Merge branch 'master' of /repos/git/net-next-2.6
[linux-2.6/libata-dev.git] / net / socket.c
blobacfa1738663d66faf7f273164ad130a089d1fc9a
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
173 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
174 16 for IP, 16 for IPX,
175 24 for IPv6,
176 about 80 for AX.25
177 must be at least one bigger than
178 the AF_UNIX size (see net/unix/af_unix.c
179 :unix_mkname()).
183 * move_addr_to_kernel - copy a socket address into kernel space
184 * @uaddr: Address in user space
185 * @kaddr: Address in kernel space
186 * @ulen: Length in user space
188 * The address is copied into kernel space. If the provided address is
189 * too long an error code of -EINVAL is returned. If the copy gives
190 * invalid addresses -EFAULT is returned. On a success 0 is returned.
193 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
195 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
196 return -EINVAL;
197 if (ulen == 0)
198 return 0;
199 if (copy_from_user(kaddr, uaddr, ulen))
200 return -EFAULT;
201 return audit_sockaddr(ulen, kaddr);
205 * move_addr_to_user - copy an address to user space
206 * @kaddr: kernel space address
207 * @klen: length of address in kernel
208 * @uaddr: user space address
209 * @ulen: pointer to user length field
211 * The value pointed to by ulen on entry is the buffer length available.
212 * This is overwritten with the buffer space used. -EINVAL is returned
213 * if an overlong buffer is specified or a negative buffer size. -EFAULT
214 * is returned if either the buffer or the length field are not
215 * accessible.
216 * After copying the data up to the limit the user specifies, the true
217 * length of the data is written over the length limit the user
218 * specified. Zero is returned for a success.
221 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
222 int __user *ulen)
224 int err;
225 int len;
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0 || len > sizeof(struct sockaddr_storage))
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
244 return __put_user(klen, ulen);
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
249 static struct inode *sock_alloc_inode(struct super_block *sb)
251 struct socket_alloc *ei;
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
257 if (!ei->socket.wq) {
258 kmem_cache_free(sock_inode_cachep, ei);
259 return NULL;
261 init_waitqueue_head(&ei->socket.wq->wait);
262 ei->socket.wq->fasync_list = NULL;
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
270 return &ei->vfs_inode;
274 static void wq_free_rcu(struct rcu_head *head)
276 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
278 kfree(wq);
281 static void sock_destroy_inode(struct inode *inode)
283 struct socket_alloc *ei;
285 ei = container_of(inode, struct socket_alloc, vfs_inode);
286 call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
287 kmem_cache_free(sock_inode_cachep, ei);
290 static void init_once(void *foo)
292 struct socket_alloc *ei = (struct socket_alloc *)foo;
294 inode_init_once(&ei->vfs_inode);
297 static int init_inodecache(void)
299 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
300 sizeof(struct socket_alloc),
302 (SLAB_HWCACHE_ALIGN |
303 SLAB_RECLAIM_ACCOUNT |
304 SLAB_MEM_SPREAD),
305 init_once);
306 if (sock_inode_cachep == NULL)
307 return -ENOMEM;
308 return 0;
311 static const struct super_operations sockfs_ops = {
312 .alloc_inode = sock_alloc_inode,
313 .destroy_inode = sock_destroy_inode,
314 .statfs = simple_statfs,
317 static int sockfs_get_sb(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data,
319 struct vfsmount *mnt)
321 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
322 mnt);
325 static struct vfsmount *sock_mnt __read_mostly;
327 static struct file_system_type sock_fs_type = {
328 .name = "sockfs",
329 .get_sb = sockfs_get_sb,
330 .kill_sb = kill_anon_super,
334 * sockfs_dname() is called from d_path().
336 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
338 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
339 dentry->d_inode->i_ino);
342 static const struct dentry_operations sockfs_dentry_operations = {
343 .d_dname = sockfs_dname,
347 * Obtains the first available file descriptor and sets it up for use.
349 * These functions create file structures and maps them to fd space
350 * of the current process. On success it returns file descriptor
351 * and file struct implicitly stored in sock->file.
352 * Note that another thread may close file descriptor before we return
353 * from this function. We use the fact that now we do not refer
354 * to socket after mapping. If one day we will need it, this
355 * function will increment ref. count on file by 1.
357 * In any case returned fd MAY BE not valid!
358 * This race condition is unavoidable
359 * with shared fd spaces, we cannot solve it inside kernel,
360 * but we take care of internal coherence yet.
363 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
365 struct qstr name = { .name = "" };
366 struct path path;
367 struct file *file;
368 int fd;
370 fd = get_unused_fd_flags(flags);
371 if (unlikely(fd < 0))
372 return fd;
374 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
375 if (unlikely(!path.dentry)) {
376 put_unused_fd(fd);
377 return -ENOMEM;
379 path.mnt = mntget(sock_mnt);
381 path.dentry->d_op = &sockfs_dentry_operations;
382 d_instantiate(path.dentry, SOCK_INODE(sock));
383 SOCK_INODE(sock)->i_fop = &socket_file_ops;
385 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
386 &socket_file_ops);
387 if (unlikely(!file)) {
388 /* drop dentry, keep inode */
389 atomic_inc(&path.dentry->d_inode->i_count);
390 path_put(&path);
391 put_unused_fd(fd);
392 return -ENFILE;
395 sock->file = file;
396 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
397 file->f_pos = 0;
398 file->private_data = sock;
400 *f = file;
401 return fd;
404 int sock_map_fd(struct socket *sock, int flags)
406 struct file *newfile;
407 int fd = sock_alloc_file(sock, &newfile, flags);
409 if (likely(fd >= 0))
410 fd_install(fd, newfile);
412 return fd;
414 EXPORT_SYMBOL(sock_map_fd);
416 static struct socket *sock_from_file(struct file *file, int *err)
418 if (file->f_op == &socket_file_ops)
419 return file->private_data; /* set in sock_map_fd */
421 *err = -ENOTSOCK;
422 return NULL;
426 * sockfd_lookup - Go from a file number to its socket slot
427 * @fd: file handle
428 * @err: pointer to an error code return
430 * The file handle passed in is locked and the socket it is bound
431 * too is returned. If an error occurs the err pointer is overwritten
432 * with a negative errno code and NULL is returned. The function checks
433 * for both invalid handles and passing a handle which is not a socket.
435 * On a success the socket object pointer is returned.
438 struct socket *sockfd_lookup(int fd, int *err)
440 struct file *file;
441 struct socket *sock;
443 file = fget(fd);
444 if (!file) {
445 *err = -EBADF;
446 return NULL;
449 sock = sock_from_file(file, err);
450 if (!sock)
451 fput(file);
452 return sock;
454 EXPORT_SYMBOL(sockfd_lookup);
456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
458 struct file *file;
459 struct socket *sock;
461 *err = -EBADF;
462 file = fget_light(fd, fput_needed);
463 if (file) {
464 sock = sock_from_file(file, err);
465 if (sock)
466 return sock;
467 fput_light(file, *fput_needed);
469 return NULL;
473 * sock_alloc - allocate a socket
475 * Allocate a new inode and socket object. The two are bound together
476 * and initialised. The socket is then returned. If we are out of inodes
477 * NULL is returned.
480 static struct socket *sock_alloc(void)
482 struct inode *inode;
483 struct socket *sock;
485 inode = new_inode(sock_mnt->mnt_sb);
486 if (!inode)
487 return NULL;
489 sock = SOCKET_I(inode);
491 kmemcheck_annotate_bitfield(sock, type);
492 inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 inode->i_uid = current_fsuid();
494 inode->i_gid = current_fsgid();
496 percpu_add(sockets_in_use, 1);
497 return sock;
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
508 return -ENXIO;
511 const struct file_operations bad_sock_fops = {
512 .owner = THIS_MODULE,
513 .open = sock_no_open,
517 * sock_release - close a socket
518 * @sock: socket to close
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
525 void sock_release(struct socket *sock)
527 if (sock->ops) {
528 struct module *owner = sock->ops->owner;
530 sock->ops->release(sock);
531 sock->ops = NULL;
532 module_put(owner);
535 if (sock->wq->fasync_list)
536 printk(KERN_ERR "sock_release: fasync list not empty!\n");
538 percpu_sub(sockets_in_use, 1);
539 if (!sock->file) {
540 iput(SOCK_INODE(sock));
541 return;
543 sock->file = NULL;
545 EXPORT_SYMBOL(sock_release);
547 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
548 union skb_shared_tx *shtx)
550 shtx->flags = 0;
551 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
552 shtx->hardware = 1;
553 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
554 shtx->software = 1;
555 return 0;
557 EXPORT_SYMBOL(sock_tx_timestamp);
559 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
560 struct msghdr *msg, size_t size)
562 struct sock_iocb *si = kiocb_to_siocb(iocb);
563 int err;
565 sock_update_classid(sock->sk);
567 si->sock = sock;
568 si->scm = NULL;
569 si->msg = msg;
570 si->size = size;
572 err = security_socket_sendmsg(sock, msg, size);
573 if (err)
574 return err;
576 return sock->ops->sendmsg(iocb, sock, msg, size);
579 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
581 struct kiocb iocb;
582 struct sock_iocb siocb;
583 int ret;
585 init_sync_kiocb(&iocb, NULL);
586 iocb.private = &siocb;
587 ret = __sock_sendmsg(&iocb, sock, msg, size);
588 if (-EIOCBQUEUED == ret)
589 ret = wait_on_sync_kiocb(&iocb);
590 return ret;
592 EXPORT_SYMBOL(sock_sendmsg);
594 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
595 struct kvec *vec, size_t num, size_t size)
597 mm_segment_t oldfs = get_fs();
598 int result;
600 set_fs(KERNEL_DS);
602 * the following is safe, since for compiler definitions of kvec and
603 * iovec are identical, yielding the same in-core layout and alignment
605 msg->msg_iov = (struct iovec *)vec;
606 msg->msg_iovlen = num;
607 result = sock_sendmsg(sock, msg, size);
608 set_fs(oldfs);
609 return result;
611 EXPORT_SYMBOL(kernel_sendmsg);
613 static int ktime2ts(ktime_t kt, struct timespec *ts)
615 if (kt.tv64) {
616 *ts = ktime_to_timespec(kt);
617 return 1;
618 } else {
619 return 0;
624 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
626 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
627 struct sk_buff *skb)
629 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
630 struct timespec ts[3];
631 int empty = 1;
632 struct skb_shared_hwtstamps *shhwtstamps =
633 skb_hwtstamps(skb);
635 /* Race occurred between timestamp enabling and packet
636 receiving. Fill in the current time for now. */
637 if (need_software_tstamp && skb->tstamp.tv64 == 0)
638 __net_timestamp(skb);
640 if (need_software_tstamp) {
641 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
642 struct timeval tv;
643 skb_get_timestamp(skb, &tv);
644 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
645 sizeof(tv), &tv);
646 } else {
647 skb_get_timestampns(skb, &ts[0]);
648 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
649 sizeof(ts[0]), &ts[0]);
654 memset(ts, 0, sizeof(ts));
655 if (skb->tstamp.tv64 &&
656 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
657 skb_get_timestampns(skb, ts + 0);
658 empty = 0;
660 if (shhwtstamps) {
661 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
662 ktime2ts(shhwtstamps->syststamp, ts + 1))
663 empty = 0;
664 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
665 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
666 empty = 0;
668 if (!empty)
669 put_cmsg(msg, SOL_SOCKET,
670 SCM_TIMESTAMPING, sizeof(ts), &ts);
672 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
674 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
676 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
677 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
678 sizeof(__u32), &skb->dropcount);
681 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
682 struct sk_buff *skb)
684 sock_recv_timestamp(msg, sk, skb);
685 sock_recv_drops(msg, sk, skb);
687 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
689 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
690 struct msghdr *msg, size_t size, int flags)
692 struct sock_iocb *si = kiocb_to_siocb(iocb);
694 sock_update_classid(sock->sk);
696 si->sock = sock;
697 si->scm = NULL;
698 si->msg = msg;
699 si->size = size;
700 si->flags = flags;
702 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
705 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
706 struct msghdr *msg, size_t size, int flags)
708 int err = security_socket_recvmsg(sock, msg, size, flags);
710 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
713 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
714 size_t size, int flags)
716 struct kiocb iocb;
717 struct sock_iocb siocb;
718 int ret;
720 init_sync_kiocb(&iocb, NULL);
721 iocb.private = &siocb;
722 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
723 if (-EIOCBQUEUED == ret)
724 ret = wait_on_sync_kiocb(&iocb);
725 return ret;
727 EXPORT_SYMBOL(sock_recvmsg);
729 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
730 size_t size, int flags)
732 struct kiocb iocb;
733 struct sock_iocb siocb;
734 int ret;
736 init_sync_kiocb(&iocb, NULL);
737 iocb.private = &siocb;
738 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
739 if (-EIOCBQUEUED == ret)
740 ret = wait_on_sync_kiocb(&iocb);
741 return ret;
744 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
745 struct kvec *vec, size_t num, size_t size, int flags)
747 mm_segment_t oldfs = get_fs();
748 int result;
750 set_fs(KERNEL_DS);
752 * the following is safe, since for compiler definitions of kvec and
753 * iovec are identical, yielding the same in-core layout and alignment
755 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
756 result = sock_recvmsg(sock, msg, size, flags);
757 set_fs(oldfs);
758 return result;
760 EXPORT_SYMBOL(kernel_recvmsg);
762 static void sock_aio_dtor(struct kiocb *iocb)
764 kfree(iocb->private);
767 static ssize_t sock_sendpage(struct file *file, struct page *page,
768 int offset, size_t size, loff_t *ppos, int more)
770 struct socket *sock;
771 int flags;
773 sock = file->private_data;
775 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
776 if (more)
777 flags |= MSG_MORE;
779 return kernel_sendpage(sock, page, offset, size, flags);
782 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
783 struct pipe_inode_info *pipe, size_t len,
784 unsigned int flags)
786 struct socket *sock = file->private_data;
788 if (unlikely(!sock->ops->splice_read))
789 return -EINVAL;
791 sock_update_classid(sock->sk);
793 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
796 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
797 struct sock_iocb *siocb)
799 if (!is_sync_kiocb(iocb)) {
800 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
801 if (!siocb)
802 return NULL;
803 iocb->ki_dtor = sock_aio_dtor;
806 siocb->kiocb = iocb;
807 iocb->private = siocb;
808 return siocb;
811 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
812 struct file *file, const struct iovec *iov,
813 unsigned long nr_segs)
815 struct socket *sock = file->private_data;
816 size_t size = 0;
817 int i;
819 for (i = 0; i < nr_segs; i++)
820 size += iov[i].iov_len;
822 msg->msg_name = NULL;
823 msg->msg_namelen = 0;
824 msg->msg_control = NULL;
825 msg->msg_controllen = 0;
826 msg->msg_iov = (struct iovec *)iov;
827 msg->msg_iovlen = nr_segs;
828 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
830 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
833 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
834 unsigned long nr_segs, loff_t pos)
836 struct sock_iocb siocb, *x;
838 if (pos != 0)
839 return -ESPIPE;
841 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
842 return 0;
845 x = alloc_sock_iocb(iocb, &siocb);
846 if (!x)
847 return -ENOMEM;
848 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
851 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
852 struct file *file, const struct iovec *iov,
853 unsigned long nr_segs)
855 struct socket *sock = file->private_data;
856 size_t size = 0;
857 int i;
859 for (i = 0; i < nr_segs; i++)
860 size += iov[i].iov_len;
862 msg->msg_name = NULL;
863 msg->msg_namelen = 0;
864 msg->msg_control = NULL;
865 msg->msg_controllen = 0;
866 msg->msg_iov = (struct iovec *)iov;
867 msg->msg_iovlen = nr_segs;
868 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
869 if (sock->type == SOCK_SEQPACKET)
870 msg->msg_flags |= MSG_EOR;
872 return __sock_sendmsg(iocb, sock, msg, size);
875 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
876 unsigned long nr_segs, loff_t pos)
878 struct sock_iocb siocb, *x;
880 if (pos != 0)
881 return -ESPIPE;
883 x = alloc_sock_iocb(iocb, &siocb);
884 if (!x)
885 return -ENOMEM;
887 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
891 * Atomic setting of ioctl hooks to avoid race
892 * with module unload.
895 static DEFINE_MUTEX(br_ioctl_mutex);
896 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
898 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
900 mutex_lock(&br_ioctl_mutex);
901 br_ioctl_hook = hook;
902 mutex_unlock(&br_ioctl_mutex);
904 EXPORT_SYMBOL(brioctl_set);
906 static DEFINE_MUTEX(vlan_ioctl_mutex);
907 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
909 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
911 mutex_lock(&vlan_ioctl_mutex);
912 vlan_ioctl_hook = hook;
913 mutex_unlock(&vlan_ioctl_mutex);
915 EXPORT_SYMBOL(vlan_ioctl_set);
917 static DEFINE_MUTEX(dlci_ioctl_mutex);
918 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
920 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
922 mutex_lock(&dlci_ioctl_mutex);
923 dlci_ioctl_hook = hook;
924 mutex_unlock(&dlci_ioctl_mutex);
926 EXPORT_SYMBOL(dlci_ioctl_set);
928 static long sock_do_ioctl(struct net *net, struct socket *sock,
929 unsigned int cmd, unsigned long arg)
931 int err;
932 void __user *argp = (void __user *)arg;
934 err = sock->ops->ioctl(sock, cmd, arg);
937 * If this ioctl is unknown try to hand it down
938 * to the NIC driver.
940 if (err == -ENOIOCTLCMD)
941 err = dev_ioctl(net, cmd, argp);
943 return err;
947 * With an ioctl, arg may well be a user mode pointer, but we don't know
948 * what to do with it - that's up to the protocol still.
951 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
953 struct socket *sock;
954 struct sock *sk;
955 void __user *argp = (void __user *)arg;
956 int pid, err;
957 struct net *net;
959 sock = file->private_data;
960 sk = sock->sk;
961 net = sock_net(sk);
962 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
963 err = dev_ioctl(net, cmd, argp);
964 } else
965 #ifdef CONFIG_WEXT_CORE
966 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
967 err = dev_ioctl(net, cmd, argp);
968 } else
969 #endif
970 switch (cmd) {
971 case FIOSETOWN:
972 case SIOCSPGRP:
973 err = -EFAULT;
974 if (get_user(pid, (int __user *)argp))
975 break;
976 err = f_setown(sock->file, pid, 1);
977 break;
978 case FIOGETOWN:
979 case SIOCGPGRP:
980 err = put_user(f_getown(sock->file),
981 (int __user *)argp);
982 break;
983 case SIOCGIFBR:
984 case SIOCSIFBR:
985 case SIOCBRADDBR:
986 case SIOCBRDELBR:
987 err = -ENOPKG;
988 if (!br_ioctl_hook)
989 request_module("bridge");
991 mutex_lock(&br_ioctl_mutex);
992 if (br_ioctl_hook)
993 err = br_ioctl_hook(net, cmd, argp);
994 mutex_unlock(&br_ioctl_mutex);
995 break;
996 case SIOCGIFVLAN:
997 case SIOCSIFVLAN:
998 err = -ENOPKG;
999 if (!vlan_ioctl_hook)
1000 request_module("8021q");
1002 mutex_lock(&vlan_ioctl_mutex);
1003 if (vlan_ioctl_hook)
1004 err = vlan_ioctl_hook(net, argp);
1005 mutex_unlock(&vlan_ioctl_mutex);
1006 break;
1007 case SIOCADDDLCI:
1008 case SIOCDELDLCI:
1009 err = -ENOPKG;
1010 if (!dlci_ioctl_hook)
1011 request_module("dlci");
1013 mutex_lock(&dlci_ioctl_mutex);
1014 if (dlci_ioctl_hook)
1015 err = dlci_ioctl_hook(cmd, argp);
1016 mutex_unlock(&dlci_ioctl_mutex);
1017 break;
1018 default:
1019 err = sock_do_ioctl(net, sock, cmd, arg);
1020 break;
1022 return err;
1025 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1027 int err;
1028 struct socket *sock = NULL;
1030 err = security_socket_create(family, type, protocol, 1);
1031 if (err)
1032 goto out;
1034 sock = sock_alloc();
1035 if (!sock) {
1036 err = -ENOMEM;
1037 goto out;
1040 sock->type = type;
1041 err = security_socket_post_create(sock, family, type, protocol, 1);
1042 if (err)
1043 goto out_release;
1045 out:
1046 *res = sock;
1047 return err;
1048 out_release:
1049 sock_release(sock);
1050 sock = NULL;
1051 goto out;
1053 EXPORT_SYMBOL(sock_create_lite);
1055 /* No kernel lock held - perfect */
1056 static unsigned int sock_poll(struct file *file, poll_table *wait)
1058 struct socket *sock;
1061 * We can't return errors to poll, so it's either yes or no.
1063 sock = file->private_data;
1064 return sock->ops->poll(file, sock, wait);
1067 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1069 struct socket *sock = file->private_data;
1071 return sock->ops->mmap(file, sock, vma);
1074 static int sock_close(struct inode *inode, struct file *filp)
1077 * It was possible the inode is NULL we were
1078 * closing an unfinished socket.
1081 if (!inode) {
1082 printk(KERN_DEBUG "sock_close: NULL inode\n");
1083 return 0;
1085 sock_release(SOCKET_I(inode));
1086 return 0;
1090 * Update the socket async list
1092 * Fasync_list locking strategy.
1094 * 1. fasync_list is modified only under process context socket lock
1095 * i.e. under semaphore.
1096 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1097 * or under socket lock
1100 static int sock_fasync(int fd, struct file *filp, int on)
1102 struct socket *sock = filp->private_data;
1103 struct sock *sk = sock->sk;
1105 if (sk == NULL)
1106 return -EINVAL;
1108 lock_sock(sk);
1110 fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1112 if (!sock->wq->fasync_list)
1113 sock_reset_flag(sk, SOCK_FASYNC);
1114 else
1115 sock_set_flag(sk, SOCK_FASYNC);
1117 release_sock(sk);
1118 return 0;
1121 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1123 int sock_wake_async(struct socket *sock, int how, int band)
1125 struct socket_wq *wq;
1127 if (!sock)
1128 return -1;
1129 rcu_read_lock();
1130 wq = rcu_dereference(sock->wq);
1131 if (!wq || !wq->fasync_list) {
1132 rcu_read_unlock();
1133 return -1;
1135 switch (how) {
1136 case SOCK_WAKE_WAITD:
1137 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1138 break;
1139 goto call_kill;
1140 case SOCK_WAKE_SPACE:
1141 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1142 break;
1143 /* fall through */
1144 case SOCK_WAKE_IO:
1145 call_kill:
1146 kill_fasync(&wq->fasync_list, SIGIO, band);
1147 break;
1148 case SOCK_WAKE_URG:
1149 kill_fasync(&wq->fasync_list, SIGURG, band);
1151 rcu_read_unlock();
1152 return 0;
1154 EXPORT_SYMBOL(sock_wake_async);
1156 static int __sock_create(struct net *net, int family, int type, int protocol,
1157 struct socket **res, int kern)
1159 int err;
1160 struct socket *sock;
1161 const struct net_proto_family *pf;
1164 * Check protocol is in range
1166 if (family < 0 || family >= NPROTO)
1167 return -EAFNOSUPPORT;
1168 if (type < 0 || type >= SOCK_MAX)
1169 return -EINVAL;
1171 /* Compatibility.
1173 This uglymoron is moved from INET layer to here to avoid
1174 deadlock in module load.
1176 if (family == PF_INET && type == SOCK_PACKET) {
1177 static int warned;
1178 if (!warned) {
1179 warned = 1;
1180 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1181 current->comm);
1183 family = PF_PACKET;
1186 err = security_socket_create(family, type, protocol, kern);
1187 if (err)
1188 return err;
1191 * Allocate the socket and allow the family to set things up. if
1192 * the protocol is 0, the family is instructed to select an appropriate
1193 * default.
1195 sock = sock_alloc();
1196 if (!sock) {
1197 if (net_ratelimit())
1198 printk(KERN_WARNING "socket: no more sockets\n");
1199 return -ENFILE; /* Not exactly a match, but its the
1200 closest posix thing */
1203 sock->type = type;
1205 #ifdef CONFIG_MODULES
1206 /* Attempt to load a protocol module if the find failed.
1208 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1209 * requested real, full-featured networking support upon configuration.
1210 * Otherwise module support will break!
1212 if (net_families[family] == NULL)
1213 request_module("net-pf-%d", family);
1214 #endif
1216 rcu_read_lock();
1217 pf = rcu_dereference(net_families[family]);
1218 err = -EAFNOSUPPORT;
1219 if (!pf)
1220 goto out_release;
1223 * We will call the ->create function, that possibly is in a loadable
1224 * module, so we have to bump that loadable module refcnt first.
1226 if (!try_module_get(pf->owner))
1227 goto out_release;
1229 /* Now protected by module ref count */
1230 rcu_read_unlock();
1232 err = pf->create(net, sock, protocol, kern);
1233 if (err < 0)
1234 goto out_module_put;
1237 * Now to bump the refcnt of the [loadable] module that owns this
1238 * socket at sock_release time we decrement its refcnt.
1240 if (!try_module_get(sock->ops->owner))
1241 goto out_module_busy;
1244 * Now that we're done with the ->create function, the [loadable]
1245 * module can have its refcnt decremented
1247 module_put(pf->owner);
1248 err = security_socket_post_create(sock, family, type, protocol, kern);
1249 if (err)
1250 goto out_sock_release;
1251 *res = sock;
1253 return 0;
1255 out_module_busy:
1256 err = -EAFNOSUPPORT;
1257 out_module_put:
1258 sock->ops = NULL;
1259 module_put(pf->owner);
1260 out_sock_release:
1261 sock_release(sock);
1262 return err;
1264 out_release:
1265 rcu_read_unlock();
1266 goto out_sock_release;
1269 int sock_create(int family, int type, int protocol, struct socket **res)
1271 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1273 EXPORT_SYMBOL(sock_create);
1275 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1277 return __sock_create(&init_net, family, type, protocol, res, 1);
1279 EXPORT_SYMBOL(sock_create_kern);
1281 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1283 int retval;
1284 struct socket *sock;
1285 int flags;
1287 /* Check the SOCK_* constants for consistency. */
1288 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1289 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1290 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1291 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1293 flags = type & ~SOCK_TYPE_MASK;
1294 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1295 return -EINVAL;
1296 type &= SOCK_TYPE_MASK;
1298 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1299 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1301 retval = sock_create(family, type, protocol, &sock);
1302 if (retval < 0)
1303 goto out;
1305 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1306 if (retval < 0)
1307 goto out_release;
1309 out:
1310 /* It may be already another descriptor 8) Not kernel problem. */
1311 return retval;
1313 out_release:
1314 sock_release(sock);
1315 return retval;
1319 * Create a pair of connected sockets.
1322 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1323 int __user *, usockvec)
1325 struct socket *sock1, *sock2;
1326 int fd1, fd2, err;
1327 struct file *newfile1, *newfile2;
1328 int flags;
1330 flags = type & ~SOCK_TYPE_MASK;
1331 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1332 return -EINVAL;
1333 type &= SOCK_TYPE_MASK;
1335 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1336 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1339 * Obtain the first socket and check if the underlying protocol
1340 * supports the socketpair call.
1343 err = sock_create(family, type, protocol, &sock1);
1344 if (err < 0)
1345 goto out;
1347 err = sock_create(family, type, protocol, &sock2);
1348 if (err < 0)
1349 goto out_release_1;
1351 err = sock1->ops->socketpair(sock1, sock2);
1352 if (err < 0)
1353 goto out_release_both;
1355 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1356 if (unlikely(fd1 < 0)) {
1357 err = fd1;
1358 goto out_release_both;
1361 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1362 if (unlikely(fd2 < 0)) {
1363 err = fd2;
1364 fput(newfile1);
1365 put_unused_fd(fd1);
1366 sock_release(sock2);
1367 goto out;
1370 audit_fd_pair(fd1, fd2);
1371 fd_install(fd1, newfile1);
1372 fd_install(fd2, newfile2);
1373 /* fd1 and fd2 may be already another descriptors.
1374 * Not kernel problem.
1377 err = put_user(fd1, &usockvec[0]);
1378 if (!err)
1379 err = put_user(fd2, &usockvec[1]);
1380 if (!err)
1381 return 0;
1383 sys_close(fd2);
1384 sys_close(fd1);
1385 return err;
1387 out_release_both:
1388 sock_release(sock2);
1389 out_release_1:
1390 sock_release(sock1);
1391 out:
1392 return err;
1396 * Bind a name to a socket. Nothing much to do here since it's
1397 * the protocol's responsibility to handle the local address.
1399 * We move the socket address to kernel space before we call
1400 * the protocol layer (having also checked the address is ok).
1403 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1405 struct socket *sock;
1406 struct sockaddr_storage address;
1407 int err, fput_needed;
1409 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1410 if (sock) {
1411 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1412 if (err >= 0) {
1413 err = security_socket_bind(sock,
1414 (struct sockaddr *)&address,
1415 addrlen);
1416 if (!err)
1417 err = sock->ops->bind(sock,
1418 (struct sockaddr *)
1419 &address, addrlen);
1421 fput_light(sock->file, fput_needed);
1423 return err;
1427 * Perform a listen. Basically, we allow the protocol to do anything
1428 * necessary for a listen, and if that works, we mark the socket as
1429 * ready for listening.
1432 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1434 struct socket *sock;
1435 int err, fput_needed;
1436 int somaxconn;
1438 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1439 if (sock) {
1440 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1441 if ((unsigned)backlog > somaxconn)
1442 backlog = somaxconn;
1444 err = security_socket_listen(sock, backlog);
1445 if (!err)
1446 err = sock->ops->listen(sock, backlog);
1448 fput_light(sock->file, fput_needed);
1450 return err;
1454 * For accept, we attempt to create a new socket, set up the link
1455 * with the client, wake up the client, then return the new
1456 * connected fd. We collect the address of the connector in kernel
1457 * space and move it to user at the very end. This is unclean because
1458 * we open the socket then return an error.
1460 * 1003.1g adds the ability to recvmsg() to query connection pending
1461 * status to recvmsg. We need to add that support in a way thats
1462 * clean when we restucture accept also.
1465 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1466 int __user *, upeer_addrlen, int, flags)
1468 struct socket *sock, *newsock;
1469 struct file *newfile;
1470 int err, len, newfd, fput_needed;
1471 struct sockaddr_storage address;
1473 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1474 return -EINVAL;
1476 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1477 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 if (!sock)
1481 goto out;
1483 err = -ENFILE;
1484 newsock = sock_alloc();
1485 if (!newsock)
1486 goto out_put;
1488 newsock->type = sock->type;
1489 newsock->ops = sock->ops;
1492 * We don't need try_module_get here, as the listening socket (sock)
1493 * has the protocol module (sock->ops->owner) held.
1495 __module_get(newsock->ops->owner);
1497 newfd = sock_alloc_file(newsock, &newfile, flags);
1498 if (unlikely(newfd < 0)) {
1499 err = newfd;
1500 sock_release(newsock);
1501 goto out_put;
1504 err = security_socket_accept(sock, newsock);
1505 if (err)
1506 goto out_fd;
1508 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1509 if (err < 0)
1510 goto out_fd;
1512 if (upeer_sockaddr) {
1513 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1514 &len, 2) < 0) {
1515 err = -ECONNABORTED;
1516 goto out_fd;
1518 err = move_addr_to_user((struct sockaddr *)&address,
1519 len, upeer_sockaddr, upeer_addrlen);
1520 if (err < 0)
1521 goto out_fd;
1524 /* File flags are not inherited via accept() unlike another OSes. */
1526 fd_install(newfd, newfile);
1527 err = newfd;
1529 out_put:
1530 fput_light(sock->file, fput_needed);
1531 out:
1532 return err;
1533 out_fd:
1534 fput(newfile);
1535 put_unused_fd(newfd);
1536 goto out_put;
1539 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1540 int __user *, upeer_addrlen)
1542 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1546 * Attempt to connect to a socket with the server address. The address
1547 * is in user space so we verify it is OK and move it to kernel space.
1549 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1550 * break bindings
1552 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1553 * other SEQPACKET protocols that take time to connect() as it doesn't
1554 * include the -EINPROGRESS status for such sockets.
1557 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1558 int, addrlen)
1560 struct socket *sock;
1561 struct sockaddr_storage address;
1562 int err, fput_needed;
1564 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565 if (!sock)
1566 goto out;
1567 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1568 if (err < 0)
1569 goto out_put;
1571 err =
1572 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1573 if (err)
1574 goto out_put;
1576 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1577 sock->file->f_flags);
1578 out_put:
1579 fput_light(sock->file, fput_needed);
1580 out:
1581 return err;
1585 * Get the local address ('name') of a socket object. Move the obtained
1586 * name to user space.
1589 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1590 int __user *, usockaddr_len)
1592 struct socket *sock;
1593 struct sockaddr_storage address;
1594 int len, err, fput_needed;
1596 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1597 if (!sock)
1598 goto out;
1600 err = security_socket_getsockname(sock);
1601 if (err)
1602 goto out_put;
1604 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1605 if (err)
1606 goto out_put;
1607 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1609 out_put:
1610 fput_light(sock->file, fput_needed);
1611 out:
1612 return err;
1616 * Get the remote address ('name') of a socket object. Move the obtained
1617 * name to user space.
1620 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1621 int __user *, usockaddr_len)
1623 struct socket *sock;
1624 struct sockaddr_storage address;
1625 int len, err, fput_needed;
1627 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1628 if (sock != NULL) {
1629 err = security_socket_getpeername(sock);
1630 if (err) {
1631 fput_light(sock->file, fput_needed);
1632 return err;
1635 err =
1636 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1638 if (!err)
1639 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1640 usockaddr_len);
1641 fput_light(sock->file, fput_needed);
1643 return err;
1647 * Send a datagram to a given address. We move the address into kernel
1648 * space and check the user space data area is readable before invoking
1649 * the protocol.
1652 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1653 unsigned, flags, struct sockaddr __user *, addr,
1654 int, addr_len)
1656 struct socket *sock;
1657 struct sockaddr_storage address;
1658 int err;
1659 struct msghdr msg;
1660 struct iovec iov;
1661 int fput_needed;
1663 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1664 if (!sock)
1665 goto out;
1667 iov.iov_base = buff;
1668 iov.iov_len = len;
1669 msg.msg_name = NULL;
1670 msg.msg_iov = &iov;
1671 msg.msg_iovlen = 1;
1672 msg.msg_control = NULL;
1673 msg.msg_controllen = 0;
1674 msg.msg_namelen = 0;
1675 if (addr) {
1676 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1677 if (err < 0)
1678 goto out_put;
1679 msg.msg_name = (struct sockaddr *)&address;
1680 msg.msg_namelen = addr_len;
1682 if (sock->file->f_flags & O_NONBLOCK)
1683 flags |= MSG_DONTWAIT;
1684 msg.msg_flags = flags;
1685 err = sock_sendmsg(sock, &msg, len);
1687 out_put:
1688 fput_light(sock->file, fput_needed);
1689 out:
1690 return err;
1694 * Send a datagram down a socket.
1697 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1698 unsigned, flags)
1700 return sys_sendto(fd, buff, len, flags, NULL, 0);
1704 * Receive a frame from the socket and optionally record the address of the
1705 * sender. We verify the buffers are writable and if needed move the
1706 * sender address from kernel to user space.
1709 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1710 unsigned, flags, struct sockaddr __user *, addr,
1711 int __user *, addr_len)
1713 struct socket *sock;
1714 struct iovec iov;
1715 struct msghdr msg;
1716 struct sockaddr_storage address;
1717 int err, err2;
1718 int fput_needed;
1720 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 if (!sock)
1722 goto out;
1724 msg.msg_control = NULL;
1725 msg.msg_controllen = 0;
1726 msg.msg_iovlen = 1;
1727 msg.msg_iov = &iov;
1728 iov.iov_len = size;
1729 iov.iov_base = ubuf;
1730 msg.msg_name = (struct sockaddr *)&address;
1731 msg.msg_namelen = sizeof(address);
1732 if (sock->file->f_flags & O_NONBLOCK)
1733 flags |= MSG_DONTWAIT;
1734 err = sock_recvmsg(sock, &msg, size, flags);
1736 if (err >= 0 && addr != NULL) {
1737 err2 = move_addr_to_user((struct sockaddr *)&address,
1738 msg.msg_namelen, addr, addr_len);
1739 if (err2 < 0)
1740 err = err2;
1743 fput_light(sock->file, fput_needed);
1744 out:
1745 return err;
1749 * Receive a datagram from a socket.
1752 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1753 unsigned flags)
1755 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1759 * Set a socket option. Because we don't know the option lengths we have
1760 * to pass the user mode parameter for the protocols to sort out.
1763 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1764 char __user *, optval, int, optlen)
1766 int err, fput_needed;
1767 struct socket *sock;
1769 if (optlen < 0)
1770 return -EINVAL;
1772 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1773 if (sock != NULL) {
1774 err = security_socket_setsockopt(sock, level, optname);
1775 if (err)
1776 goto out_put;
1778 if (level == SOL_SOCKET)
1779 err =
1780 sock_setsockopt(sock, level, optname, optval,
1781 optlen);
1782 else
1783 err =
1784 sock->ops->setsockopt(sock, level, optname, optval,
1785 optlen);
1786 out_put:
1787 fput_light(sock->file, fput_needed);
1789 return err;
1793 * Get a socket option. Because we don't know the option lengths we have
1794 * to pass a user mode parameter for the protocols to sort out.
1797 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1798 char __user *, optval, int __user *, optlen)
1800 int err, fput_needed;
1801 struct socket *sock;
1803 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1804 if (sock != NULL) {
1805 err = security_socket_getsockopt(sock, level, optname);
1806 if (err)
1807 goto out_put;
1809 if (level == SOL_SOCKET)
1810 err =
1811 sock_getsockopt(sock, level, optname, optval,
1812 optlen);
1813 else
1814 err =
1815 sock->ops->getsockopt(sock, level, optname, optval,
1816 optlen);
1817 out_put:
1818 fput_light(sock->file, fput_needed);
1820 return err;
1824 * Shutdown a socket.
1827 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1829 int err, fput_needed;
1830 struct socket *sock;
1832 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1833 if (sock != NULL) {
1834 err = security_socket_shutdown(sock, how);
1835 if (!err)
1836 err = sock->ops->shutdown(sock, how);
1837 fput_light(sock->file, fput_needed);
1839 return err;
1842 /* A couple of helpful macros for getting the address of the 32/64 bit
1843 * fields which are the same type (int / unsigned) on our platforms.
1845 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1846 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1847 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1850 * BSD sendmsg interface
1853 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1855 struct compat_msghdr __user *msg_compat =
1856 (struct compat_msghdr __user *)msg;
1857 struct socket *sock;
1858 struct sockaddr_storage address;
1859 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1860 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1861 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1862 /* 20 is size of ipv6_pktinfo */
1863 unsigned char *ctl_buf = ctl;
1864 struct msghdr msg_sys;
1865 int err, ctl_len, iov_size, total_len;
1866 int fput_needed;
1868 err = -EFAULT;
1869 if (MSG_CMSG_COMPAT & flags) {
1870 if (get_compat_msghdr(&msg_sys, msg_compat))
1871 return -EFAULT;
1872 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1873 return -EFAULT;
1875 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1876 if (!sock)
1877 goto out;
1879 /* do not move before msg_sys is valid */
1880 err = -EMSGSIZE;
1881 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1882 goto out_put;
1884 /* Check whether to allocate the iovec area */
1885 err = -ENOMEM;
1886 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1887 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1888 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1889 if (!iov)
1890 goto out_put;
1893 /* This will also move the address data into kernel space */
1894 if (MSG_CMSG_COMPAT & flags) {
1895 err = verify_compat_iovec(&msg_sys, iov,
1896 (struct sockaddr *)&address,
1897 VERIFY_READ);
1898 } else
1899 err = verify_iovec(&msg_sys, iov,
1900 (struct sockaddr *)&address,
1901 VERIFY_READ);
1902 if (err < 0)
1903 goto out_freeiov;
1904 total_len = err;
1906 err = -ENOBUFS;
1908 if (msg_sys.msg_controllen > INT_MAX)
1909 goto out_freeiov;
1910 ctl_len = msg_sys.msg_controllen;
1911 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1912 err =
1913 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1914 sizeof(ctl));
1915 if (err)
1916 goto out_freeiov;
1917 ctl_buf = msg_sys.msg_control;
1918 ctl_len = msg_sys.msg_controllen;
1919 } else if (ctl_len) {
1920 if (ctl_len > sizeof(ctl)) {
1921 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1922 if (ctl_buf == NULL)
1923 goto out_freeiov;
1925 err = -EFAULT;
1927 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1928 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1929 * checking falls down on this.
1931 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1932 ctl_len))
1933 goto out_freectl;
1934 msg_sys.msg_control = ctl_buf;
1936 msg_sys.msg_flags = flags;
1938 if (sock->file->f_flags & O_NONBLOCK)
1939 msg_sys.msg_flags |= MSG_DONTWAIT;
1940 err = sock_sendmsg(sock, &msg_sys, total_len);
1942 out_freectl:
1943 if (ctl_buf != ctl)
1944 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1945 out_freeiov:
1946 if (iov != iovstack)
1947 sock_kfree_s(sock->sk, iov, iov_size);
1948 out_put:
1949 fput_light(sock->file, fput_needed);
1950 out:
1951 return err;
1954 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1955 struct msghdr *msg_sys, unsigned flags, int nosec)
1957 struct compat_msghdr __user *msg_compat =
1958 (struct compat_msghdr __user *)msg;
1959 struct iovec iovstack[UIO_FASTIOV];
1960 struct iovec *iov = iovstack;
1961 unsigned long cmsg_ptr;
1962 int err, iov_size, total_len, len;
1964 /* kernel mode address */
1965 struct sockaddr_storage addr;
1967 /* user mode address pointers */
1968 struct sockaddr __user *uaddr;
1969 int __user *uaddr_len;
1971 if (MSG_CMSG_COMPAT & flags) {
1972 if (get_compat_msghdr(msg_sys, msg_compat))
1973 return -EFAULT;
1974 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1975 return -EFAULT;
1977 err = -EMSGSIZE;
1978 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1979 goto out;
1981 /* Check whether to allocate the iovec area */
1982 err = -ENOMEM;
1983 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1984 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1985 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1986 if (!iov)
1987 goto out;
1991 * Save the user-mode address (verify_iovec will change the
1992 * kernel msghdr to use the kernel address space)
1995 uaddr = (__force void __user *)msg_sys->msg_name;
1996 uaddr_len = COMPAT_NAMELEN(msg);
1997 if (MSG_CMSG_COMPAT & flags) {
1998 err = verify_compat_iovec(msg_sys, iov,
1999 (struct sockaddr *)&addr,
2000 VERIFY_WRITE);
2001 } else
2002 err = verify_iovec(msg_sys, iov,
2003 (struct sockaddr *)&addr,
2004 VERIFY_WRITE);
2005 if (err < 0)
2006 goto out_freeiov;
2007 total_len = err;
2009 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2010 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2012 if (sock->file->f_flags & O_NONBLOCK)
2013 flags |= MSG_DONTWAIT;
2014 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2015 total_len, flags);
2016 if (err < 0)
2017 goto out_freeiov;
2018 len = err;
2020 if (uaddr != NULL) {
2021 err = move_addr_to_user((struct sockaddr *)&addr,
2022 msg_sys->msg_namelen, uaddr,
2023 uaddr_len);
2024 if (err < 0)
2025 goto out_freeiov;
2027 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2028 COMPAT_FLAGS(msg));
2029 if (err)
2030 goto out_freeiov;
2031 if (MSG_CMSG_COMPAT & flags)
2032 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2033 &msg_compat->msg_controllen);
2034 else
2035 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2036 &msg->msg_controllen);
2037 if (err)
2038 goto out_freeiov;
2039 err = len;
2041 out_freeiov:
2042 if (iov != iovstack)
2043 sock_kfree_s(sock->sk, iov, iov_size);
2044 out:
2045 return err;
2049 * BSD recvmsg interface
2052 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2053 unsigned int, flags)
2055 int fput_needed, err;
2056 struct msghdr msg_sys;
2057 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2059 if (!sock)
2060 goto out;
2062 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2064 fput_light(sock->file, fput_needed);
2065 out:
2066 return err;
2070 * Linux recvmmsg interface
2073 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2074 unsigned int flags, struct timespec *timeout)
2076 int fput_needed, err, datagrams;
2077 struct socket *sock;
2078 struct mmsghdr __user *entry;
2079 struct compat_mmsghdr __user *compat_entry;
2080 struct msghdr msg_sys;
2081 struct timespec end_time;
2083 if (timeout &&
2084 poll_select_set_timeout(&end_time, timeout->tv_sec,
2085 timeout->tv_nsec))
2086 return -EINVAL;
2088 datagrams = 0;
2090 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2091 if (!sock)
2092 return err;
2094 err = sock_error(sock->sk);
2095 if (err)
2096 goto out_put;
2098 entry = mmsg;
2099 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2101 while (datagrams < vlen) {
2103 * No need to ask LSM for more than the first datagram.
2105 if (MSG_CMSG_COMPAT & flags) {
2106 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2107 &msg_sys, flags, datagrams);
2108 if (err < 0)
2109 break;
2110 err = __put_user(err, &compat_entry->msg_len);
2111 ++compat_entry;
2112 } else {
2113 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2114 &msg_sys, flags, datagrams);
2115 if (err < 0)
2116 break;
2117 err = put_user(err, &entry->msg_len);
2118 ++entry;
2121 if (err)
2122 break;
2123 ++datagrams;
2125 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2126 if (flags & MSG_WAITFORONE)
2127 flags |= MSG_DONTWAIT;
2129 if (timeout) {
2130 ktime_get_ts(timeout);
2131 *timeout = timespec_sub(end_time, *timeout);
2132 if (timeout->tv_sec < 0) {
2133 timeout->tv_sec = timeout->tv_nsec = 0;
2134 break;
2137 /* Timeout, return less than vlen datagrams */
2138 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2139 break;
2142 /* Out of band data, return right away */
2143 if (msg_sys.msg_flags & MSG_OOB)
2144 break;
2147 out_put:
2148 fput_light(sock->file, fput_needed);
2150 if (err == 0)
2151 return datagrams;
2153 if (datagrams != 0) {
2155 * We may return less entries than requested (vlen) if the
2156 * sock is non block and there aren't enough datagrams...
2158 if (err != -EAGAIN) {
2160 * ... or if recvmsg returns an error after we
2161 * received some datagrams, where we record the
2162 * error to return on the next call or if the
2163 * app asks about it using getsockopt(SO_ERROR).
2165 sock->sk->sk_err = -err;
2168 return datagrams;
2171 return err;
2174 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2175 unsigned int, vlen, unsigned int, flags,
2176 struct timespec __user *, timeout)
2178 int datagrams;
2179 struct timespec timeout_sys;
2181 if (!timeout)
2182 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2184 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2185 return -EFAULT;
2187 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2189 if (datagrams > 0 &&
2190 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2191 datagrams = -EFAULT;
2193 return datagrams;
2196 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2197 /* Argument list sizes for sys_socketcall */
2198 #define AL(x) ((x) * sizeof(unsigned long))
2199 static const unsigned char nargs[20] = {
2200 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2201 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2202 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2203 AL(4), AL(5)
2206 #undef AL
2209 * System call vectors.
2211 * Argument checking cleaned up. Saved 20% in size.
2212 * This function doesn't need to set the kernel lock because
2213 * it is set by the callees.
2216 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2218 unsigned long a[6];
2219 unsigned long a0, a1;
2220 int err;
2221 unsigned int len;
2223 if (call < 1 || call > SYS_RECVMMSG)
2224 return -EINVAL;
2226 len = nargs[call];
2227 if (len > sizeof(a))
2228 return -EINVAL;
2230 /* copy_from_user should be SMP safe. */
2231 if (copy_from_user(a, args, len))
2232 return -EFAULT;
2234 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2236 a0 = a[0];
2237 a1 = a[1];
2239 switch (call) {
2240 case SYS_SOCKET:
2241 err = sys_socket(a0, a1, a[2]);
2242 break;
2243 case SYS_BIND:
2244 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2245 break;
2246 case SYS_CONNECT:
2247 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2248 break;
2249 case SYS_LISTEN:
2250 err = sys_listen(a0, a1);
2251 break;
2252 case SYS_ACCEPT:
2253 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2254 (int __user *)a[2], 0);
2255 break;
2256 case SYS_GETSOCKNAME:
2257 err =
2258 sys_getsockname(a0, (struct sockaddr __user *)a1,
2259 (int __user *)a[2]);
2260 break;
2261 case SYS_GETPEERNAME:
2262 err =
2263 sys_getpeername(a0, (struct sockaddr __user *)a1,
2264 (int __user *)a[2]);
2265 break;
2266 case SYS_SOCKETPAIR:
2267 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2268 break;
2269 case SYS_SEND:
2270 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2271 break;
2272 case SYS_SENDTO:
2273 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2274 (struct sockaddr __user *)a[4], a[5]);
2275 break;
2276 case SYS_RECV:
2277 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2278 break;
2279 case SYS_RECVFROM:
2280 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2281 (struct sockaddr __user *)a[4],
2282 (int __user *)a[5]);
2283 break;
2284 case SYS_SHUTDOWN:
2285 err = sys_shutdown(a0, a1);
2286 break;
2287 case SYS_SETSOCKOPT:
2288 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2289 break;
2290 case SYS_GETSOCKOPT:
2291 err =
2292 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2293 (int __user *)a[4]);
2294 break;
2295 case SYS_SENDMSG:
2296 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2297 break;
2298 case SYS_RECVMSG:
2299 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2300 break;
2301 case SYS_RECVMMSG:
2302 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2303 (struct timespec __user *)a[4]);
2304 break;
2305 case SYS_ACCEPT4:
2306 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2307 (int __user *)a[2], a[3]);
2308 break;
2309 default:
2310 err = -EINVAL;
2311 break;
2313 return err;
2316 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2319 * sock_register - add a socket protocol handler
2320 * @ops: description of protocol
2322 * This function is called by a protocol handler that wants to
2323 * advertise its address family, and have it linked into the
2324 * socket interface. The value ops->family coresponds to the
2325 * socket system call protocol family.
2327 int sock_register(const struct net_proto_family *ops)
2329 int err;
2331 if (ops->family >= NPROTO) {
2332 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2333 NPROTO);
2334 return -ENOBUFS;
2337 spin_lock(&net_family_lock);
2338 if (net_families[ops->family])
2339 err = -EEXIST;
2340 else {
2341 net_families[ops->family] = ops;
2342 err = 0;
2344 spin_unlock(&net_family_lock);
2346 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2347 return err;
2349 EXPORT_SYMBOL(sock_register);
2352 * sock_unregister - remove a protocol handler
2353 * @family: protocol family to remove
2355 * This function is called by a protocol handler that wants to
2356 * remove its address family, and have it unlinked from the
2357 * new socket creation.
2359 * If protocol handler is a module, then it can use module reference
2360 * counts to protect against new references. If protocol handler is not
2361 * a module then it needs to provide its own protection in
2362 * the ops->create routine.
2364 void sock_unregister(int family)
2366 BUG_ON(family < 0 || family >= NPROTO);
2368 spin_lock(&net_family_lock);
2369 net_families[family] = NULL;
2370 spin_unlock(&net_family_lock);
2372 synchronize_rcu();
2374 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2376 EXPORT_SYMBOL(sock_unregister);
2378 static int __init sock_init(void)
2381 * Initialize sock SLAB cache.
2384 sk_init();
2387 * Initialize skbuff SLAB cache
2389 skb_init();
2392 * Initialize the protocols module.
2395 init_inodecache();
2396 register_filesystem(&sock_fs_type);
2397 sock_mnt = kern_mount(&sock_fs_type);
2399 /* The real protocol initialization is performed in later initcalls.
2402 #ifdef CONFIG_NETFILTER
2403 netfilter_init();
2404 #endif
2406 return 0;
2409 core_initcall(sock_init); /* early initcall */
2411 #ifdef CONFIG_PROC_FS
2412 void socket_seq_show(struct seq_file *seq)
2414 int cpu;
2415 int counter = 0;
2417 for_each_possible_cpu(cpu)
2418 counter += per_cpu(sockets_in_use, cpu);
2420 /* It can be negative, by the way. 8) */
2421 if (counter < 0)
2422 counter = 0;
2424 seq_printf(seq, "sockets: used %d\n", counter);
2426 #endif /* CONFIG_PROC_FS */
2428 #ifdef CONFIG_COMPAT
2429 static int do_siocgstamp(struct net *net, struct socket *sock,
2430 unsigned int cmd, struct compat_timeval __user *up)
2432 mm_segment_t old_fs = get_fs();
2433 struct timeval ktv;
2434 int err;
2436 set_fs(KERNEL_DS);
2437 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2438 set_fs(old_fs);
2439 if (!err) {
2440 err = put_user(ktv.tv_sec, &up->tv_sec);
2441 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2443 return err;
2446 static int do_siocgstampns(struct net *net, struct socket *sock,
2447 unsigned int cmd, struct compat_timespec __user *up)
2449 mm_segment_t old_fs = get_fs();
2450 struct timespec kts;
2451 int err;
2453 set_fs(KERNEL_DS);
2454 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2455 set_fs(old_fs);
2456 if (!err) {
2457 err = put_user(kts.tv_sec, &up->tv_sec);
2458 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2460 return err;
2463 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2465 struct ifreq __user *uifr;
2466 int err;
2468 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2469 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2470 return -EFAULT;
2472 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2473 if (err)
2474 return err;
2476 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2477 return -EFAULT;
2479 return 0;
2482 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2484 struct compat_ifconf ifc32;
2485 struct ifconf ifc;
2486 struct ifconf __user *uifc;
2487 struct compat_ifreq __user *ifr32;
2488 struct ifreq __user *ifr;
2489 unsigned int i, j;
2490 int err;
2492 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2493 return -EFAULT;
2495 if (ifc32.ifcbuf == 0) {
2496 ifc32.ifc_len = 0;
2497 ifc.ifc_len = 0;
2498 ifc.ifc_req = NULL;
2499 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2500 } else {
2501 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2502 sizeof(struct ifreq);
2503 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2504 ifc.ifc_len = len;
2505 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2506 ifr32 = compat_ptr(ifc32.ifcbuf);
2507 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2508 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2509 return -EFAULT;
2510 ifr++;
2511 ifr32++;
2514 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2515 return -EFAULT;
2517 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2518 if (err)
2519 return err;
2521 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2522 return -EFAULT;
2524 ifr = ifc.ifc_req;
2525 ifr32 = compat_ptr(ifc32.ifcbuf);
2526 for (i = 0, j = 0;
2527 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2528 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2529 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2530 return -EFAULT;
2531 ifr32++;
2532 ifr++;
2535 if (ifc32.ifcbuf == 0) {
2536 /* Translate from 64-bit structure multiple to
2537 * a 32-bit one.
2539 i = ifc.ifc_len;
2540 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2541 ifc32.ifc_len = i;
2542 } else {
2543 ifc32.ifc_len = i;
2545 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2546 return -EFAULT;
2548 return 0;
2551 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2553 struct ifreq __user *ifr;
2554 u32 data;
2555 void __user *datap;
2557 ifr = compat_alloc_user_space(sizeof(*ifr));
2559 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2560 return -EFAULT;
2562 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2563 return -EFAULT;
2565 datap = compat_ptr(data);
2566 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2567 return -EFAULT;
2569 return dev_ioctl(net, SIOCETHTOOL, ifr);
2572 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2574 void __user *uptr;
2575 compat_uptr_t uptr32;
2576 struct ifreq __user *uifr;
2578 uifr = compat_alloc_user_space(sizeof(*uifr));
2579 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2580 return -EFAULT;
2582 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2583 return -EFAULT;
2585 uptr = compat_ptr(uptr32);
2587 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2588 return -EFAULT;
2590 return dev_ioctl(net, SIOCWANDEV, uifr);
2593 static int bond_ioctl(struct net *net, unsigned int cmd,
2594 struct compat_ifreq __user *ifr32)
2596 struct ifreq kifr;
2597 struct ifreq __user *uifr;
2598 mm_segment_t old_fs;
2599 int err;
2600 u32 data;
2601 void __user *datap;
2603 switch (cmd) {
2604 case SIOCBONDENSLAVE:
2605 case SIOCBONDRELEASE:
2606 case SIOCBONDSETHWADDR:
2607 case SIOCBONDCHANGEACTIVE:
2608 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2609 return -EFAULT;
2611 old_fs = get_fs();
2612 set_fs(KERNEL_DS);
2613 err = dev_ioctl(net, cmd, &kifr);
2614 set_fs(old_fs);
2616 return err;
2617 case SIOCBONDSLAVEINFOQUERY:
2618 case SIOCBONDINFOQUERY:
2619 uifr = compat_alloc_user_space(sizeof(*uifr));
2620 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2621 return -EFAULT;
2623 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2624 return -EFAULT;
2626 datap = compat_ptr(data);
2627 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2628 return -EFAULT;
2630 return dev_ioctl(net, cmd, uifr);
2631 default:
2632 return -EINVAL;
2636 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2637 struct compat_ifreq __user *u_ifreq32)
2639 struct ifreq __user *u_ifreq64;
2640 char tmp_buf[IFNAMSIZ];
2641 void __user *data64;
2642 u32 data32;
2644 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2645 IFNAMSIZ))
2646 return -EFAULT;
2647 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2648 return -EFAULT;
2649 data64 = compat_ptr(data32);
2651 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2653 /* Don't check these user accesses, just let that get trapped
2654 * in the ioctl handler instead.
2656 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2657 IFNAMSIZ))
2658 return -EFAULT;
2659 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2660 return -EFAULT;
2662 return dev_ioctl(net, cmd, u_ifreq64);
2665 static int dev_ifsioc(struct net *net, struct socket *sock,
2666 unsigned int cmd, struct compat_ifreq __user *uifr32)
2668 struct ifreq __user *uifr;
2669 int err;
2671 uifr = compat_alloc_user_space(sizeof(*uifr));
2672 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2673 return -EFAULT;
2675 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2677 if (!err) {
2678 switch (cmd) {
2679 case SIOCGIFFLAGS:
2680 case SIOCGIFMETRIC:
2681 case SIOCGIFMTU:
2682 case SIOCGIFMEM:
2683 case SIOCGIFHWADDR:
2684 case SIOCGIFINDEX:
2685 case SIOCGIFADDR:
2686 case SIOCGIFBRDADDR:
2687 case SIOCGIFDSTADDR:
2688 case SIOCGIFNETMASK:
2689 case SIOCGIFPFLAGS:
2690 case SIOCGIFTXQLEN:
2691 case SIOCGMIIPHY:
2692 case SIOCGMIIREG:
2693 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2694 err = -EFAULT;
2695 break;
2698 return err;
2701 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2702 struct compat_ifreq __user *uifr32)
2704 struct ifreq ifr;
2705 struct compat_ifmap __user *uifmap32;
2706 mm_segment_t old_fs;
2707 int err;
2709 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2710 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2711 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2712 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2713 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2714 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2715 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2716 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2717 if (err)
2718 return -EFAULT;
2720 old_fs = get_fs();
2721 set_fs(KERNEL_DS);
2722 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2723 set_fs(old_fs);
2725 if (cmd == SIOCGIFMAP && !err) {
2726 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2727 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2728 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2729 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2730 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2731 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2732 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2733 if (err)
2734 err = -EFAULT;
2736 return err;
2739 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2741 void __user *uptr;
2742 compat_uptr_t uptr32;
2743 struct ifreq __user *uifr;
2745 uifr = compat_alloc_user_space(sizeof(*uifr));
2746 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2747 return -EFAULT;
2749 if (get_user(uptr32, &uifr32->ifr_data))
2750 return -EFAULT;
2752 uptr = compat_ptr(uptr32);
2754 if (put_user(uptr, &uifr->ifr_data))
2755 return -EFAULT;
2757 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2760 struct rtentry32 {
2761 u32 rt_pad1;
2762 struct sockaddr rt_dst; /* target address */
2763 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2764 struct sockaddr rt_genmask; /* target network mask (IP) */
2765 unsigned short rt_flags;
2766 short rt_pad2;
2767 u32 rt_pad3;
2768 unsigned char rt_tos;
2769 unsigned char rt_class;
2770 short rt_pad4;
2771 short rt_metric; /* +1 for binary compatibility! */
2772 /* char * */ u32 rt_dev; /* forcing the device at add */
2773 u32 rt_mtu; /* per route MTU/Window */
2774 u32 rt_window; /* Window clamping */
2775 unsigned short rt_irtt; /* Initial RTT */
2778 struct in6_rtmsg32 {
2779 struct in6_addr rtmsg_dst;
2780 struct in6_addr rtmsg_src;
2781 struct in6_addr rtmsg_gateway;
2782 u32 rtmsg_type;
2783 u16 rtmsg_dst_len;
2784 u16 rtmsg_src_len;
2785 u32 rtmsg_metric;
2786 u32 rtmsg_info;
2787 u32 rtmsg_flags;
2788 s32 rtmsg_ifindex;
2791 static int routing_ioctl(struct net *net, struct socket *sock,
2792 unsigned int cmd, void __user *argp)
2794 int ret;
2795 void *r = NULL;
2796 struct in6_rtmsg r6;
2797 struct rtentry r4;
2798 char devname[16];
2799 u32 rtdev;
2800 mm_segment_t old_fs = get_fs();
2802 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2803 struct in6_rtmsg32 __user *ur6 = argp;
2804 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2805 3 * sizeof(struct in6_addr));
2806 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2807 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2808 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2809 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2810 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2811 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2812 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2814 r = (void *) &r6;
2815 } else { /* ipv4 */
2816 struct rtentry32 __user *ur4 = argp;
2817 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2818 3 * sizeof(struct sockaddr));
2819 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2820 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2821 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2822 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2823 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2824 ret |= __get_user(rtdev, &(ur4->rt_dev));
2825 if (rtdev) {
2826 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2827 r4.rt_dev = devname; devname[15] = 0;
2828 } else
2829 r4.rt_dev = NULL;
2831 r = (void *) &r4;
2834 if (ret) {
2835 ret = -EFAULT;
2836 goto out;
2839 set_fs(KERNEL_DS);
2840 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2841 set_fs(old_fs);
2843 out:
2844 return ret;
2847 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2848 * for some operations; this forces use of the newer bridge-utils that
2849 * use compatiable ioctls
2851 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2853 compat_ulong_t tmp;
2855 if (get_user(tmp, argp))
2856 return -EFAULT;
2857 if (tmp == BRCTL_GET_VERSION)
2858 return BRCTL_VERSION + 1;
2859 return -EINVAL;
2862 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2863 unsigned int cmd, unsigned long arg)
2865 void __user *argp = compat_ptr(arg);
2866 struct sock *sk = sock->sk;
2867 struct net *net = sock_net(sk);
2869 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2870 return siocdevprivate_ioctl(net, cmd, argp);
2872 switch (cmd) {
2873 case SIOCSIFBR:
2874 case SIOCGIFBR:
2875 return old_bridge_ioctl(argp);
2876 case SIOCGIFNAME:
2877 return dev_ifname32(net, argp);
2878 case SIOCGIFCONF:
2879 return dev_ifconf(net, argp);
2880 case SIOCETHTOOL:
2881 return ethtool_ioctl(net, argp);
2882 case SIOCWANDEV:
2883 return compat_siocwandev(net, argp);
2884 case SIOCGIFMAP:
2885 case SIOCSIFMAP:
2886 return compat_sioc_ifmap(net, cmd, argp);
2887 case SIOCBONDENSLAVE:
2888 case SIOCBONDRELEASE:
2889 case SIOCBONDSETHWADDR:
2890 case SIOCBONDSLAVEINFOQUERY:
2891 case SIOCBONDINFOQUERY:
2892 case SIOCBONDCHANGEACTIVE:
2893 return bond_ioctl(net, cmd, argp);
2894 case SIOCADDRT:
2895 case SIOCDELRT:
2896 return routing_ioctl(net, sock, cmd, argp);
2897 case SIOCGSTAMP:
2898 return do_siocgstamp(net, sock, cmd, argp);
2899 case SIOCGSTAMPNS:
2900 return do_siocgstampns(net, sock, cmd, argp);
2901 case SIOCSHWTSTAMP:
2902 return compat_siocshwtstamp(net, argp);
2904 case FIOSETOWN:
2905 case SIOCSPGRP:
2906 case FIOGETOWN:
2907 case SIOCGPGRP:
2908 case SIOCBRADDBR:
2909 case SIOCBRDELBR:
2910 case SIOCGIFVLAN:
2911 case SIOCSIFVLAN:
2912 case SIOCADDDLCI:
2913 case SIOCDELDLCI:
2914 return sock_ioctl(file, cmd, arg);
2916 case SIOCGIFFLAGS:
2917 case SIOCSIFFLAGS:
2918 case SIOCGIFMETRIC:
2919 case SIOCSIFMETRIC:
2920 case SIOCGIFMTU:
2921 case SIOCSIFMTU:
2922 case SIOCGIFMEM:
2923 case SIOCSIFMEM:
2924 case SIOCGIFHWADDR:
2925 case SIOCSIFHWADDR:
2926 case SIOCADDMULTI:
2927 case SIOCDELMULTI:
2928 case SIOCGIFINDEX:
2929 case SIOCGIFADDR:
2930 case SIOCSIFADDR:
2931 case SIOCSIFHWBROADCAST:
2932 case SIOCDIFADDR:
2933 case SIOCGIFBRDADDR:
2934 case SIOCSIFBRDADDR:
2935 case SIOCGIFDSTADDR:
2936 case SIOCSIFDSTADDR:
2937 case SIOCGIFNETMASK:
2938 case SIOCSIFNETMASK:
2939 case SIOCSIFPFLAGS:
2940 case SIOCGIFPFLAGS:
2941 case SIOCGIFTXQLEN:
2942 case SIOCSIFTXQLEN:
2943 case SIOCBRADDIF:
2944 case SIOCBRDELIF:
2945 case SIOCSIFNAME:
2946 case SIOCGMIIPHY:
2947 case SIOCGMIIREG:
2948 case SIOCSMIIREG:
2949 return dev_ifsioc(net, sock, cmd, argp);
2951 case SIOCSARP:
2952 case SIOCGARP:
2953 case SIOCDARP:
2954 case SIOCATMARK:
2955 return sock_do_ioctl(net, sock, cmd, arg);
2958 /* Prevent warning from compat_sys_ioctl, these always
2959 * result in -EINVAL in the native case anyway. */
2960 switch (cmd) {
2961 case SIOCRTMSG:
2962 case SIOCGIFCOUNT:
2963 case SIOCSRARP:
2964 case SIOCGRARP:
2965 case SIOCDRARP:
2966 case SIOCSIFLINK:
2967 case SIOCGIFSLAVE:
2968 case SIOCSIFSLAVE:
2969 return -EINVAL;
2972 return -ENOIOCTLCMD;
2975 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2976 unsigned long arg)
2978 struct socket *sock = file->private_data;
2979 int ret = -ENOIOCTLCMD;
2980 struct sock *sk;
2981 struct net *net;
2983 sk = sock->sk;
2984 net = sock_net(sk);
2986 if (sock->ops->compat_ioctl)
2987 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2989 if (ret == -ENOIOCTLCMD &&
2990 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2991 ret = compat_wext_handle_ioctl(net, cmd, arg);
2993 if (ret == -ENOIOCTLCMD)
2994 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2996 return ret;
2998 #endif
3000 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3002 return sock->ops->bind(sock, addr, addrlen);
3004 EXPORT_SYMBOL(kernel_bind);
3006 int kernel_listen(struct socket *sock, int backlog)
3008 return sock->ops->listen(sock, backlog);
3010 EXPORT_SYMBOL(kernel_listen);
3012 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3014 struct sock *sk = sock->sk;
3015 int err;
3017 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3018 newsock);
3019 if (err < 0)
3020 goto done;
3022 err = sock->ops->accept(sock, *newsock, flags);
3023 if (err < 0) {
3024 sock_release(*newsock);
3025 *newsock = NULL;
3026 goto done;
3029 (*newsock)->ops = sock->ops;
3030 __module_get((*newsock)->ops->owner);
3032 done:
3033 return err;
3035 EXPORT_SYMBOL(kernel_accept);
3037 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3038 int flags)
3040 return sock->ops->connect(sock, addr, addrlen, flags);
3042 EXPORT_SYMBOL(kernel_connect);
3044 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3045 int *addrlen)
3047 return sock->ops->getname(sock, addr, addrlen, 0);
3049 EXPORT_SYMBOL(kernel_getsockname);
3051 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3052 int *addrlen)
3054 return sock->ops->getname(sock, addr, addrlen, 1);
3056 EXPORT_SYMBOL(kernel_getpeername);
3058 int kernel_getsockopt(struct socket *sock, int level, int optname,
3059 char *optval, int *optlen)
3061 mm_segment_t oldfs = get_fs();
3062 int err;
3064 set_fs(KERNEL_DS);
3065 if (level == SOL_SOCKET)
3066 err = sock_getsockopt(sock, level, optname, optval, optlen);
3067 else
3068 err = sock->ops->getsockopt(sock, level, optname, optval,
3069 optlen);
3070 set_fs(oldfs);
3071 return err;
3073 EXPORT_SYMBOL(kernel_getsockopt);
3075 int kernel_setsockopt(struct socket *sock, int level, int optname,
3076 char *optval, unsigned int optlen)
3078 mm_segment_t oldfs = get_fs();
3079 int err;
3081 set_fs(KERNEL_DS);
3082 if (level == SOL_SOCKET)
3083 err = sock_setsockopt(sock, level, optname, optval, optlen);
3084 else
3085 err = sock->ops->setsockopt(sock, level, optname, optval,
3086 optlen);
3087 set_fs(oldfs);
3088 return err;
3090 EXPORT_SYMBOL(kernel_setsockopt);
3092 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3093 size_t size, int flags)
3095 sock_update_classid(sock->sk);
3097 if (sock->ops->sendpage)
3098 return sock->ops->sendpage(sock, page, offset, size, flags);
3100 return sock_no_sendpage(sock, page, offset, size, flags);
3102 EXPORT_SYMBOL(kernel_sendpage);
3104 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3106 mm_segment_t oldfs = get_fs();
3107 int err;
3109 set_fs(KERNEL_DS);
3110 err = sock->ops->ioctl(sock, cmd, arg);
3111 set_fs(oldfs);
3113 return err;
3115 EXPORT_SYMBOL(kernel_sock_ioctl);
3117 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3119 return sock->ops->shutdown(sock, how);
3121 EXPORT_SYMBOL(kernel_sock_shutdown);