake_up_common(q, mode, nr, 0, NULL);
3476 EXPORT_SYMBOL_GPL(__wake_up_locked);
3478 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3480 __wake_up_common(q, mode, 1, 0, key);
3482 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3485 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3486 * @q: the waitqueue
3487 * @mode: which threads
3488 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3489 * @key: opaque value to be passed to wakeup targets
3491 * The sync wakeup differs that the waker knows that it will schedule
3492 * away soon, so while the target thread will be woken up, it will not
3493 * be migrated to another CPU - ie. the two threads are 'synchronized'
3494 * with each other. This can prevent needless bouncing between CPUs.
3496 * On UP it can prevent extra preemption.
3498 * It may be assumed that this function implies a write memory barrier before
3499 * changing the task state if and only if any tasks are woken up.
3501 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3502 int nr_exclusive, void *key)
3504 unsigned long flags;
3505 int wake_flags = WF_SYNC;
3507 if (unlikely(!q))
3508 return;
3510 if (unlikely(!nr_exclusive))
3511 wake_flags = 0;
3513 spin_lock_irqsave(&q->lock, flags);
3514 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3515 spin_unlock_irqrestore(&q->lock, flags);
3517 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3520 * __wake_up_sync - see __wake_up_sync_key()
3522 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3524 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3526 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3529 * complete: - signals a single thread waiting on this completion
3530 * @x: holds the state of this particular completion
3532 * This will wake up a single thread waiting on this completion. Threads will be
3533 * awakened in the same order in which they were queued.
3535 * See also complete_all(), wait_for_completion() and related routines.
3537 * It may be assumed that this function implies a write memory barrier before
3538 * changing the task state if and only if any tasks are woken up.
3540 void complete(struct completion *x)
3542 unsigned long flags;
3544 spin_lock_irqsave(&x->wait.lock, flags);
3545 x->done++;
3546 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3547 spin_unlock_irqrestore(&x->wait.lock, flags);
3549 EXPORT_SYMBOL(complete);
3552 * complete_all: - signals all threads waiting on this completion
3553 * @x: holds the state of this particular completion
3555 * This will wake up all threads waiting on this particular completion event.
3557 * It may be assumed that this function implies a write memory barrier before
3558 * changing the task state if and only if any tasks are woken up.
3560 void complete_all(struct completion *x)
3562 unsigned long flags;
3564 spin_lock_irqsave(&x->wait.lock, flags);
3565 x->done += UINT_MAX/2;
3566 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3567 spin_unlock_irqrestore(&x->wait.lock, flags);
3569 EXPORT_SYMBOL(complete_all);
3571 static inline long __sched
3572 do_wait_for_common(struct completion *x, long timeout, int state)
3574 if (!x->done) {
3575 DECLARE_WAITQUEUE(wait, current);
3577 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3578 do {
3579 if (signal_pending_state(state, current)) {
3580 timeout = -ERESTARTSYS;
3581 break;
3583 __set_current_state(state);
3584 spin_unlock_irq(&x->wait.lock);
3585 timeout = schedule_timeout(timeout);
3586 spin_lock_irq(&x->wait.lock);
3587 } while (!x->done && timeout);
3588 __remove_wait_queue(&x->wait, &wait);
3589 if (!x->done)
3590 return timeout;
3592 x->done--;
3593 return timeout ?: 1;
3596 static long __sched
3597 wait_for_common(struct completion *x, long timeout, int state)
3599 might_sleep();
3601 spin_lock_irq(&x->wait.lock);
3602 timeout = do_wait_for_common(x, timeout, state);
3603 spin_unlock_irq(&x->wait.lock);
3604 return timeout;
3608 * wait_for_completion: - waits for completion of a task
3609 * @x: holds the state of this particular completion
3611 * This waits to be signaled for completion of a specific task. It is NOT
3612 * interruptible and there is no timeout.
3614 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3615 * and interrupt capability. Also see complete().
3617 void __sched wait_for_completion(struct completion *x)
3619 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3621 EXPORT_SYMBOL(wait_for_completion);
3624 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3625 * @x: holds the state of this particular completion
3626 * @timeout: timeout value in jiffies
3628 * This waits for either a completion of a specific task to be signaled or for a
3629 * specified timeout to expire. The timeout is in jiffies. It is not
3630 * interruptible.
3632 * The return value is 0 if timed out, and positive (at least 1, or number of
3633 * jiffies left till timeout) if completed.
3635 unsigned long __sched
3636 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3638 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3640 EXPORT_SYMBOL(wait_for_completion_timeout);
3643 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3644 * @x: holds the state of this particular completion
3646 * This waits for completion of a specific task to be signaled. It is
3647 * interruptible.
3649 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3651 int __sched wait_for_completion_interruptible(struct completion *x)
3653 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3654 if (t == -ERESTARTSYS)
3655 return t;
3656 return 0;
3658 EXPORT_SYMBOL(wait_for_completion_interruptible);
3661 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3662 * @x: holds the state of this particular completion
3663 * @timeout: timeout value in jiffies
3665 * This waits for either a completion of a specific task to be signaled or for a
3666 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3668 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3669 * positive (at least 1, or number of jiffies left till timeout) if completed.
3671 long __sched
3672 wait_for_completion_interruptible_timeout(struct completion *x,
3673 unsigned long timeout)
3675 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3677 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3680 * wait_for_completion_killable: - waits for completion of a task (killable)
3681 * @x: holds the state of this particular completion
3683 * This waits to be signaled for completion of a specific task. It can be
3684 * interrupted by a kill signal.
3686 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3688 int __sched wait_for_completion_killable(struct completion *x)
3690 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3691 if (t == -ERESTARTSYS)
3692 return t;
3693 return 0;
3695 EXPORT_SYMBOL(wait_for_completion_killable);
3698 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3699 * @x: holds the state of this particular completion
3700 * @timeout: timeout value in jiffies
3702 * This waits for either a completion of a specific task to be
3703 * signaled or for a specified timeout to expire. It can be
3704 * interrupted by a kill signal. The timeout is in jiffies.
3706 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3707 * positive (at least 1, or number of jiffies left till timeout) if completed.
3709 long __sched
3710 wait_for_completion_killable_timeout(struct completion *x,
3711 unsigned long timeout)
3713 return wait_for_common(x, timeout, TASK_KILLABLE);
3715 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3718 * try_wait_for_completion - try to decrement a completion without blocking
3719 * @x: completion structure
3721 * Returns: 0 if a decrement cannot be done without blocking
3722 * 1 if a decrement succeeded.
3724 * If a completion is being used as a counting completion,
3725 * attempt to decrement the counter without blocking. This
3726 * enables us to avoid waiting if the resource the completion
3727 * is protecting is not available.
3729 bool try_wait_for_completion(struct completion *x)
3731 unsigned long flags;
3732 int ret = 1;
3734 spin_lock_irqsave(&x->wait.lock, flags);
3735 if (!x->done)
3736 ret = 0;
3737 else
3738 x->done--;
3739 spin_unlock_irqrestore(&x->wait.lock, flags);
3740 return ret;
3742 EXPORT_SYMBOL(try_wait_for_completion);
3745 * completion_done - Test to see if a completion has any waiters
3746 * @x: completion structure
3748 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3749 * 1 if there are no waiters.
3752 bool completion_done(struct completion *x)
3754 unsigned long flags;
3755 int ret = 1;
3757 spin_lock_irqsave(&x->wait.lock, flags);
3758 if (!x->done)
3759 ret = 0;
3760 spin_unlock_irqrestore(&x->wait.lock, flags);
3761 return ret;
3763 EXPORT_SYMBOL(completion_done);
3765 static long __sched
3766 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3768 unsigned long flags;
3769 wait_queue_t wait;
3771 init_waitqueue_entry(&wait, current);
3773 __set_current_state(state);
3775 spin_lock_irqsave(&q->lock, flags);
3776 __add_wait_queue(q, &wait);
3777 spin_unlock(&q->lock);
3778 timeout = schedule_timeout(timeout);
3779 spin_lock_irq(&q->lock);
3780 __remove_wait_queue(q, &wait);
3781 spin_unlock_irqrestore(&q->lock, flags);
3783 return timeout;
3786 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3788 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3790 EXPORT_SYMBOL(interruptible_sleep_on);
3792 long __sched
3793 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3795 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3797 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3799 void __sched sleep_on(wait_queue_head_t *q)
3801 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3803 EXPORT_SYMBOL(sleep_on);
3805 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3807 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3809 EXPORT_SYMBOL(sleep_on_timeout);
3811 #ifdef CONFIG_RT_MUTEXES
3814 * rt_mutex_setprio - set the current priority of a task
3815 * @p: task
3816 * @prio: prio value (kernel-internal form)
3818 * This function changes the 'effective' priority of a task. It does
3819 * not touch ->normal_prio like __setscheduler().
3821 * Used by the rt_mutex code to implement priority inheritance logic.
3823 void rt_mutex_setprio(struct task_struct *p, int prio)
3825 int oldprio, on_rq, running;
3826 struct rq *rq;
3827 const struct sched_class *prev_class;
3829 BUG_ON(prio < 0 || prio > MAX_PRIO);
3831 rq = __task_rq_lock(p);
3834 * Idle task boosting is a nono in general. There is one
3835 * exception, when PREEMPT_RT and NOHZ is active:
3837 * The idle task calls get_next_timer_interrupt() and holds
3838 * the timer wheel base->lock on the CPU and another CPU wants
3839 * to access the timer (probably to cancel it). We can safely
3840 * ignore the boosting request, as the idle CPU runs this code
3841 * with interrupts disabled and will complete the lock
3842 * protected section without being interrupted. So there is no
3843 * real need to boost.
3845 if (unlikely(p == rq->idle)) {
3846 WARN_ON(p != rq->curr);
3847 WARN_ON(p->pi_blocked_on);
3848 goto out_unlock;
3851 trace_sched_pi_setprio(p, prio);
3852 oldprio = p->prio;
3853 prev_class = p->sched_class;
3854 on_rq = p->on_rq;
3855 running = task_current(rq, p);
3856 if (on_rq)
3857 dequeue_task(rq, p, 0);
3858 if (running)
3859 p->sched_class->put_prev_task(rq, p);
3861 if (rt_prio(prio))
3862 p->sched_class = &rt_sched_class;
3863 else
3864 p->sched_class = &fair_sched_class;
3866 p->prio = prio;
3868 if (running)
3869 p->sched_class->set_curr_task(rq);
3870 if (on_rq)
3871 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3873 check_class_changed(rq, p, prev_class, oldprio);
3874 out_unlock:
3875 __task_rq_unlock(rq);
3877 #endif
3878 void set_user_nice(struct task_struct *p, long nice)
3880 int old_prio, delta, on_rq;
3881 unsigned long flags;
3882 struct rq *rq;
3884 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3885 return;
3887 * We have to be careful, if called from sys_setpriority(),
3888 * the task might be in the middle of scheduling on another CPU.
3890 rq = task_rq_lock(p, &flags);
3892 * The RT priorities are set via sched_setscheduler(), but we still
3893 * allow the 'normal' nice value to be set - but as expected
3894 * it wont have any effect on scheduling until the task is
3895 * SCHED_FIFO/SCHED_RR:
3897 if (task_has_rt_policy(p)) {
3898 p->static_prio = NICE_TO_PRIO(nice);
3899 goto out_unlock;
3901 on_rq = p->on_rq;
3902 if (on_rq)
3903 dequeue_task(rq, p, 0);
3905 p->static_prio = NICE_TO_PRIO(nice);
3906 set_load_weight(p);
3907 old_prio = p->prio;
3908 p->prio = effective_prio(p);
3909 delta = p->prio - old_prio;
3911 if (on_rq) {
3912 enqueue_task(rq, p, 0);
3914 * If the task increased its priority or is running and
3915 * lowered its priority, then reschedule its CPU:
3917 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3918 resched_task(rq->curr);
3920 out_unlock:
3921 task_rq_unlock(rq, p, &flags);
3923 EXPORT_SYMBOL(set_user_nice);
3926 * can_nice - check if a task can reduce its nice value
3927 * @p: task
3928 * @nice: nice value
3930 int can_nice(const struct task_struct *p, const int nice)
3932 /* convert nice value [19,-20] to rlimit style value [1,40] */
3933 int nice_rlim = 20 - nice;
3935 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3936 capable(CAP_SYS_NICE));
3939 #ifdef __ARCH_WANT_SYS_NICE
3942 * sys_nice - change the priority of the current process.
3943 * @increment: priority increment
3945 * sys_setpriority is a more generic, but much slower function that
3946 * does similar things.
3948 SYSCALL_DEFINE1(nice, int, increment)
3950 long nice, retval;
3953 * Setpriority might change our priority at the same moment.
3954 * We don't have to worry. Conceptually one call occurs first
3955 * and we have a single winner.
3957 if (increment < -40)
3958 increment = -40;
3959 if (increment > 40)
3960 increment = 40;
3962 nice = TASK_NICE(current) + increment;
3963 if (nice < -20)
3964 nice = -20;
3965 if (nice > 19)
3966 nice = 19;
3968 if (increment < 0 && !can_nice(current, nice))
3969 return -EPERM;
3971 retval = security_task_setnice(current, nice);
3972 if (retval)
3973 return retval;
3975 set_user_nice(current, nice);
3976 return 0;
3979 #endif
3982 * task_prio - return the priority value of a given task.
3983 * @p: the task in question.
3985 * This is the priority value as seen by users in /proc.
3986 * RT tasks are offset by -200. Normal tasks are centered
3987 * around 0, value goes from -16 to +15.
3989 int task_prio(const struct task_struct *p)
3991 return p->prio - MAX_RT_PRIO;
3995 * task_nice - return the nice value of a given task.
3996 * @p: the task in question.
3998 int task_nice(const struct task_struct *p)
4000 return TASK_NICE(p);
4002 EXPORT_SYMBOL(task_nice);
4005 * idle_cpu - is a given cpu idle currently?
4006 * @cpu: the processor in question.
4008 int idle_cpu(int cpu)
4010 struct rq *rq = cpu_rq(cpu);
4012 if (rq->curr != rq->idle)
4013 return 0;
4015 if (rq->nr_running)
4016 return 0;
4018 #ifdef CONFIG_SMP
4019 if (!llist_empty(&rq->wake_list))
4020 return 0;
4021 #endif
4023 return 1;
4027 * idle_task - return the idle task for a given cpu.
4028 * @cpu: the processor in question.
4030 struct task_struct *idle_task(int cpu)
4032 return cpu_rq(cpu)->idle;
4036 * find_process_by_pid - find a process with a matching PID value.
4037 * @pid: the pid in question.
4039 static struct task_struct *find_process_by_pid(pid_t pid)
4041 return pid ? find_task_by_vpid(pid) : current;
4044 /* Actually do priority change: must hold rq lock. */
4045 static void
4046 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4048 p->policy = policy;
4049 p->rt_priority = prio;
4050 p->normal_prio = normal_prio(p);
4051 /* we are holding p->pi_lock already */
4052 p->prio = rt_mutex_getprio(p);
4053 if (rt_prio(p->prio))
4054 p->sched_class = &rt_sched_class;
4055 else
4056 p->sched_class = &fair_sched_class;
4057 set_load_weight(p);
4061 * check the target process has a UID that matches the current process's
4063 static bool check_same_owner(struct task_struct *p)
4065 const struct cred *cred = current_cred(), *pcred;
4066 bool match;
4068 rcu_read_lock();
4069 pcred = __task_cred(p);
4070 if (cred->user->user_ns == pcred->user->user_ns)
4071 match = (cred->euid == pcred->euid ||
4072 cred->euid == pcred->uid);
4073 else
4074 match = false;
4075 rcu_read_unlock();
4076 return match;
4079 static int __sched_setscheduler(struct task_struct *p, int policy,
4080 const struct sched_param *param, bool user)
4082 int retval, oldprio, oldpolicy = -1, on_rq, running;
4083 unsigned long flags;
4084 const struct sched_class *prev_class;
4085 struct rq *rq;
4086 int reset_on_fork;
4088 /* may grab non-irq protected spin_locks */
4089 BUG_ON(in_interrupt());
4090 recheck:
4091 /* double check policy once rq lock held */
4092 if (policy < 0) {
4093 reset_on_fork = p->sched_reset_on_fork;
4094 policy = oldpolicy = p->policy;
4095 } else {
4096 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4097 policy &= ~SCHED_RESET_ON_FORK;
4099 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4100 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4101 policy != SCHED_IDLE)
4102 return -EINVAL;
4106 * Valid priorities for SCHED_FIFO and SCHED_RR are
4107 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4108 * SCHED_BATCH and SCHED_IDLE is 0.
4110 if (param->sched_priority < 0 ||
4111 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4112 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4113 return -EINVAL;
4114 if (rt_policy(policy) != (param->sched_priority != 0))
4115 return -EINVAL;
4118 * Allow unprivileged RT tasks to decrease priority:
4120 if (user && !capable(CAP_SYS_NICE)) {
4121 if (rt_policy(policy)) {
4122 unsigned long rlim_rtprio =
4123 task_rlimit(p, RLIMIT_RTPRIO);
4125 /* can't set/change the rt policy */
4126 if (policy != p->policy && !rlim_rtprio)
4127 return -EPERM;
4129 /* can't increase priority */
4130 if (param->sched_priority > p->rt_priority &&
4131 param->sched_priority > rlim_rtprio)
4132 return -EPERM;
4136 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4137 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4139 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4140 if (!can_nice(p, TASK_NICE(p)))
4141 return -EPERM;
4144 /* can't change other user's priorities */
4145 if (!check_same_owner(p))
4146 return -EPERM;
4148 /* Normal users shall not reset the sched_reset_on_fork flag */
4149 if (p->sched_reset_on_fork && !reset_on_fork)
4150 return -EPERM;
4153 if (user) {
4154 retval = security_task_setscheduler(p);
4155 if (retval)
4156 return retval;
4160 * make sure no PI-waiters arrive (or leave) while we are
4161 * changing the priority of the task:
4163 * To be able to change p->policy safely, the appropriate
4164 * runqueue lock must be held.
4166 rq = task_rq_lock(p, &flags);
4169 * Changing the policy of the stop threads its a very bad idea
4171 if (p == rq->stop) {
4172 task_rq_unlock(rq, p, &flags);
4173 return -EINVAL;
4177 * If not changing anything there's no need to proceed further:
4179 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4180 param->sched_priority == p->rt_priority))) {
4182 __task_rq_unlock(rq);
4183 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4184 return 0;
4187 #ifdef CONFIG_RT_GROUP_SCHED
4188 if (user) {
4190 * Do not allow realtime tasks into groups that have no runtime
4191 * assigned.
4193 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4194 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4195 !task_group_is_autogroup(task_group(p))) {
4196 task_rq_unlock(rq, p, &flags);
4197 return -EPERM;
4200 #endif
4202 /* recheck policy now with rq lock held */
4203 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4204 policy = oldpolicy = -1;
4205 task_rq_unlock(rq, p, &flags);
4206 goto recheck;
4208 on_rq = p->on_rq;
4209 running = task_current(rq, p);
4210 if (on_rq)
4211 dequeue_task(rq, p, 0);
4212 if (running)
4213 p->sched_class->put_prev_task(rq, p);
4215 p->sched_reset_on_fork = reset_on_fork;
4217 oldprio = p->prio;
4218 prev_class = p->sched_class;
4219 __setscheduler(rq, p, policy, param->sched_priority);
4221 if (running)
4222 p->sched_class->set_curr_task(rq);
4223 if (on_rq)
4224 enqueue_task(rq, p, 0);
4226 check_class_changed(rq, p, prev_class, oldprio);
4227 task_rq_unlock(rq, p, &flags);
4229 rt_mutex_adjust_pi(p);
4231 return 0;
4235 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4236 * @p: the task in question.
4237 * @policy: new policy.
4238 * @param: structure containing the new RT priority.
4240 * NOTE that the task may be already dead.
4242 int sched_setscheduler(struct task_struct *p, int policy,
4243 const struct sched_param *param)
4245 return __sched_setscheduler(p, policy, param, true);
4247 EXPORT_SYMBOL_GPL(sched_setscheduler);
4250 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4251 * @p: the task in question.
4252 * @policy: new policy.
4253 * @param: structure containing the new RT priority.
4255 * Just like sched_setscheduler, only don't bother checking if the
4256 * current context has permission. For example, this is needed in
4257 * stop_machine(): we create temporary high priority worker threads,
4258 * but our caller might not have that capability.
4260 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4261 const struct sched_param *param)
4263 return __sched_setscheduler(p, policy, param, false);
4266 static int
4267 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4269 struct sched_param lparam;
4270 struct task_struct *p;
4271 int retval;
4273 if (!param || pid < 0)
4274 return -EINVAL;
4275 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4276 return -EFAULT;
4278 rcu_read_lock();
4279 retval = -ESRCH;
4280 p = find_process_by_pid(pid);
4281 if (p != NULL)
4282 retval = sched_setscheduler(p, policy, &lparam);
4283 rcu_read_unlock();
4285 return retval;
4289 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4290 * @pid: the pid in question.
4291 * @policy: new policy.
4292 * @param: structure containing the new RT priority.
4294 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4295 struct sched_param __user *, param)
4297 /* negative values for policy are not valid */
4298 if (policy < 0)
4299 return -EINVAL;
4301 return do_sched_setscheduler(pid, policy, param);
4305 * sys_sched_setparam - set/change the RT priority of a thread
4306 * @pid: the pid in question.
4307 * @param: structure containing the new RT priority.
4309 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4311 return do_sched_setscheduler(pid, -1, param);
4315 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4316 * @pid: the pid in question.
4318 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4320 struct task_struct *p;
4321 int retval;
4323 if (pid < 0)
4324 return -EINVAL;
4326 retval = -ESRCH;
4327 rcu_read_lock();
4328 p = find_process_by_pid(pid);
4329 if (p) {
4330 retval = security_task_getscheduler(p);
4331 if (!retval)
4332 retval = p->policy
4333 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4335 rcu_read_unlock();
4336 return retval;
4340 * sys_sched_getparam - get the RT priority of a thread
4341 * @pid: the pid in question.
4342 * @param: structure containing the RT priority.
4344 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4346 struct sched_param lp;
4347 struct task_struct *p;
4348 int retval;
4350 if (!param || pid < 0)
4351 return -EINVAL;
4353 rcu_read_lock();
4354 p = find_process_by_pid(pid);
4355 retval = -ESRCH;
4356 if (!p)
4357 goto out_unlock;
4359 retval = security_task_getscheduler(p);
4360 if (retval)
4361 goto out_unlock;
4363 lp.sched_priority = p->rt_priority;
4364 rcu_read_unlock();
4367 * This one might sleep, we cannot do it with a spinlock held ...
4369 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4371 return retval;
4373 out_unlock:
4374 rcu_read_unlock();
4375 return retval;
4378 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4380 cpumask_var_t cpus_allowed, new_mask;
4381 struct task_struct *p;
4382 int retval;
4384 get_online_cpus();
4385 rcu_read_lock();
4387 p = find_process_by_pid(pid);
4388 if (!p) {
4389 rcu_read_unlock();
4390 put_online_cpus();
4391 return -ESRCH;
4394 /* Prevent p going away */
4395 get_task_struct(p);
4396 rcu_read_unlock();
4398 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4399 retval = -ENOMEM;
4400 goto out_put_task;
4402 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4403 retval = -ENOMEM;
4404 goto out_free_cpus_allowed;
4406 retval = -EPERM;
4407 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4408 goto out_unlock;
4410 retval = security_task_setscheduler(p);
4411 if (retval)
4412 goto out_unlock;
4414 cpuset_cpus_allowed(p, cpus_allowed);
4415 cpumask_and(new_mask, in_mask, cpus_allowed);
4416 again:
4417 retval = set_cpus_allowed_ptr(p, new_mask);
4419 if (!retval) {
4420 cpuset_cpus_allowed(p, cpus_allowed);
4421 if (!cpumask_subset(new_mask, cpus_allowed)) {
4423 * We must have raced with a concurrent cpuset
4424 * update. Just reset the cpus_allowed to the
4425 * cpuset's cpus_allowed
4427 cpumask_copy(new_mask, cpus_allowed);
4428 goto again;
4431 out_unlock:
4432 free_cpumask_var(new_mask);
4433 out_free_cpus_allowed:
4434 free_cpumask_var(cpus_allowed);
4435 out_put_task:
4436 put_task_struct(p);
4437 put_online_cpus();
4438 return retval;
4441 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4442 struct cpumask *new_mask)
4444 if (len < cpumask_size())
4445 cpumask_clear(new_mask);
4446 else if (len > cpumask_size())
4447 len = cpumask_size();
4449 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4453 * sys_sched_setaffinity - set the cpu affinity of a process
4454 * @pid: pid of the process
4455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4456 * @user_mask_ptr: user-space pointer to the new cpu mask
4458 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4459 unsigned long __user *, user_mask_ptr)
4461 cpumask_var_t new_mask;
4462 int retval;
4464 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4465 return -ENOMEM;
4467 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4468 if (retval == 0)
4469 retval = sched_setaffinity(pid, new_mask);
4470 free_cpumask_var(new_mask);
4471 return retval;
4474 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4476 struct task_struct *p;
4477 unsigned long flags;
4478 int retval;
4480 get_online_cpus();
4481 rcu_read_lock();
4483 retval = -ESRCH;
4484 p = find_process_by_pid(pid);
4485 if (!p)
4486 goto out_unlock;
4488 retval = security_task_getscheduler(p);
4489 if (retval)
4490 goto out_unlock;
4492 raw_spin_lock_irqsave(&p->pi_lock, flags);
4493 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4494 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4496 out_unlock:
4497 rcu_read_unlock();
4498 put_online_cpus();
4500 return retval;
4504 * sys_sched_getaffinity - get the cpu affinity of a process
4505 * @pid: pid of the process
4506 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4507 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4509 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4510 unsigned long __user *, user_mask_ptr)
4512 int ret;
4513 cpumask_var_t mask;
4515 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4516 return -EINVAL;
4517 if (len & (sizeof(unsigned long)-1))
4518 return -EINVAL;
4520 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4521 return -ENOMEM;
4523 ret = sched_getaffinity(pid, mask);
4524 if (ret == 0) {
4525 size_t retlen = min_t(size_t, len, cpumask_size());
4527 if (copy_to_user(user_mask_ptr, mask, retlen))
4528 ret = -EFAULT;
4529 else
4530 ret = retlen;
4532 free_cpumask_var(mask);
4534 return ret;
4538 * sys_sched_yield - yield the current processor to other threads.
4540 * This function yields the current CPU to other tasks. If there are no
4541 * other threads running on this CPU then this function will return.
4543 SYSCALL_DEFINE0(sched_yield)
4545 struct rq *rq = this_rq_lock();
4547 schedstat_inc(rq, yld_count);
4548 current->sched_class->yield_task(rq);
4551 * Since we are going to call schedule() anyway, there's
4552 * no need to preempt or enable interrupts:
4554 __release(rq->lock);
4555 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4556 do_raw_spin_unlock(&rq->lock);
4557 sched_preempt_enable_no_resched();
4559 schedule();
4561 return 0;
4564 static inline int should_resched(void)
4566 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4569 static void __cond_resched(void)
4571 add_preempt_count(PREEMPT_ACTIVE);
4572 __schedule();
4573 sub_preempt_count(PREEMPT_ACTIVE);
4576 int __sched _cond_resched(void)
4578 if (should_resched()) {
4579 __cond_resched();
4580 return 1;
4582 return 0;
4584 EXPORT_SYMBOL(_cond_resched);
4587 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4588 * call schedule, and on return reacquire the lock.
4590 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4591 * operations here to prevent schedule() from being called twice (once via
4592 * spin_unlock(), once by hand).
4594 int __cond_resched_lock(spinlock_t *lock)
4596 int resched = should_resched();
4597 int ret = 0;
4599 lockdep_assert_held(lock);
4601 if (spin_needbreak(lock) || resched) {
4602 spin_unlock(lock);
4603 if (resched)
4604 __cond_resched();
4605 else
4606 cpu_relax();
4607 ret = 1;
4608 spin_lock(lock);
4610 return ret;
4612 EXPORT_SYMBOL(__cond_resched_lock);
4614 int __sched __cond_resched_softirq(void)
4616 BUG_ON(!in_softirq());
4618 if (should_resched()) {
4619 local_bh_enable();
4620 __cond_resched();
4621 local_bh_disable();
4622 return 1;
4624 return 0;
4626 EXPORT_SYMBOL(__cond_resched_softirq);
4629 * yield - yield the current processor to other threads.
4631 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4633 * The scheduler is at all times free to pick the calling task as the most
4634 * eligible task to run, if removing the yield() call from your code breaks
4635 * it, its already broken.
4637 * Typical broken usage is:
4639 * while (!event)
4640 * yield();
4642 * where one assumes that yield() will let 'the other' process run that will
4643 * make event true. If the current task is a SCHED_FIFO task that will never
4644 * happen. Never use yield() as a progress guarantee!!
4646 * If you want to use yield() to wait for something, use wait_event().
4647 * If you want to use yield() to be 'nice' for others, use cond_resched().
4648 * If you still want to use yield(), do not!
4650 void __sched yield(void)
4652 set_current_state(TASK_RUNNING);
4653 sys_sched_yield();
4655 EXPORT_SYMBOL(yield);
4658 * yield_to - yield the current processor to another thread in
4659 * your thread group, or accelerate that thread toward the
4660 * processor it's on.
4661 * @p: target task
4662 * @preempt: whether task preemption is allowed or not
4664 * It's the caller's job to ensure that the target task struct
4665 * can't go away on us before we can do any checks.
4667 * Returns true if we indeed boosted the target task.
4669 bool __sched yield_to(struct task_struct *p, bool preempt)
4671 struct task_struct *curr = current;
4672 struct rq *rq, *p_rq;
4673 unsigned long flags;
4674 bool yielded = 0;
4676 local_irq_save(flags);
4677 rq = this_rq();
4679 again:
4680 p_rq = task_rq(p);
4681 double_rq_lock(rq, p_rq);
4682 while (task_rq(p) != p_rq) {
4683 double_rq_unlock(rq, p_rq);
4684 goto again;
4687 if (!curr->sched_class->yield_to_task)
4688 goto out;
4690 if (curr->sched_class != p->sched_class)
4691 goto out;
4693 if (task_running(p_rq, p) || p->state)
4694 goto out;
4696 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4697 if (yielded) {
4698 schedstat_inc(rq, yld_count);
4700 * Make p's CPU reschedule; pick_next_entity takes care of
4701 * fairness.
4703 if (preempt && rq != p_rq)
4704 resched_task(p_rq->curr);
4705 } else {
4707 * We might have set it in task_yield_fair(), but are
4708 * not going to schedule(), so don't want to skip
4709 * the next update.
4711 rq->skip_clock_update = 0;
4714 out:
4715 double_rq_unlock(rq, p_rq);
4716 local_irq_restore(flags);
4718 if (yielded)
4719 schedule();
4721 return yielded;
4723 EXPORT_SYMBOL_GPL(yield_to);
4726 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4727 * that process accounting knows that this is a task in IO wait state.
4729 void __sched io_schedule(void)
4731 struct rq *rq = raw_rq();
4733 delayacct_blkio_start();
4734 atomic_inc(&rq->nr_iowait);
4735 blk_flush_plug(current);
4736 current->in_iowait = 1;
4737 schedule();
4738 current->in_iowait = 0;
4739 atomic_dec(&rq->nr_iowait);
4740 delayacct_blkio_end();
4742 EXPORT_SYMBOL(io_schedule);
4744 long __sched io_schedule_timeout(long timeout)
4746 struct rq *rq = raw_rq();
4747 long ret;
4749 delayacct_blkio_start();
4750 atomic_inc(&rq->nr_iowait);
4751 blk_flush_plug(current);
4752 current->in_iowait = 1;
4753 ret = schedule_timeout(timeout);
4754 current->in_iowait = 0;
4755 atomic_dec(&rq->nr_iowait);
4756 delayacct_blkio_end();
4757 return ret;
4761 * sys_sched_get_priority_max - return maximum RT priority.
4762 * @policy: scheduling class.
4764 * this syscall returns the maximum rt_priority that can be used
4765 * by a given scheduling class.
4767 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4769 int ret = -EINVAL;
4771 switch (policy) {
4772 case SCHED_FIFO:
4773 case SCHED_RR:
4774 ret = MAX_USER_RT_PRIO-1;
4775 break;
4776 case SCHED_NORMAL:
4777 case SCHED_BATCH:
4778 case SCHED_IDLE:
4779 ret = 0;
4780 break;
4782 return ret;
4786 * sys_sched_get_priority_min - return minimum RT priority.
4787 * @policy: scheduling class.
4789 * this syscall returns the minimum rt_priority that can be used
4790 * by a given scheduling class.
4792 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4794 int ret = -EINVAL;
4796 switch (policy) {
4797 case SCHED_FIFO:
4798 case SCHED_RR:
4799 ret = 1;
4800 break;
4801 case SCHED_NORMAL:
4802 case SCHED_BATCH:
4803 case SCHED_IDLE:
4804 ret = 0;
4806 return ret;
4810 * sys_sched_rr_get_interval - return the default timeslice of a process.
4811 * @pid: pid of the process.
4812 * @interval: userspace pointer to the timeslice value.
4814 * this syscall writes the default timeslice value of a given process
4815 * into the user-space timespec buffer. A value of '0' means infinity.
4817 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4818 struct timespec __user *, interval)
4820 struct task_struct *p;
4821 unsigned int time_slice;
4822 unsigned long flags;
4823 struct rq *rq;
4824 int retval;
4825 struct timespec t;
4827 if (pid < 0)
4828 return -EINVAL;
4830 retval = -ESRCH;
4831 rcu_read_lock();
4832 p = find_process_by_pid(pid);
4833 if (!p)
4834 goto out_unlock;
4836 retval = security_task_getscheduler(p);
4837 if (retval)
4838 goto out_unlock;
4840 rq = task_rq_lock(p, &flags);
4841 time_slice = p->sched_class->get_rr_interval(rq, p);
4842 task_rq_unlock(rq, p, &flags);
4844 rcu_read_unlock();
4845 jiffies_to_timespec(time_slice, &t);
4846 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4847 return retval;
4849 out_unlock:
4850 rcu_read_unlock();
4851 return retval;
4854 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4856 void sched_show_task(struct task_struct *p)
4858 unsigned long free = 0;
4859 unsigned state;
4861 state = p->state ? __ffs(p->state) + 1 : 0;
4862 printk(KERN_INFO "%-15.15s %c", p->comm,
4863 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4864 #if BITS_PER_LONG == 32
4865 if (state == TASK_RUNNING)
4866 printk(KERN_CONT " running ");
4867 else
4868 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4869 #else
4870 if (state == TASK_RUNNING)
4871 printk(KERN_CONT " running task ");
4872 else
4873 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4874 #endif
4875 #ifdef CONFIG_DEBUG_STACK_USAGE
4876 free = stack_not_used(p);
4877 #endif
4878 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4879 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4880 (unsigned long)task_thread_info(p)->flags);
4882 show_stack(p, NULL);
4885 void show_state_filter(unsigned long state_filter)
4887 struct task_struct *g, *p;
4889 #if BITS_PER_LONG == 32
4890 printk(KERN_INFO
4891 " task PC stack pid father\n");
4892 #else
4893 printk(KERN_INFO
4894 " task PC stack pid father\n");
4895 #endif
4896 rcu_read_lock();
4897 do_each_thread(g, p) {
4899 * reset the NMI-timeout, listing all files on a slow
4900 * console might take a lot of time:
4902 touch_nmi_watchdog();
4903 if (!state_filter || (p->state & state_filter))
4904 sched_show_task(p);
4905 } while_each_thread(g, p);
4907 touch_all_softlockup_watchdogs();
4909 #ifdef CONFIG_SCHED_DEBUG
4910 sysrq_sched_debug_show();
4911 #endif
4912 rcu_read_unlock();
4914 * Only show locks if all tasks are dumped:
4916 if (!state_filter)
4917 debug_show_all_locks();
4920 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4922 idle->sched_class = &idle_sched_class;
4926 * init_idle - set up an idle thread for a given CPU
4927 * @idle: task in question
4928 * @cpu: cpu the idle task belongs to
4930 * NOTE: this function does not set the idle thread's NEED_RESCHED
4931 * flag, to make booting more robust.
4933 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4935 struct rq *rq = cpu_rq(cpu);
4936 unsigned long flags;
4938 raw_spin_lock_irqsave(&rq->lock, flags);
4940 __sched_fork(idle);
4941 idle->state = TASK_RUNNING;
4942 idle->se.exec_start = sched_clock();
4944 do_set_cpus_allowed(idle, cpumask_of(cpu));
4946 * We're having a chicken and egg problem, even though we are
4947 * holding rq->lock, the cpu isn't yet set to this cpu so the
4948 * lockdep check in task_group() will fail.
4950 * Similar case to sched_fork(). / Alternatively we could
4951 * use task_rq_lock() here and obtain the other rq->lock.
4953 * Silence PROVE_RCU
4955 rcu_read_lock();
4956 __set_task_cpu(idle, cpu);
4957 rcu_read_unlock();
4959 rq->curr = rq->idle = idle;
4960 #if defined(CONFIG_SMP)
4961 idle->on_cpu = 1;
4962 #endif
4963 raw_spin_unlock_irqrestore(&rq->lock, flags);
4965 /* Set the preempt count _outside_ the spinlocks! */
4966 task_thread_info(idle)->preempt_count = 0;
4969 * The idle tasks have their own, simple scheduling class:
4971 idle->sched_class = &idle_sched_class;
4972 ftrace_graph_init_idle_task(idle, cpu);
4973 #if defined(CONFIG_SMP)
4974 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4975 #endif
4978 #ifdef CONFIG_SMP
4979 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4981 if (p->sched_class && p->sched_class->set_cpus_allowed)
4982 p->sched_class->set_cpus_allowed(p, new_mask);
4984 cpumask_copy(&p->cpus_allowed, new_mask);
4985 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4989 * This is how migration works:
4991 * 1) we invoke migration_cpu_stop() on the target CPU using
4992 * stop_one_cpu().
4993 * 2) stopper starts to run (implicitly forcing the migrated thread
4994 * off the CPU)
4995 * 3) it checks whether the migrated task is still in the wrong runqueue.
4996 * 4) if it's in the wrong runqueue then the migration thread removes
4997 * it and puts it into the right queue.
4998 * 5) stopper completes and stop_one_cpu() returns and the migration
4999 * is done.
5003 * Change a given task's CPU affinity. Migrate the thread to a
5004 * proper CPU and schedule it away if the CPU it's executing on
5005 * is removed from the allowed bitmask.
5007 * NOTE: the caller must have a valid reference to the task, the
5008 * task must not exit() & deallocate itself prematurely. The
5009 * call is not atomic; no spinlocks may be held.
5011 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5013 unsigned long flags;
5014 struct rq *rq;
5015 unsigned int dest_cpu;
5016 int ret = 0;
5018 rq = task_rq_lock(p, &flags);
5020 if (cpumask_equal(&p->cpus_allowed, new_mask))
5021 goto out;
5023 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5024 ret = -EINVAL;
5025 goto out;
5028 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5029 ret = -EINVAL;
5030 goto out;
5033 do_set_cpus_allowed(p, new_mask);
5035 /* Can the task run on the task's current CPU? If so, we're done */
5036 if (cpumask_test_cpu(task_cpu(p), new_mask))
5037 goto out;
5039 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5040 if (p->on_rq) {
5041 struct migration_arg arg = { p, dest_cpu };
5042 /* Need help from migration thread: drop lock and wait. */
5043 task_rq_unlock(rq, p, &flags);
5044 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5045 tlb_migrate_finish(p->mm);
5046 return 0;
5048 out:
5049 task_rq_unlock(rq, p, &flags);
5051 return ret;
5053 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5056 * Move (not current) task off this cpu, onto dest cpu. We're doing
5057 * this because either it can't run here any more (set_cpus_allowed()
5058 * away from this CPU, or CPU going down), or because we're
5059 * attempting to rebalance this task on exec (sched_exec).
5061 * So we race with normal scheduler movements, but that's OK, as long
5062 * as the task is no longer on this CPU.
5064 * Returns non-zero if task was successfully migrated.
5066 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5068 struct rq *rq_dest, *rq_src;
5069 int ret = 0;
5071 if (unlikely(!cpu_active(dest_cpu)))
5072 return ret;
5074 rq_src = cpu_rq(src_cpu);
5075 rq_dest = cpu_rq(dest_cpu);
5077 raw_spin_lock(&p->pi_lock);
5078 double_rq_lock(rq_src, rq_dest);
5079 /* Already moved. */
5080 if (task_cpu(p) != src_cpu)
5081 goto done;
5082 /* Affinity changed (again). */
5083 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5084 goto fail;
5087 * If we're not on a rq, the next wake-up will ensure we're
5088 * placed properly.
5090 if (p->on_rq) {
5091 dequeue_task(rq_src, p, 0);
5092 set_task_cpu(p, dest_cpu);
5093 enqueue_task(rq_dest, p, 0);
5094 check_preempt_curr(rq_dest, p, 0);
5096 done:
5097 ret = 1;
5098 fail:
5099 double_rq_unlock(rq_src, rq_dest);
5100 raw_spin_unlock(&p->pi_lock);
5101 return ret;
5105 * migration_cpu_stop - this will be executed by a highprio stopper thread
5106 * and performs thread migration by bumping thread off CPU then
5107 * 'pushing' onto another runqueue.
5109 static int migration_cpu_stop(void *data)
5111 struct migration_arg *arg = data;
5114 * The original target cpu might have gone down and we might
5115 * be on another cpu but it doesn't matter.
5117 local_irq_disable();
5118 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5119 local_irq_enable();
5120 return 0;
5123 #ifdef CONFIG_HOTPLUG_CPU
5126 * Ensures that the idle task is using init_mm right before its cpu goes
5127 * offline.
5129 void idle_task_exit(void)
5131 struct mm_struct *mm = current->active_mm;
5133 BUG_ON(cpu_online(smp_processor_id()));
5135 if (mm != &init_mm)
5136 switch_mm(mm, &init_mm, current);
5137 mmdrop(mm);
5141 * While a dead CPU has no uninterruptible tasks queued at this point,
5142 * it might still have a nonzero ->nr_uninterruptible counter, because
5143 * for performance reasons the counter is not stricly tracking tasks to
5144 * their home CPUs. So we just add the counter to another CPU's counter,
5145 * to keep the global sum constant after CPU-down:
5147 static void migrate_nr_uninterruptible(struct rq *rq_src)
5149 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5151 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5152 rq_src->nr_uninterruptible = 0;
5156 * remove the tasks which were accounted by rq from calc_load_tasks.
5158 static void calc_global_load_remove(struct rq *rq)
5160 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5161 rq->calc_load_active = 0;
5165 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5166 * try_to_wake_up()->select_task_rq().
5168 * Called with rq->lock held even though we'er in stop_machine() and
5169 * there's no concurrency possible, we hold the required locks anyway
5170 * because of lock validation efforts.
5172 static void migrate_tasks(unsigned int dead_cpu)
5174 struct rq *rq = cpu_rq(dead_cpu);
5175 struct task_struct *next, *stop = rq->stop;
5176 int dest_cpu;
5179 * Fudge the rq selection such that the below task selection loop
5180 * doesn't get stuck on the currently eligible stop task.
5182 * We're currently inside stop_machine() and the rq is either stuck
5183 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5184 * either way we should never end up calling schedule() until we're
5185 * done here.
5187 rq->stop = NULL;
5189 /* Ensure any throttled groups are reachable by pick_next_task */
5190 unthrottle_offline_cfs_rqs(rq);
5192 for ( ; ; ) {
5194 * There's this thread running, bail when that's the only
5195 * remaining thread.
5197 if (rq->nr_running == 1)
5198 break;
5200 next = pick_next_task(rq);
5201 BUG_ON(!next);
5202 next->sched_class->put_prev_task(rq, next);
5204 /* Find suitable destination for @next, with force if needed. */
5205 dest_cpu = select_fallback_rq(dead_cpu, next);
5206 raw_spin_unlock(&rq->lock);
5208 __migrate_task(next, dead_cpu, dest_cpu);
5210 raw_spin_lock(&rq->lock);
5213 rq->stop = stop;
5216 #endif /* CONFIG_HOTPLUG_CPU */
5218 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5220 static struct ctl_table sd_ctl_dir[] = {
5222 .procname = "sched_domain",
5223 .mode = 0555,
5228 static struct ctl_table sd_ctl_root[] = {
5230 .procname = "kernel",
5231 .mode = 0555,
5232 .child = sd_ctl_dir,
5237 static struct ctl_table *sd_alloc_ctl_entry(int n)
5239 struct ctl_table *entry =
5240 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5242 return entry;
5245 static void sd_free_ctl_entry(struct ctl_table **tablep)
5247 struct ctl_table *entry;
5250 * In the intermediate directories, both the child directory and
5251 * procname are dynamically allocated and could fail but the mode
5252 * will always be set. In the lowest directory the names are
5253 * static strings and all have proc handlers.
5255 for (entry = *tablep; entry->mode; entry++) {
5256 if (entry->child)
5257 sd_free_ctl_entry(&entry->child);
5258 if (entry->proc_handler == NULL)
5259 kfree(entry->procname);
5262 kfree(*tablep);
5263 *tablep = NULL;
5266 static void
5267 set_table_entry(struct ctl_table *entry,
5268 const char *procname, void *data, int maxlen,
5269 umode_t mode, proc_handler *proc_handler)
5271 entry->procname = procname;
5272 entry->data = data;
5273 entry->maxlen = maxlen;
5274 entry->mode = mode;
5275 entry->proc_handler = proc_handler;
5278 static struct ctl_table *
5279 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5281 struct ctl_table *table = sd_alloc_ctl_entry(13);
5283 if (table == NULL)
5284 return NULL;
5286 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5287 sizeof(long), 0644, proc_doulongvec_minmax);
5288 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5289 sizeof(long), 0644, proc_doulongvec_minmax);
5290 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5291 sizeof(int), 0644, proc_dointvec_minmax);
5292 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5293 sizeof(int), 0644, proc_dointvec_minmax);
5294 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5295 sizeof(int), 0644, proc_dointvec_minmax);
5296 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5297 sizeof(int), 0644, proc_dointvec_minmax);
5298 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5299 sizeof(int), 0644, proc_dointvec_minmax);
5300 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5301 sizeof(int), 0644, proc_dointvec_minmax);
5302 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5303 sizeof(int), 0644, proc_dointvec_minmax);
5304 set_table_entry(&table[9], "cache_nice_tries",
5305 &sd->cache_nice_tries,
5306 sizeof(int), 0644, proc_dointvec_minmax);
5307 set_table_entry(&table[10], "flags", &sd->flags,
5308 sizeof(int), 0644, proc_dointvec_minmax);
5309 set_table_entry(&table[11], "name", sd->name,
5310 CORENAME_MAX_SIZE, 0444, proc_dostring);
5311 /* &table[12] is terminator */
5313 return table;
5316 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5318 struct ctl_table *entry, *table;
5319 struct sched_domain *sd;
5320 int domain_num = 0, i;
5321 char buf[32];
5323 for_each_domain(cpu, sd)
5324 domain_num++;
5325 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5326 if (table == NULL)
5327 return NULL;
5329 i = 0;
5330 for_each_domain(cpu, sd) {
5331 snprintf(buf, 32, "domain%d", i);
5332 entry->procname = kstrdup(buf, GFP_KERNEL);
5333 entry->mode = 0555;
5334 entry->child = sd_alloc_ctl_domain_table(sd);
5335 entry++;
5336 i++;
5338 return table;
5341 static struct ctl_table_header *sd_sysctl_header;
5342 static void register_sched_domain_sysctl(void)
5344 int i, cpu_num = num_possible_cpus();
5345 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5346 char buf[32];
5348 WARN_ON(sd_ctl_dir[0].child);
5349 sd_ctl_dir[0].child = entry;
5351 if (entry == NULL)
5352 return;
5354 for_each_possible_cpu(i) {
5355 snprintf(buf, 32, "cpu%d", i);
5356 entry->procname = kstrdup(buf, GFP_KERNEL);
5357 entry->mode = 0555;
5358 entry->child = sd_alloc_ctl_cpu_table(i);
5359 entry++;
5362 WARN_ON(sd_sysctl_header);
5363 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5366 /* may be called multiple times per register */
5367 static void unregister_sched_domain_sysctl(void)
5369 if (sd_sysctl_header)
5370 unregister_sysctl_table(sd_sysctl_header);
5371 sd_sysctl_header = NULL;
5372 if (sd_ctl_dir[0].child)
5373 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5375 #else
5376 static void register_sched_domain_sysctl(void)
5379 static void unregister_sched_domain_sysctl(void)
5382 #endif
5384 static void set_rq_online(struct rq *rq)
5386 if (!rq->online) {
5387 const struct sched_class *class;
5389 cpumask_set_cpu(rq->cpu, rq->rd->online);
5390 rq->online = 1;
5392 for_each_class(class) {
5393 if (class->rq_online)
5394 class->rq_online(rq);
5399 static void set_rq_offline(struct rq *rq)
5401 if (rq->online) {
5402 const struct sched_class *class;
5404 for_each_class(class) {
5405 if (class->rq_offline)
5406 class->rq_offline(rq);
5409 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5410 rq->online = 0;
5415 * migration_call - callback that gets triggered when a CPU is added.
5416 * Here we can start up the necessary migration thread for the new CPU.
5418 static int __cpuinit
5419 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5421 int cpu = (long)hcpu;
5422 unsigned long flags;
5423 struct rq *rq = cpu_rq(cpu);
5425 switch (action & ~CPU_TASKS_FROZEN) {
5427 case CPU_UP_PREPARE:
5428 rq->calc_load_update = calc_load_update;
5429 break;
5431 case CPU_ONLINE:
5432 /* Update our root-domain */
5433 raw_spin_lock_irqsave(&rq->lock, flags);
5434 if (rq->rd) {
5435 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5437 set_rq_online(rq);
5439 raw_spin_unlock_irqrestore(&rq->lock, flags);
5440 break;
5442 #ifdef CONFIG_HOTPLUG_CPU
5443 case CPU_DYING:
5444 sched_ttwu_pending();
5445 /* Update our root-domain */
5446 raw_spin_lock_irqsave(&rq->lock, flags);
5447 if (rq->rd) {
5448 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5449 set_rq_offline(rq);
5451 migrate_tasks(cpu);
5452 BUG_ON(rq->nr_running != 1); /* the migration thread */
5453 raw_spin_unlock_irqrestore(&rq->lock, flags);
5455 migrate_nr_uninterruptible(rq);
5456 calc_global_load_remove(rq);
5457 break;
5458 #endif
5461 update_max_interval();
5463 return NOTIFY_OK;
5467 * Register at high priority so that task migration (migrate_all_tasks)
5468 * happens before everything else. This has to be lower priority than
5469 * the notifier in the perf_event subsystem, though.
5471 static struct notifier_block __cpuinitdata migration_notifier = {
5472 .notifier_call = migration_call,
5473 .priority = CPU_PRI_MIGRATION,
5476 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5477 unsigned long action, void *hcpu)
5479 switch (action & ~CPU_TASKS_FROZEN) {
5480 case CPU_STARTING:
5481 case CPU_DOWN_FAILED:
5482 set_cpu_active((long)hcpu, true);
5483 return NOTIFY_OK;
5484 default:
5485 return NOTIFY_DONE;
5489 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5490 unsigned long action, void *hcpu)
5492 switch (action & ~CPU_TASKS_FROZEN) {
5493 case CPU_DOWN_PREPARE:
5494 set_cpu_active((long)hcpu, false);
5495 return NOTIFY_OK;
5496 default:
5497 return NOTIFY_DONE;
5501 static int __init migration_init(void)
5503 void *cpu = (void *)(long)smp_processor_id();
5504 int err;
5506 /* Initialize migration for the boot CPU */
5507 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5508 BUG_ON(err == NOTIFY_BAD);
5509 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5510 register_cpu_notifier(&migration_notifier);
5512 /* Register cpu active notifiers */
5513 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5514 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5516 return 0;
5518 early_initcall(migration_init);
5519 #endif
5521 #ifdef CONFIG_SMP
5523 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5525 #ifdef CONFIG_SCHED_DEBUG
5527 static __read_mostly int sched_domain_debug_enabled;
5529 static int __init sched_domain_debug_setup(char *str)
5531 sched_domain_debug_enabled = 1;
5533 return 0;
5535 early_param("sched_debug", sched_domain_debug_setup);
5537 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5538 struct cpumask *groupmask)
5540 struct sched_group *group = sd->groups;
5541 char str[256];
5543 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5544 cpumask_clear(groupmask);
5546 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5548 if (!(sd->flags & SD_LOAD_BALANCE)) {
5549 printk("does not load-balance\n");
5550 if (sd->parent)
5551 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5552 " has parent");
5553 return -1;
5556 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5558 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5559 printk(KERN_ERR "ERROR: domain->span does not contain "
5560 "CPU%d\n", cpu);
5562 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5563 printk(KERN_ERR "ERROR: domain->groups does not contain"
5564 " CPU%d\n", cpu);
5567 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5568 do {
5569 if (!group) {
5570 printk("\n");
5571 printk(KERN_ERR "ERROR: group is NULL\n");
5572 break;
5575 if (!group->sgp->power) {
5576 printk(KERN_CONT "\n");
5577 printk(KERN_ERR "ERROR: domain->cpu_power not "
5578 "set\n");
5579 break;
5582 if (!cpumask_weight(sched_group_cpus(group))) {
5583 printk(KERN_CONT "\n");
5584 printk(KERN_ERR "ERROR: empty group\n");
5585 break;
5588 if (!(sd->flags & SD_OVERLAP) &&
5589 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5590 printk(KERN_CONT "\n");
5591 printk(KERN_ERR "ERROR: repeated CPUs\n");
5592 break;
5595 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5597 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5599 printk(KERN_CONT " %s", str);
5600 if (group->sgp->power != SCHED_POWER_SCALE) {
5601 printk(KERN_CONT " (cpu_power = %d)",
5602 group->sgp->power);
5605 group = group->next;
5606 } while (group != sd->groups);
5607 printk(KERN_CONT "\n");
5609 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5610 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5612 if (sd->parent &&
5613 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5614 printk(KERN_ERR "ERROR: parent span is not a superset "
5615 "of domain->span\n");
5616 return 0;
5619 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5621 int level = 0;
5623 if (!sched_domain_debug_enabled)
5624 return;
5626 if (!sd) {
5627 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5628 return;
5631 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5633 for (;;) {
5634 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5635 break;
5636 level++;
5637 sd = sd->parent;
5638 if (!sd)
5639 break;
5642 #else /* !CONFIG_SCHED_DEBUG */
5643 # define sched_domain_debug(sd, cpu) do { } while (0)
5644 #endif /* CONFIG_SCHED_DEBUG */
5646 static int sd_degenerate(struct sched_domain *sd)
5648 if (cpumask_weight(sched_domain_span(sd)) == 1)
5649 return 1;
5651 /* Following flags need at least 2 groups */
5652 if (sd->flags & (SD_LOAD_BALANCE |
5653 SD_BALANCE_NEWIDLE |
5654 SD_BALANCE_FORK |
5655 SD_BALANCE_EXEC |
5656 SD_SHARE_CPUPOWER |
5657 SD_SHARE_PKG_RESOURCES)) {
5658 if (sd->groups != sd->groups->next)
5659 return 0;
5662 /* Following flags don't use groups */
5663 if (sd->flags & (SD_WAKE_AFFINE))
5664 return 0;
5666 return 1;
5669 static int
5670 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5672 unsigned long cflags = sd->flags, pflags = parent->flags;
5674 if (sd_degenerate(parent))
5675 return 1;
5677 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5678 return 0;
5680 /* Flags needing groups don't count if only 1 group in parent */
5681 if (parent->groups == parent->groups->next) {
5682 pflags &= ~(SD_LOAD_BALANCE |
5683 SD_BALANCE_NEWIDLE |
5684 SD_BALANCE_FORK |
5685 SD_BALANCE_EXEC |
5686 SD_SHARE_CPUPOWER |
5687 SD_SHARE_PKG_RESOURCES);
5688 if (nr_node_ids == 1)
5689 pflags &= ~SD_SERIALIZE;
5691 if (~cflags & pflags)
5692 return 0;
5694 return 1;
5697 static void free_rootdomain(struct rcu_head *rcu)
5699 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5701 cpupri_cleanup(&rd->cpupri);
5702 free_cpumask_var(rd->rto_mask);
5703 free_cpumask_var(rd->online);
5704 free_cpumask_var(rd->span);
5705 kfree(rd);
5708 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5710 struct root_domain *old_rd = NULL;
5711 unsigned long flags;
5713 raw_spin_lock_irqsave(&rq->lock, flags);
5715 if (rq->rd) {
5716 old_rd = rq->rd;
5718 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5719 set_rq_offline(rq);
5721 cpumask_clear_cpu(rq->cpu, old_rd->span);
5724 * If we dont want to free the old_rt yet then
5725 * set old_rd to NULL to skip the freeing later
5726 * in this function:
5728 if (!atomic_dec_and_test(&old_rd->refcount))
5729 old_rd = NULL;
5732 atomic_inc(&rd->refcount);
5733 rq->rd = rd;
5735 cpumask_set_cpu(rq->cpu, rd->span);
5736 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5737 set_rq_online(rq);
5739 raw_spin_unlock_irqrestore(&rq->lock, flags);
5741 if (old_rd)
5742 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5745 static int init_rootdomain(struct root_domain *rd)
5747 memset(rd, 0, sizeof(*rd));
5749 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5750 goto out;
5751 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5752 goto free_span;
5753 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5754 goto free_online;
5756 if (cpupri_init(&rd->cpupri) != 0)
5757 goto free_rto_mask;
5758 return 0;
5760 free_rto_mask:
5761 free_cpumask_var(rd->rto_mask);
5762 free_online:
5763 free_cpumask_var(rd->online);
5764 free_span:
5765 free_cpumask_var(rd->span);
5766 out:
5767 return -ENOMEM;
5771 * By default the system creates a single root-domain with all cpus as
5772 * members (mimicking the global state we have today).
5774 struct root_domain def_root_domain;
5776 static void init_defrootdomain(void)
5778 init_rootdomain(&def_root_domain);
5780 atomic_set(&def_root_domain.refcount, 1);
5783 static struct root_domain *alloc_rootdomain(void)
5785 struct root_domain *rd;
5787 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5788 if (!rd)
5789 return NULL;
5791 if (init_rootdomain(rd) != 0) {
5792 kfree(rd);
5793 return NULL;
5796 return rd;
5799 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5801 struct sched_group *tmp, *first;
5803 if (!sg)
5804 return;
5806 first = sg;
5807 do {
5808 tmp = sg->next;
5810 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5811 kfree(sg->sgp);
5813 kfree(sg);
5814 sg = tmp;
5815 } while (sg != first);
5818 static void free_sched_domain(struct rcu_head *rcu)
5820 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5823 * If its an overlapping domain it has private groups, iterate and
5824 * nuke them all.
5826 if (sd->flags & SD_OVERLAP) {
5827 free_sched_groups(sd->groups, 1);
5828 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5829 kfree(sd->groups->sgp);
5830 kfree(sd->groups);
5832 kfree(sd);
5835 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5837 call_rcu(&sd->rcu, free_sched_domain);
5840 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5842 for (; sd; sd = sd->parent)
5843 destroy_sched_domain(sd, cpu);
5847 * Keep a special pointer to the highest sched_domain that has
5848 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5849 * allows us to avoid some pointer chasing select_idle_sibling().
5851 * Also keep a unique ID per domain (we use the first cpu number in
5852 * the cpumask of the domain), this allows us to quickly tell if
5853 * two cpus are in the same cache domain, see cpus_share_cache().
5855 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5856 DEFINE_PER_CPU(int, sd_llc_id);
5858 static void update_top_cache_domain(int cpu)
5860 struct sched_domain *sd;
5861 int id = cpu;
5863 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5864 if (sd)
5865 id = cpumask_first(sched_domain_span(sd));
5867 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5868 per_cpu(sd_llc_id, cpu) = id;
5872 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5873 * hold the hotplug lock.
5875 static void
5876 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5878 struct rq *rq = cpu_rq(cpu);
5879 struct sched_domain *tmp;
5881 /* Remove the sched domains which do not contribute to scheduling. */
5882 for (tmp = sd; tmp; ) {
5883 struct sched_domain *parent = tmp->parent;
5884 if (!parent)
5885 break;
5887 if (sd_parent_degenerate(tmp, parent)) {
5888 tmp->parent = parent->parent;
5889 if (parent->parent)
5890 parent->parent->child = tmp;
5891 destroy_sched_domain(parent, cpu);
5892 } else
5893 tmp = tmp->parent;
5896 if (sd && sd_degenerate(sd)) {
5897 tmp = sd;
5898 sd = sd->parent;
5899 destroy_sched_domain(tmp, cpu);
5900 if (sd)
5901 sd->child = NULL;
5904 sched_domain_debug(sd, cpu);
5906 rq_attach_root(rq, rd);
5907 tmp = rq->sd;
5908 rcu_assign_pointer(rq->sd, sd);
5909 destroy_sched_domains(tmp, cpu);
5911 update_top_cache_domain(cpu);
5914 /* cpus with isolated domains */
5915 static cpumask_var_t cpu_isolated_map;
5917 /* Setup the mask of cpus configured for isolated domains */
5918 static int __init isolated_cpu_setup(char *str)
5920 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5921 cpulist_parse(str, cpu_isolated_map);
5922 return 1;
5925 __setup("isolcpus=", isolated_cpu_setup);
5927 static const struct cpumask *cpu_cpu_mask(int cpu)
5929 return cpumask_of_node(cpu_to_node(cpu));
5932 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5934 struct sd_data {
5935 struct sched_domain **__percpu sd;
5936 struct sched_group **__percpu sg;
5937 struct sched_group_power **__percpu sgp;
5940 struct s_data {
5941 struct sched_domain ** __percpu sd;
5942 struct root_domain *rd;
5945 enum s_alloc {
5946 sa_rootdomain,
5947 sa_sd,
5948 sa_sd_storage,
5949 sa_none,
5952 struct sched_domain_topology_level;
5954 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5955 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5957 #define SDTL_OVERLAP 0x01
5959 struct sched_domain_topology_level {
5960 sched_domain_init_f init;
5961 sched_domain_mask_f mask;
5962 int flags;
5963 int numa_level;
5964 struct sd_data data;
5967 static int
5968 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5970 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5971 const struct cpumask *span = sched_domain_span(sd);
5972 struct cpumask *covered = sched_domains_tmpmask;
5973 struct sd_data *sdd = sd->private;
5974 struct sched_domain *child;
5975 int i;
5977 cpumask_clear(covered);
5979 for_each_cpu(i, span) {
5980 struct cpumask *sg_span;
5982 if (cpumask_test_cpu(i, covered))
5983 continue;
5985 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5986 GFP_KERNEL, cpu_to_node(cpu));
5988 if (!sg)
5989 goto fail;
5991 sg_span = sched_group_cpus(sg);
5993 child = *per_cpu_ptr(sdd->sd, i);
5994 if (child->child) {
5995 child = child->child;
5996 cpumask_copy(sg_span, sched_domain_span(child));
5997 } else
5998 cpumask_set_cpu(i, sg_span);
6000 cpumask_or(covered, covered, sg_span);
6002 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6003 atomic_inc(&sg->sgp->ref);
6005 if (cpumask_test_cpu(cpu, sg_span))
6006 groups = sg;
6008 if (!first)
6009 first = sg;
6010 if (last)
6011 last->next = sg;
6012 last = sg;
6013 last->next = first;
6015 sd->groups = groups;
6017 return 0;
6019 fail:
6020 free_sched_groups(first, 0);
6022 return -ENOMEM;
6025 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6027 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6028 struct sched_domain *child = sd->child;
6030 if (child)
6031 cpu = cpumask_first(sched_domain_span(child));
6033 if (sg) {
6034 *sg = *per_cpu_ptr(sdd->sg, cpu);
6035 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6036 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6039 return cpu;
6043 * build_sched_groups will build a circular linked list of the groups
6044 * covered by the given span, and will set each group's ->cpumask correctly,
6045 * and ->cpu_power to 0.
6047 * Assumes the sched_domain tree is fully constructed
6049 static int
6050 build_sched_groups(struct sched_domain *sd, int cpu)
6052 struct sched_group *first = NULL, *last = NULL;
6053 struct sd_data *sdd = sd->private;
6054 const struct cpumask *span = sched_domain_span(sd);
6055 struct cpumask *covered;
6056 int i;
6058 get_group(cpu, sdd, &sd->groups);
6059 atomic_inc(&sd->groups->ref);
6061 if (cpu != cpumask_first(sched_domain_span(sd)))
6062 return 0;
6064 lockdep_assert_held(&sched_domains_mutex);
6065 covered = sched_domains_tmpmask;
6067 cpumask_clear(covered);
6069 for_each_cpu(i, span) {
6070 struct sched_group *sg;
6071 int group = get_group(i, sdd, &sg);
6072 int j;
6074 if (cpumask_test_cpu(i, covered))
6075 continue;
6077 cpumask_clear(sched_group_cpus(sg));
6078 sg->sgp->power = 0;
6080 for_each_cpu(j, span) {
6081 if (get_group(j, sdd, NULL) != group)
6082 continue;
6084 cpumask_set_cpu(j, covered);
6085 cpumask_set_cpu(j, sched_group_cpus(sg));
6088 if (!first)
6089 first = sg;
6090 if (last)
6091 last->next = sg;
6092 last = sg;
6094 last->next = first;
6096 return 0;
6100 * Initialize sched groups cpu_power.
6102 * cpu_power indicates the capacity of sched group, which is used while
6103 * distributing the load between different sched groups in a sched domain.
6104 * Typically cpu_power for all the groups in a sched domain will be same unless
6105 * there are asymmetries in the topology. If there are asymmetries, group
6106 * having more cpu_power will pickup more load compared to the group having
6107 * less cpu_power.
6109 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6111 struct sched_group *sg = sd->groups;
6113 WARN_ON(!sd || !sg);
6115 do {
6116 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6117 sg = sg->next;
6118 } while (sg != sd->groups);
6120 if (cpu != group_first_cpu(sg))
6121 return;
6123 update_group_power(sd, cpu);
6124 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6127 int __weak arch_sd_sibling_asym_packing(void)
6129 return 0*SD_ASYM_PACKING;
6133 * Initializers for schedule domains
6134 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6137 #ifdef CONFIG_SCHED_DEBUG
6138 # define SD_INIT_NAME(sd, type) sd->name = #type
6139 #else
6140 # define SD_INIT_NAME(sd, type) do { } while (0)
6141 #endif
6143 #define SD_INIT_FUNC(type) \
6144 static noinline struct sched_domain * \
6145 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6147 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6148 *sd = SD_##type##_INIT; \
6149 SD_INIT_NAME(sd, type); \
6150 sd->private = &tl->data; \
6151 return sd; \
6154 SD_INIT_FUNC(CPU)
6155 #ifdef CONFIG_SCHED_SMT
6156 SD_INIT_FUNC(SIBLING)
6157 #endif
6158 #ifdef CONFIG_SCHED_MC
6159 SD_INIT_FUNC(MC)
6160 #endif
6161 #ifdef CONFIG_SCHED_BOOK
6162 SD_INIT_FUNC(BOOK)
6163 #endif
6165 static int default_relax_domain_level = -1;
6166 int sched_domain_level_max;
6168 static int __init setup_relax_domain_level(char *str)
6170 unsigned long val;
6172 val = simple_strtoul(str, NULL, 0);
6173 if (val < sched_domain_level_max)
6174 default_relax_domain_level = val;
6176 return 1;
6178 __setup("relax_domain_level=", setup_relax_domain_level);
6180 static void set_domain_attribute(struct sched_domain *sd,
6181 struct sched_domain_attr *attr)
6183 int request;
6185 if (!attr || attr->relax_domain_level < 0) {
6186 if (default_relax_domain_level < 0)
6187 return;
6188 else
6189 request = default_relax_domain_level;
6190 } else
6191 request = attr->relax_domain_level;
6192 if (request < sd->level) {
6193 /* turn off idle balance on this domain */
6194 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6195 } else {
6196 /* turn on idle balance on this domain */
6197 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6201 static void __sdt_free(const struct cpumask *cpu_map);
6202 static int __sdt_alloc(const struct cpumask *cpu_map);
6204 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6205 const struct cpumask *cpu_map)
6207 switch (what) {
6208 case sa_rootdomain:
6209 if (!atomic_read(&d->rd->refcount))
6210 free_rootdomain(&d->rd->rcu); /* fall through */
6211 case sa_sd:
6212 free_percpu(d->sd); /* fall through */
6213 case sa_sd_storage:
6214 __sdt_free(cpu_map); /* fall through */
6215 case sa_none:
6216 break;
6220 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6221 const struct cpumask *cpu_map)
6223 memset(d, 0, sizeof(*d));
6225 if (__sdt_alloc(cpu_map))
6226 return sa_sd_storage;
6227 d->sd = alloc_percpu(struct sched_domain *);
6228 if (!d->sd)
6229 return sa_sd_storage;
6230 d->rd = alloc_rootdomain();
6231 if (!d->rd)
6232 return sa_sd;
6233 return sa_rootdomain;
6237 * NULL the sd_data elements we've used to build the sched_domain and
6238 * sched_group structure so that the subsequent __free_domain_allocs()
6239 * will not free the data we're using.
6241 static void claim_allocations(int cpu, struct sched_domain *sd)
6243 struct sd_data *sdd = sd->private;
6245 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6246 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6248 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6249 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6251 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6252 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6255 #ifdef CONFIG_SCHED_SMT
6256 static const struct cpumask *cpu_smt_mask(int cpu)
6258 return topology_thread_cpumask(cpu);
6260 #endif
6263 * Topology list, bottom-up.
6265 static struct sched_domain_topology_level default_topology[] = {
6266 #ifdef CONFIG_SCHED_SMT
6267 { sd_init_SIBLING, cpu_smt_mask, },
6268 #endif
6269 #ifdef CONFIG_SCHED_MC
6270 { sd_init_MC, cpu_coregroup_mask, },
6271 #endif
6272 #ifdef CONFIG_SCHED_BOOK
6273 { sd_init_BOOK, cpu_book_mask, },
6274 #endif
6275 { sd_init_CPU, cpu_cpu_mask, },
6276 { NULL, },
6279 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6281 #ifdef CONFIG_NUMA
6283 static int sched_domains_numa_levels;
6284 static int sched_domains_numa_scale;
6285 static int *sched_domains_numa_distance;
6286 static struct cpumask ***sched_domains_numa_masks;
6287 static int sched_domains_curr_level;
6289 static inline int sd_local_flags(int level)
6291 if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
6292 return 0;
6294 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6297 static struct sched_domain *
6298 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6300 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6301 int level = tl->numa_level;
6302 int sd_weight = cpumask_weight(
6303 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6305 *sd = (struct sched_domain){
6306 .min_interval = sd_weight,
6307 .max_interval = 2*sd_weight,
6308 .busy_factor = 32,
6309 .imbalance_pct = 125,
6310 .cache_nice_tries = 2,
6311 .busy_idx = 3,
6312 .idle_idx = 2,
6313 .newidle_idx = 0,
6314 .wake_idx = 0,
6315 .forkexec_idx = 0,
6317 .flags = 1*SD_LOAD_BALANCE
6318 | 1*SD_BALANCE_NEWIDLE
6319 | 0*SD_BALANCE_EXEC
6320 | 0*SD_BALANCE_FORK
6321 | 0*SD_BALANCE_WAKE
6322 | 0*SD_WAKE_AFFINE
6323 | 0*SD_PREFER_LOCAL
6324 | 0*SD_SHARE_CPUPOWER
6325 | 0*SD_POWERSAVINGS_BALANCE
6326 | 0*SD_SHARE_PKG_RESOURCES
6327 | 1*SD_SERIALIZE
6328 | 0*SD_PREFER_SIBLING
6329 | sd_local_flags(level)
6331 .last_balance = jiffies,
6332 .balance_interval = sd_weight,
6334 SD_INIT_NAME(sd, NUMA);
6335 sd->private = &tl->data;
6338 * Ugly hack to pass state to sd_numa_mask()...
6340 sched_domains_curr_level = tl->numa_level;
6342 return sd;
6345 static const struct cpumask *sd_numa_mask(int cpu)
6347 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6350 static void sched_init_numa(void)
6352 int next_distance, curr_distance = node_distance(0, 0);
6353 struct sched_domain_topology_level *tl;
6354 int level = 0;
6355 int i, j, k;
6357 sched_domains_numa_scale = curr_distance;
6358 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6359 if (!sched_domains_numa_distance)
6360 return;
6363 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6364 * unique distances in the node_distance() table.
6366 * Assumes node_distance(0,j) includes all distances in
6367 * node_distance(i,j) in order to avoid cubic time.
6369 * XXX: could be optimized to O(n log n) by using sort()
6371 next_distance = curr_distance;
6372 for (i = 0; i < nr_node_ids; i++) {
6373 for (j = 0; j < nr_node_ids; j++) {
6374 int distance = node_distance(0, j);
6375 if (distance > curr_distance &&
6376 (distance < next_distance ||
6377 next_distance == curr_distance))
6378 next_distance = distance;
6380 if (next_distance != curr_distance) {
6381 sched_domains_numa_distance[level++] = next_distance;
6382 sched_domains_numa_levels = level;
6383 curr_distance = next_distance;
6384 } else break;
6387 * 'level' contains the number of unique distances, excluding the
6388 * identity distance node_distance(i,i).
6390 * The sched_domains_nume_distance[] array includes the actual distance
6391 * numbers.
6394 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6395 if (!sched_domains_numa_masks)
6396 return;
6399 * Now for each level, construct a mask per node which contains all
6400 * cpus of nodes that are that many hops away from us.
6402 for (i = 0; i < level; i++) {
6403 sched_domains_numa_masks[i] =
6404 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6405 if (!sched_domains_numa_masks[i])
6406 return;
6408 for (j = 0; j < nr_node_ids; j++) {
6409 struct cpumask *mask = kzalloc_node(cpumask_size(), GFP_KERNEL, j);
6410 if (!mask)
6411 return;
6413 sched_domains_numa_masks[i][j] = mask;
6415 for (k = 0; k < nr_node_ids; k++) {
6416 if (node_distance(j, k) > sched_domains_numa_distance[i])
6417 continue;
6419 cpumask_or(mask, mask, cpumask_of_node(k));
6424 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6425 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6426 if (!tl)
6427 return;
6430 * Copy the default topology bits..
6432 for (i = 0; default_topology[i].init; i++)
6433 tl[i] = default_topology[i];
6436 * .. and append 'j' levels of NUMA goodness.
6438 for (j = 0; j < level; i++, j++) {
6439 tl[i] = (struct sched_domain_topology_level){
6440 .init = sd_numa_init,
6441 .mask = sd_numa_mask,
6442 .flags = SDTL_OVERLAP,
6443 .numa_level = j,
6447 sched_domain_topology = tl;
6449 #else
6450 static inline void sched_init_numa(void)
6453 #endif /* CONFIG_NUMA */
6455 static int __sdt_alloc(const struct cpumask *cpu_map)
6457 struct sched_domain_topology_level *tl;
6458 int j;
6460 for (tl = sched_domain_topology; tl->init; tl++) {
6461 struct sd_data *sdd = &tl->data;
6463 sdd->sd = alloc_percpu(struct sched_domain *);
6464 if (!sdd->sd)
6465 return -ENOMEM;
6467 sdd->sg = alloc_percpu(struct sched_group *);
6468 if (!sdd->sg)
6469 return -ENOMEM;
6471 sdd->sgp = alloc_percpu(struct sched_group_power *);
6472 if (!sdd->sgp)
6473 return -ENOMEM;
6475 for_each_cpu(j, cpu_map) {
6476 struct sched_domain *sd;
6477 struct sched_group *sg;
6478 struct sched_group_power *sgp;
6480 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6481 GFP_KERNEL, cpu_to_node(j));
6482 if (!sd)
6483 return -ENOMEM;
6485 *per_cpu_ptr(sdd->sd, j) = sd;
6487 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6488 GFP_KERNEL, cpu_to_node(j));
6489 if (!sg)
6490 return -ENOMEM;
6492 sg->next = sg;
6494 *per_cpu_ptr(sdd->sg, j) = sg;
6496 sgp = kzalloc_node(sizeof(struct sched_group_power),
6497 GFP_KERNEL, cpu_to_node(j));
6498 if (!sgp)
6499 return -ENOMEM;
6501 *per_cpu_ptr(sdd->sgp, j) = sgp;
6505 return 0;
6508 static void __sdt_free(const struct cpumask *cpu_map)
6510 struct sched_domain_topology_level *tl;
6511 int j;
6513 for (tl = sched_domain_topology; tl->init; tl++) {
6514 struct sd_data *sdd = &tl->data;
6516 for_each_cpu(j, cpu_map) {
6517 struct sched_domain *sd;
6519 if (sdd->sd) {
6520 sd = *per_cpu_ptr(sdd->sd, j);
6521 if (sd && (sd->flags & SD_OVERLAP))
6522 free_sched_groups(sd->groups, 0);
6523 kfree(*per_cpu_ptr(sdd->sd, j));
6526 if (sdd->sg)
6527 kfree(*per_cpu_ptr(sdd->sg, j));
6528 if (sdd->sgp)
6529 kfree(*per_cpu_ptr(sdd->sgp, j));
6531 free_percpu(sdd->sd);
6532 sdd->sd = NULL;
6533 free_percpu(sdd->sg);
6534 sdd->sg = NULL;
6535 free_percpu(sdd->sgp);
6536 sdd->sgp = NULL;
6540 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6541 struct s_data *d, const struct cpumask *cpu_map,
6542 struct sched_domain_attr *attr, struct sched_domain *child,
6543 int cpu)
6545 struct sched_domain *sd = tl->init(tl, cpu);
6546 if (!sd)
6547 return child;
6549 set_domain_attribute(sd, attr);
6550 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6551 if (child) {
6552 sd->level = child->level + 1;
6553 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6554 child->parent = sd;
6556 sd->child = child;
6558 return sd;
6562 * Build sched domains for a given set of cpus and attach the sched domains
6563 * to the individual cpus
6565 static int build_sched_domains(const struct cpumask *cpu_map,
6566 struct sched_domain_attr *attr)
6568 enum s_alloc alloc_state = sa_none;
6569 struct sched_domain *sd;
6570 struct s_data d;
6571 int i, ret = -ENOMEM;
6573 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6574 if (alloc_state != sa_rootdomain)
6575 goto error;
6577 /* Set up domains for cpus specified by the cpu_map. */
6578 for_each_cpu(i, cpu_map) {
6579 struct sched_domain_topology_level *tl;
6581 sd = NULL;
6582 for (tl = sched_domain_topology; tl->init; tl++) {
6583 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6584 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6585 sd->flags |= SD_OVERLAP;
6586 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6587 break;
6590 while (sd->child)
6591 sd = sd->child;
6593 *per_cpu_ptr(d.sd, i) = sd;
6596 /* Build the groups for the domains */
6597 for_each_cpu(i, cpu_map) {
6598 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6599 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6600 if (sd->flags & SD_OVERLAP) {
6601 if (build_overlap_sched_groups(sd, i))
6602 goto error;
6603 } else {
6604 if (build_sched_groups(sd, i))
6605 goto error;
6610 /* Calculate CPU power for physical packages and nodes */
6611 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6612 if (!cpumask_test_cpu(i, cpu_map))
6613 continue;
6615 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6616 claim_allocations(i, sd);
6617 init_sched_groups_power(i, sd);
6621 /* Attach the domains */
6622 rcu_read_lock();
6623 for_each_cpu(i, cpu_map) {
6624 sd = *per_cpu_ptr(d.sd, i);
6625 cpu_attach_domain(sd, d.rd, i);
6627 rcu_read_unlock();
6629 ret = 0;
6630 error:
6631 __free_domain_allocs(&d, alloc_state, cpu_map);
6632 return ret;
6635 static cpumask_var_t *doms_cur; /* current sched domains */
6636 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6637 static struct sched_domain_attr *dattr_cur;
6638 /* attribues of custom domains in 'doms_cur' */
6641 * Special case: If a kmalloc of a doms_cur partition (array of
6642 * cpumask) fails, then fallback to a single sched domain,
6643 * as determined by the single cpumask fallback_doms.
6645 static cpumask_var_t fallback_doms;
6648 * arch_update_cpu_topology lets virtualized architectures update the
6649 * cpu core maps. It is supposed to return 1 if the topology changed
6650 * or 0 if it stayed the same.
6652 int __attribute__((weak)) arch_update_cpu_topology(void)
6654 return 0;
6657 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6659 int i;
6660 cpumask_var_t *doms;
6662 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6663 if (!doms)
6664 return NULL;
6665 for (i = 0; i < ndoms; i++) {
6666 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6667 free_sched_domains(doms, i);
6668 return NULL;
6671 return doms;
6674 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6676 unsigned int i;
6677 for (i = 0; i < ndoms; i++)
6678 free_cpumask_var(doms[i]);
6679 kfree(doms);
6683 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6684 * For now this just excludes isolated cpus, but could be used to
6685 * exclude other special cases in the future.
6687 static int init_sched_domains(const struct cpumask *cpu_map)
6689 int err;
6691 arch_update_cpu_topology();
6692 ndoms_cur = 1;
6693 doms_cur = alloc_sched_domains(ndoms_cur);
6694 if (!doms_cur)
6695 doms_cur = &fallback_doms;
6696 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6697 dattr_cur = NULL;
6698 err = build_sched_domains(doms_cur[0], NULL);
6699 register_sched_domain_sysctl();
6701 return err;
6705 * Detach sched domains from a group of cpus specified in cpu_map
6706 * These cpus will now be attached to the NULL domain
6708 static void detach_destroy_domains(const struct cpumask *cpu_map)
6710 int i;
6712 rcu_read_lock();
6713 for_each_cpu(i, cpu_map)
6714 cpu_attach_domain(NULL, &def_root_domain, i);
6715 rcu_read_unlock();
6718 /* handle null as "default" */
6719 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6720 struct sched_domain_attr *new, int idx_new)
6722 struct sched_domain_attr tmp;
6724 /* fast path */
6725 if (!new && !cur)
6726 return 1;
6728 tmp = SD_ATTR_INIT;
6729 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6730 new ? (new + idx_new) : &tmp,
6731 sizeof(struct sched_domain_attr));
6735 * Partition sched domains as specified by the 'ndoms_new'
6736 * cpumasks in the array doms_new[] of cpumasks. This compares
6737 * doms_new[] to the current sched domain partitioning, doms_cur[].
6738 * It destroys each deleted domain and builds each new domain.
6740 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6741 * The masks don't intersect (don't overlap.) We should setup one
6742 * sched domain for each mask. CPUs not in any of the cpumasks will
6743 * not be load balanced. If the same cpumask appears both in the
6744 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6745 * it as it is.
6747 * The passed in 'doms_new' should be allocated using
6748 * alloc_sched_domains. This routine takes ownership of it and will
6749 * free_sched_domains it when done with it. If the caller failed the
6750 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6751 * and partition_sched_domains() will fallback to the single partition
6752 * 'fallback_doms', it also forces the domains to be rebuilt.
6754 * If doms_new == NULL it will be replaced with cpu_online_mask.
6755 * ndoms_new == 0 is a special case for destroying existing domains,
6756 * and it will not create the default domain.
6758 * Call with hotplug lock held
6760 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6761 struct sched_domain_attr *dattr_new)
6763 int i, j, n;
6764 int new_topology;
6766 mutex_lock(&sched_domains_mutex);
6768 /* always unregister in case we don't destroy any domains */
6769 unregister_sched_domain_sysctl();
6771 /* Let architecture update cpu core mappings. */
6772 new_topology = arch_update_cpu_topology();
6774 n = doms_new ? ndoms_new : 0;
6776 /* Destroy deleted domains */
6777 for (i = 0; i < ndoms_cur; i++) {
6778 for (j = 0; j < n && !new_topology; j++) {
6779 if (cpumask_equal(doms_cur[i], doms_new[j])
6780 && dattrs_equal(dattr_cur, i, dattr_new, j))
6781 goto match1;
6783 /* no match - a current sched domain not in new doms_new[] */
6784 detach_destroy_domains(doms_cur[i]);
6785 match1:
6789 if (doms_new == NULL) {
6790 ndoms_cur = 0;
6791 doms_new = &fallback_doms;
6792 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6793 WARN_ON_ONCE(dattr_new);
6796 /* Build new domains */
6797 for (i = 0; i < ndoms_new; i++) {
6798 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6799 if (cpumask_equal(doms_new[i], doms_cur[j])
6800 && dattrs_equal(dattr_new, i, dattr_cur, j))
6801 goto match2;
6803 /* no match - add a new doms_new */
6804 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6805 match2:
6809 /* Remember the new sched domains */
6810 if (doms_cur != &fallback_doms)
6811 free_sched_domains(doms_cur, ndoms_cur);
6812 kfree(dattr_cur); /* kfree(NULL) is safe */
6813 doms_cur = doms_new;
6814 dattr_cur = dattr_new;
6815 ndoms_cur = ndoms_new;
6817 register_sched_domain_sysctl();
6819 mutex_unlock(&sched_domains_mutex);
6822 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6823 static void reinit_sched_domains(void)
6825 get_online_cpus();
6827 /* Destroy domains first to force the rebuild */
6828 partition_sched_domains(0, NULL, NULL);
6830 rebuild_sched_domains();
6831 put_online_cpus();
6834 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6836 unsigned int level = 0;
6838 if (sscanf(buf, "%u", &level) != 1)
6839 return -EINVAL;
6842 * level is always be positive so don't check for
6843 * level < POWERSAVINGS_BALANCE_NONE which is 0
6844 * What happens on 0 or 1 byte write,
6845 * need to check for count as well?
6848 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6849 return -EINVAL;
6851 if (smt)
6852 sched_smt_power_savings = level;
6853 else
6854 sched_mc_power_savings = level;
6856 reinit_sched_domains();
6858 return count;
6861 #ifdef CONFIG_SCHED_MC
6862 static ssize_t sched_mc_power_savings_show(struct device *dev,
6863 struct device_attribute *attr,
6864 char *buf)
6866 return sprintf(buf, "%u\n", sched_mc_power_savings);
6868 static ssize_t sched_mc_power_savings_store(struct device *dev,
6869 struct device_attribute *attr,
6870 const char *buf, size_t count)
6872 return sched_power_savings_store(buf, count, 0);
6874 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6875 sched_mc_power_savings_show,
6876 sched_mc_power_savings_store);
6877 #endif
6879 #ifdef CONFIG_SCHED_SMT
6880 static ssize_t sched_smt_power_savings_show(struct device *dev,
6881 struct device_attribute *attr,
6882 char *buf)
6884 return sprintf(buf, "%u\n", sched_smt_power_savings);
6886 static ssize_t sched_smt_power_savings_store(struct device *dev,
6887 struct device_attribute *attr,
6888 const char *buf, size_t count)
6890 return sched_power_savings_store(buf, count, 1);
6892 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6893 sched_smt_power_savings_show,
6894 sched_smt_power_savings_store);
6895 #endif
6897 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6899 int err = 0;
6901 #ifdef CONFIG_SCHED_SMT
6902 if (smt_capable())
6903 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6904 #endif
6905 #ifdef CONFIG_SCHED_MC
6906 if (!err && mc_capable())
6907 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6908 #endif
6909 return err;
6911 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6914 * Update cpusets according to cpu_active mask. If cpusets are
6915 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6916 * around partition_sched_domains().
6918 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6919 void *hcpu)
6921 switch (action & ~CPU_TASKS_FROZEN) {
6922 case CPU_ONLINE:
6923 case CPU_DOWN_FAILED:
6924 cpuset_update_active_cpus();
6925 return NOTIFY_OK;
6926 default:
6927 return NOTIFY_DONE;
6931 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6932 void *hcpu)
6934 switch (action & ~CPU_TASKS_FROZEN) {
6935 case CPU_DOWN_PREPARE:
6936 cpuset_update_active_cpus();
6937 return NOTIFY_OK;
6938 default:
6939 return NOTIFY_DONE;
6943 void __init sched_init_smp(void)
6945 cpumask_var_t non_isolated_cpus;
6947 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6948 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6950 sched_init_numa();
6952 get_online_cpus();
6953 mutex_lock(&sched_domains_mutex);
6954 init_sched_domains(cpu_active_mask);
6955 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6956 if (cpumask_empty(non_isolated_cpus))
6957 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6958 mutex_unlock(&sched_domains_mutex);
6959 put_online_cpus();
6961 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6962 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6964 /* RT runtime code needs to handle some hotplug events */
6965 hotcpu_notifier(update_runtime, 0);
6967 init_hrtick();
6969 /* Move init over to a non-isolated CPU */
6970 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6971 BUG();
6972 sched_init_granularity();
6973 free_cpumask_var(non_isolated_cpus);
6975 init_sched_rt_class();
6977 #else
6978 void __init sched_init_smp(void)
6980 sched_init_granularity();
6982 #endif /* CONFIG_SMP */
6984 const_debug unsigned int sysctl_timer_migration = 1;
6986 int in_sched_functions(unsigned long addr)
6988 return in_lock_functions(addr) ||
6989 (addr >= (unsigned long)__sched_text_start
6990 && addr < (unsigned long)__sched_text_end);
6993 #ifdef CONFIG_CGROUP_SCHED
6994 struct task_group root_task_group;
6995 #endif
6997 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6999 void __init sched_init(void)
7001 int i, j;
7002 unsigned long alloc_size = 0, ptr;
7004 #ifdef CONFIG_FAIR_GROUP_SCHED
7005 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7006 #endif
7007 #ifdef CONFIG_RT_GROUP_SCHED
7008 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7009 #endif
7010 #ifdef CONFIG_CPUMASK_OFFSTACK
7011 alloc_size += num_possible_cpus() * cpumask_size();
7012 #endif
7013 if (alloc_size) {
7014 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7016 #ifdef CONFIG_FAIR_GROUP_SCHED
7017 root_task_group.se = (struct sched_entity **)ptr;
7018 ptr += nr_cpu_ids * sizeof(void **);
7020 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7021 ptr += nr_cpu_ids * sizeof(void **);
7023 #endif /* CONFIG_FAIR_GROUP_SCHED */
7024 #ifdef CONFIG_RT_GROUP_SCHED
7025 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7026 ptr += nr_cpu_ids * sizeof(void **);
7028 root_task_group.rt_rq = (struct rt_rq **)ptr;
7029 ptr += nr_cpu_ids * sizeof(void **);
7031 #endif /* CONFIG_RT_GROUP_SCHED */
7032 #ifdef CONFIG_CPUMASK_OFFSTACK
7033 for_each_possible_cpu(i) {
7034 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7035 ptr += cpumask_size();
7037 #endif /* CONFIG_CPUMASK_OFFSTACK */
7040 #ifdef CONFIG_SMP
7041 init_defrootdomain();
7042 #endif
7044 init_rt_bandwidth(&def_rt_bandwidth,
7045 global_rt_period(), global_rt_runtime());
7047 #ifdef CONFIG_RT_GROUP_SCHED
7048 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7049 global_rt_period(), global_rt_runtime());
7050 #endif /* CONFIG_RT_GROUP_SCHED */
7052 #ifdef CONFIG_CGROUP_SCHED
7053 list_add(&root_task_group.list, &task_groups);
7054 INIT_LIST_HEAD(&root_task_group.children);
7055 INIT_LIST_HEAD(&root_task_group.siblings);
7056 autogroup_init(&init_task);
7058 #endif /* CONFIG_CGROUP_SCHED */
7060 #ifdef CONFIG_CGROUP_CPUACCT
7061 root_cpuacct.cpustat = &kernel_cpustat;
7062 root_cpuacct.cpuusage = alloc_percpu(u64);
7063 /* Too early, not expected to fail */
7064 BUG_ON(!root_cpuacct.cpuusage);
7065 #endif
7066 for_each_possible_cpu(i) {
7067 struct rq *rq;
7069 rq = cpu_rq(i);
7070 raw_spin_lock_init(&rq->lock);
7071 rq->nr_running = 0;
7072 rq->calc_load_active = 0;
7073 rq->calc_load_update = jiffies + LOAD_FREQ;
7074 init_cfs_rq(&rq->cfs);
7075 init_rt_rq(&rq->rt, rq);
7076 #ifdef CONFIG_FAIR_GROUP_SCHED
7077 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7078 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7080 * How much cpu bandwidth does root_task_group get?
7082 * In case of task-groups formed thr' the cgroup filesystem, it
7083 * gets 100% of the cpu resources in the system. This overall
7084 * system cpu resource is divided among the tasks of
7085 * root_task_group and its child task-groups in a fair manner,
7086 * based on each entity's (task or task-group's) weight
7087 * (se->load.weight).
7089 * In other words, if root_task_group has 10 tasks of weight
7090 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7091 * then A0's share of the cpu resource is:
7093 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7095 * We achieve this by letting root_task_group's tasks sit
7096 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7098 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7099 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7100 #endif /* CONFIG_FAIR_GROUP_SCHED */
7102 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7103 #ifdef CONFIG_RT_GROUP_SCHED
7104 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7105 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7106 #endif
7108 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7109 rq->cpu_load[j] = 0;
7111 rq->last_load_update_tick = jiffies;
7113 #ifdef CONFIG_SMP
7114 rq->sd = NULL;
7115 rq->rd = NULL;
7116 rq->cpu_power = SCHED_POWER_SCALE;
7117 rq->post_schedule = 0;
7118 rq->active_balance = 0;
7119 rq->next_balance = jiffies;
7120 rq->push_cpu = 0;
7121 rq->cpu = i;
7122 rq->online = 0;
7123 rq->idle_stamp = 0;
7124 rq->avg_idle = 2*sysctl_sched_migration_cost;
7126 INIT_LIST_HEAD(&rq->cfs_tasks);
7128 rq_attach_root(rq, &def_root_domain);
7129 #ifdef CONFIG_NO_HZ
7130 rq->nohz_flags = 0;
7131 #endif
7132 #endif
7133 init_rq_hrtick(rq);
7134 atomic_set(&rq->nr_iowait, 0);
7137 set_load_weight(&init_task);
7139 #ifdef CONFIG_PREEMPT_NOTIFIERS
7140 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7141 #endif
7143 #ifdef CONFIG_RT_MUTEXES
7144 plist_head_init(&init_task.pi_waiters);
7145 #endif
7148 * The boot idle thread does lazy MMU switching as well:
7150 atomic_inc(&init_mm.mm_count);
7151 enter_lazy_tlb(&init_mm, current);
7154 * Make us the idle thread. Technically, schedule() should not be
7155 * called from this thread, however somewhere below it might be,
7156 * but because we are the idle thread, we just pick up running again
7157 * when this runqueue becomes "idle".
7159 init_idle(current, smp_processor_id());
7161 calc_load_update = jiffies + LOAD_FREQ;
7164 * During early bootup we pretend to be a normal task:
7166 current->sched_class = &fair_sched_class;
7168 #ifdef CONFIG_SMP
7169 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7170 /* May be allocated at isolcpus cmdline parse time */
7171 if (cpu_isolated_map == NULL)
7172 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7173 #endif
7174 init_sched_fair_class();
7176 scheduler_running = 1;
7179 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7180 static inline int preempt_count_equals(int preempt_offset)
7182 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7184 return (nested == preempt_offset);
7187 void __might_sleep(const char *file, int line, int preempt_offset)
7189 static unsigned long prev_jiffy; /* ratelimiting */
7191 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7192 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7193 system_state != SYSTEM_RUNNING || oops_in_progress)
7194 return;
7195 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7196 return;
7197 prev_jiffy = jiffies;
7199 printk(KERN_ERR
7200 "BUG: sleeping function called from invalid context at %s:%d\n",
7201 file, line);
7202 printk(KERN_ERR
7203 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7204 in_atomic(), irqs_disabled(),
7205 current->pid, current->comm);
7207 debug_show_held_locks(current);
7208 if (irqs_disabled())
7209 print_irqtrace_events(current);
7210 dump_stack();
7212 EXPORT_SYMBOL(__might_sleep);
7213 #endif
7215 #ifdef CONFIG_MAGIC_SYSRQ
7216 static void normalize_task(struct rq *rq, struct task_struct *p)
7218 const struct sched_class *prev_class = p->sched_class;
7219 int old_prio = p->prio;
7220 int on_rq;
7222 on_rq = p->on_rq;
7223 if (on_rq)
7224 dequeue_task(rq, p, 0);
7225 __setscheduler(rq, p, SCHED_NORMAL, 0);
7226 if (on_rq) {
7227 enqueue_task(rq, p, 0);
7228 resched_task(rq->curr);
7231 check_class_changed(rq, p, prev_class, old_prio);
7234 void normalize_rt_tasks(void)
7236 struct task_struct *g, *p;
7237 unsigned long flags;
7238 struct rq *rq;
7240 read_lock_irqsave(&tasklist_lock, flags);
7241 do_each_thread(g, p) {
7243 * Only normalize user tasks:
7245 if (!p->mm)
7246 continue;
7248 p->se.exec_start = 0;
7249 #ifdef CONFIG_SCHEDSTATS
7250 p->se.statistics.wait_start = 0;
7251 p->se.statistics.sleep_start = 0;
7252 p->se.statistics.block_start = 0;
7253 #endif
7255 if (!rt_task(p)) {
7257 * Renice negative nice level userspace
7258 * tasks back to 0:
7260 if (TASK_NICE(p) < 0 && p->mm)
7261 set_user_nice(p, 0);
7262 continue;
7265 raw_spin_lock(&p->pi_lock);
7266 rq = __task_rq_lock(p);
7268 normalize_task(rq, p);
7270 __task_rq_unlock(rq);
7271 raw_spin_unlock(&p->pi_lock);
7272 } while_each_thread(g, p);
7274 read_unlock_irqrestore(&tasklist_lock, flags);
7277 #endif /* CONFIG_MAGIC_SYSRQ */
7279 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7281 * These functions are only useful for the IA64 MCA handling, or kdb.
7283 * They can only be called when the whole system has been
7284 * stopped - every CPU needs to be quiescent, and no scheduling
7285 * activity can take place. Using them for anything else would
7286 * be a serious bug, and as a result, they aren't even visible
7287 * under any other configuration.
7291 * curr_task - return the current task for a given cpu.
7292 * @cpu: the processor in question.
7294 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7296 struct task_struct *curr_task(int cpu)
7298 return cpu_curr(cpu);
7301 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7303 #ifdef CONFIG_IA64
7305 * set_curr_task - set the current task for a given cpu.
7306 * @cpu: the processor in question.
7307 * @p: the task pointer to set.
7309 * Description: This function must only be used when non-maskable interrupts
7310 * are serviced on a separate stack. It allows the architecture to switch the
7311 * notion of the current task on a cpu in a non-blocking manner. This function
7312 * must be called with all CPU's synchronized, and interrupts disabled, the
7313 * and caller must save the original value of the current task (see
7314 * curr_task() above) and restore that value before reenabling interrupts and
7315 * re-starting the system.
7317 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7319 void set_curr_task(int cpu, struct task_struct *p)
7321 cpu_curr(cpu) = p;
7324 #endif
7326 #ifdef CONFIG_CGROUP_SCHED
7327 /* task_group_lock serializes the addition/removal of task groups */
7328 static DEFINE_SPINLOCK(task_group_lock);
7330 static void free_sched_group(struct task_group *tg)
7332 free_fair_sched_group(tg);
7333 free_rt_sched_group(tg);
7334 autogroup_free(tg);
7335 kfree(tg);
7338 /* allocate runqueue etc for a new task group */
7339 struct task_group *sched_create_group(struct task_group *parent)
7341 struct task_group *tg;
7342 unsigned long flags;
7344 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7345 if (!tg)
7346 return ERR_PTR(-ENOMEM);
7348 if (!alloc_fair_sched_group(tg, parent))
7349 goto err;
7351 if (!alloc_rt_sched_group(tg, parent))
7352 goto err;
7354 spin_lock_irqsave(&task_group_lock, flags);
7355 list_add_rcu(&tg->list, &task_groups);
7357 WARN_ON(!parent); /* root should already exist */
7359 tg->parent = parent;
7360 INIT_LIST_HEAD(&tg->children);
7361 list_add_rcu(&tg->siblings, &parent->children);
7362 spin_unlock_irqrestore(&task_group_lock, flags);
7364 return tg;
7366 err:
7367 free_sched_group(tg);
7368 return ERR_PTR(-ENOMEM);
7371 /* rcu callback to free various structures associated with a task group */
7372 static void free_sched_group_rcu(struct rcu_head *rhp)
7374 /* now it should be safe to free those cfs_rqs */
7375 free_sched_group(container_of(rhp, struct task_group, rcu));
7378 /* Destroy runqueue etc associated with a task group */
7379 void sched_destroy_group(struct task_group *tg)
7381 unsigned long flags;
7382 int i;
7384 /* end participation in shares distribution */
7385 for_each_possible_cpu(i)
7386 unregister_fair_sched_group(tg, i);
7388 spin_lock_irqsave(&task_group_lock, flags);
7389 list_del_rcu(&tg->list);
7390 list_del_rcu(&tg->siblings);
7391 spin_unlock_irqrestore(&task_group_lock, flags);
7393 /* wait for possible concurrent references to cfs_rqs complete */
7394 call_rcu(&tg->rcu, free_sched_group_rcu);
7397 /* change task's runqueue when it moves between groups.
7398 * The caller of this function should have put the task in its new group
7399 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7400 * reflect its new group.
7402 void sched_move_task(struct task_struct *tsk)
7404 int on_rq, running;
7405 unsigned long flags;
7406 struct rq *rq;
7408 rq = task_rq_lock(tsk, &flags);
7410 running = task_current(rq, tsk);
7411 on_rq = tsk->on_rq;
7413 if (on_rq)
7414 dequeue_task(rq, tsk, 0);
7415 if (unlikely(running))
7416 tsk->sched_class->put_prev_task(rq, tsk);
7418 #ifdef CONFIG_FAIR_GROUP_SCHED
7419 if (tsk->sched_class->task_move_group)
7420 tsk->sched_class->task_move_group(tsk, on_rq);
7421 else
7422 #endif
7423 set_task_rq(tsk, task_cpu(tsk));
7425 if (unlikely(running))
7426 tsk->sched_class->set_curr_task(rq);
7427 if (on_rq)
7428 enqueue_task(rq, tsk, 0);
7430 task_rq_unlock(rq, tsk, &flags);
7432 #endif /* CONFIG_CGROUP_SCHED */
7434 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7435 static unsigned long to_ratio(u64 period, u64 runtime)
7437 if (runtime == RUNTIME_INF)
7438 return 1ULL << 20;
7440 return div64_u64(runtime << 20, period);
7442 #endif
7444 #ifdef CONFIG_RT_GROUP_SCHED
7446 * Ensure that the real time constraints are schedulable.
7448 static DEFINE_MUTEX(rt_constraints_mutex);
7450 /* Must be called with tasklist_lock held */
7451 static inline int tg_has_rt_tasks(struct task_group *tg)
7453 struct task_struct *g, *p;
7455 do_each_thread(g, p) {
7456 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7457 return 1;
7458 } while_each_thread(g, p);
7460 return 0;
7463 struct rt_schedulable_data {
7464 struct task_group *tg;
7465 u64 rt_period;
7466 u64 rt_runtime;
7469 static int tg_rt_schedulable(struct task_group *tg, void *data)
7471 struct rt_schedulable_data *d = data;
7472 struct task_group *child;
7473 unsigned long total, sum = 0;
7474 u64 period, runtime;
7476 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7477 runtime = tg->rt_bandwidth.rt_runtime;
7479 if (tg == d->tg) {
7480 period = d->rt_period;
7481 runtime = d->rt_runtime;
7485 * Cannot have more runtime than the period.
7487 if (runtime > period && runtime != RUNTIME_INF)
7488 return -EINVAL;
7491 * Ensure we don't starve existing RT tasks.
7493 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7494 return -EBUSY;
7496 total = to_ratio(period, runtime);
7499 * Nobody can have more than the global setting allows.
7501 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7502 return -EINVAL;
7505 * The sum of our children's runtime should not exceed our own.
7507 list_for_each_entry_rcu(child, &tg->children, siblings) {
7508 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7509 runtime = child->rt_bandwidth.rt_runtime;
7511 if (child == d->tg) {
7512 period = d->rt_period;
7513 runtime = d->rt_runtime;
7516 sum += to_ratio(period, runtime);
7519 if (sum > total)
7520 return -EINVAL;
7522 return 0;
7525 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7527 int ret;
7529 struct rt_schedulable_data data = {
7530 .tg = tg,
7531 .rt_period = period,
7532 .rt_runtime = runtime,
7535 rcu_read_lock();
7536 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7537 rcu_read_unlock();
7539 return ret;
7542 static int tg_set_rt_bandwidth(struct task_group *tg,
7543 u64 rt_period, u64 rt_runtime)
7545 int i, err = 0;
7547 mutex_lock(&rt_constraints_mutex);
7548 read_lock(&tasklist_lock);
7549 err = __rt_schedulable(tg, rt_period, rt_runtime);
7550 if (err)
7551 goto unlock;
7553 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7554 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7555 tg->rt_bandwidth.rt_runtime = rt_runtime;
7557 for_each_possible_cpu(i) {
7558 struct rt_rq *rt_rq = tg->rt_rq[i];
7560 raw_spin_lock(&rt_rq->rt_runtime_lock);
7561 rt_rq->rt_runtime = rt_runtime;
7562 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7564 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7565 unlock:
7566 read_unlock(&tasklist_lock);
7567 mutex_unlock(&rt_constraints_mutex);
7569 return err;
7572 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7574 u64 rt_runtime, rt_period;
7576 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7577 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7578 if (rt_runtime_us < 0)
7579 rt_runtime = RUNTIME_INF;
7581 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7584 long sched_group_rt_runtime(struct task_group *tg)
7586 u64 rt_runtime_us;
7588 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7589 return -1;
7591 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7592 do_div(rt_runtime_us, NSEC_PER_USEC);
7593 return rt_runtime_us;
7596 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7598 u64 rt_runtime, rt_period;
7600 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7601 rt_runtime = tg->rt_bandwidth.rt_runtime;
7603 if (rt_period == 0)
7604 return -EINVAL;
7606 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7609 long sched_group_rt_period(struct task_group *tg)
7611 u64 rt_period_us;
7613 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7614 do_div(rt_period_us, NSEC_PER_USEC);
7615 return rt_period_us;
7618 static int sched_rt_global_constraints(void)
7620 u64 runtime, period;
7621 int ret = 0;
7623 if (sysctl_sched_rt_period <= 0)
7624 return -EINVAL;
7626 runtime = global_rt_runtime();
7627 period = global_rt_period();
7630 * Sanity check on the sysctl variables.
7632 if (runtime > period && runtime != RUNTIME_INF)
7633 return -EINVAL;
7635 mutex_lock(&rt_constraints_mutex);
7636 read_lock(&tasklist_lock);
7637 ret = __rt_schedulable(NULL, 0, 0);
7638 read_unlock(&tasklist_lock);
7639 mutex_unlock(&rt_constraints_mutex);
7641 return ret;
7644 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7646 /* Don't accept realtime tasks when there is no way for them to run */
7647 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7648 return 0;
7650 return 1;
7653 #else /* !CONFIG_RT_GROUP_SCHED */
7654 static int sched_rt_global_constraints(void)
7656 unsigned long flags;
7657 int i;
7659 if (sysctl_sched_rt_period <= 0)
7660 return -EINVAL;
7663 * There's always some RT tasks in the root group
7664 * -- migration, kstopmachine etc..
7666 if (sysctl_sched_rt_runtime == 0)
7667 return -EBUSY;
7669 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7670 for_each_possible_cpu(i) {
7671 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7673 raw_spin_lock(&rt_rq->rt_runtime_lock);
7674 rt_rq->rt_runtime = global_rt_runtime();
7675 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7677 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7679 return 0;
7681 #endif /* CONFIG_RT_GROUP_SCHED */
7683 int sched_rt_handler(struct ctl_table *table, int write,
7684 void __user *buffer, size_t *lenp,
7685 loff_t *ppos)
7687 int ret;
7688 int old_period, old_runtime;
7689 static DEFINE_MUTEX(mutex);
7691 mutex_lock(&mutex);
7692 old_period = sysctl_sched_rt_period;
7693 old_runtime = sysctl_sched_rt_runtime;
7695 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7697 if (!ret && write) {
7698 ret = sched_rt_global_constraints();
7699 if (ret) {
7700 sysctl_sched_rt_period = old_period;
7701 sysctl_sched_rt_runtime = old_runtime;
7702 } else {
7703 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7704 def_rt_bandwidth.rt_period =
7705 ns_to_ktime(global_rt_period());
7708 mutex_unlock(&mutex);
7710 return ret;
7713 #ifdef CONFIG_CGROUP_SCHED
7715 /* return corresponding task_group object of a cgroup */
7716 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7718 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7719 struct task_group, css);
7722 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7724 struct task_group *tg, *parent;
7726 if (!cgrp->parent) {
7727 /* This is early initialization for the top cgroup */
7728 return &root_task_group.css;
7731 parent = cgroup_tg(cgrp->parent);
7732 tg = sched_create_group(parent);
7733 if (IS_ERR(tg))
7734 return ERR_PTR(-ENOMEM);
7736 return &tg->css;
7739 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7741 struct task_group *tg = cgroup_tg(cgrp);
7743 sched_destroy_group(tg);
7746 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7747 struct cgroup_taskset *tset)
7749 struct task_struct *task;
7751 cgroup_taskset_for_each(task, cgrp, tset) {
7752 #ifdef CONFIG_RT_GROUP_SCHED
7753 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7754 return -EINVAL;
7755 #else
7756 /* We don't support RT-tasks being in separate groups */
7757 if (task->sched_class != &fair_sched_class)
7758 return -EINVAL;
7759 #endif
7761 return 0;
7764 static void cpu_cgroup_attach(struct cgroup *cgrp,
7765 struct cgroup_taskset *tset)
7767 struct task_struct *task;
7769 cgroup_taskset_for_each(task, cgrp, tset)
7770 sched_move_task(task);
7773 static void
7774 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7775 struct task_struct *task)
7778 * cgroup_exit() is called in the copy_process() failure path.
7779 * Ignore this case since the task hasn't ran yet, this avoids
7780 * trying to poke a half freed task state from generic code.
7782 if (!(task->flags & PF_EXITING))
7783 return;
7785 sched_move_task(task);
7788 #ifdef CONFIG_FAIR_GROUP_SCHED
7789 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7790 u64 shareval)
7792 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7795 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7797 struct task_group *tg = cgroup_tg(cgrp);
7799 return (u64) scale_load_down(tg->shares);
7802 #ifdef CONFIG_CFS_BANDWIDTH
7803 static DEFINE_MUTEX(cfs_constraints_mutex);
7805 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7806 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7808 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7810 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7812 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7813 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7815 if (tg == &root_task_group)
7816 return -EINVAL;
7819 * Ensure we have at some amount of bandwidth every period. This is
7820 * to prevent reaching a state of large arrears when throttled via
7821 * entity_tick() resulting in prolonged exit starvation.
7823 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7824 return -EINVAL;
7827 * Likewise, bound things on the otherside by preventing insane quota
7828 * periods. This also allows us to normalize in computing quota
7829 * feasibility.
7831 if (period > max_cfs_quota_period)
7832 return -EINVAL;
7834 mutex_lock(&cfs_constraints_mutex);
7835 ret = __cfs_schedulable(tg, period, quota);
7836 if (ret)
7837 goto out_unlock;
7839 runtime_enabled = quota != RUNTIME_INF;
7840 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7841 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7842 raw_spin_lock_irq(&cfs_b->lock);
7843 cfs_b->period = ns_to_ktime(period);
7844 cfs_b->quota = quota;
7846 __refill_cfs_bandwidth_runtime(cfs_b);
7847 /* restart the period timer (if active) to handle new period expiry */
7848 if (runtime_enabled && cfs_b->timer_active) {
7849 /* force a reprogram */
7850 cfs_b->timer_active = 0;
7851 __start_cfs_bandwidth(cfs_b);
7853 raw_spin_unlock_irq(&cfs_b->lock);
7855 for_each_possible_cpu(i) {
7856 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7857 struct rq *rq = cfs_rq->rq;
7859 raw_spin_lock_irq(&rq->lock);
7860 cfs_rq->runtime_enabled = runtime_enabled;
7861 cfs_rq->runtime_remaining = 0;
7863 if (cfs_rq->throttled)
7864 unthrottle_cfs_rq(cfs_rq);
7865 raw_spin_unlock_irq(&rq->lock);
7867 out_unlock:
7868 mutex_unlock(&cfs_constraints_mutex);
7870 return ret;
7873 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7875 u64 quota, period;
7877 period = ktime_to_ns(tg->cfs_bandwidth.period);
7878 if (cfs_quota_us < 0)
7879 quota = RUNTIME_INF;
7880 else
7881 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7883 return tg_set_cfs_bandwidth(tg, period, quota);
7886 long tg_get_cfs_quota(struct task_group *tg)
7888 u64 quota_us;
7890 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7891 return -1;
7893 quota_us = tg->cfs_bandwidth.quota;
7894 do_div(quota_us, NSEC_PER_USEC);
7896 return quota_us;
7899 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7901 u64 quota, period;
7903 period = (u64)cfs_period_us * NSEC_PER_USEC;
7904 quota = tg->cfs_bandwidth.quota;
7906 return tg_set_cfs_bandwidth(tg, period, quota);
7909 long tg_get_cfs_period(struct task_group *tg)
7911 u64 cfs_period_us;
7913 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7914 do_div(cfs_period_us, NSEC_PER_USEC);
7916 return cfs_period_us;
7919 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7921 return tg_get_cfs_quota(cgroup_tg(cgrp));
7924 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7925 s64 cfs_quota_us)
7927 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7930 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7932 return tg_get_cfs_period(cgroup_tg(cgrp));
7935 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7936 u64 cfs_period_us)
7938 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7941 struct cfs_schedulable_data {
7942 struct task_group *tg;
7943 u64 period, quota;
7947 * normalize group quota/period to be quota/max_period
7948 * note: units are usecs
7950 static u64 normalize_cfs_quota(struct task_group *tg,
7951 struct cfs_schedulable_data *d)
7953 u64 quota, period;
7955 if (tg == d->tg) {
7956 period = d->period;
7957 quota = d->quota;
7958 } else {
7959 period = tg_get_cfs_period(tg);
7960 quota = tg_get_cfs_quota(tg);
7963 /* note: these should typically be equivalent */
7964 if (quota == RUNTIME_INF || quota == -1)
7965 return RUNTIME_INF;
7967 return to_ratio(period, quota);
7970 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7972 struct cfs_schedulable_data *d = data;
7973 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7974 s64 quota = 0, parent_quota = -1;
7976 if (!tg->parent) {
7977 quota = RUNTIME_INF;
7978 } else {
7979 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7981 quota = normalize_cfs_quota(tg, d);
7982 parent_quota = parent_b->hierarchal_quota;
7985 * ensure max(child_quota) <= parent_quota, inherit when no
7986 * limit is set
7988 if (quota == RUNTIME_INF)
7989 quota = parent_quota;
7990 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7991 return -EINVAL;
7993 cfs_b->hierarchal_quota = quota;
7995 return 0;
7998 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8000 int ret;
8001 struct cfs_schedulable_data data = {
8002 .tg = tg,
8003 .period = period,
8004 .quota = quota,
8007 if (quota != RUNTIME_INF) {
8008 do_div(data.period, NSEC_PER_USEC);
8009 do_div(data.quota, NSEC_PER_USEC);
8012 rcu_read_lock();
8013 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8014 rcu_read_unlock();
8016 return ret;
8019 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8020 struct cgroup_map_cb *cb)
8022 struct task_group *tg = cgroup_tg(cgrp);
8023 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8025 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8026 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8027 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8029 return 0;
8031 #endif /* CONFIG_CFS_BANDWIDTH */
8032 #endif /* CONFIG_FAIR_GROUP_SCHED */
8034 #ifdef CONFIG_RT_GROUP_SCHED
8035 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8036 s64 val)
8038 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8041 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8043 return sched_group_rt_runtime(cgroup_tg(cgrp));
8046 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8047 u64 rt_period_us)
8049 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8052 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8054 return sched_group_rt_period(cgroup_tg(cgrp));
8056 #endif /* CONFIG_RT_GROUP_SCHED */
8058 static struct cftype cpu_files[] = {
8059 #ifdef CONFIG_FAIR_GROUP_SCHED
8061 .name = "shares",
8062 .read_u64 = cpu_shares_read_u64,
8063 .write_u64 = cpu_shares_write_u64,
8065 #endif
8066 #ifdef CONFIG_CFS_BANDWIDTH
8068 .name = "cfs_quota_us",
8069 .read_s64 = cpu_cfs_quota_read_s64,
8070 .write_s64 = cpu_cfs_quota_write_s64,
8073 .name = "cfs_period_us",
8074 .read_u64 = cpu_cfs_period_read_u64,
8075 .write_u64 = cpu_cfs_period_write_u64,
8078 .name = "stat",
8079 .read_map = cpu_stats_show,
8081 #endif
8082 #ifdef CONFIG_RT_GROUP_SCHED
8084 .name = "rt_runtime_us",
8085 .read_s64 = cpu_rt_runtime_read,
8086 .write_s64 = cpu_rt_runtime_write,
8089 .name = "rt_period_us",
8090 .read_u64 = cpu_rt_period_read_uint,
8091 .write_u64 = cpu_rt_period_write_uint,
8093 #endif
8096 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8098 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8101 struct cgroup_subsys cpu_cgroup_subsys = {
8102 .name = "cpu",
8103 .create = cpu_cgroup_create,
8104 .destroy = cpu_cgroup_destroy,
8105 .can_attach = cpu_cgroup_can_attach,
8106 .attach = cpu_cgroup_attach,
8107 .exit = cpu_cgroup_exit,
8108 .populate = cpu_cgroup_populate,
8109 .subsys_id = cpu_cgroup_subsys_id,
8110 .early_init = 1,
8113 #endif /* CONFIG_CGROUP_SCHED */
8115 #ifdef CONFIG_CGROUP_CPUACCT
8118 * CPU accounting code for task groups.
8120 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8121 * (balbir@in.ibm.com).
8124 /* create a new cpu accounting group */
8125 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8127 struct cpuacct *ca;
8129 if (!cgrp->parent)
8130 return &root_cpuacct.css;
8132 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8133 if (!ca)
8134 goto out;
8136 ca->cpuusage = alloc_percpu(u64);
8137 if (!ca->cpuusage)
8138 goto out_free_ca;
8140 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8141 if (!ca->cpustat)
8142 goto out_free_cpuusage;
8144 return &ca->css;
8146 out_free_cpuusage:
8147 free_percpu(ca->cpuusage);
8148 out_free_ca:
8149 kfree(ca);
8150 out:
8151 return ERR_PTR(-ENOMEM);
8154 /* destroy an existing cpu accounting group */
8155 static void cpuacct_destroy(struct cgroup *cgrp)
8157 struct cpuacct *ca = cgroup_ca(cgrp);
8159 free_percpu(ca->cpustat);
8160 free_percpu(ca->cpuusage);
8161 kfree(ca);
8164 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8166 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8167 u64 data;
8169 #ifndef CONFIG_64BIT
8171 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8173 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8174 data = *cpuusage;
8175 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8176 #else
8177 data = *cpuusage;
8178 #endif
8180 return data;
8183 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8185 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8187 #ifndef CONFIG_64BIT
8189 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8191 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8192 *cpuusage = val;
8193 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8194 #else
8195 *cpuusage = val;
8196 #endif
8199 /* return total cpu usage (in nanoseconds) of a group */
8200 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8202 struct cpuacct *ca = cgroup_ca(cgrp);
8203 u64 totalcpuusage = 0;
8204 int i;
8206 for_each_present_cpu(i)
8207 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8209 return totalcpuusage;
8212 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8213 u64 reset)
8215 struct cpuacct *ca = cgroup_ca(cgrp);
8216 int err = 0;
8217 int i;
8219 if (reset) {
8220 err = -EINVAL;
8221 goto out;
8224 for_each_present_cpu(i)
8225 cpuacct_cpuusage_write(ca, i, 0);
8227 out:
8228 return err;
8231 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8232 struct seq_file *m)
8234 struct cpuacct *ca = cgroup_ca(cgroup);
8235 u64 percpu;
8236 int i;
8238 for_each_present_cpu(i) {
8239 percpu = cpuacct_cpuusage_read(ca, i);
8240 seq_printf(m, "%llu ", (unsigned long long) percpu);
8242 seq_printf(m, "\n");
8243 return 0;
8246 static const char *cpuacct_stat_desc[] = {
8247 [CPUACCT_STAT_USER] = "user",
8248 [CPUACCT_STAT_SYSTEM] = "system",
8251 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8252 struct cgroup_map_cb *cb)
8254 struct cpuacct *ca = cgroup_ca(cgrp);
8255 int cpu;
8256 s64 val = 0;
8258 for_each_online_cpu(cpu) {
8259 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8260 val += kcpustat->cpustat[CPUTIME_USER];
8261 val += kcpustat->cpustat[CPUTIME_NICE];
8263 val = cputime64_to_clock_t(val);
8264 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8266 val = 0;
8267 for_each_online_cpu(cpu) {
8268 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8269 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8270 val += kcpustat->cpustat[CPUTIME_IRQ];
8271 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8274 val = cputime64_to_clock_t(val);
8275 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8277 return 0;
8280 static struct cftype files[] = {
8282 .name = "usage",
8283 .read_u64 = cpuusage_read,
8284 .write_u64 = cpuusage_write,
8287 .name = "usage_percpu",
8288 .read_seq_string = cpuacct_percpu_seq_read,
8291 .name = "stat",
8292 .read_map = cpuacct_stats_show,
8296 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8298 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8302 * charge this task's execution time to its accounting group.
8304 * called with rq->lock held.
8306 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8308 struct cpuacct *ca;
8309 int cpu;
8311 if (unlikely(!cpuacct_subsys.active))
8312 return;
8314 cpu = task_cpu(tsk);
8316 rcu_read_lock();
8318 ca = task_ca(tsk);
8320 for (; ca; ca = parent_ca(ca)) {
8321 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8322 *cpuusage += cputime;
8325 rcu_read_unlock();
8328 struct cgroup_subsys cpuacct_subsys = {
8329 .name = "cpuacct",
8330 .create = cpuacct_create,
8331 .destroy = cpuacct_destroy,
8332 .populate = cpuacct_populate,
8333 .subsys_id = cpuacct_subsys_id,
8335 #endif /* CONFIG_CGROUP_CPUACCT */