ext4: Add new tracepoints to debug delayed allocation space functions
[linux-2.6/libata-dev.git] / fs / ext4 / inode.c
blob1a3d7b232cd7e4b20300274c034c8a1c08d498f0
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * Work out how many blocks we need to proceed with the next chunk of a
75 * truncate transaction.
77 static unsigned long blocks_for_truncate(struct inode *inode)
79 ext4_lblk_t needed;
81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
83 /* Give ourselves just enough room to cope with inodes in which
84 * i_blocks is corrupt: we've seen disk corruptions in the past
85 * which resulted in random data in an inode which looked enough
86 * like a regular file for ext4 to try to delete it. Things
87 * will go a bit crazy if that happens, but at least we should
88 * try not to panic the whole kernel. */
89 if (needed < 2)
90 needed = 2;
92 /* But we need to bound the transaction so we don't overflow the
93 * journal. */
94 if (needed > EXT4_MAX_TRANS_DATA)
95 needed = EXT4_MAX_TRANS_DATA;
97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
101 * Truncate transactions can be complex and absolutely huge. So we need to
102 * be able to restart the transaction at a conventient checkpoint to make
103 * sure we don't overflow the journal.
105 * start_transaction gets us a new handle for a truncate transaction,
106 * and extend_transaction tries to extend the existing one a bit. If
107 * extend fails, we need to propagate the failure up and restart the
108 * transaction in the top-level truncate loop. --sct
110 static handle_t *start_transaction(struct inode *inode)
112 handle_t *result;
114 result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 if (!IS_ERR(result))
116 return result;
118 ext4_std_error(inode->i_sb, PTR_ERR(result));
119 return result;
123 * Try to extend this transaction for the purposes of truncation.
125 * Returns 0 if we managed to create more room. If we can't create more
126 * room, and the transaction must be restarted we return 1.
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
130 if (!ext4_handle_valid(handle))
131 return 0;
132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133 return 0;
134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 return 0;
136 return 1;
140 * Restart the transaction associated with *handle. This does a commit,
141 * so before we call here everything must be consistently dirtied against
142 * this transaction.
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145 int nblocks)
147 int ret;
150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 * moment, get_block can be called only for blocks inside i_size since
152 * page cache has been already dropped and writes are blocked by
153 * i_mutex. So we can safely drop the i_data_sem here.
155 BUG_ON(EXT4_JOURNAL(inode) == NULL);
156 jbd_debug(2, "restarting handle %p\n", handle);
157 up_write(&EXT4_I(inode)->i_data_sem);
158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 down_write(&EXT4_I(inode)->i_data_sem);
160 ext4_discard_preallocations(inode);
162 return ret;
166 * Called at the last iput() if i_nlink is zero.
168 void ext4_delete_inode(struct inode *inode)
170 handle_t *handle;
171 int err;
173 if (ext4_should_order_data(inode))
174 ext4_begin_ordered_truncate(inode, 0);
175 truncate_inode_pages(&inode->i_data, 0);
177 if (is_bad_inode(inode))
178 goto no_delete;
180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181 if (IS_ERR(handle)) {
182 ext4_std_error(inode->i_sb, PTR_ERR(handle));
184 * If we're going to skip the normal cleanup, we still need to
185 * make sure that the in-core orphan linked list is properly
186 * cleaned up.
188 ext4_orphan_del(NULL, inode);
189 goto no_delete;
192 if (IS_SYNC(inode))
193 ext4_handle_sync(handle);
194 inode->i_size = 0;
195 err = ext4_mark_inode_dirty(handle, inode);
196 if (err) {
197 ext4_warning(inode->i_sb, __func__,
198 "couldn't mark inode dirty (err %d)", err);
199 goto stop_handle;
201 if (inode->i_blocks)
202 ext4_truncate(inode);
205 * ext4_ext_truncate() doesn't reserve any slop when it
206 * restarts journal transactions; therefore there may not be
207 * enough credits left in the handle to remove the inode from
208 * the orphan list and set the dtime field.
210 if (!ext4_handle_has_enough_credits(handle, 3)) {
211 err = ext4_journal_extend(handle, 3);
212 if (err > 0)
213 err = ext4_journal_restart(handle, 3);
214 if (err != 0) {
215 ext4_warning(inode->i_sb, __func__,
216 "couldn't extend journal (err %d)", err);
217 stop_handle:
218 ext4_journal_stop(handle);
219 goto no_delete;
224 * Kill off the orphan record which ext4_truncate created.
225 * AKPM: I think this can be inside the above `if'.
226 * Note that ext4_orphan_del() has to be able to cope with the
227 * deletion of a non-existent orphan - this is because we don't
228 * know if ext4_truncate() actually created an orphan record.
229 * (Well, we could do this if we need to, but heck - it works)
231 ext4_orphan_del(handle, inode);
232 EXT4_I(inode)->i_dtime = get_seconds();
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
241 if (ext4_mark_inode_dirty(handle, inode))
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
245 ext4_free_inode(handle, inode);
246 ext4_journal_stop(handle);
247 return;
248 no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
252 typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256 } Indirect;
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
260 p->key = *(p->p = v);
261 p->bh = bh;
265 * ext4_block_to_path - parse the block number into array of offsets
266 * @inode: inode in question (we are only interested in its superblock)
267 * @i_block: block number to be parsed
268 * @offsets: array to store the offsets in
269 * @boundary: set this non-zero if the referred-to block is likely to be
270 * followed (on disk) by an indirect block.
272 * To store the locations of file's data ext4 uses a data structure common
273 * for UNIX filesystems - tree of pointers anchored in the inode, with
274 * data blocks at leaves and indirect blocks in intermediate nodes.
275 * This function translates the block number into path in that tree -
276 * return value is the path length and @offsets[n] is the offset of
277 * pointer to (n+1)th node in the nth one. If @block is out of range
278 * (negative or too large) warning is printed and zero returned.
280 * Note: function doesn't find node addresses, so no IO is needed. All
281 * we need to know is the capacity of indirect blocks (taken from the
282 * inode->i_sb).
286 * Portability note: the last comparison (check that we fit into triple
287 * indirect block) is spelled differently, because otherwise on an
288 * architecture with 32-bit longs and 8Kb pages we might get into trouble
289 * if our filesystem had 8Kb blocks. We might use long long, but that would
290 * kill us on x86. Oh, well, at least the sign propagation does not matter -
291 * i_block would have to be negative in the very beginning, so we would not
292 * get there at all.
295 static int ext4_block_to_path(struct inode *inode,
296 ext4_lblk_t i_block,
297 ext4_lblk_t offsets[4], int *boundary)
299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT4_NDIR_BLOCKS,
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
307 if (i_block < direct_blocks) {
308 offsets[n++] = i_block;
309 final = direct_blocks;
310 } else if ((i_block -= direct_blocks) < indirect_blocks) {
311 offsets[n++] = EXT4_IND_BLOCK;
312 offsets[n++] = i_block;
313 final = ptrs;
314 } else if ((i_block -= indirect_blocks) < double_blocks) {
315 offsets[n++] = EXT4_DIND_BLOCK;
316 offsets[n++] = i_block >> ptrs_bits;
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320 offsets[n++] = EXT4_TIND_BLOCK;
321 offsets[n++] = i_block >> (ptrs_bits * 2);
322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else {
326 ext4_warning(inode->i_sb, "ext4_block_to_path",
327 "block %lu > max in inode %lu",
328 i_block + direct_blocks +
329 indirect_blocks + double_blocks, inode->i_ino);
331 if (boundary)
332 *boundary = final - 1 - (i_block & (ptrs - 1));
333 return n;
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 __le32 *p, unsigned int max)
339 __le32 *bref = p;
340 unsigned int blk;
342 while (bref < p+max) {
343 blk = le32_to_cpu(*bref++);
344 if (blk &&
345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 blk, 1))) {
347 ext4_error(inode->i_sb, function,
348 "invalid block reference %u "
349 "in inode #%lu", blk, inode->i_ino);
350 return -EIO;
353 return 0;
357 #define ext4_check_indirect_blockref(inode, bh) \
358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
359 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
361 #define ext4_check_inode_blockref(inode) \
362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
363 EXT4_NDIR_BLOCKS)
366 * ext4_get_branch - read the chain of indirect blocks leading to data
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
392 * Need to be called with
393 * down_read(&EXT4_I(inode)->i_data_sem)
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
397 Indirect chain[4], int *err)
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
403 *err = 0;
404 /* i_data is not going away, no lock needed */
405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
409 bh = sb_getblk(sb, le32_to_cpu(p->key));
410 if (unlikely(!bh))
411 goto failure;
413 if (!bh_uptodate_or_lock(bh)) {
414 if (bh_submit_read(bh) < 0) {
415 put_bh(bh);
416 goto failure;
418 /* validate block references */
419 if (ext4_check_indirect_blockref(inode, bh)) {
420 put_bh(bh);
421 goto failure;
425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 /* Reader: end */
427 if (!p->key)
428 goto no_block;
430 return NULL;
432 failure:
433 *err = -EIO;
434 no_block:
435 return p;
439 * ext4_find_near - find a place for allocation with sufficient locality
440 * @inode: owner
441 * @ind: descriptor of indirect block.
443 * This function returns the preferred place for block allocation.
444 * It is used when heuristic for sequential allocation fails.
445 * Rules are:
446 * + if there is a block to the left of our position - allocate near it.
447 * + if pointer will live in indirect block - allocate near that block.
448 * + if pointer will live in inode - allocate in the same
449 * cylinder group.
451 * In the latter case we colour the starting block by the callers PID to
452 * prevent it from clashing with concurrent allocations for a different inode
453 * in the same block group. The PID is used here so that functionally related
454 * files will be close-by on-disk.
456 * Caller must make sure that @ind is valid and will stay that way.
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
460 struct ext4_inode_info *ei = EXT4_I(inode);
461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 __le32 *p;
463 ext4_fsblk_t bg_start;
464 ext4_fsblk_t last_block;
465 ext4_grpblk_t colour;
466 ext4_group_t block_group;
467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
469 /* Try to find previous block */
470 for (p = ind->p - 1; p >= start; p--) {
471 if (*p)
472 return le32_to_cpu(*p);
475 /* No such thing, so let's try location of indirect block */
476 if (ind->bh)
477 return ind->bh->b_blocknr;
480 * It is going to be referred to from the inode itself? OK, just put it
481 * into the same cylinder group then.
483 block_group = ei->i_block_group;
484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 block_group &= ~(flex_size-1);
486 if (S_ISREG(inode->i_mode))
487 block_group++;
489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
493 * If we are doing delayed allocation, we don't need take
494 * colour into account.
496 if (test_opt(inode->i_sb, DELALLOC))
497 return bg_start;
499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 colour = (current->pid % 16) *
501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 else
503 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 return bg_start + colour;
508 * ext4_find_goal - find a preferred place for allocation.
509 * @inode: owner
510 * @block: block we want
511 * @partial: pointer to the last triple within a chain
513 * Normally this function find the preferred place for block allocation,
514 * returns it.
515 * Because this is only used for non-extent files, we limit the block nr
516 * to 32 bits.
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 Indirect *partial)
521 ext4_fsblk_t goal;
524 * XXX need to get goal block from mballoc's data structures
527 goal = ext4_find_near(inode, partial);
528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 return goal;
533 * ext4_blks_to_allocate: Look up the block map and count the number
534 * of direct blocks need to be allocated for the given branch.
536 * @branch: chain of indirect blocks
537 * @k: number of blocks need for indirect blocks
538 * @blks: number of data blocks to be mapped.
539 * @blocks_to_boundary: the offset in the indirect block
541 * return the total number of blocks to be allocate, including the
542 * direct and indirect blocks.
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 int blocks_to_boundary)
547 unsigned int count = 0;
550 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 * then it's clear blocks on that path have not allocated
553 if (k > 0) {
554 /* right now we don't handle cross boundary allocation */
555 if (blks < blocks_to_boundary + 1)
556 count += blks;
557 else
558 count += blocks_to_boundary + 1;
559 return count;
562 count++;
563 while (count < blks && count <= blocks_to_boundary &&
564 le32_to_cpu(*(branch[0].p + count)) == 0) {
565 count++;
567 return count;
571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 * @indirect_blks: the number of blocks need to allocate for indirect
573 * blocks
575 * @new_blocks: on return it will store the new block numbers for
576 * the indirect blocks(if needed) and the first direct block,
577 * @blks: on return it will store the total number of allocated
578 * direct blocks
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 ext4_lblk_t iblock, ext4_fsblk_t goal,
582 int indirect_blks, int blks,
583 ext4_fsblk_t new_blocks[4], int *err)
585 struct ext4_allocation_request ar;
586 int target, i;
587 unsigned long count = 0, blk_allocated = 0;
588 int index = 0;
589 ext4_fsblk_t current_block = 0;
590 int ret = 0;
593 * Here we try to allocate the requested multiple blocks at once,
594 * on a best-effort basis.
595 * To build a branch, we should allocate blocks for
596 * the indirect blocks(if not allocated yet), and at least
597 * the first direct block of this branch. That's the
598 * minimum number of blocks need to allocate(required)
600 /* first we try to allocate the indirect blocks */
601 target = indirect_blks;
602 while (target > 0) {
603 count = target;
604 /* allocating blocks for indirect blocks and direct blocks */
605 current_block = ext4_new_meta_blocks(handle, inode,
606 goal, &count, err);
607 if (*err)
608 goto failed_out;
610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
612 target -= count;
613 /* allocate blocks for indirect blocks */
614 while (index < indirect_blks && count) {
615 new_blocks[index++] = current_block++;
616 count--;
618 if (count > 0) {
620 * save the new block number
621 * for the first direct block
623 new_blocks[index] = current_block;
624 printk(KERN_INFO "%s returned more blocks than "
625 "requested\n", __func__);
626 WARN_ON(1);
627 break;
631 target = blks - count ;
632 blk_allocated = count;
633 if (!target)
634 goto allocated;
635 /* Now allocate data blocks */
636 memset(&ar, 0, sizeof(ar));
637 ar.inode = inode;
638 ar.goal = goal;
639 ar.len = target;
640 ar.logical = iblock;
641 if (S_ISREG(inode->i_mode))
642 /* enable in-core preallocation only for regular files */
643 ar.flags = EXT4_MB_HINT_DATA;
645 current_block = ext4_mb_new_blocks(handle, &ar, err);
646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
648 if (*err && (target == blks)) {
650 * if the allocation failed and we didn't allocate
651 * any blocks before
653 goto failed_out;
655 if (!*err) {
656 if (target == blks) {
658 * save the new block number
659 * for the first direct block
661 new_blocks[index] = current_block;
663 blk_allocated += ar.len;
665 allocated:
666 /* total number of blocks allocated for direct blocks */
667 ret = blk_allocated;
668 *err = 0;
669 return ret;
670 failed_out:
671 for (i = 0; i < index; i++)
672 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 return ret;
677 * ext4_alloc_branch - allocate and set up a chain of blocks.
678 * @inode: owner
679 * @indirect_blks: number of allocated indirect blocks
680 * @blks: number of allocated direct blocks
681 * @offsets: offsets (in the blocks) to store the pointers to next.
682 * @branch: place to store the chain in.
684 * This function allocates blocks, zeroes out all but the last one,
685 * links them into chain and (if we are synchronous) writes them to disk.
686 * In other words, it prepares a branch that can be spliced onto the
687 * inode. It stores the information about that chain in the branch[], in
688 * the same format as ext4_get_branch() would do. We are calling it after
689 * we had read the existing part of chain and partial points to the last
690 * triple of that (one with zero ->key). Upon the exit we have the same
691 * picture as after the successful ext4_get_block(), except that in one
692 * place chain is disconnected - *branch->p is still zero (we did not
693 * set the last link), but branch->key contains the number that should
694 * be placed into *branch->p to fill that gap.
696 * If allocation fails we free all blocks we've allocated (and forget
697 * their buffer_heads) and return the error value the from failed
698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699 * as described above and return 0.
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 ext4_lblk_t iblock, int indirect_blks,
703 int *blks, ext4_fsblk_t goal,
704 ext4_lblk_t *offsets, Indirect *branch)
706 int blocksize = inode->i_sb->s_blocksize;
707 int i, n = 0;
708 int err = 0;
709 struct buffer_head *bh;
710 int num;
711 ext4_fsblk_t new_blocks[4];
712 ext4_fsblk_t current_block;
714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 *blks, new_blocks, &err);
716 if (err)
717 return err;
719 branch[0].key = cpu_to_le32(new_blocks[0]);
721 * metadata blocks and data blocks are allocated.
723 for (n = 1; n <= indirect_blks; n++) {
725 * Get buffer_head for parent block, zero it out
726 * and set the pointer to new one, then send
727 * parent to disk.
729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 branch[n].bh = bh;
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 err = ext4_journal_get_create_access(handle, bh);
734 if (err) {
735 /* Don't brelse(bh) here; it's done in
736 * ext4_journal_forget() below */
737 unlock_buffer(bh);
738 goto failed;
741 memset(bh->b_data, 0, blocksize);
742 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 branch[n].key = cpu_to_le32(new_blocks[n]);
744 *branch[n].p = branch[n].key;
745 if (n == indirect_blks) {
746 current_block = new_blocks[n];
748 * End of chain, update the last new metablock of
749 * the chain to point to the new allocated
750 * data blocks numbers
752 for (i = 1; i < num; i++)
753 *(branch[n].p + i) = cpu_to_le32(++current_block);
755 BUFFER_TRACE(bh, "marking uptodate");
756 set_buffer_uptodate(bh);
757 unlock_buffer(bh);
759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 err = ext4_handle_dirty_metadata(handle, inode, bh);
761 if (err)
762 goto failed;
764 *blks = num;
765 return err;
766 failed:
767 /* Allocation failed, free what we already allocated */
768 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769 for (i = 1; i <= n ; i++) {
771 * branch[i].bh is newly allocated, so there is no
772 * need to revoke the block, which is why we don't
773 * need to set EXT4_FREE_BLOCKS_METADATA.
775 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 EXT4_FREE_BLOCKS_FORGET);
778 for (i = n+1; i < indirect_blks; i++)
779 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
781 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
783 return err;
787 * ext4_splice_branch - splice the allocated branch onto inode.
788 * @inode: owner
789 * @block: (logical) number of block we are adding
790 * @chain: chain of indirect blocks (with a missing link - see
791 * ext4_alloc_branch)
792 * @where: location of missing link
793 * @num: number of indirect blocks we are adding
794 * @blks: number of direct blocks we are adding
796 * This function fills the missing link and does all housekeeping needed in
797 * inode (->i_blocks, etc.). In case of success we end up with the full
798 * chain to new block and return 0.
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 ext4_lblk_t block, Indirect *where, int num,
802 int blks)
804 int i;
805 int err = 0;
806 ext4_fsblk_t current_block;
809 * If we're splicing into a [td]indirect block (as opposed to the
810 * inode) then we need to get write access to the [td]indirect block
811 * before the splice.
813 if (where->bh) {
814 BUFFER_TRACE(where->bh, "get_write_access");
815 err = ext4_journal_get_write_access(handle, where->bh);
816 if (err)
817 goto err_out;
819 /* That's it */
821 *where->p = where->key;
824 * Update the host buffer_head or inode to point to more just allocated
825 * direct blocks blocks
827 if (num == 0 && blks > 1) {
828 current_block = le32_to_cpu(where->key) + 1;
829 for (i = 1; i < blks; i++)
830 *(where->p + i) = cpu_to_le32(current_block++);
833 /* We are done with atomic stuff, now do the rest of housekeeping */
834 /* had we spliced it onto indirect block? */
835 if (where->bh) {
837 * If we spliced it onto an indirect block, we haven't
838 * altered the inode. Note however that if it is being spliced
839 * onto an indirect block at the very end of the file (the
840 * file is growing) then we *will* alter the inode to reflect
841 * the new i_size. But that is not done here - it is done in
842 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
844 jbd_debug(5, "splicing indirect only\n");
845 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 if (err)
848 goto err_out;
849 } else {
851 * OK, we spliced it into the inode itself on a direct block.
853 ext4_mark_inode_dirty(handle, inode);
854 jbd_debug(5, "splicing direct\n");
856 return err;
858 err_out:
859 for (i = 1; i <= num; i++) {
861 * branch[i].bh is newly allocated, so there is no
862 * need to revoke the block, which is why we don't
863 * need to set EXT4_FREE_BLOCKS_METADATA.
865 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 EXT4_FREE_BLOCKS_FORGET);
868 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 blks, 0);
871 return err;
875 * The ext4_ind_get_blocks() function handles non-extents inodes
876 * (i.e., using the traditional indirect/double-indirect i_blocks
877 * scheme) for ext4_get_blocks().
879 * Allocation strategy is simple: if we have to allocate something, we will
880 * have to go the whole way to leaf. So let's do it before attaching anything
881 * to tree, set linkage between the newborn blocks, write them if sync is
882 * required, recheck the path, free and repeat if check fails, otherwise
883 * set the last missing link (that will protect us from any truncate-generated
884 * removals - all blocks on the path are immune now) and possibly force the
885 * write on the parent block.
886 * That has a nice additional property: no special recovery from the failed
887 * allocations is needed - we simply release blocks and do not touch anything
888 * reachable from inode.
890 * `handle' can be NULL if create == 0.
892 * return > 0, # of blocks mapped or allocated.
893 * return = 0, if plain lookup failed.
894 * return < 0, error case.
896 * The ext4_ind_get_blocks() function should be called with
897 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900 * blocks.
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 ext4_lblk_t iblock, unsigned int maxblocks,
904 struct buffer_head *bh_result,
905 int flags)
907 int err = -EIO;
908 ext4_lblk_t offsets[4];
909 Indirect chain[4];
910 Indirect *partial;
911 ext4_fsblk_t goal;
912 int indirect_blks;
913 int blocks_to_boundary = 0;
914 int depth;
915 int count = 0;
916 ext4_fsblk_t first_block = 0;
918 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920 depth = ext4_block_to_path(inode, iblock, offsets,
921 &blocks_to_boundary);
923 if (depth == 0)
924 goto out;
926 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
928 /* Simplest case - block found, no allocation needed */
929 if (!partial) {
930 first_block = le32_to_cpu(chain[depth - 1].key);
931 clear_buffer_new(bh_result);
932 count++;
933 /*map more blocks*/
934 while (count < maxblocks && count <= blocks_to_boundary) {
935 ext4_fsblk_t blk;
937 blk = le32_to_cpu(*(chain[depth-1].p + count));
939 if (blk == first_block + count)
940 count++;
941 else
942 break;
944 goto got_it;
947 /* Next simple case - plain lookup or failed read of indirect block */
948 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 goto cleanup;
952 * Okay, we need to do block allocation.
954 goal = ext4_find_goal(inode, iblock, partial);
956 /* the number of blocks need to allocate for [d,t]indirect blocks */
957 indirect_blks = (chain + depth) - partial - 1;
960 * Next look up the indirect map to count the totoal number of
961 * direct blocks to allocate for this branch.
963 count = ext4_blks_to_allocate(partial, indirect_blks,
964 maxblocks, blocks_to_boundary);
966 * Block out ext4_truncate while we alter the tree
968 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 &count, goal,
970 offsets + (partial - chain), partial);
973 * The ext4_splice_branch call will free and forget any buffers
974 * on the new chain if there is a failure, but that risks using
975 * up transaction credits, especially for bitmaps where the
976 * credits cannot be returned. Can we handle this somehow? We
977 * may need to return -EAGAIN upwards in the worst case. --sct
979 if (!err)
980 err = ext4_splice_branch(handle, inode, iblock,
981 partial, indirect_blks, count);
982 if (err)
983 goto cleanup;
985 set_buffer_new(bh_result);
987 ext4_update_inode_fsync_trans(handle, inode, 1);
988 got_it:
989 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990 if (count > blocks_to_boundary)
991 set_buffer_boundary(bh_result);
992 err = count;
993 /* Clean up and exit */
994 partial = chain + depth - 1; /* the whole chain */
995 cleanup:
996 while (partial > chain) {
997 BUFFER_TRACE(partial->bh, "call brelse");
998 brelse(partial->bh);
999 partial--;
1001 BUFFER_TRACE(bh_result, "returned");
1002 out:
1003 return err;
1006 #ifdef CONFIG_QUOTA
1007 qsize_t *ext4_get_reserved_space(struct inode *inode)
1009 return &EXT4_I(inode)->i_reserved_quota;
1011 #endif
1014 * Calculate the number of metadata blocks need to reserve
1015 * to allocate a new block at @lblocks for non extent file based file
1017 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1018 sector_t lblock)
1020 struct ext4_inode_info *ei = EXT4_I(inode);
1021 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1022 int blk_bits;
1024 if (lblock < EXT4_NDIR_BLOCKS)
1025 return 0;
1027 lblock -= EXT4_NDIR_BLOCKS;
1029 if (ei->i_da_metadata_calc_len &&
1030 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1031 ei->i_da_metadata_calc_len++;
1032 return 0;
1034 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1035 ei->i_da_metadata_calc_len = 1;
1036 blk_bits = roundup_pow_of_two(lblock + 1);
1037 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1041 * Calculate the number of metadata blocks need to reserve
1042 * to allocate a block located at @lblock
1044 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1046 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1047 return ext4_ext_calc_metadata_amount(inode, lblock);
1049 return ext4_indirect_calc_metadata_amount(inode, lblock);
1053 * Called with i_data_sem down, which is important since we can call
1054 * ext4_discard_preallocations() from here.
1056 void ext4_da_update_reserve_space(struct inode *inode,
1057 int used, int quota_claim)
1059 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1060 struct ext4_inode_info *ei = EXT4_I(inode);
1061 int mdb_free = 0, allocated_meta_blocks = 0;
1063 spin_lock(&ei->i_block_reservation_lock);
1064 trace_ext4_da_update_reserve_space(inode, used);
1065 if (unlikely(used > ei->i_reserved_data_blocks)) {
1066 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1067 "with only %d reserved data blocks\n",
1068 __func__, inode->i_ino, used,
1069 ei->i_reserved_data_blocks);
1070 WARN_ON(1);
1071 used = ei->i_reserved_data_blocks;
1074 /* Update per-inode reservations */
1075 ei->i_reserved_data_blocks -= used;
1076 used += ei->i_allocated_meta_blocks;
1077 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1078 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1079 ei->i_allocated_meta_blocks = 0;
1080 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1082 if (ei->i_reserved_data_blocks == 0) {
1084 * We can release all of the reserved metadata blocks
1085 * only when we have written all of the delayed
1086 * allocation blocks.
1088 mdb_free = ei->i_reserved_meta_blocks;
1089 ei->i_reserved_meta_blocks = 0;
1090 ei->i_da_metadata_calc_len = 0;
1091 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1093 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1095 /* Update quota subsystem */
1096 if (quota_claim) {
1097 vfs_dq_claim_block(inode, used);
1098 if (mdb_free)
1099 vfs_dq_release_reservation_block(inode, mdb_free);
1100 } else {
1102 * We did fallocate with an offset that is already delayed
1103 * allocated. So on delayed allocated writeback we should
1104 * not update the quota for allocated blocks. But then
1105 * converting an fallocate region to initialized region would
1106 * have caused a metadata allocation. So claim quota for
1107 * that
1109 if (allocated_meta_blocks)
1110 vfs_dq_claim_block(inode, allocated_meta_blocks);
1111 vfs_dq_release_reservation_block(inode, mdb_free + used);
1115 * If we have done all the pending block allocations and if
1116 * there aren't any writers on the inode, we can discard the
1117 * inode's preallocations.
1119 if ((ei->i_reserved_data_blocks == 0) &&
1120 (atomic_read(&inode->i_writecount) == 0))
1121 ext4_discard_preallocations(inode);
1124 static int check_block_validity(struct inode *inode, const char *msg,
1125 sector_t logical, sector_t phys, int len)
1127 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1128 ext4_error(inode->i_sb, msg,
1129 "inode #%lu logical block %llu mapped to %llu "
1130 "(size %d)", inode->i_ino,
1131 (unsigned long long) logical,
1132 (unsigned long long) phys, len);
1133 return -EIO;
1135 return 0;
1139 * Return the number of contiguous dirty pages in a given inode
1140 * starting at page frame idx.
1142 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1143 unsigned int max_pages)
1145 struct address_space *mapping = inode->i_mapping;
1146 pgoff_t index;
1147 struct pagevec pvec;
1148 pgoff_t num = 0;
1149 int i, nr_pages, done = 0;
1151 if (max_pages == 0)
1152 return 0;
1153 pagevec_init(&pvec, 0);
1154 while (!done) {
1155 index = idx;
1156 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1157 PAGECACHE_TAG_DIRTY,
1158 (pgoff_t)PAGEVEC_SIZE);
1159 if (nr_pages == 0)
1160 break;
1161 for (i = 0; i < nr_pages; i++) {
1162 struct page *page = pvec.pages[i];
1163 struct buffer_head *bh, *head;
1165 lock_page(page);
1166 if (unlikely(page->mapping != mapping) ||
1167 !PageDirty(page) ||
1168 PageWriteback(page) ||
1169 page->index != idx) {
1170 done = 1;
1171 unlock_page(page);
1172 break;
1174 if (page_has_buffers(page)) {
1175 bh = head = page_buffers(page);
1176 do {
1177 if (!buffer_delay(bh) &&
1178 !buffer_unwritten(bh))
1179 done = 1;
1180 bh = bh->b_this_page;
1181 } while (!done && (bh != head));
1183 unlock_page(page);
1184 if (done)
1185 break;
1186 idx++;
1187 num++;
1188 if (num >= max_pages)
1189 break;
1191 pagevec_release(&pvec);
1193 return num;
1197 * The ext4_get_blocks() function tries to look up the requested blocks,
1198 * and returns if the blocks are already mapped.
1200 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1201 * and store the allocated blocks in the result buffer head and mark it
1202 * mapped.
1204 * If file type is extents based, it will call ext4_ext_get_blocks(),
1205 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1206 * based files
1208 * On success, it returns the number of blocks being mapped or allocate.
1209 * if create==0 and the blocks are pre-allocated and uninitialized block,
1210 * the result buffer head is unmapped. If the create ==1, it will make sure
1211 * the buffer head is mapped.
1213 * It returns 0 if plain look up failed (blocks have not been allocated), in
1214 * that casem, buffer head is unmapped
1216 * It returns the error in case of allocation failure.
1218 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1219 unsigned int max_blocks, struct buffer_head *bh,
1220 int flags)
1222 int retval;
1224 clear_buffer_mapped(bh);
1225 clear_buffer_unwritten(bh);
1227 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1228 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1229 (unsigned long)block);
1231 * Try to see if we can get the block without requesting a new
1232 * file system block.
1234 down_read((&EXT4_I(inode)->i_data_sem));
1235 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1236 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1237 bh, 0);
1238 } else {
1239 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1240 bh, 0);
1242 up_read((&EXT4_I(inode)->i_data_sem));
1244 if (retval > 0 && buffer_mapped(bh)) {
1245 int ret = check_block_validity(inode, "file system corruption",
1246 block, bh->b_blocknr, retval);
1247 if (ret != 0)
1248 return ret;
1251 /* If it is only a block(s) look up */
1252 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1253 return retval;
1256 * Returns if the blocks have already allocated
1258 * Note that if blocks have been preallocated
1259 * ext4_ext_get_block() returns th create = 0
1260 * with buffer head unmapped.
1262 if (retval > 0 && buffer_mapped(bh))
1263 return retval;
1266 * When we call get_blocks without the create flag, the
1267 * BH_Unwritten flag could have gotten set if the blocks
1268 * requested were part of a uninitialized extent. We need to
1269 * clear this flag now that we are committed to convert all or
1270 * part of the uninitialized extent to be an initialized
1271 * extent. This is because we need to avoid the combination
1272 * of BH_Unwritten and BH_Mapped flags being simultaneously
1273 * set on the buffer_head.
1275 clear_buffer_unwritten(bh);
1278 * New blocks allocate and/or writing to uninitialized extent
1279 * will possibly result in updating i_data, so we take
1280 * the write lock of i_data_sem, and call get_blocks()
1281 * with create == 1 flag.
1283 down_write((&EXT4_I(inode)->i_data_sem));
1286 * if the caller is from delayed allocation writeout path
1287 * we have already reserved fs blocks for allocation
1288 * let the underlying get_block() function know to
1289 * avoid double accounting
1291 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1292 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1294 * We need to check for EXT4 here because migrate
1295 * could have changed the inode type in between
1297 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1298 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1299 bh, flags);
1300 } else {
1301 retval = ext4_ind_get_blocks(handle, inode, block,
1302 max_blocks, bh, flags);
1304 if (retval > 0 && buffer_new(bh)) {
1306 * We allocated new blocks which will result in
1307 * i_data's format changing. Force the migrate
1308 * to fail by clearing migrate flags
1310 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1314 * Update reserved blocks/metadata blocks after successful
1315 * block allocation which had been deferred till now. We don't
1316 * support fallocate for non extent files. So we can update
1317 * reserve space here.
1319 if ((retval > 0) &&
1320 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1321 ext4_da_update_reserve_space(inode, retval, 1);
1323 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1324 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1326 up_write((&EXT4_I(inode)->i_data_sem));
1327 if (retval > 0 && buffer_mapped(bh)) {
1328 int ret = check_block_validity(inode, "file system "
1329 "corruption after allocation",
1330 block, bh->b_blocknr, retval);
1331 if (ret != 0)
1332 return ret;
1334 return retval;
1337 /* Maximum number of blocks we map for direct IO at once. */
1338 #define DIO_MAX_BLOCKS 4096
1340 int ext4_get_block(struct inode *inode, sector_t iblock,
1341 struct buffer_head *bh_result, int create)
1343 handle_t *handle = ext4_journal_current_handle();
1344 int ret = 0, started = 0;
1345 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1346 int dio_credits;
1348 if (create && !handle) {
1349 /* Direct IO write... */
1350 if (max_blocks > DIO_MAX_BLOCKS)
1351 max_blocks = DIO_MAX_BLOCKS;
1352 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1353 handle = ext4_journal_start(inode, dio_credits);
1354 if (IS_ERR(handle)) {
1355 ret = PTR_ERR(handle);
1356 goto out;
1358 started = 1;
1361 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1362 create ? EXT4_GET_BLOCKS_CREATE : 0);
1363 if (ret > 0) {
1364 bh_result->b_size = (ret << inode->i_blkbits);
1365 ret = 0;
1367 if (started)
1368 ext4_journal_stop(handle);
1369 out:
1370 return ret;
1374 * `handle' can be NULL if create is zero
1376 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1377 ext4_lblk_t block, int create, int *errp)
1379 struct buffer_head dummy;
1380 int fatal = 0, err;
1381 int flags = 0;
1383 J_ASSERT(handle != NULL || create == 0);
1385 dummy.b_state = 0;
1386 dummy.b_blocknr = -1000;
1387 buffer_trace_init(&dummy.b_history);
1388 if (create)
1389 flags |= EXT4_GET_BLOCKS_CREATE;
1390 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1392 * ext4_get_blocks() returns number of blocks mapped. 0 in
1393 * case of a HOLE.
1395 if (err > 0) {
1396 if (err > 1)
1397 WARN_ON(1);
1398 err = 0;
1400 *errp = err;
1401 if (!err && buffer_mapped(&dummy)) {
1402 struct buffer_head *bh;
1403 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1404 if (!bh) {
1405 *errp = -EIO;
1406 goto err;
1408 if (buffer_new(&dummy)) {
1409 J_ASSERT(create != 0);
1410 J_ASSERT(handle != NULL);
1413 * Now that we do not always journal data, we should
1414 * keep in mind whether this should always journal the
1415 * new buffer as metadata. For now, regular file
1416 * writes use ext4_get_block instead, so it's not a
1417 * problem.
1419 lock_buffer(bh);
1420 BUFFER_TRACE(bh, "call get_create_access");
1421 fatal = ext4_journal_get_create_access(handle, bh);
1422 if (!fatal && !buffer_uptodate(bh)) {
1423 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1424 set_buffer_uptodate(bh);
1426 unlock_buffer(bh);
1427 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1428 err = ext4_handle_dirty_metadata(handle, inode, bh);
1429 if (!fatal)
1430 fatal = err;
1431 } else {
1432 BUFFER_TRACE(bh, "not a new buffer");
1434 if (fatal) {
1435 *errp = fatal;
1436 brelse(bh);
1437 bh = NULL;
1439 return bh;
1441 err:
1442 return NULL;
1445 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1446 ext4_lblk_t block, int create, int *err)
1448 struct buffer_head *bh;
1450 bh = ext4_getblk(handle, inode, block, create, err);
1451 if (!bh)
1452 return bh;
1453 if (buffer_uptodate(bh))
1454 return bh;
1455 ll_rw_block(READ_META, 1, &bh);
1456 wait_on_buffer(bh);
1457 if (buffer_uptodate(bh))
1458 return bh;
1459 put_bh(bh);
1460 *err = -EIO;
1461 return NULL;
1464 static int walk_page_buffers(handle_t *handle,
1465 struct buffer_head *head,
1466 unsigned from,
1467 unsigned to,
1468 int *partial,
1469 int (*fn)(handle_t *handle,
1470 struct buffer_head *bh))
1472 struct buffer_head *bh;
1473 unsigned block_start, block_end;
1474 unsigned blocksize = head->b_size;
1475 int err, ret = 0;
1476 struct buffer_head *next;
1478 for (bh = head, block_start = 0;
1479 ret == 0 && (bh != head || !block_start);
1480 block_start = block_end, bh = next) {
1481 next = bh->b_this_page;
1482 block_end = block_start + blocksize;
1483 if (block_end <= from || block_start >= to) {
1484 if (partial && !buffer_uptodate(bh))
1485 *partial = 1;
1486 continue;
1488 err = (*fn)(handle, bh);
1489 if (!ret)
1490 ret = err;
1492 return ret;
1496 * To preserve ordering, it is essential that the hole instantiation and
1497 * the data write be encapsulated in a single transaction. We cannot
1498 * close off a transaction and start a new one between the ext4_get_block()
1499 * and the commit_write(). So doing the jbd2_journal_start at the start of
1500 * prepare_write() is the right place.
1502 * Also, this function can nest inside ext4_writepage() ->
1503 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1504 * has generated enough buffer credits to do the whole page. So we won't
1505 * block on the journal in that case, which is good, because the caller may
1506 * be PF_MEMALLOC.
1508 * By accident, ext4 can be reentered when a transaction is open via
1509 * quota file writes. If we were to commit the transaction while thus
1510 * reentered, there can be a deadlock - we would be holding a quota
1511 * lock, and the commit would never complete if another thread had a
1512 * transaction open and was blocking on the quota lock - a ranking
1513 * violation.
1515 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1516 * will _not_ run commit under these circumstances because handle->h_ref
1517 * is elevated. We'll still have enough credits for the tiny quotafile
1518 * write.
1520 static int do_journal_get_write_access(handle_t *handle,
1521 struct buffer_head *bh)
1523 if (!buffer_mapped(bh) || buffer_freed(bh))
1524 return 0;
1525 return ext4_journal_get_write_access(handle, bh);
1529 * Truncate blocks that were not used by write. We have to truncate the
1530 * pagecache as well so that corresponding buffers get properly unmapped.
1532 static void ext4_truncate_failed_write(struct inode *inode)
1534 truncate_inode_pages(inode->i_mapping, inode->i_size);
1535 ext4_truncate(inode);
1538 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1539 loff_t pos, unsigned len, unsigned flags,
1540 struct page **pagep, void **fsdata)
1542 struct inode *inode = mapping->host;
1543 int ret, needed_blocks;
1544 handle_t *handle;
1545 int retries = 0;
1546 struct page *page;
1547 pgoff_t index;
1548 unsigned from, to;
1550 trace_ext4_write_begin(inode, pos, len, flags);
1552 * Reserve one block more for addition to orphan list in case
1553 * we allocate blocks but write fails for some reason
1555 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1556 index = pos >> PAGE_CACHE_SHIFT;
1557 from = pos & (PAGE_CACHE_SIZE - 1);
1558 to = from + len;
1560 retry:
1561 handle = ext4_journal_start(inode, needed_blocks);
1562 if (IS_ERR(handle)) {
1563 ret = PTR_ERR(handle);
1564 goto out;
1567 /* We cannot recurse into the filesystem as the transaction is already
1568 * started */
1569 flags |= AOP_FLAG_NOFS;
1571 page = grab_cache_page_write_begin(mapping, index, flags);
1572 if (!page) {
1573 ext4_journal_stop(handle);
1574 ret = -ENOMEM;
1575 goto out;
1577 *pagep = page;
1579 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1580 ext4_get_block);
1582 if (!ret && ext4_should_journal_data(inode)) {
1583 ret = walk_page_buffers(handle, page_buffers(page),
1584 from, to, NULL, do_journal_get_write_access);
1587 if (ret) {
1588 unlock_page(page);
1589 page_cache_release(page);
1591 * block_write_begin may have instantiated a few blocks
1592 * outside i_size. Trim these off again. Don't need
1593 * i_size_read because we hold i_mutex.
1595 * Add inode to orphan list in case we crash before
1596 * truncate finishes
1598 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1599 ext4_orphan_add(handle, inode);
1601 ext4_journal_stop(handle);
1602 if (pos + len > inode->i_size) {
1603 ext4_truncate_failed_write(inode);
1605 * If truncate failed early the inode might
1606 * still be on the orphan list; we need to
1607 * make sure the inode is removed from the
1608 * orphan list in that case.
1610 if (inode->i_nlink)
1611 ext4_orphan_del(NULL, inode);
1615 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1616 goto retry;
1617 out:
1618 return ret;
1621 /* For write_end() in data=journal mode */
1622 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1624 if (!buffer_mapped(bh) || buffer_freed(bh))
1625 return 0;
1626 set_buffer_uptodate(bh);
1627 return ext4_handle_dirty_metadata(handle, NULL, bh);
1630 static int ext4_generic_write_end(struct file *file,
1631 struct address_space *mapping,
1632 loff_t pos, unsigned len, unsigned copied,
1633 struct page *page, void *fsdata)
1635 int i_size_changed = 0;
1636 struct inode *inode = mapping->host;
1637 handle_t *handle = ext4_journal_current_handle();
1639 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1642 * No need to use i_size_read() here, the i_size
1643 * cannot change under us because we hold i_mutex.
1645 * But it's important to update i_size while still holding page lock:
1646 * page writeout could otherwise come in and zero beyond i_size.
1648 if (pos + copied > inode->i_size) {
1649 i_size_write(inode, pos + copied);
1650 i_size_changed = 1;
1653 if (pos + copied > EXT4_I(inode)->i_disksize) {
1654 /* We need to mark inode dirty even if
1655 * new_i_size is less that inode->i_size
1656 * bu greater than i_disksize.(hint delalloc)
1658 ext4_update_i_disksize(inode, (pos + copied));
1659 i_size_changed = 1;
1661 unlock_page(page);
1662 page_cache_release(page);
1665 * Don't mark the inode dirty under page lock. First, it unnecessarily
1666 * makes the holding time of page lock longer. Second, it forces lock
1667 * ordering of page lock and transaction start for journaling
1668 * filesystems.
1670 if (i_size_changed)
1671 ext4_mark_inode_dirty(handle, inode);
1673 return copied;
1677 * We need to pick up the new inode size which generic_commit_write gave us
1678 * `file' can be NULL - eg, when called from page_symlink().
1680 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1681 * buffers are managed internally.
1683 static int ext4_ordered_write_end(struct file *file,
1684 struct address_space *mapping,
1685 loff_t pos, unsigned len, unsigned copied,
1686 struct page *page, void *fsdata)
1688 handle_t *handle = ext4_journal_current_handle();
1689 struct inode *inode = mapping->host;
1690 int ret = 0, ret2;
1692 trace_ext4_ordered_write_end(inode, pos, len, copied);
1693 ret = ext4_jbd2_file_inode(handle, inode);
1695 if (ret == 0) {
1696 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1697 page, fsdata);
1698 copied = ret2;
1699 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1700 /* if we have allocated more blocks and copied
1701 * less. We will have blocks allocated outside
1702 * inode->i_size. So truncate them
1704 ext4_orphan_add(handle, inode);
1705 if (ret2 < 0)
1706 ret = ret2;
1708 ret2 = ext4_journal_stop(handle);
1709 if (!ret)
1710 ret = ret2;
1712 if (pos + len > inode->i_size) {
1713 ext4_truncate_failed_write(inode);
1715 * If truncate failed early the inode might still be
1716 * on the orphan list; we need to make sure the inode
1717 * is removed from the orphan list in that case.
1719 if (inode->i_nlink)
1720 ext4_orphan_del(NULL, inode);
1724 return ret ? ret : copied;
1727 static int ext4_writeback_write_end(struct file *file,
1728 struct address_space *mapping,
1729 loff_t pos, unsigned len, unsigned copied,
1730 struct page *page, void *fsdata)
1732 handle_t *handle = ext4_journal_current_handle();
1733 struct inode *inode = mapping->host;
1734 int ret = 0, ret2;
1736 trace_ext4_writeback_write_end(inode, pos, len, copied);
1737 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1738 page, fsdata);
1739 copied = ret2;
1740 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1741 /* if we have allocated more blocks and copied
1742 * less. We will have blocks allocated outside
1743 * inode->i_size. So truncate them
1745 ext4_orphan_add(handle, inode);
1747 if (ret2 < 0)
1748 ret = ret2;
1750 ret2 = ext4_journal_stop(handle);
1751 if (!ret)
1752 ret = ret2;
1754 if (pos + len > inode->i_size) {
1755 ext4_truncate_failed_write(inode);
1757 * If truncate failed early the inode might still be
1758 * on the orphan list; we need to make sure the inode
1759 * is removed from the orphan list in that case.
1761 if (inode->i_nlink)
1762 ext4_orphan_del(NULL, inode);
1765 return ret ? ret : copied;
1768 static int ext4_journalled_write_end(struct file *file,
1769 struct address_space *mapping,
1770 loff_t pos, unsigned len, unsigned copied,
1771 struct page *page, void *fsdata)
1773 handle_t *handle = ext4_journal_current_handle();
1774 struct inode *inode = mapping->host;
1775 int ret = 0, ret2;
1776 int partial = 0;
1777 unsigned from, to;
1778 loff_t new_i_size;
1780 trace_ext4_journalled_write_end(inode, pos, len, copied);
1781 from = pos & (PAGE_CACHE_SIZE - 1);
1782 to = from + len;
1784 if (copied < len) {
1785 if (!PageUptodate(page))
1786 copied = 0;
1787 page_zero_new_buffers(page, from+copied, to);
1790 ret = walk_page_buffers(handle, page_buffers(page), from,
1791 to, &partial, write_end_fn);
1792 if (!partial)
1793 SetPageUptodate(page);
1794 new_i_size = pos + copied;
1795 if (new_i_size > inode->i_size)
1796 i_size_write(inode, pos+copied);
1797 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1798 if (new_i_size > EXT4_I(inode)->i_disksize) {
1799 ext4_update_i_disksize(inode, new_i_size);
1800 ret2 = ext4_mark_inode_dirty(handle, inode);
1801 if (!ret)
1802 ret = ret2;
1805 unlock_page(page);
1806 page_cache_release(page);
1807 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1808 /* if we have allocated more blocks and copied
1809 * less. We will have blocks allocated outside
1810 * inode->i_size. So truncate them
1812 ext4_orphan_add(handle, inode);
1814 ret2 = ext4_journal_stop(handle);
1815 if (!ret)
1816 ret = ret2;
1817 if (pos + len > inode->i_size) {
1818 ext4_truncate_failed_write(inode);
1820 * If truncate failed early the inode might still be
1821 * on the orphan list; we need to make sure the inode
1822 * is removed from the orphan list in that case.
1824 if (inode->i_nlink)
1825 ext4_orphan_del(NULL, inode);
1828 return ret ? ret : copied;
1832 * Reserve a single block located at lblock
1834 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1836 int retries = 0;
1837 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1838 struct ext4_inode_info *ei = EXT4_I(inode);
1839 unsigned long md_needed, md_reserved;
1842 * recalculate the amount of metadata blocks to reserve
1843 * in order to allocate nrblocks
1844 * worse case is one extent per block
1846 repeat:
1847 spin_lock(&ei->i_block_reservation_lock);
1848 md_reserved = ei->i_reserved_meta_blocks;
1849 md_needed = ext4_calc_metadata_amount(inode, lblock);
1850 trace_ext4_da_reserve_space(inode, md_needed);
1851 spin_unlock(&ei->i_block_reservation_lock);
1854 * Make quota reservation here to prevent quota overflow
1855 * later. Real quota accounting is done at pages writeout
1856 * time.
1858 if (vfs_dq_reserve_block(inode, md_needed + 1))
1859 return -EDQUOT;
1861 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1862 vfs_dq_release_reservation_block(inode, md_needed + 1);
1863 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1864 yield();
1865 goto repeat;
1867 return -ENOSPC;
1869 spin_lock(&ei->i_block_reservation_lock);
1870 ei->i_reserved_data_blocks++;
1871 ei->i_reserved_meta_blocks += md_needed;
1872 spin_unlock(&ei->i_block_reservation_lock);
1874 return 0; /* success */
1877 static void ext4_da_release_space(struct inode *inode, int to_free)
1879 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1880 struct ext4_inode_info *ei = EXT4_I(inode);
1882 if (!to_free)
1883 return; /* Nothing to release, exit */
1885 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1887 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1889 * if there aren't enough reserved blocks, then the
1890 * counter is messed up somewhere. Since this
1891 * function is called from invalidate page, it's
1892 * harmless to return without any action.
1894 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1895 "ino %lu, to_free %d with only %d reserved "
1896 "data blocks\n", inode->i_ino, to_free,
1897 ei->i_reserved_data_blocks);
1898 WARN_ON(1);
1899 to_free = ei->i_reserved_data_blocks;
1901 ei->i_reserved_data_blocks -= to_free;
1903 if (ei->i_reserved_data_blocks == 0) {
1905 * We can release all of the reserved metadata blocks
1906 * only when we have written all of the delayed
1907 * allocation blocks.
1909 to_free += ei->i_reserved_meta_blocks;
1910 ei->i_reserved_meta_blocks = 0;
1911 ei->i_da_metadata_calc_len = 0;
1914 /* update fs dirty blocks counter */
1915 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1917 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1919 vfs_dq_release_reservation_block(inode, to_free);
1922 static void ext4_da_page_release_reservation(struct page *page,
1923 unsigned long offset)
1925 int to_release = 0;
1926 struct buffer_head *head, *bh;
1927 unsigned int curr_off = 0;
1929 head = page_buffers(page);
1930 bh = head;
1931 do {
1932 unsigned int next_off = curr_off + bh->b_size;
1934 if ((offset <= curr_off) && (buffer_delay(bh))) {
1935 to_release++;
1936 clear_buffer_delay(bh);
1938 curr_off = next_off;
1939 } while ((bh = bh->b_this_page) != head);
1940 ext4_da_release_space(page->mapping->host, to_release);
1944 * Delayed allocation stuff
1948 * mpage_da_submit_io - walks through extent of pages and try to write
1949 * them with writepage() call back
1951 * @mpd->inode: inode
1952 * @mpd->first_page: first page of the extent
1953 * @mpd->next_page: page after the last page of the extent
1955 * By the time mpage_da_submit_io() is called we expect all blocks
1956 * to be allocated. this may be wrong if allocation failed.
1958 * As pages are already locked by write_cache_pages(), we can't use it
1960 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1962 long pages_skipped;
1963 struct pagevec pvec;
1964 unsigned long index, end;
1965 int ret = 0, err, nr_pages, i;
1966 struct inode *inode = mpd->inode;
1967 struct address_space *mapping = inode->i_mapping;
1969 BUG_ON(mpd->next_page <= mpd->first_page);
1971 * We need to start from the first_page to the next_page - 1
1972 * to make sure we also write the mapped dirty buffer_heads.
1973 * If we look at mpd->b_blocknr we would only be looking
1974 * at the currently mapped buffer_heads.
1976 index = mpd->first_page;
1977 end = mpd->next_page - 1;
1979 pagevec_init(&pvec, 0);
1980 while (index <= end) {
1981 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1982 if (nr_pages == 0)
1983 break;
1984 for (i = 0; i < nr_pages; i++) {
1985 struct page *page = pvec.pages[i];
1987 index = page->index;
1988 if (index > end)
1989 break;
1990 index++;
1992 BUG_ON(!PageLocked(page));
1993 BUG_ON(PageWriteback(page));
1995 pages_skipped = mpd->wbc->pages_skipped;
1996 err = mapping->a_ops->writepage(page, mpd->wbc);
1997 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1999 * have successfully written the page
2000 * without skipping the same
2002 mpd->pages_written++;
2004 * In error case, we have to continue because
2005 * remaining pages are still locked
2006 * XXX: unlock and re-dirty them?
2008 if (ret == 0)
2009 ret = err;
2011 pagevec_release(&pvec);
2013 return ret;
2017 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2019 * @mpd->inode - inode to walk through
2020 * @exbh->b_blocknr - first block on a disk
2021 * @exbh->b_size - amount of space in bytes
2022 * @logical - first logical block to start assignment with
2024 * the function goes through all passed space and put actual disk
2025 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2027 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2028 struct buffer_head *exbh)
2030 struct inode *inode = mpd->inode;
2031 struct address_space *mapping = inode->i_mapping;
2032 int blocks = exbh->b_size >> inode->i_blkbits;
2033 sector_t pblock = exbh->b_blocknr, cur_logical;
2034 struct buffer_head *head, *bh;
2035 pgoff_t index, end;
2036 struct pagevec pvec;
2037 int nr_pages, i;
2039 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2040 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2041 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2043 pagevec_init(&pvec, 0);
2045 while (index <= end) {
2046 /* XXX: optimize tail */
2047 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2048 if (nr_pages == 0)
2049 break;
2050 for (i = 0; i < nr_pages; i++) {
2051 struct page *page = pvec.pages[i];
2053 index = page->index;
2054 if (index > end)
2055 break;
2056 index++;
2058 BUG_ON(!PageLocked(page));
2059 BUG_ON(PageWriteback(page));
2060 BUG_ON(!page_has_buffers(page));
2062 bh = page_buffers(page);
2063 head = bh;
2065 /* skip blocks out of the range */
2066 do {
2067 if (cur_logical >= logical)
2068 break;
2069 cur_logical++;
2070 } while ((bh = bh->b_this_page) != head);
2072 do {
2073 if (cur_logical >= logical + blocks)
2074 break;
2076 if (buffer_delay(bh) ||
2077 buffer_unwritten(bh)) {
2079 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2081 if (buffer_delay(bh)) {
2082 clear_buffer_delay(bh);
2083 bh->b_blocknr = pblock;
2084 } else {
2086 * unwritten already should have
2087 * blocknr assigned. Verify that
2089 clear_buffer_unwritten(bh);
2090 BUG_ON(bh->b_blocknr != pblock);
2093 } else if (buffer_mapped(bh))
2094 BUG_ON(bh->b_blocknr != pblock);
2096 cur_logical++;
2097 pblock++;
2098 } while ((bh = bh->b_this_page) != head);
2100 pagevec_release(&pvec);
2106 * __unmap_underlying_blocks - just a helper function to unmap
2107 * set of blocks described by @bh
2109 static inline void __unmap_underlying_blocks(struct inode *inode,
2110 struct buffer_head *bh)
2112 struct block_device *bdev = inode->i_sb->s_bdev;
2113 int blocks, i;
2115 blocks = bh->b_size >> inode->i_blkbits;
2116 for (i = 0; i < blocks; i++)
2117 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2120 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2121 sector_t logical, long blk_cnt)
2123 int nr_pages, i;
2124 pgoff_t index, end;
2125 struct pagevec pvec;
2126 struct inode *inode = mpd->inode;
2127 struct address_space *mapping = inode->i_mapping;
2129 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2130 end = (logical + blk_cnt - 1) >>
2131 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2132 while (index <= end) {
2133 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2134 if (nr_pages == 0)
2135 break;
2136 for (i = 0; i < nr_pages; i++) {
2137 struct page *page = pvec.pages[i];
2138 index = page->index;
2139 if (index > end)
2140 break;
2141 index++;
2143 BUG_ON(!PageLocked(page));
2144 BUG_ON(PageWriteback(page));
2145 block_invalidatepage(page, 0);
2146 ClearPageUptodate(page);
2147 unlock_page(page);
2150 return;
2153 static void ext4_print_free_blocks(struct inode *inode)
2155 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2156 printk(KERN_CRIT "Total free blocks count %lld\n",
2157 ext4_count_free_blocks(inode->i_sb));
2158 printk(KERN_CRIT "Free/Dirty block details\n");
2159 printk(KERN_CRIT "free_blocks=%lld\n",
2160 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2161 printk(KERN_CRIT "dirty_blocks=%lld\n",
2162 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2163 printk(KERN_CRIT "Block reservation details\n");
2164 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2165 EXT4_I(inode)->i_reserved_data_blocks);
2166 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2167 EXT4_I(inode)->i_reserved_meta_blocks);
2168 return;
2172 * mpage_da_map_blocks - go through given space
2174 * @mpd - bh describing space
2176 * The function skips space we know is already mapped to disk blocks.
2179 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2181 int err, blks, get_blocks_flags;
2182 struct buffer_head new;
2183 sector_t next = mpd->b_blocknr;
2184 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2185 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2186 handle_t *handle = NULL;
2189 * We consider only non-mapped and non-allocated blocks
2191 if ((mpd->b_state & (1 << BH_Mapped)) &&
2192 !(mpd->b_state & (1 << BH_Delay)) &&
2193 !(mpd->b_state & (1 << BH_Unwritten)))
2194 return 0;
2197 * If we didn't accumulate anything to write simply return
2199 if (!mpd->b_size)
2200 return 0;
2202 handle = ext4_journal_current_handle();
2203 BUG_ON(!handle);
2206 * Call ext4_get_blocks() to allocate any delayed allocation
2207 * blocks, or to convert an uninitialized extent to be
2208 * initialized (in the case where we have written into
2209 * one or more preallocated blocks).
2211 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2212 * indicate that we are on the delayed allocation path. This
2213 * affects functions in many different parts of the allocation
2214 * call path. This flag exists primarily because we don't
2215 * want to change *many* call functions, so ext4_get_blocks()
2216 * will set the magic i_delalloc_reserved_flag once the
2217 * inode's allocation semaphore is taken.
2219 * If the blocks in questions were delalloc blocks, set
2220 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2221 * variables are updated after the blocks have been allocated.
2223 new.b_state = 0;
2224 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2225 if (mpd->b_state & (1 << BH_Delay))
2226 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2228 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2229 &new, get_blocks_flags);
2230 if (blks < 0) {
2231 err = blks;
2233 * If get block returns with error we simply
2234 * return. Later writepage will redirty the page and
2235 * writepages will find the dirty page again
2237 if (err == -EAGAIN)
2238 return 0;
2240 if (err == -ENOSPC &&
2241 ext4_count_free_blocks(mpd->inode->i_sb)) {
2242 mpd->retval = err;
2243 return 0;
2247 * get block failure will cause us to loop in
2248 * writepages, because a_ops->writepage won't be able
2249 * to make progress. The page will be redirtied by
2250 * writepage and writepages will again try to write
2251 * the same.
2253 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2254 "delayed block allocation failed for inode %lu at "
2255 "logical offset %llu with max blocks %zd with "
2256 "error %d\n", mpd->inode->i_ino,
2257 (unsigned long long) next,
2258 mpd->b_size >> mpd->inode->i_blkbits, err);
2259 printk(KERN_CRIT "This should not happen!! "
2260 "Data will be lost\n");
2261 if (err == -ENOSPC) {
2262 ext4_print_free_blocks(mpd->inode);
2264 /* invalidate all the pages */
2265 ext4_da_block_invalidatepages(mpd, next,
2266 mpd->b_size >> mpd->inode->i_blkbits);
2267 return err;
2269 BUG_ON(blks == 0);
2271 new.b_size = (blks << mpd->inode->i_blkbits);
2273 if (buffer_new(&new))
2274 __unmap_underlying_blocks(mpd->inode, &new);
2277 * If blocks are delayed marked, we need to
2278 * put actual blocknr and drop delayed bit
2280 if ((mpd->b_state & (1 << BH_Delay)) ||
2281 (mpd->b_state & (1 << BH_Unwritten)))
2282 mpage_put_bnr_to_bhs(mpd, next, &new);
2284 if (ext4_should_order_data(mpd->inode)) {
2285 err = ext4_jbd2_file_inode(handle, mpd->inode);
2286 if (err)
2287 return err;
2291 * Update on-disk size along with block allocation.
2293 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2294 if (disksize > i_size_read(mpd->inode))
2295 disksize = i_size_read(mpd->inode);
2296 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2297 ext4_update_i_disksize(mpd->inode, disksize);
2298 return ext4_mark_inode_dirty(handle, mpd->inode);
2301 return 0;
2304 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2305 (1 << BH_Delay) | (1 << BH_Unwritten))
2308 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2310 * @mpd->lbh - extent of blocks
2311 * @logical - logical number of the block in the file
2312 * @bh - bh of the block (used to access block's state)
2314 * the function is used to collect contig. blocks in same state
2316 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2317 sector_t logical, size_t b_size,
2318 unsigned long b_state)
2320 sector_t next;
2321 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2323 /* check if thereserved journal credits might overflow */
2324 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2325 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2327 * With non-extent format we are limited by the journal
2328 * credit available. Total credit needed to insert
2329 * nrblocks contiguous blocks is dependent on the
2330 * nrblocks. So limit nrblocks.
2332 goto flush_it;
2333 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2334 EXT4_MAX_TRANS_DATA) {
2336 * Adding the new buffer_head would make it cross the
2337 * allowed limit for which we have journal credit
2338 * reserved. So limit the new bh->b_size
2340 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2341 mpd->inode->i_blkbits;
2342 /* we will do mpage_da_submit_io in the next loop */
2346 * First block in the extent
2348 if (mpd->b_size == 0) {
2349 mpd->b_blocknr = logical;
2350 mpd->b_size = b_size;
2351 mpd->b_state = b_state & BH_FLAGS;
2352 return;
2355 next = mpd->b_blocknr + nrblocks;
2357 * Can we merge the block to our big extent?
2359 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2360 mpd->b_size += b_size;
2361 return;
2364 flush_it:
2366 * We couldn't merge the block to our extent, so we
2367 * need to flush current extent and start new one
2369 if (mpage_da_map_blocks(mpd) == 0)
2370 mpage_da_submit_io(mpd);
2371 mpd->io_done = 1;
2372 return;
2375 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2377 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2381 * __mpage_da_writepage - finds extent of pages and blocks
2383 * @page: page to consider
2384 * @wbc: not used, we just follow rules
2385 * @data: context
2387 * The function finds extents of pages and scan them for all blocks.
2389 static int __mpage_da_writepage(struct page *page,
2390 struct writeback_control *wbc, void *data)
2392 struct mpage_da_data *mpd = data;
2393 struct inode *inode = mpd->inode;
2394 struct buffer_head *bh, *head;
2395 sector_t logical;
2397 if (mpd->io_done) {
2399 * Rest of the page in the page_vec
2400 * redirty then and skip then. We will
2401 * try to write them again after
2402 * starting a new transaction
2404 redirty_page_for_writepage(wbc, page);
2405 unlock_page(page);
2406 return MPAGE_DA_EXTENT_TAIL;
2409 * Can we merge this page to current extent?
2411 if (mpd->next_page != page->index) {
2413 * Nope, we can't. So, we map non-allocated blocks
2414 * and start IO on them using writepage()
2416 if (mpd->next_page != mpd->first_page) {
2417 if (mpage_da_map_blocks(mpd) == 0)
2418 mpage_da_submit_io(mpd);
2420 * skip rest of the page in the page_vec
2422 mpd->io_done = 1;
2423 redirty_page_for_writepage(wbc, page);
2424 unlock_page(page);
2425 return MPAGE_DA_EXTENT_TAIL;
2429 * Start next extent of pages ...
2431 mpd->first_page = page->index;
2434 * ... and blocks
2436 mpd->b_size = 0;
2437 mpd->b_state = 0;
2438 mpd->b_blocknr = 0;
2441 mpd->next_page = page->index + 1;
2442 logical = (sector_t) page->index <<
2443 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2445 if (!page_has_buffers(page)) {
2446 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2447 (1 << BH_Dirty) | (1 << BH_Uptodate));
2448 if (mpd->io_done)
2449 return MPAGE_DA_EXTENT_TAIL;
2450 } else {
2452 * Page with regular buffer heads, just add all dirty ones
2454 head = page_buffers(page);
2455 bh = head;
2456 do {
2457 BUG_ON(buffer_locked(bh));
2459 * We need to try to allocate
2460 * unmapped blocks in the same page.
2461 * Otherwise we won't make progress
2462 * with the page in ext4_writepage
2464 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2465 mpage_add_bh_to_extent(mpd, logical,
2466 bh->b_size,
2467 bh->b_state);
2468 if (mpd->io_done)
2469 return MPAGE_DA_EXTENT_TAIL;
2470 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2472 * mapped dirty buffer. We need to update
2473 * the b_state because we look at
2474 * b_state in mpage_da_map_blocks. We don't
2475 * update b_size because if we find an
2476 * unmapped buffer_head later we need to
2477 * use the b_state flag of that buffer_head.
2479 if (mpd->b_size == 0)
2480 mpd->b_state = bh->b_state & BH_FLAGS;
2482 logical++;
2483 } while ((bh = bh->b_this_page) != head);
2486 return 0;
2490 * This is a special get_blocks_t callback which is used by
2491 * ext4_da_write_begin(). It will either return mapped block or
2492 * reserve space for a single block.
2494 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2495 * We also have b_blocknr = -1 and b_bdev initialized properly
2497 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2498 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2499 * initialized properly.
2501 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2502 struct buffer_head *bh_result, int create)
2504 int ret = 0;
2505 sector_t invalid_block = ~((sector_t) 0xffff);
2507 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2508 invalid_block = ~0;
2510 BUG_ON(create == 0);
2511 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2514 * first, we need to know whether the block is allocated already
2515 * preallocated blocks are unmapped but should treated
2516 * the same as allocated blocks.
2518 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2519 if ((ret == 0) && !buffer_delay(bh_result)) {
2520 /* the block isn't (pre)allocated yet, let's reserve space */
2522 * XXX: __block_prepare_write() unmaps passed block,
2523 * is it OK?
2525 ret = ext4_da_reserve_space(inode, iblock);
2526 if (ret)
2527 /* not enough space to reserve */
2528 return ret;
2530 map_bh(bh_result, inode->i_sb, invalid_block);
2531 set_buffer_new(bh_result);
2532 set_buffer_delay(bh_result);
2533 } else if (ret > 0) {
2534 bh_result->b_size = (ret << inode->i_blkbits);
2535 if (buffer_unwritten(bh_result)) {
2536 /* A delayed write to unwritten bh should
2537 * be marked new and mapped. Mapped ensures
2538 * that we don't do get_block multiple times
2539 * when we write to the same offset and new
2540 * ensures that we do proper zero out for
2541 * partial write.
2543 set_buffer_new(bh_result);
2544 set_buffer_mapped(bh_result);
2546 ret = 0;
2549 return ret;
2553 * This function is used as a standard get_block_t calback function
2554 * when there is no desire to allocate any blocks. It is used as a
2555 * callback function for block_prepare_write(), nobh_writepage(), and
2556 * block_write_full_page(). These functions should only try to map a
2557 * single block at a time.
2559 * Since this function doesn't do block allocations even if the caller
2560 * requests it by passing in create=1, it is critically important that
2561 * any caller checks to make sure that any buffer heads are returned
2562 * by this function are either all already mapped or marked for
2563 * delayed allocation before calling nobh_writepage() or
2564 * block_write_full_page(). Otherwise, b_blocknr could be left
2565 * unitialized, and the page write functions will be taken by
2566 * surprise.
2568 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2569 struct buffer_head *bh_result, int create)
2571 int ret = 0;
2572 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2574 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2577 * we don't want to do block allocation in writepage
2578 * so call get_block_wrap with create = 0
2580 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2581 if (ret > 0) {
2582 bh_result->b_size = (ret << inode->i_blkbits);
2583 ret = 0;
2585 return ret;
2588 static int bget_one(handle_t *handle, struct buffer_head *bh)
2590 get_bh(bh);
2591 return 0;
2594 static int bput_one(handle_t *handle, struct buffer_head *bh)
2596 put_bh(bh);
2597 return 0;
2600 static int __ext4_journalled_writepage(struct page *page,
2601 unsigned int len)
2603 struct address_space *mapping = page->mapping;
2604 struct inode *inode = mapping->host;
2605 struct buffer_head *page_bufs;
2606 handle_t *handle = NULL;
2607 int ret = 0;
2608 int err;
2610 page_bufs = page_buffers(page);
2611 BUG_ON(!page_bufs);
2612 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2613 /* As soon as we unlock the page, it can go away, but we have
2614 * references to buffers so we are safe */
2615 unlock_page(page);
2617 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2618 if (IS_ERR(handle)) {
2619 ret = PTR_ERR(handle);
2620 goto out;
2623 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2624 do_journal_get_write_access);
2626 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2627 write_end_fn);
2628 if (ret == 0)
2629 ret = err;
2630 err = ext4_journal_stop(handle);
2631 if (!ret)
2632 ret = err;
2634 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2635 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2636 out:
2637 return ret;
2641 * Note that we don't need to start a transaction unless we're journaling data
2642 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2643 * need to file the inode to the transaction's list in ordered mode because if
2644 * we are writing back data added by write(), the inode is already there and if
2645 * we are writing back data modified via mmap(), noone guarantees in which
2646 * transaction the data will hit the disk. In case we are journaling data, we
2647 * cannot start transaction directly because transaction start ranks above page
2648 * lock so we have to do some magic.
2650 * This function can get called via...
2651 * - ext4_da_writepages after taking page lock (have journal handle)
2652 * - journal_submit_inode_data_buffers (no journal handle)
2653 * - shrink_page_list via pdflush (no journal handle)
2654 * - grab_page_cache when doing write_begin (have journal handle)
2656 * We don't do any block allocation in this function. If we have page with
2657 * multiple blocks we need to write those buffer_heads that are mapped. This
2658 * is important for mmaped based write. So if we do with blocksize 1K
2659 * truncate(f, 1024);
2660 * a = mmap(f, 0, 4096);
2661 * a[0] = 'a';
2662 * truncate(f, 4096);
2663 * we have in the page first buffer_head mapped via page_mkwrite call back
2664 * but other bufer_heads would be unmapped but dirty(dirty done via the
2665 * do_wp_page). So writepage should write the first block. If we modify
2666 * the mmap area beyond 1024 we will again get a page_fault and the
2667 * page_mkwrite callback will do the block allocation and mark the
2668 * buffer_heads mapped.
2670 * We redirty the page if we have any buffer_heads that is either delay or
2671 * unwritten in the page.
2673 * We can get recursively called as show below.
2675 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2676 * ext4_writepage()
2678 * But since we don't do any block allocation we should not deadlock.
2679 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2681 static int ext4_writepage(struct page *page,
2682 struct writeback_control *wbc)
2684 int ret = 0;
2685 loff_t size;
2686 unsigned int len;
2687 struct buffer_head *page_bufs;
2688 struct inode *inode = page->mapping->host;
2690 trace_ext4_writepage(inode, page);
2691 size = i_size_read(inode);
2692 if (page->index == size >> PAGE_CACHE_SHIFT)
2693 len = size & ~PAGE_CACHE_MASK;
2694 else
2695 len = PAGE_CACHE_SIZE;
2697 if (page_has_buffers(page)) {
2698 page_bufs = page_buffers(page);
2699 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2700 ext4_bh_delay_or_unwritten)) {
2702 * We don't want to do block allocation
2703 * So redirty the page and return
2704 * We may reach here when we do a journal commit
2705 * via journal_submit_inode_data_buffers.
2706 * If we don't have mapping block we just ignore
2707 * them. We can also reach here via shrink_page_list
2709 redirty_page_for_writepage(wbc, page);
2710 unlock_page(page);
2711 return 0;
2713 } else {
2715 * The test for page_has_buffers() is subtle:
2716 * We know the page is dirty but it lost buffers. That means
2717 * that at some moment in time after write_begin()/write_end()
2718 * has been called all buffers have been clean and thus they
2719 * must have been written at least once. So they are all
2720 * mapped and we can happily proceed with mapping them
2721 * and writing the page.
2723 * Try to initialize the buffer_heads and check whether
2724 * all are mapped and non delay. We don't want to
2725 * do block allocation here.
2727 ret = block_prepare_write(page, 0, len,
2728 noalloc_get_block_write);
2729 if (!ret) {
2730 page_bufs = page_buffers(page);
2731 /* check whether all are mapped and non delay */
2732 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2733 ext4_bh_delay_or_unwritten)) {
2734 redirty_page_for_writepage(wbc, page);
2735 unlock_page(page);
2736 return 0;
2738 } else {
2740 * We can't do block allocation here
2741 * so just redity the page and unlock
2742 * and return
2744 redirty_page_for_writepage(wbc, page);
2745 unlock_page(page);
2746 return 0;
2748 /* now mark the buffer_heads as dirty and uptodate */
2749 block_commit_write(page, 0, len);
2752 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2754 * It's mmapped pagecache. Add buffers and journal it. There
2755 * doesn't seem much point in redirtying the page here.
2757 ClearPageChecked(page);
2758 return __ext4_journalled_writepage(page, len);
2761 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2762 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2763 else
2764 ret = block_write_full_page(page, noalloc_get_block_write,
2765 wbc);
2767 return ret;
2771 * This is called via ext4_da_writepages() to
2772 * calulate the total number of credits to reserve to fit
2773 * a single extent allocation into a single transaction,
2774 * ext4_da_writpeages() will loop calling this before
2775 * the block allocation.
2778 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2780 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2783 * With non-extent format the journal credit needed to
2784 * insert nrblocks contiguous block is dependent on
2785 * number of contiguous block. So we will limit
2786 * number of contiguous block to a sane value
2788 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2789 (max_blocks > EXT4_MAX_TRANS_DATA))
2790 max_blocks = EXT4_MAX_TRANS_DATA;
2792 return ext4_chunk_trans_blocks(inode, max_blocks);
2795 static int ext4_da_writepages(struct address_space *mapping,
2796 struct writeback_control *wbc)
2798 pgoff_t index;
2799 int range_whole = 0;
2800 handle_t *handle = NULL;
2801 struct mpage_da_data mpd;
2802 struct inode *inode = mapping->host;
2803 int no_nrwrite_index_update;
2804 int pages_written = 0;
2805 long pages_skipped;
2806 unsigned int max_pages;
2807 int range_cyclic, cycled = 1, io_done = 0;
2808 int needed_blocks, ret = 0;
2809 long desired_nr_to_write, nr_to_writebump = 0;
2810 loff_t range_start = wbc->range_start;
2811 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2813 trace_ext4_da_writepages(inode, wbc);
2816 * No pages to write? This is mainly a kludge to avoid starting
2817 * a transaction for special inodes like journal inode on last iput()
2818 * because that could violate lock ordering on umount
2820 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2821 return 0;
2824 * If the filesystem has aborted, it is read-only, so return
2825 * right away instead of dumping stack traces later on that
2826 * will obscure the real source of the problem. We test
2827 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2828 * the latter could be true if the filesystem is mounted
2829 * read-only, and in that case, ext4_da_writepages should
2830 * *never* be called, so if that ever happens, we would want
2831 * the stack trace.
2833 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2834 return -EROFS;
2836 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2837 range_whole = 1;
2839 range_cyclic = wbc->range_cyclic;
2840 if (wbc->range_cyclic) {
2841 index = mapping->writeback_index;
2842 if (index)
2843 cycled = 0;
2844 wbc->range_start = index << PAGE_CACHE_SHIFT;
2845 wbc->range_end = LLONG_MAX;
2846 wbc->range_cyclic = 0;
2847 } else
2848 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2851 * This works around two forms of stupidity. The first is in
2852 * the writeback code, which caps the maximum number of pages
2853 * written to be 1024 pages. This is wrong on multiple
2854 * levels; different architectues have a different page size,
2855 * which changes the maximum amount of data which gets
2856 * written. Secondly, 4 megabytes is way too small. XFS
2857 * forces this value to be 16 megabytes by multiplying
2858 * nr_to_write parameter by four, and then relies on its
2859 * allocator to allocate larger extents to make them
2860 * contiguous. Unfortunately this brings us to the second
2861 * stupidity, which is that ext4's mballoc code only allocates
2862 * at most 2048 blocks. So we force contiguous writes up to
2863 * the number of dirty blocks in the inode, or
2864 * sbi->max_writeback_mb_bump whichever is smaller.
2866 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2867 if (!range_cyclic && range_whole)
2868 desired_nr_to_write = wbc->nr_to_write * 8;
2869 else
2870 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2871 max_pages);
2872 if (desired_nr_to_write > max_pages)
2873 desired_nr_to_write = max_pages;
2875 if (wbc->nr_to_write < desired_nr_to_write) {
2876 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2877 wbc->nr_to_write = desired_nr_to_write;
2880 mpd.wbc = wbc;
2881 mpd.inode = mapping->host;
2884 * we don't want write_cache_pages to update
2885 * nr_to_write and writeback_index
2887 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2888 wbc->no_nrwrite_index_update = 1;
2889 pages_skipped = wbc->pages_skipped;
2891 retry:
2892 while (!ret && wbc->nr_to_write > 0) {
2895 * we insert one extent at a time. So we need
2896 * credit needed for single extent allocation.
2897 * journalled mode is currently not supported
2898 * by delalloc
2900 BUG_ON(ext4_should_journal_data(inode));
2901 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2903 /* start a new transaction*/
2904 handle = ext4_journal_start(inode, needed_blocks);
2905 if (IS_ERR(handle)) {
2906 ret = PTR_ERR(handle);
2907 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2908 "%ld pages, ino %lu; err %d\n", __func__,
2909 wbc->nr_to_write, inode->i_ino, ret);
2910 goto out_writepages;
2914 * Now call __mpage_da_writepage to find the next
2915 * contiguous region of logical blocks that need
2916 * blocks to be allocated by ext4. We don't actually
2917 * submit the blocks for I/O here, even though
2918 * write_cache_pages thinks it will, and will set the
2919 * pages as clean for write before calling
2920 * __mpage_da_writepage().
2922 mpd.b_size = 0;
2923 mpd.b_state = 0;
2924 mpd.b_blocknr = 0;
2925 mpd.first_page = 0;
2926 mpd.next_page = 0;
2927 mpd.io_done = 0;
2928 mpd.pages_written = 0;
2929 mpd.retval = 0;
2930 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2931 &mpd);
2933 * If we have a contiguous extent of pages and we
2934 * haven't done the I/O yet, map the blocks and submit
2935 * them for I/O.
2937 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2938 if (mpage_da_map_blocks(&mpd) == 0)
2939 mpage_da_submit_io(&mpd);
2940 mpd.io_done = 1;
2941 ret = MPAGE_DA_EXTENT_TAIL;
2943 trace_ext4_da_write_pages(inode, &mpd);
2944 wbc->nr_to_write -= mpd.pages_written;
2946 ext4_journal_stop(handle);
2948 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2949 /* commit the transaction which would
2950 * free blocks released in the transaction
2951 * and try again
2953 jbd2_journal_force_commit_nested(sbi->s_journal);
2954 wbc->pages_skipped = pages_skipped;
2955 ret = 0;
2956 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2958 * got one extent now try with
2959 * rest of the pages
2961 pages_written += mpd.pages_written;
2962 wbc->pages_skipped = pages_skipped;
2963 ret = 0;
2964 io_done = 1;
2965 } else if (wbc->nr_to_write)
2967 * There is no more writeout needed
2968 * or we requested for a noblocking writeout
2969 * and we found the device congested
2971 break;
2973 if (!io_done && !cycled) {
2974 cycled = 1;
2975 index = 0;
2976 wbc->range_start = index << PAGE_CACHE_SHIFT;
2977 wbc->range_end = mapping->writeback_index - 1;
2978 goto retry;
2980 if (pages_skipped != wbc->pages_skipped)
2981 ext4_msg(inode->i_sb, KERN_CRIT,
2982 "This should not happen leaving %s "
2983 "with nr_to_write = %ld ret = %d\n",
2984 __func__, wbc->nr_to_write, ret);
2986 /* Update index */
2987 index += pages_written;
2988 wbc->range_cyclic = range_cyclic;
2989 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2991 * set the writeback_index so that range_cyclic
2992 * mode will write it back later
2994 mapping->writeback_index = index;
2996 out_writepages:
2997 if (!no_nrwrite_index_update)
2998 wbc->no_nrwrite_index_update = 0;
2999 wbc->nr_to_write -= nr_to_writebump;
3000 wbc->range_start = range_start;
3001 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3002 return ret;
3005 #define FALL_BACK_TO_NONDELALLOC 1
3006 static int ext4_nonda_switch(struct super_block *sb)
3008 s64 free_blocks, dirty_blocks;
3009 struct ext4_sb_info *sbi = EXT4_SB(sb);
3012 * switch to non delalloc mode if we are running low
3013 * on free block. The free block accounting via percpu
3014 * counters can get slightly wrong with percpu_counter_batch getting
3015 * accumulated on each CPU without updating global counters
3016 * Delalloc need an accurate free block accounting. So switch
3017 * to non delalloc when we are near to error range.
3019 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3020 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3021 if (2 * free_blocks < 3 * dirty_blocks ||
3022 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3024 * free block count is less than 150% of dirty blocks
3025 * or free blocks is less than watermark
3027 return 1;
3030 * Even if we don't switch but are nearing capacity,
3031 * start pushing delalloc when 1/2 of free blocks are dirty.
3033 if (free_blocks < 2 * dirty_blocks)
3034 writeback_inodes_sb_if_idle(sb);
3036 return 0;
3039 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3040 loff_t pos, unsigned len, unsigned flags,
3041 struct page **pagep, void **fsdata)
3043 int ret, retries = 0, quota_retries = 0;
3044 struct page *page;
3045 pgoff_t index;
3046 unsigned from, to;
3047 struct inode *inode = mapping->host;
3048 handle_t *handle;
3050 index = pos >> PAGE_CACHE_SHIFT;
3051 from = pos & (PAGE_CACHE_SIZE - 1);
3052 to = from + len;
3054 if (ext4_nonda_switch(inode->i_sb)) {
3055 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3056 return ext4_write_begin(file, mapping, pos,
3057 len, flags, pagep, fsdata);
3059 *fsdata = (void *)0;
3060 trace_ext4_da_write_begin(inode, pos, len, flags);
3061 retry:
3063 * With delayed allocation, we don't log the i_disksize update
3064 * if there is delayed block allocation. But we still need
3065 * to journalling the i_disksize update if writes to the end
3066 * of file which has an already mapped buffer.
3068 handle = ext4_journal_start(inode, 1);
3069 if (IS_ERR(handle)) {
3070 ret = PTR_ERR(handle);
3071 goto out;
3073 /* We cannot recurse into the filesystem as the transaction is already
3074 * started */
3075 flags |= AOP_FLAG_NOFS;
3077 page = grab_cache_page_write_begin(mapping, index, flags);
3078 if (!page) {
3079 ext4_journal_stop(handle);
3080 ret = -ENOMEM;
3081 goto out;
3083 *pagep = page;
3085 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3086 ext4_da_get_block_prep);
3087 if (ret < 0) {
3088 unlock_page(page);
3089 ext4_journal_stop(handle);
3090 page_cache_release(page);
3092 * block_write_begin may have instantiated a few blocks
3093 * outside i_size. Trim these off again. Don't need
3094 * i_size_read because we hold i_mutex.
3096 if (pos + len > inode->i_size)
3097 ext4_truncate_failed_write(inode);
3100 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3101 goto retry;
3103 if ((ret == -EDQUOT) &&
3104 EXT4_I(inode)->i_reserved_meta_blocks &&
3105 (quota_retries++ < 3)) {
3107 * Since we often over-estimate the number of meta
3108 * data blocks required, we may sometimes get a
3109 * spurios out of quota error even though there would
3110 * be enough space once we write the data blocks and
3111 * find out how many meta data blocks were _really_
3112 * required. So try forcing the inode write to see if
3113 * that helps.
3115 write_inode_now(inode, (quota_retries == 3));
3116 goto retry;
3118 out:
3119 return ret;
3123 * Check if we should update i_disksize
3124 * when write to the end of file but not require block allocation
3126 static int ext4_da_should_update_i_disksize(struct page *page,
3127 unsigned long offset)
3129 struct buffer_head *bh;
3130 struct inode *inode = page->mapping->host;
3131 unsigned int idx;
3132 int i;
3134 bh = page_buffers(page);
3135 idx = offset >> inode->i_blkbits;
3137 for (i = 0; i < idx; i++)
3138 bh = bh->b_this_page;
3140 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3141 return 0;
3142 return 1;
3145 static int ext4_da_write_end(struct file *file,
3146 struct address_space *mapping,
3147 loff_t pos, unsigned len, unsigned copied,
3148 struct page *page, void *fsdata)
3150 struct inode *inode = mapping->host;
3151 int ret = 0, ret2;
3152 handle_t *handle = ext4_journal_current_handle();
3153 loff_t new_i_size;
3154 unsigned long start, end;
3155 int write_mode = (int)(unsigned long)fsdata;
3157 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3158 if (ext4_should_order_data(inode)) {
3159 return ext4_ordered_write_end(file, mapping, pos,
3160 len, copied, page, fsdata);
3161 } else if (ext4_should_writeback_data(inode)) {
3162 return ext4_writeback_write_end(file, mapping, pos,
3163 len, copied, page, fsdata);
3164 } else {
3165 BUG();
3169 trace_ext4_da_write_end(inode, pos, len, copied);
3170 start = pos & (PAGE_CACHE_SIZE - 1);
3171 end = start + copied - 1;
3174 * generic_write_end() will run mark_inode_dirty() if i_size
3175 * changes. So let's piggyback the i_disksize mark_inode_dirty
3176 * into that.
3179 new_i_size = pos + copied;
3180 if (new_i_size > EXT4_I(inode)->i_disksize) {
3181 if (ext4_da_should_update_i_disksize(page, end)) {
3182 down_write(&EXT4_I(inode)->i_data_sem);
3183 if (new_i_size > EXT4_I(inode)->i_disksize) {
3185 * Updating i_disksize when extending file
3186 * without needing block allocation
3188 if (ext4_should_order_data(inode))
3189 ret = ext4_jbd2_file_inode(handle,
3190 inode);
3192 EXT4_I(inode)->i_disksize = new_i_size;
3194 up_write(&EXT4_I(inode)->i_data_sem);
3195 /* We need to mark inode dirty even if
3196 * new_i_size is less that inode->i_size
3197 * bu greater than i_disksize.(hint delalloc)
3199 ext4_mark_inode_dirty(handle, inode);
3202 ret2 = generic_write_end(file, mapping, pos, len, copied,
3203 page, fsdata);
3204 copied = ret2;
3205 if (ret2 < 0)
3206 ret = ret2;
3207 ret2 = ext4_journal_stop(handle);
3208 if (!ret)
3209 ret = ret2;
3211 return ret ? ret : copied;
3214 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3217 * Drop reserved blocks
3219 BUG_ON(!PageLocked(page));
3220 if (!page_has_buffers(page))
3221 goto out;
3223 ext4_da_page_release_reservation(page, offset);
3225 out:
3226 ext4_invalidatepage(page, offset);
3228 return;
3232 * Force all delayed allocation blocks to be allocated for a given inode.
3234 int ext4_alloc_da_blocks(struct inode *inode)
3236 trace_ext4_alloc_da_blocks(inode);
3238 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3239 !EXT4_I(inode)->i_reserved_meta_blocks)
3240 return 0;
3243 * We do something simple for now. The filemap_flush() will
3244 * also start triggering a write of the data blocks, which is
3245 * not strictly speaking necessary (and for users of
3246 * laptop_mode, not even desirable). However, to do otherwise
3247 * would require replicating code paths in:
3249 * ext4_da_writepages() ->
3250 * write_cache_pages() ---> (via passed in callback function)
3251 * __mpage_da_writepage() -->
3252 * mpage_add_bh_to_extent()
3253 * mpage_da_map_blocks()
3255 * The problem is that write_cache_pages(), located in
3256 * mm/page-writeback.c, marks pages clean in preparation for
3257 * doing I/O, which is not desirable if we're not planning on
3258 * doing I/O at all.
3260 * We could call write_cache_pages(), and then redirty all of
3261 * the pages by calling redirty_page_for_writeback() but that
3262 * would be ugly in the extreme. So instead we would need to
3263 * replicate parts of the code in the above functions,
3264 * simplifying them becuase we wouldn't actually intend to
3265 * write out the pages, but rather only collect contiguous
3266 * logical block extents, call the multi-block allocator, and
3267 * then update the buffer heads with the block allocations.
3269 * For now, though, we'll cheat by calling filemap_flush(),
3270 * which will map the blocks, and start the I/O, but not
3271 * actually wait for the I/O to complete.
3273 return filemap_flush(inode->i_mapping);
3277 * bmap() is special. It gets used by applications such as lilo and by
3278 * the swapper to find the on-disk block of a specific piece of data.
3280 * Naturally, this is dangerous if the block concerned is still in the
3281 * journal. If somebody makes a swapfile on an ext4 data-journaling
3282 * filesystem and enables swap, then they may get a nasty shock when the
3283 * data getting swapped to that swapfile suddenly gets overwritten by
3284 * the original zero's written out previously to the journal and
3285 * awaiting writeback in the kernel's buffer cache.
3287 * So, if we see any bmap calls here on a modified, data-journaled file,
3288 * take extra steps to flush any blocks which might be in the cache.
3290 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3292 struct inode *inode = mapping->host;
3293 journal_t *journal;
3294 int err;
3296 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3297 test_opt(inode->i_sb, DELALLOC)) {
3299 * With delalloc we want to sync the file
3300 * so that we can make sure we allocate
3301 * blocks for file
3303 filemap_write_and_wait(mapping);
3306 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3308 * This is a REALLY heavyweight approach, but the use of
3309 * bmap on dirty files is expected to be extremely rare:
3310 * only if we run lilo or swapon on a freshly made file
3311 * do we expect this to happen.
3313 * (bmap requires CAP_SYS_RAWIO so this does not
3314 * represent an unprivileged user DOS attack --- we'd be
3315 * in trouble if mortal users could trigger this path at
3316 * will.)
3318 * NB. EXT4_STATE_JDATA is not set on files other than
3319 * regular files. If somebody wants to bmap a directory
3320 * or symlink and gets confused because the buffer
3321 * hasn't yet been flushed to disk, they deserve
3322 * everything they get.
3325 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3326 journal = EXT4_JOURNAL(inode);
3327 jbd2_journal_lock_updates(journal);
3328 err = jbd2_journal_flush(journal);
3329 jbd2_journal_unlock_updates(journal);
3331 if (err)
3332 return 0;
3335 return generic_block_bmap(mapping, block, ext4_get_block);
3338 static int ext4_readpage(struct file *file, struct page *page)
3340 return mpage_readpage(page, ext4_get_block);
3343 static int
3344 ext4_readpages(struct file *file, struct address_space *mapping,
3345 struct list_head *pages, unsigned nr_pages)
3347 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3350 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3352 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3355 * If it's a full truncate we just forget about the pending dirtying
3357 if (offset == 0)
3358 ClearPageChecked(page);
3360 if (journal)
3361 jbd2_journal_invalidatepage(journal, page, offset);
3362 else
3363 block_invalidatepage(page, offset);
3366 static int ext4_releasepage(struct page *page, gfp_t wait)
3368 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3370 WARN_ON(PageChecked(page));
3371 if (!page_has_buffers(page))
3372 return 0;
3373 if (journal)
3374 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3375 else
3376 return try_to_free_buffers(page);
3380 * O_DIRECT for ext3 (or indirect map) based files
3382 * If the O_DIRECT write will extend the file then add this inode to the
3383 * orphan list. So recovery will truncate it back to the original size
3384 * if the machine crashes during the write.
3386 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3387 * crashes then stale disk data _may_ be exposed inside the file. But current
3388 * VFS code falls back into buffered path in that case so we are safe.
3390 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3391 const struct iovec *iov, loff_t offset,
3392 unsigned long nr_segs)
3394 struct file *file = iocb->ki_filp;
3395 struct inode *inode = file->f_mapping->host;
3396 struct ext4_inode_info *ei = EXT4_I(inode);
3397 handle_t *handle;
3398 ssize_t ret;
3399 int orphan = 0;
3400 size_t count = iov_length(iov, nr_segs);
3401 int retries = 0;
3403 if (rw == WRITE) {
3404 loff_t final_size = offset + count;
3406 if (final_size > inode->i_size) {
3407 /* Credits for sb + inode write */
3408 handle = ext4_journal_start(inode, 2);
3409 if (IS_ERR(handle)) {
3410 ret = PTR_ERR(handle);
3411 goto out;
3413 ret = ext4_orphan_add(handle, inode);
3414 if (ret) {
3415 ext4_journal_stop(handle);
3416 goto out;
3418 orphan = 1;
3419 ei->i_disksize = inode->i_size;
3420 ext4_journal_stop(handle);
3424 retry:
3425 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3426 offset, nr_segs,
3427 ext4_get_block, NULL);
3428 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3429 goto retry;
3431 if (orphan) {
3432 int err;
3434 /* Credits for sb + inode write */
3435 handle = ext4_journal_start(inode, 2);
3436 if (IS_ERR(handle)) {
3437 /* This is really bad luck. We've written the data
3438 * but cannot extend i_size. Bail out and pretend
3439 * the write failed... */
3440 ret = PTR_ERR(handle);
3441 goto out;
3443 if (inode->i_nlink)
3444 ext4_orphan_del(handle, inode);
3445 if (ret > 0) {
3446 loff_t end = offset + ret;
3447 if (end > inode->i_size) {
3448 ei->i_disksize = end;
3449 i_size_write(inode, end);
3451 * We're going to return a positive `ret'
3452 * here due to non-zero-length I/O, so there's
3453 * no way of reporting error returns from
3454 * ext4_mark_inode_dirty() to userspace. So
3455 * ignore it.
3457 ext4_mark_inode_dirty(handle, inode);
3460 err = ext4_journal_stop(handle);
3461 if (ret == 0)
3462 ret = err;
3464 out:
3465 return ret;
3468 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3469 struct buffer_head *bh_result, int create)
3471 handle_t *handle = NULL;
3472 int ret = 0;
3473 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3474 int dio_credits;
3476 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3477 inode->i_ino, create);
3479 * DIO VFS code passes create = 0 flag for write to
3480 * the middle of file. It does this to avoid block
3481 * allocation for holes, to prevent expose stale data
3482 * out when there is parallel buffered read (which does
3483 * not hold the i_mutex lock) while direct IO write has
3484 * not completed. DIO request on holes finally falls back
3485 * to buffered IO for this reason.
3487 * For ext4 extent based file, since we support fallocate,
3488 * new allocated extent as uninitialized, for holes, we
3489 * could fallocate blocks for holes, thus parallel
3490 * buffered IO read will zero out the page when read on
3491 * a hole while parallel DIO write to the hole has not completed.
3493 * when we come here, we know it's a direct IO write to
3494 * to the middle of file (<i_size)
3495 * so it's safe to override the create flag from VFS.
3497 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3499 if (max_blocks > DIO_MAX_BLOCKS)
3500 max_blocks = DIO_MAX_BLOCKS;
3501 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3502 handle = ext4_journal_start(inode, dio_credits);
3503 if (IS_ERR(handle)) {
3504 ret = PTR_ERR(handle);
3505 goto out;
3507 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3508 create);
3509 if (ret > 0) {
3510 bh_result->b_size = (ret << inode->i_blkbits);
3511 ret = 0;
3513 ext4_journal_stop(handle);
3514 out:
3515 return ret;
3518 static void ext4_free_io_end(ext4_io_end_t *io)
3520 BUG_ON(!io);
3521 iput(io->inode);
3522 kfree(io);
3524 static void dump_aio_dio_list(struct inode * inode)
3526 #ifdef EXT4_DEBUG
3527 struct list_head *cur, *before, *after;
3528 ext4_io_end_t *io, *io0, *io1;
3530 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3531 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3532 return;
3535 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3536 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3537 cur = &io->list;
3538 before = cur->prev;
3539 io0 = container_of(before, ext4_io_end_t, list);
3540 after = cur->next;
3541 io1 = container_of(after, ext4_io_end_t, list);
3543 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3544 io, inode->i_ino, io0, io1);
3546 #endif
3550 * check a range of space and convert unwritten extents to written.
3552 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3554 struct inode *inode = io->inode;
3555 loff_t offset = io->offset;
3556 ssize_t size = io->size;
3557 int ret = 0;
3559 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3560 "list->prev 0x%p\n",
3561 io, inode->i_ino, io->list.next, io->list.prev);
3563 if (list_empty(&io->list))
3564 return ret;
3566 if (io->flag != DIO_AIO_UNWRITTEN)
3567 return ret;
3569 if (offset + size <= i_size_read(inode))
3570 ret = ext4_convert_unwritten_extents(inode, offset, size);
3572 if (ret < 0) {
3573 printk(KERN_EMERG "%s: failed to convert unwritten"
3574 "extents to written extents, error is %d"
3575 " io is still on inode %lu aio dio list\n",
3576 __func__, ret, inode->i_ino);
3577 return ret;
3580 /* clear the DIO AIO unwritten flag */
3581 io->flag = 0;
3582 return ret;
3585 * work on completed aio dio IO, to convert unwritten extents to extents
3587 static void ext4_end_aio_dio_work(struct work_struct *work)
3589 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3590 struct inode *inode = io->inode;
3591 int ret = 0;
3593 mutex_lock(&inode->i_mutex);
3594 ret = ext4_end_aio_dio_nolock(io);
3595 if (ret >= 0) {
3596 if (!list_empty(&io->list))
3597 list_del_init(&io->list);
3598 ext4_free_io_end(io);
3600 mutex_unlock(&inode->i_mutex);
3603 * This function is called from ext4_sync_file().
3605 * When AIO DIO IO is completed, the work to convert unwritten
3606 * extents to written is queued on workqueue but may not get immediately
3607 * scheduled. When fsync is called, we need to ensure the
3608 * conversion is complete before fsync returns.
3609 * The inode keeps track of a list of completed AIO from DIO path
3610 * that might needs to do the conversion. This function walks through
3611 * the list and convert the related unwritten extents to written.
3613 int flush_aio_dio_completed_IO(struct inode *inode)
3615 ext4_io_end_t *io;
3616 int ret = 0;
3617 int ret2 = 0;
3619 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3620 return ret;
3622 dump_aio_dio_list(inode);
3623 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3624 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3625 ext4_io_end_t, list);
3627 * Calling ext4_end_aio_dio_nolock() to convert completed
3628 * IO to written.
3630 * When ext4_sync_file() is called, run_queue() may already
3631 * about to flush the work corresponding to this io structure.
3632 * It will be upset if it founds the io structure related
3633 * to the work-to-be schedule is freed.
3635 * Thus we need to keep the io structure still valid here after
3636 * convertion finished. The io structure has a flag to
3637 * avoid double converting from both fsync and background work
3638 * queue work.
3640 ret = ext4_end_aio_dio_nolock(io);
3641 if (ret < 0)
3642 ret2 = ret;
3643 else
3644 list_del_init(&io->list);
3646 return (ret2 < 0) ? ret2 : 0;
3649 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3651 ext4_io_end_t *io = NULL;
3653 io = kmalloc(sizeof(*io), GFP_NOFS);
3655 if (io) {
3656 igrab(inode);
3657 io->inode = inode;
3658 io->flag = 0;
3659 io->offset = 0;
3660 io->size = 0;
3661 io->error = 0;
3662 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3663 INIT_LIST_HEAD(&io->list);
3666 return io;
3669 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3670 ssize_t size, void *private)
3672 ext4_io_end_t *io_end = iocb->private;
3673 struct workqueue_struct *wq;
3675 /* if not async direct IO or dio with 0 bytes write, just return */
3676 if (!io_end || !size)
3677 return;
3679 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3680 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3681 iocb->private, io_end->inode->i_ino, iocb, offset,
3682 size);
3684 /* if not aio dio with unwritten extents, just free io and return */
3685 if (io_end->flag != DIO_AIO_UNWRITTEN){
3686 ext4_free_io_end(io_end);
3687 iocb->private = NULL;
3688 return;
3691 io_end->offset = offset;
3692 io_end->size = size;
3693 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3695 /* queue the work to convert unwritten extents to written */
3696 queue_work(wq, &io_end->work);
3698 /* Add the io_end to per-inode completed aio dio list*/
3699 list_add_tail(&io_end->list,
3700 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3701 iocb->private = NULL;
3704 * For ext4 extent files, ext4 will do direct-io write to holes,
3705 * preallocated extents, and those write extend the file, no need to
3706 * fall back to buffered IO.
3708 * For holes, we fallocate those blocks, mark them as unintialized
3709 * If those blocks were preallocated, we mark sure they are splited, but
3710 * still keep the range to write as unintialized.
3712 * The unwrritten extents will be converted to written when DIO is completed.
3713 * For async direct IO, since the IO may still pending when return, we
3714 * set up an end_io call back function, which will do the convertion
3715 * when async direct IO completed.
3717 * If the O_DIRECT write will extend the file then add this inode to the
3718 * orphan list. So recovery will truncate it back to the original size
3719 * if the machine crashes during the write.
3722 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3723 const struct iovec *iov, loff_t offset,
3724 unsigned long nr_segs)
3726 struct file *file = iocb->ki_filp;
3727 struct inode *inode = file->f_mapping->host;
3728 ssize_t ret;
3729 size_t count = iov_length(iov, nr_segs);
3731 loff_t final_size = offset + count;
3732 if (rw == WRITE && final_size <= inode->i_size) {
3734 * We could direct write to holes and fallocate.
3736 * Allocated blocks to fill the hole are marked as uninitialized
3737 * to prevent paralel buffered read to expose the stale data
3738 * before DIO complete the data IO.
3740 * As to previously fallocated extents, ext4 get_block
3741 * will just simply mark the buffer mapped but still
3742 * keep the extents uninitialized.
3744 * for non AIO case, we will convert those unwritten extents
3745 * to written after return back from blockdev_direct_IO.
3747 * for async DIO, the conversion needs to be defered when
3748 * the IO is completed. The ext4 end_io callback function
3749 * will be called to take care of the conversion work.
3750 * Here for async case, we allocate an io_end structure to
3751 * hook to the iocb.
3753 iocb->private = NULL;
3754 EXT4_I(inode)->cur_aio_dio = NULL;
3755 if (!is_sync_kiocb(iocb)) {
3756 iocb->private = ext4_init_io_end(inode);
3757 if (!iocb->private)
3758 return -ENOMEM;
3760 * we save the io structure for current async
3761 * direct IO, so that later ext4_get_blocks()
3762 * could flag the io structure whether there
3763 * is a unwritten extents needs to be converted
3764 * when IO is completed.
3766 EXT4_I(inode)->cur_aio_dio = iocb->private;
3769 ret = blockdev_direct_IO(rw, iocb, inode,
3770 inode->i_sb->s_bdev, iov,
3771 offset, nr_segs,
3772 ext4_get_block_dio_write,
3773 ext4_end_io_dio);
3774 if (iocb->private)
3775 EXT4_I(inode)->cur_aio_dio = NULL;
3777 * The io_end structure takes a reference to the inode,
3778 * that structure needs to be destroyed and the
3779 * reference to the inode need to be dropped, when IO is
3780 * complete, even with 0 byte write, or failed.
3782 * In the successful AIO DIO case, the io_end structure will be
3783 * desctroyed and the reference to the inode will be dropped
3784 * after the end_io call back function is called.
3786 * In the case there is 0 byte write, or error case, since
3787 * VFS direct IO won't invoke the end_io call back function,
3788 * we need to free the end_io structure here.
3790 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3791 ext4_free_io_end(iocb->private);
3792 iocb->private = NULL;
3793 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3794 EXT4_STATE_DIO_UNWRITTEN)) {
3795 int err;
3797 * for non AIO case, since the IO is already
3798 * completed, we could do the convertion right here
3800 err = ext4_convert_unwritten_extents(inode,
3801 offset, ret);
3802 if (err < 0)
3803 ret = err;
3804 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3806 return ret;
3809 /* for write the the end of file case, we fall back to old way */
3810 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3813 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3814 const struct iovec *iov, loff_t offset,
3815 unsigned long nr_segs)
3817 struct file *file = iocb->ki_filp;
3818 struct inode *inode = file->f_mapping->host;
3820 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3821 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3823 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3827 * Pages can be marked dirty completely asynchronously from ext4's journalling
3828 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3829 * much here because ->set_page_dirty is called under VFS locks. The page is
3830 * not necessarily locked.
3832 * We cannot just dirty the page and leave attached buffers clean, because the
3833 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3834 * or jbddirty because all the journalling code will explode.
3836 * So what we do is to mark the page "pending dirty" and next time writepage
3837 * is called, propagate that into the buffers appropriately.
3839 static int ext4_journalled_set_page_dirty(struct page *page)
3841 SetPageChecked(page);
3842 return __set_page_dirty_nobuffers(page);
3845 static const struct address_space_operations ext4_ordered_aops = {
3846 .readpage = ext4_readpage,
3847 .readpages = ext4_readpages,
3848 .writepage = ext4_writepage,
3849 .sync_page = block_sync_page,
3850 .write_begin = ext4_write_begin,
3851 .write_end = ext4_ordered_write_end,
3852 .bmap = ext4_bmap,
3853 .invalidatepage = ext4_invalidatepage,
3854 .releasepage = ext4_releasepage,
3855 .direct_IO = ext4_direct_IO,
3856 .migratepage = buffer_migrate_page,
3857 .is_partially_uptodate = block_is_partially_uptodate,
3858 .error_remove_page = generic_error_remove_page,
3861 static const struct address_space_operations ext4_writeback_aops = {
3862 .readpage = ext4_readpage,
3863 .readpages = ext4_readpages,
3864 .writepage = ext4_writepage,
3865 .sync_page = block_sync_page,
3866 .write_begin = ext4_write_begin,
3867 .write_end = ext4_writeback_write_end,
3868 .bmap = ext4_bmap,
3869 .invalidatepage = ext4_invalidatepage,
3870 .releasepage = ext4_releasepage,
3871 .direct_IO = ext4_direct_IO,
3872 .migratepage = buffer_migrate_page,
3873 .is_partially_uptodate = block_is_partially_uptodate,
3874 .error_remove_page = generic_error_remove_page,
3877 static const struct address_space_operations ext4_journalled_aops = {
3878 .readpage = ext4_readpage,
3879 .readpages = ext4_readpages,
3880 .writepage = ext4_writepage,
3881 .sync_page = block_sync_page,
3882 .write_begin = ext4_write_begin,
3883 .write_end = ext4_journalled_write_end,
3884 .set_page_dirty = ext4_journalled_set_page_dirty,
3885 .bmap = ext4_bmap,
3886 .invalidatepage = ext4_invalidatepage,
3887 .releasepage = ext4_releasepage,
3888 .is_partially_uptodate = block_is_partially_uptodate,
3889 .error_remove_page = generic_error_remove_page,
3892 static const struct address_space_operations ext4_da_aops = {
3893 .readpage = ext4_readpage,
3894 .readpages = ext4_readpages,
3895 .writepage = ext4_writepage,
3896 .writepages = ext4_da_writepages,
3897 .sync_page = block_sync_page,
3898 .write_begin = ext4_da_write_begin,
3899 .write_end = ext4_da_write_end,
3900 .bmap = ext4_bmap,
3901 .invalidatepage = ext4_da_invalidatepage,
3902 .releasepage = ext4_releasepage,
3903 .direct_IO = ext4_direct_IO,
3904 .migratepage = buffer_migrate_page,
3905 .is_partially_uptodate = block_is_partially_uptodate,
3906 .error_remove_page = generic_error_remove_page,
3909 void ext4_set_aops(struct inode *inode)
3911 if (ext4_should_order_data(inode) &&
3912 test_opt(inode->i_sb, DELALLOC))
3913 inode->i_mapping->a_ops = &ext4_da_aops;
3914 else if (ext4_should_order_data(inode))
3915 inode->i_mapping->a_ops = &ext4_ordered_aops;
3916 else if (ext4_should_writeback_data(inode) &&
3917 test_opt(inode->i_sb, DELALLOC))
3918 inode->i_mapping->a_ops = &ext4_da_aops;
3919 else if (ext4_should_writeback_data(inode))
3920 inode->i_mapping->a_ops = &ext4_writeback_aops;
3921 else
3922 inode->i_mapping->a_ops = &ext4_journalled_aops;
3926 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3927 * up to the end of the block which corresponds to `from'.
3928 * This required during truncate. We need to physically zero the tail end
3929 * of that block so it doesn't yield old data if the file is later grown.
3931 int ext4_block_truncate_page(handle_t *handle,
3932 struct address_space *mapping, loff_t from)
3934 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3935 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3936 unsigned blocksize, length, pos;
3937 ext4_lblk_t iblock;
3938 struct inode *inode = mapping->host;
3939 struct buffer_head *bh;
3940 struct page *page;
3941 int err = 0;
3943 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3944 mapping_gfp_mask(mapping) & ~__GFP_FS);
3945 if (!page)
3946 return -EINVAL;
3948 blocksize = inode->i_sb->s_blocksize;
3949 length = blocksize - (offset & (blocksize - 1));
3950 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3953 * For "nobh" option, we can only work if we don't need to
3954 * read-in the page - otherwise we create buffers to do the IO.
3956 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3957 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3958 zero_user(page, offset, length);
3959 set_page_dirty(page);
3960 goto unlock;
3963 if (!page_has_buffers(page))
3964 create_empty_buffers(page, blocksize, 0);
3966 /* Find the buffer that contains "offset" */
3967 bh = page_buffers(page);
3968 pos = blocksize;
3969 while (offset >= pos) {
3970 bh = bh->b_this_page;
3971 iblock++;
3972 pos += blocksize;
3975 err = 0;
3976 if (buffer_freed(bh)) {
3977 BUFFER_TRACE(bh, "freed: skip");
3978 goto unlock;
3981 if (!buffer_mapped(bh)) {
3982 BUFFER_TRACE(bh, "unmapped");
3983 ext4_get_block(inode, iblock, bh, 0);
3984 /* unmapped? It's a hole - nothing to do */
3985 if (!buffer_mapped(bh)) {
3986 BUFFER_TRACE(bh, "still unmapped");
3987 goto unlock;
3991 /* Ok, it's mapped. Make sure it's up-to-date */
3992 if (PageUptodate(page))
3993 set_buffer_uptodate(bh);
3995 if (!buffer_uptodate(bh)) {
3996 err = -EIO;
3997 ll_rw_block(READ, 1, &bh);
3998 wait_on_buffer(bh);
3999 /* Uhhuh. Read error. Complain and punt. */
4000 if (!buffer_uptodate(bh))
4001 goto unlock;
4004 if (ext4_should_journal_data(inode)) {
4005 BUFFER_TRACE(bh, "get write access");
4006 err = ext4_journal_get_write_access(handle, bh);
4007 if (err)
4008 goto unlock;
4011 zero_user(page, offset, length);
4013 BUFFER_TRACE(bh, "zeroed end of block");
4015 err = 0;
4016 if (ext4_should_journal_data(inode)) {
4017 err = ext4_handle_dirty_metadata(handle, inode, bh);
4018 } else {
4019 if (ext4_should_order_data(inode))
4020 err = ext4_jbd2_file_inode(handle, inode);
4021 mark_buffer_dirty(bh);
4024 unlock:
4025 unlock_page(page);
4026 page_cache_release(page);
4027 return err;
4031 * Probably it should be a library function... search for first non-zero word
4032 * or memcmp with zero_page, whatever is better for particular architecture.
4033 * Linus?
4035 static inline int all_zeroes(__le32 *p, __le32 *q)
4037 while (p < q)
4038 if (*p++)
4039 return 0;
4040 return 1;
4044 * ext4_find_shared - find the indirect blocks for partial truncation.
4045 * @inode: inode in question
4046 * @depth: depth of the affected branch
4047 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4048 * @chain: place to store the pointers to partial indirect blocks
4049 * @top: place to the (detached) top of branch
4051 * This is a helper function used by ext4_truncate().
4053 * When we do truncate() we may have to clean the ends of several
4054 * indirect blocks but leave the blocks themselves alive. Block is
4055 * partially truncated if some data below the new i_size is refered
4056 * from it (and it is on the path to the first completely truncated
4057 * data block, indeed). We have to free the top of that path along
4058 * with everything to the right of the path. Since no allocation
4059 * past the truncation point is possible until ext4_truncate()
4060 * finishes, we may safely do the latter, but top of branch may
4061 * require special attention - pageout below the truncation point
4062 * might try to populate it.
4064 * We atomically detach the top of branch from the tree, store the
4065 * block number of its root in *@top, pointers to buffer_heads of
4066 * partially truncated blocks - in @chain[].bh and pointers to
4067 * their last elements that should not be removed - in
4068 * @chain[].p. Return value is the pointer to last filled element
4069 * of @chain.
4071 * The work left to caller to do the actual freeing of subtrees:
4072 * a) free the subtree starting from *@top
4073 * b) free the subtrees whose roots are stored in
4074 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4075 * c) free the subtrees growing from the inode past the @chain[0].
4076 * (no partially truncated stuff there). */
4078 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4079 ext4_lblk_t offsets[4], Indirect chain[4],
4080 __le32 *top)
4082 Indirect *partial, *p;
4083 int k, err;
4085 *top = 0;
4086 /* Make k index the deepest non-null offset + 1 */
4087 for (k = depth; k > 1 && !offsets[k-1]; k--)
4089 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4090 /* Writer: pointers */
4091 if (!partial)
4092 partial = chain + k-1;
4094 * If the branch acquired continuation since we've looked at it -
4095 * fine, it should all survive and (new) top doesn't belong to us.
4097 if (!partial->key && *partial->p)
4098 /* Writer: end */
4099 goto no_top;
4100 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4103 * OK, we've found the last block that must survive. The rest of our
4104 * branch should be detached before unlocking. However, if that rest
4105 * of branch is all ours and does not grow immediately from the inode
4106 * it's easier to cheat and just decrement partial->p.
4108 if (p == chain + k - 1 && p > chain) {
4109 p->p--;
4110 } else {
4111 *top = *p->p;
4112 /* Nope, don't do this in ext4. Must leave the tree intact */
4113 #if 0
4114 *p->p = 0;
4115 #endif
4117 /* Writer: end */
4119 while (partial > p) {
4120 brelse(partial->bh);
4121 partial--;
4123 no_top:
4124 return partial;
4128 * Zero a number of block pointers in either an inode or an indirect block.
4129 * If we restart the transaction we must again get write access to the
4130 * indirect block for further modification.
4132 * We release `count' blocks on disk, but (last - first) may be greater
4133 * than `count' because there can be holes in there.
4135 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4136 struct buffer_head *bh,
4137 ext4_fsblk_t block_to_free,
4138 unsigned long count, __le32 *first,
4139 __le32 *last)
4141 __le32 *p;
4142 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4144 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4145 flags |= EXT4_FREE_BLOCKS_METADATA;
4147 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4148 count)) {
4149 ext4_error(inode->i_sb, __func__, "inode #%lu: "
4150 "attempt to clear blocks %llu len %lu, invalid",
4151 inode->i_ino, (unsigned long long) block_to_free,
4152 count);
4153 return 1;
4156 if (try_to_extend_transaction(handle, inode)) {
4157 if (bh) {
4158 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4159 ext4_handle_dirty_metadata(handle, inode, bh);
4161 ext4_mark_inode_dirty(handle, inode);
4162 ext4_truncate_restart_trans(handle, inode,
4163 blocks_for_truncate(inode));
4164 if (bh) {
4165 BUFFER_TRACE(bh, "retaking write access");
4166 ext4_journal_get_write_access(handle, bh);
4170 for (p = first; p < last; p++)
4171 *p = 0;
4173 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4174 return 0;
4178 * ext4_free_data - free a list of data blocks
4179 * @handle: handle for this transaction
4180 * @inode: inode we are dealing with
4181 * @this_bh: indirect buffer_head which contains *@first and *@last
4182 * @first: array of block numbers
4183 * @last: points immediately past the end of array
4185 * We are freeing all blocks refered from that array (numbers are stored as
4186 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4188 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4189 * blocks are contiguous then releasing them at one time will only affect one
4190 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4191 * actually use a lot of journal space.
4193 * @this_bh will be %NULL if @first and @last point into the inode's direct
4194 * block pointers.
4196 static void ext4_free_data(handle_t *handle, struct inode *inode,
4197 struct buffer_head *this_bh,
4198 __le32 *first, __le32 *last)
4200 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4201 unsigned long count = 0; /* Number of blocks in the run */
4202 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4203 corresponding to
4204 block_to_free */
4205 ext4_fsblk_t nr; /* Current block # */
4206 __le32 *p; /* Pointer into inode/ind
4207 for current block */
4208 int err;
4210 if (this_bh) { /* For indirect block */
4211 BUFFER_TRACE(this_bh, "get_write_access");
4212 err = ext4_journal_get_write_access(handle, this_bh);
4213 /* Important: if we can't update the indirect pointers
4214 * to the blocks, we can't free them. */
4215 if (err)
4216 return;
4219 for (p = first; p < last; p++) {
4220 nr = le32_to_cpu(*p);
4221 if (nr) {
4222 /* accumulate blocks to free if they're contiguous */
4223 if (count == 0) {
4224 block_to_free = nr;
4225 block_to_free_p = p;
4226 count = 1;
4227 } else if (nr == block_to_free + count) {
4228 count++;
4229 } else {
4230 if (ext4_clear_blocks(handle, inode, this_bh,
4231 block_to_free, count,
4232 block_to_free_p, p))
4233 break;
4234 block_to_free = nr;
4235 block_to_free_p = p;
4236 count = 1;
4241 if (count > 0)
4242 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4243 count, block_to_free_p, p);
4245 if (this_bh) {
4246 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4249 * The buffer head should have an attached journal head at this
4250 * point. However, if the data is corrupted and an indirect
4251 * block pointed to itself, it would have been detached when
4252 * the block was cleared. Check for this instead of OOPSing.
4254 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4255 ext4_handle_dirty_metadata(handle, inode, this_bh);
4256 else
4257 ext4_error(inode->i_sb, __func__,
4258 "circular indirect block detected, "
4259 "inode=%lu, block=%llu",
4260 inode->i_ino,
4261 (unsigned long long) this_bh->b_blocknr);
4266 * ext4_free_branches - free an array of branches
4267 * @handle: JBD handle for this transaction
4268 * @inode: inode we are dealing with
4269 * @parent_bh: the buffer_head which contains *@first and *@last
4270 * @first: array of block numbers
4271 * @last: pointer immediately past the end of array
4272 * @depth: depth of the branches to free
4274 * We are freeing all blocks refered from these branches (numbers are
4275 * stored as little-endian 32-bit) and updating @inode->i_blocks
4276 * appropriately.
4278 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4279 struct buffer_head *parent_bh,
4280 __le32 *first, __le32 *last, int depth)
4282 ext4_fsblk_t nr;
4283 __le32 *p;
4285 if (ext4_handle_is_aborted(handle))
4286 return;
4288 if (depth--) {
4289 struct buffer_head *bh;
4290 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4291 p = last;
4292 while (--p >= first) {
4293 nr = le32_to_cpu(*p);
4294 if (!nr)
4295 continue; /* A hole */
4297 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4298 nr, 1)) {
4299 ext4_error(inode->i_sb, __func__,
4300 "indirect mapped block in inode "
4301 "#%lu invalid (level %d, blk #%lu)",
4302 inode->i_ino, depth,
4303 (unsigned long) nr);
4304 break;
4307 /* Go read the buffer for the next level down */
4308 bh = sb_bread(inode->i_sb, nr);
4311 * A read failure? Report error and clear slot
4312 * (should be rare).
4314 if (!bh) {
4315 ext4_error(inode->i_sb, "ext4_free_branches",
4316 "Read failure, inode=%lu, block=%llu",
4317 inode->i_ino, nr);
4318 continue;
4321 /* This zaps the entire block. Bottom up. */
4322 BUFFER_TRACE(bh, "free child branches");
4323 ext4_free_branches(handle, inode, bh,
4324 (__le32 *) bh->b_data,
4325 (__le32 *) bh->b_data + addr_per_block,
4326 depth);
4329 * We've probably journalled the indirect block several
4330 * times during the truncate. But it's no longer
4331 * needed and we now drop it from the transaction via
4332 * jbd2_journal_revoke().
4334 * That's easy if it's exclusively part of this
4335 * transaction. But if it's part of the committing
4336 * transaction then jbd2_journal_forget() will simply
4337 * brelse() it. That means that if the underlying
4338 * block is reallocated in ext4_get_block(),
4339 * unmap_underlying_metadata() will find this block
4340 * and will try to get rid of it. damn, damn.
4342 * If this block has already been committed to the
4343 * journal, a revoke record will be written. And
4344 * revoke records must be emitted *before* clearing
4345 * this block's bit in the bitmaps.
4347 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4350 * Everything below this this pointer has been
4351 * released. Now let this top-of-subtree go.
4353 * We want the freeing of this indirect block to be
4354 * atomic in the journal with the updating of the
4355 * bitmap block which owns it. So make some room in
4356 * the journal.
4358 * We zero the parent pointer *after* freeing its
4359 * pointee in the bitmaps, so if extend_transaction()
4360 * for some reason fails to put the bitmap changes and
4361 * the release into the same transaction, recovery
4362 * will merely complain about releasing a free block,
4363 * rather than leaking blocks.
4365 if (ext4_handle_is_aborted(handle))
4366 return;
4367 if (try_to_extend_transaction(handle, inode)) {
4368 ext4_mark_inode_dirty(handle, inode);
4369 ext4_truncate_restart_trans(handle, inode,
4370 blocks_for_truncate(inode));
4373 ext4_free_blocks(handle, inode, 0, nr, 1,
4374 EXT4_FREE_BLOCKS_METADATA);
4376 if (parent_bh) {
4378 * The block which we have just freed is
4379 * pointed to by an indirect block: journal it
4381 BUFFER_TRACE(parent_bh, "get_write_access");
4382 if (!ext4_journal_get_write_access(handle,
4383 parent_bh)){
4384 *p = 0;
4385 BUFFER_TRACE(parent_bh,
4386 "call ext4_handle_dirty_metadata");
4387 ext4_handle_dirty_metadata(handle,
4388 inode,
4389 parent_bh);
4393 } else {
4394 /* We have reached the bottom of the tree. */
4395 BUFFER_TRACE(parent_bh, "free data blocks");
4396 ext4_free_data(handle, inode, parent_bh, first, last);
4400 int ext4_can_truncate(struct inode *inode)
4402 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4403 return 0;
4404 if (S_ISREG(inode->i_mode))
4405 return 1;
4406 if (S_ISDIR(inode->i_mode))
4407 return 1;
4408 if (S_ISLNK(inode->i_mode))
4409 return !ext4_inode_is_fast_symlink(inode);
4410 return 0;
4414 * ext4_truncate()
4416 * We block out ext4_get_block() block instantiations across the entire
4417 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4418 * simultaneously on behalf of the same inode.
4420 * As we work through the truncate and commmit bits of it to the journal there
4421 * is one core, guiding principle: the file's tree must always be consistent on
4422 * disk. We must be able to restart the truncate after a crash.
4424 * The file's tree may be transiently inconsistent in memory (although it
4425 * probably isn't), but whenever we close off and commit a journal transaction,
4426 * the contents of (the filesystem + the journal) must be consistent and
4427 * restartable. It's pretty simple, really: bottom up, right to left (although
4428 * left-to-right works OK too).
4430 * Note that at recovery time, journal replay occurs *before* the restart of
4431 * truncate against the orphan inode list.
4433 * The committed inode has the new, desired i_size (which is the same as
4434 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4435 * that this inode's truncate did not complete and it will again call
4436 * ext4_truncate() to have another go. So there will be instantiated blocks
4437 * to the right of the truncation point in a crashed ext4 filesystem. But
4438 * that's fine - as long as they are linked from the inode, the post-crash
4439 * ext4_truncate() run will find them and release them.
4441 void ext4_truncate(struct inode *inode)
4443 handle_t *handle;
4444 struct ext4_inode_info *ei = EXT4_I(inode);
4445 __le32 *i_data = ei->i_data;
4446 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4447 struct address_space *mapping = inode->i_mapping;
4448 ext4_lblk_t offsets[4];
4449 Indirect chain[4];
4450 Indirect *partial;
4451 __le32 nr = 0;
4452 int n;
4453 ext4_lblk_t last_block;
4454 unsigned blocksize = inode->i_sb->s_blocksize;
4456 if (!ext4_can_truncate(inode))
4457 return;
4459 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4460 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4462 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4463 ext4_ext_truncate(inode);
4464 return;
4467 handle = start_transaction(inode);
4468 if (IS_ERR(handle))
4469 return; /* AKPM: return what? */
4471 last_block = (inode->i_size + blocksize-1)
4472 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4474 if (inode->i_size & (blocksize - 1))
4475 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4476 goto out_stop;
4478 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4479 if (n == 0)
4480 goto out_stop; /* error */
4483 * OK. This truncate is going to happen. We add the inode to the
4484 * orphan list, so that if this truncate spans multiple transactions,
4485 * and we crash, we will resume the truncate when the filesystem
4486 * recovers. It also marks the inode dirty, to catch the new size.
4488 * Implication: the file must always be in a sane, consistent
4489 * truncatable state while each transaction commits.
4491 if (ext4_orphan_add(handle, inode))
4492 goto out_stop;
4495 * From here we block out all ext4_get_block() callers who want to
4496 * modify the block allocation tree.
4498 down_write(&ei->i_data_sem);
4500 ext4_discard_preallocations(inode);
4503 * The orphan list entry will now protect us from any crash which
4504 * occurs before the truncate completes, so it is now safe to propagate
4505 * the new, shorter inode size (held for now in i_size) into the
4506 * on-disk inode. We do this via i_disksize, which is the value which
4507 * ext4 *really* writes onto the disk inode.
4509 ei->i_disksize = inode->i_size;
4511 if (n == 1) { /* direct blocks */
4512 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4513 i_data + EXT4_NDIR_BLOCKS);
4514 goto do_indirects;
4517 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4518 /* Kill the top of shared branch (not detached) */
4519 if (nr) {
4520 if (partial == chain) {
4521 /* Shared branch grows from the inode */
4522 ext4_free_branches(handle, inode, NULL,
4523 &nr, &nr+1, (chain+n-1) - partial);
4524 *partial->p = 0;
4526 * We mark the inode dirty prior to restart,
4527 * and prior to stop. No need for it here.
4529 } else {
4530 /* Shared branch grows from an indirect block */
4531 BUFFER_TRACE(partial->bh, "get_write_access");
4532 ext4_free_branches(handle, inode, partial->bh,
4533 partial->p,
4534 partial->p+1, (chain+n-1) - partial);
4537 /* Clear the ends of indirect blocks on the shared branch */
4538 while (partial > chain) {
4539 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4540 (__le32*)partial->bh->b_data+addr_per_block,
4541 (chain+n-1) - partial);
4542 BUFFER_TRACE(partial->bh, "call brelse");
4543 brelse(partial->bh);
4544 partial--;
4546 do_indirects:
4547 /* Kill the remaining (whole) subtrees */
4548 switch (offsets[0]) {
4549 default:
4550 nr = i_data[EXT4_IND_BLOCK];
4551 if (nr) {
4552 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4553 i_data[EXT4_IND_BLOCK] = 0;
4555 case EXT4_IND_BLOCK:
4556 nr = i_data[EXT4_DIND_BLOCK];
4557 if (nr) {
4558 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4559 i_data[EXT4_DIND_BLOCK] = 0;
4561 case EXT4_DIND_BLOCK:
4562 nr = i_data[EXT4_TIND_BLOCK];
4563 if (nr) {
4564 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4565 i_data[EXT4_TIND_BLOCK] = 0;
4567 case EXT4_TIND_BLOCK:
4571 up_write(&ei->i_data_sem);
4572 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4573 ext4_mark_inode_dirty(handle, inode);
4576 * In a multi-transaction truncate, we only make the final transaction
4577 * synchronous
4579 if (IS_SYNC(inode))
4580 ext4_handle_sync(handle);
4581 out_stop:
4583 * If this was a simple ftruncate(), and the file will remain alive
4584 * then we need to clear up the orphan record which we created above.
4585 * However, if this was a real unlink then we were called by
4586 * ext4_delete_inode(), and we allow that function to clean up the
4587 * orphan info for us.
4589 if (inode->i_nlink)
4590 ext4_orphan_del(handle, inode);
4592 ext4_journal_stop(handle);
4596 * ext4_get_inode_loc returns with an extra refcount against the inode's
4597 * underlying buffer_head on success. If 'in_mem' is true, we have all
4598 * data in memory that is needed to recreate the on-disk version of this
4599 * inode.
4601 static int __ext4_get_inode_loc(struct inode *inode,
4602 struct ext4_iloc *iloc, int in_mem)
4604 struct ext4_group_desc *gdp;
4605 struct buffer_head *bh;
4606 struct super_block *sb = inode->i_sb;
4607 ext4_fsblk_t block;
4608 int inodes_per_block, inode_offset;
4610 iloc->bh = NULL;
4611 if (!ext4_valid_inum(sb, inode->i_ino))
4612 return -EIO;
4614 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4615 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4616 if (!gdp)
4617 return -EIO;
4620 * Figure out the offset within the block group inode table
4622 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4623 inode_offset = ((inode->i_ino - 1) %
4624 EXT4_INODES_PER_GROUP(sb));
4625 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4626 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4628 bh = sb_getblk(sb, block);
4629 if (!bh) {
4630 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4631 "inode block - inode=%lu, block=%llu",
4632 inode->i_ino, block);
4633 return -EIO;
4635 if (!buffer_uptodate(bh)) {
4636 lock_buffer(bh);
4639 * If the buffer has the write error flag, we have failed
4640 * to write out another inode in the same block. In this
4641 * case, we don't have to read the block because we may
4642 * read the old inode data successfully.
4644 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4645 set_buffer_uptodate(bh);
4647 if (buffer_uptodate(bh)) {
4648 /* someone brought it uptodate while we waited */
4649 unlock_buffer(bh);
4650 goto has_buffer;
4654 * If we have all information of the inode in memory and this
4655 * is the only valid inode in the block, we need not read the
4656 * block.
4658 if (in_mem) {
4659 struct buffer_head *bitmap_bh;
4660 int i, start;
4662 start = inode_offset & ~(inodes_per_block - 1);
4664 /* Is the inode bitmap in cache? */
4665 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4666 if (!bitmap_bh)
4667 goto make_io;
4670 * If the inode bitmap isn't in cache then the
4671 * optimisation may end up performing two reads instead
4672 * of one, so skip it.
4674 if (!buffer_uptodate(bitmap_bh)) {
4675 brelse(bitmap_bh);
4676 goto make_io;
4678 for (i = start; i < start + inodes_per_block; i++) {
4679 if (i == inode_offset)
4680 continue;
4681 if (ext4_test_bit(i, bitmap_bh->b_data))
4682 break;
4684 brelse(bitmap_bh);
4685 if (i == start + inodes_per_block) {
4686 /* all other inodes are free, so skip I/O */
4687 memset(bh->b_data, 0, bh->b_size);
4688 set_buffer_uptodate(bh);
4689 unlock_buffer(bh);
4690 goto has_buffer;
4694 make_io:
4696 * If we need to do any I/O, try to pre-readahead extra
4697 * blocks from the inode table.
4699 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4700 ext4_fsblk_t b, end, table;
4701 unsigned num;
4703 table = ext4_inode_table(sb, gdp);
4704 /* s_inode_readahead_blks is always a power of 2 */
4705 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4706 if (table > b)
4707 b = table;
4708 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4709 num = EXT4_INODES_PER_GROUP(sb);
4710 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4711 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4712 num -= ext4_itable_unused_count(sb, gdp);
4713 table += num / inodes_per_block;
4714 if (end > table)
4715 end = table;
4716 while (b <= end)
4717 sb_breadahead(sb, b++);
4721 * There are other valid inodes in the buffer, this inode
4722 * has in-inode xattrs, or we don't have this inode in memory.
4723 * Read the block from disk.
4725 get_bh(bh);
4726 bh->b_end_io = end_buffer_read_sync;
4727 submit_bh(READ_META, bh);
4728 wait_on_buffer(bh);
4729 if (!buffer_uptodate(bh)) {
4730 ext4_error(sb, __func__,
4731 "unable to read inode block - inode=%lu, "
4732 "block=%llu", inode->i_ino, block);
4733 brelse(bh);
4734 return -EIO;
4737 has_buffer:
4738 iloc->bh = bh;
4739 return 0;
4742 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4744 /* We have all inode data except xattrs in memory here. */
4745 return __ext4_get_inode_loc(inode, iloc,
4746 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4749 void ext4_set_inode_flags(struct inode *inode)
4751 unsigned int flags = EXT4_I(inode)->i_flags;
4753 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4754 if (flags & EXT4_SYNC_FL)
4755 inode->i_flags |= S_SYNC;
4756 if (flags & EXT4_APPEND_FL)
4757 inode->i_flags |= S_APPEND;
4758 if (flags & EXT4_IMMUTABLE_FL)
4759 inode->i_flags |= S_IMMUTABLE;
4760 if (flags & EXT4_NOATIME_FL)
4761 inode->i_flags |= S_NOATIME;
4762 if (flags & EXT4_DIRSYNC_FL)
4763 inode->i_flags |= S_DIRSYNC;
4766 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4767 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4769 unsigned int flags = ei->vfs_inode.i_flags;
4771 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4772 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4773 if (flags & S_SYNC)
4774 ei->i_flags |= EXT4_SYNC_FL;
4775 if (flags & S_APPEND)
4776 ei->i_flags |= EXT4_APPEND_FL;
4777 if (flags & S_IMMUTABLE)
4778 ei->i_flags |= EXT4_IMMUTABLE_FL;
4779 if (flags & S_NOATIME)
4780 ei->i_flags |= EXT4_NOATIME_FL;
4781 if (flags & S_DIRSYNC)
4782 ei->i_flags |= EXT4_DIRSYNC_FL;
4785 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4786 struct ext4_inode_info *ei)
4788 blkcnt_t i_blocks ;
4789 struct inode *inode = &(ei->vfs_inode);
4790 struct super_block *sb = inode->i_sb;
4792 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4793 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4794 /* we are using combined 48 bit field */
4795 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4796 le32_to_cpu(raw_inode->i_blocks_lo);
4797 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4798 /* i_blocks represent file system block size */
4799 return i_blocks << (inode->i_blkbits - 9);
4800 } else {
4801 return i_blocks;
4803 } else {
4804 return le32_to_cpu(raw_inode->i_blocks_lo);
4808 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4810 struct ext4_iloc iloc;
4811 struct ext4_inode *raw_inode;
4812 struct ext4_inode_info *ei;
4813 struct inode *inode;
4814 journal_t *journal = EXT4_SB(sb)->s_journal;
4815 long ret;
4816 int block;
4818 inode = iget_locked(sb, ino);
4819 if (!inode)
4820 return ERR_PTR(-ENOMEM);
4821 if (!(inode->i_state & I_NEW))
4822 return inode;
4824 ei = EXT4_I(inode);
4825 iloc.bh = 0;
4827 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4828 if (ret < 0)
4829 goto bad_inode;
4830 raw_inode = ext4_raw_inode(&iloc);
4831 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4832 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4833 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4834 if (!(test_opt(inode->i_sb, NO_UID32))) {
4835 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4836 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4838 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4840 ei->i_state = 0;
4841 ei->i_dir_start_lookup = 0;
4842 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4843 /* We now have enough fields to check if the inode was active or not.
4844 * This is needed because nfsd might try to access dead inodes
4845 * the test is that same one that e2fsck uses
4846 * NeilBrown 1999oct15
4848 if (inode->i_nlink == 0) {
4849 if (inode->i_mode == 0 ||
4850 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4851 /* this inode is deleted */
4852 ret = -ESTALE;
4853 goto bad_inode;
4855 /* The only unlinked inodes we let through here have
4856 * valid i_mode and are being read by the orphan
4857 * recovery code: that's fine, we're about to complete
4858 * the process of deleting those. */
4860 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4861 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4862 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4863 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4864 ei->i_file_acl |=
4865 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4866 inode->i_size = ext4_isize(raw_inode);
4867 ei->i_disksize = inode->i_size;
4868 #ifdef CONFIG_QUOTA
4869 ei->i_reserved_quota = 0;
4870 #endif
4871 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4872 ei->i_block_group = iloc.block_group;
4873 ei->i_last_alloc_group = ~0;
4875 * NOTE! The in-memory inode i_data array is in little-endian order
4876 * even on big-endian machines: we do NOT byteswap the block numbers!
4878 for (block = 0; block < EXT4_N_BLOCKS; block++)
4879 ei->i_data[block] = raw_inode->i_block[block];
4880 INIT_LIST_HEAD(&ei->i_orphan);
4883 * Set transaction id's of transactions that have to be committed
4884 * to finish f[data]sync. We set them to currently running transaction
4885 * as we cannot be sure that the inode or some of its metadata isn't
4886 * part of the transaction - the inode could have been reclaimed and
4887 * now it is reread from disk.
4889 if (journal) {
4890 transaction_t *transaction;
4891 tid_t tid;
4893 spin_lock(&journal->j_state_lock);
4894 if (journal->j_running_transaction)
4895 transaction = journal->j_running_transaction;
4896 else
4897 transaction = journal->j_committing_transaction;
4898 if (transaction)
4899 tid = transaction->t_tid;
4900 else
4901 tid = journal->j_commit_sequence;
4902 spin_unlock(&journal->j_state_lock);
4903 ei->i_sync_tid = tid;
4904 ei->i_datasync_tid = tid;
4907 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4908 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4909 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4910 EXT4_INODE_SIZE(inode->i_sb)) {
4911 ret = -EIO;
4912 goto bad_inode;
4914 if (ei->i_extra_isize == 0) {
4915 /* The extra space is currently unused. Use it. */
4916 ei->i_extra_isize = sizeof(struct ext4_inode) -
4917 EXT4_GOOD_OLD_INODE_SIZE;
4918 } else {
4919 __le32 *magic = (void *)raw_inode +
4920 EXT4_GOOD_OLD_INODE_SIZE +
4921 ei->i_extra_isize;
4922 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4923 ei->i_state |= EXT4_STATE_XATTR;
4925 } else
4926 ei->i_extra_isize = 0;
4928 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4929 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4930 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4931 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4933 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4934 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4935 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4936 inode->i_version |=
4937 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4940 ret = 0;
4941 if (ei->i_file_acl &&
4942 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4943 ext4_error(sb, __func__,
4944 "bad extended attribute block %llu in inode #%lu",
4945 ei->i_file_acl, inode->i_ino);
4946 ret = -EIO;
4947 goto bad_inode;
4948 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4949 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4950 (S_ISLNK(inode->i_mode) &&
4951 !ext4_inode_is_fast_symlink(inode)))
4952 /* Validate extent which is part of inode */
4953 ret = ext4_ext_check_inode(inode);
4954 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4955 (S_ISLNK(inode->i_mode) &&
4956 !ext4_inode_is_fast_symlink(inode))) {
4957 /* Validate block references which are part of inode */
4958 ret = ext4_check_inode_blockref(inode);
4960 if (ret)
4961 goto bad_inode;
4963 if (S_ISREG(inode->i_mode)) {
4964 inode->i_op = &ext4_file_inode_operations;
4965 inode->i_fop = &ext4_file_operations;
4966 ext4_set_aops(inode);
4967 } else if (S_ISDIR(inode->i_mode)) {
4968 inode->i_op = &ext4_dir_inode_operations;
4969 inode->i_fop = &ext4_dir_operations;
4970 } else if (S_ISLNK(inode->i_mode)) {
4971 if (ext4_inode_is_fast_symlink(inode)) {
4972 inode->i_op = &ext4_fast_symlink_inode_operations;
4973 nd_terminate_link(ei->i_data, inode->i_size,
4974 sizeof(ei->i_data) - 1);
4975 } else {
4976 inode->i_op = &ext4_symlink_inode_operations;
4977 ext4_set_aops(inode);
4979 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4980 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4981 inode->i_op = &ext4_special_inode_operations;
4982 if (raw_inode->i_block[0])
4983 init_special_inode(inode, inode->i_mode,
4984 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4985 else
4986 init_special_inode(inode, inode->i_mode,
4987 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4988 } else {
4989 ret = -EIO;
4990 ext4_error(inode->i_sb, __func__,
4991 "bogus i_mode (%o) for inode=%lu",
4992 inode->i_mode, inode->i_ino);
4993 goto bad_inode;
4995 brelse(iloc.bh);
4996 ext4_set_inode_flags(inode);
4997 unlock_new_inode(inode);
4998 return inode;
5000 bad_inode:
5001 brelse(iloc.bh);
5002 iget_failed(inode);
5003 return ERR_PTR(ret);
5006 static int ext4_inode_blocks_set(handle_t *handle,
5007 struct ext4_inode *raw_inode,
5008 struct ext4_inode_info *ei)
5010 struct inode *inode = &(ei->vfs_inode);
5011 u64 i_blocks = inode->i_blocks;
5012 struct super_block *sb = inode->i_sb;
5014 if (i_blocks <= ~0U) {
5016 * i_blocks can be represnted in a 32 bit variable
5017 * as multiple of 512 bytes
5019 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5020 raw_inode->i_blocks_high = 0;
5021 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5022 return 0;
5024 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5025 return -EFBIG;
5027 if (i_blocks <= 0xffffffffffffULL) {
5029 * i_blocks can be represented in a 48 bit variable
5030 * as multiple of 512 bytes
5032 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5033 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5034 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5035 } else {
5036 ei->i_flags |= EXT4_HUGE_FILE_FL;
5037 /* i_block is stored in file system block size */
5038 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5039 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5040 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5042 return 0;
5046 * Post the struct inode info into an on-disk inode location in the
5047 * buffer-cache. This gobbles the caller's reference to the
5048 * buffer_head in the inode location struct.
5050 * The caller must have write access to iloc->bh.
5052 static int ext4_do_update_inode(handle_t *handle,
5053 struct inode *inode,
5054 struct ext4_iloc *iloc)
5056 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5057 struct ext4_inode_info *ei = EXT4_I(inode);
5058 struct buffer_head *bh = iloc->bh;
5059 int err = 0, rc, block;
5061 /* For fields not not tracking in the in-memory inode,
5062 * initialise them to zero for new inodes. */
5063 if (ei->i_state & EXT4_STATE_NEW)
5064 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5066 ext4_get_inode_flags(ei);
5067 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5068 if (!(test_opt(inode->i_sb, NO_UID32))) {
5069 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5070 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5072 * Fix up interoperability with old kernels. Otherwise, old inodes get
5073 * re-used with the upper 16 bits of the uid/gid intact
5075 if (!ei->i_dtime) {
5076 raw_inode->i_uid_high =
5077 cpu_to_le16(high_16_bits(inode->i_uid));
5078 raw_inode->i_gid_high =
5079 cpu_to_le16(high_16_bits(inode->i_gid));
5080 } else {
5081 raw_inode->i_uid_high = 0;
5082 raw_inode->i_gid_high = 0;
5084 } else {
5085 raw_inode->i_uid_low =
5086 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5087 raw_inode->i_gid_low =
5088 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5089 raw_inode->i_uid_high = 0;
5090 raw_inode->i_gid_high = 0;
5092 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5094 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5095 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5096 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5097 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5099 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5100 goto out_brelse;
5101 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5102 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5104 cpu_to_le32(EXT4_OS_HURD))
5105 raw_inode->i_file_acl_high =
5106 cpu_to_le16(ei->i_file_acl >> 32);
5107 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5108 ext4_isize_set(raw_inode, ei->i_disksize);
5109 if (ei->i_disksize > 0x7fffffffULL) {
5110 struct super_block *sb = inode->i_sb;
5111 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5112 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5113 EXT4_SB(sb)->s_es->s_rev_level ==
5114 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5115 /* If this is the first large file
5116 * created, add a flag to the superblock.
5118 err = ext4_journal_get_write_access(handle,
5119 EXT4_SB(sb)->s_sbh);
5120 if (err)
5121 goto out_brelse;
5122 ext4_update_dynamic_rev(sb);
5123 EXT4_SET_RO_COMPAT_FEATURE(sb,
5124 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5125 sb->s_dirt = 1;
5126 ext4_handle_sync(handle);
5127 err = ext4_handle_dirty_metadata(handle, inode,
5128 EXT4_SB(sb)->s_sbh);
5131 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5132 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5133 if (old_valid_dev(inode->i_rdev)) {
5134 raw_inode->i_block[0] =
5135 cpu_to_le32(old_encode_dev(inode->i_rdev));
5136 raw_inode->i_block[1] = 0;
5137 } else {
5138 raw_inode->i_block[0] = 0;
5139 raw_inode->i_block[1] =
5140 cpu_to_le32(new_encode_dev(inode->i_rdev));
5141 raw_inode->i_block[2] = 0;
5143 } else
5144 for (block = 0; block < EXT4_N_BLOCKS; block++)
5145 raw_inode->i_block[block] = ei->i_data[block];
5147 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5148 if (ei->i_extra_isize) {
5149 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5150 raw_inode->i_version_hi =
5151 cpu_to_le32(inode->i_version >> 32);
5152 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5155 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5156 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5157 if (!err)
5158 err = rc;
5159 ei->i_state &= ~EXT4_STATE_NEW;
5161 ext4_update_inode_fsync_trans(handle, inode, 0);
5162 out_brelse:
5163 brelse(bh);
5164 ext4_std_error(inode->i_sb, err);
5165 return err;
5169 * ext4_write_inode()
5171 * We are called from a few places:
5173 * - Within generic_file_write() for O_SYNC files.
5174 * Here, there will be no transaction running. We wait for any running
5175 * trasnaction to commit.
5177 * - Within sys_sync(), kupdate and such.
5178 * We wait on commit, if tol to.
5180 * - Within prune_icache() (PF_MEMALLOC == true)
5181 * Here we simply return. We can't afford to block kswapd on the
5182 * journal commit.
5184 * In all cases it is actually safe for us to return without doing anything,
5185 * because the inode has been copied into a raw inode buffer in
5186 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5187 * knfsd.
5189 * Note that we are absolutely dependent upon all inode dirtiers doing the
5190 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5191 * which we are interested.
5193 * It would be a bug for them to not do this. The code:
5195 * mark_inode_dirty(inode)
5196 * stuff();
5197 * inode->i_size = expr;
5199 * is in error because a kswapd-driven write_inode() could occur while
5200 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5201 * will no longer be on the superblock's dirty inode list.
5203 int ext4_write_inode(struct inode *inode, int wait)
5205 int err;
5207 if (current->flags & PF_MEMALLOC)
5208 return 0;
5210 if (EXT4_SB(inode->i_sb)->s_journal) {
5211 if (ext4_journal_current_handle()) {
5212 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5213 dump_stack();
5214 return -EIO;
5217 if (!wait)
5218 return 0;
5220 err = ext4_force_commit(inode->i_sb);
5221 } else {
5222 struct ext4_iloc iloc;
5224 err = ext4_get_inode_loc(inode, &iloc);
5225 if (err)
5226 return err;
5227 if (wait)
5228 sync_dirty_buffer(iloc.bh);
5229 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5230 ext4_error(inode->i_sb, __func__,
5231 "IO error syncing inode, "
5232 "inode=%lu, block=%llu",
5233 inode->i_ino,
5234 (unsigned long long)iloc.bh->b_blocknr);
5235 err = -EIO;
5238 return err;
5242 * ext4_setattr()
5244 * Called from notify_change.
5246 * We want to trap VFS attempts to truncate the file as soon as
5247 * possible. In particular, we want to make sure that when the VFS
5248 * shrinks i_size, we put the inode on the orphan list and modify
5249 * i_disksize immediately, so that during the subsequent flushing of
5250 * dirty pages and freeing of disk blocks, we can guarantee that any
5251 * commit will leave the blocks being flushed in an unused state on
5252 * disk. (On recovery, the inode will get truncated and the blocks will
5253 * be freed, so we have a strong guarantee that no future commit will
5254 * leave these blocks visible to the user.)
5256 * Another thing we have to assure is that if we are in ordered mode
5257 * and inode is still attached to the committing transaction, we must
5258 * we start writeout of all the dirty pages which are being truncated.
5259 * This way we are sure that all the data written in the previous
5260 * transaction are already on disk (truncate waits for pages under
5261 * writeback).
5263 * Called with inode->i_mutex down.
5265 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5267 struct inode *inode = dentry->d_inode;
5268 int error, rc = 0;
5269 const unsigned int ia_valid = attr->ia_valid;
5271 error = inode_change_ok(inode, attr);
5272 if (error)
5273 return error;
5275 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5276 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5277 handle_t *handle;
5279 /* (user+group)*(old+new) structure, inode write (sb,
5280 * inode block, ? - but truncate inode update has it) */
5281 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5282 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5283 if (IS_ERR(handle)) {
5284 error = PTR_ERR(handle);
5285 goto err_out;
5287 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5288 if (error) {
5289 ext4_journal_stop(handle);
5290 return error;
5292 /* Update corresponding info in inode so that everything is in
5293 * one transaction */
5294 if (attr->ia_valid & ATTR_UID)
5295 inode->i_uid = attr->ia_uid;
5296 if (attr->ia_valid & ATTR_GID)
5297 inode->i_gid = attr->ia_gid;
5298 error = ext4_mark_inode_dirty(handle, inode);
5299 ext4_journal_stop(handle);
5302 if (attr->ia_valid & ATTR_SIZE) {
5303 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5306 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5307 error = -EFBIG;
5308 goto err_out;
5313 if (S_ISREG(inode->i_mode) &&
5314 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5315 handle_t *handle;
5317 handle = ext4_journal_start(inode, 3);
5318 if (IS_ERR(handle)) {
5319 error = PTR_ERR(handle);
5320 goto err_out;
5323 error = ext4_orphan_add(handle, inode);
5324 EXT4_I(inode)->i_disksize = attr->ia_size;
5325 rc = ext4_mark_inode_dirty(handle, inode);
5326 if (!error)
5327 error = rc;
5328 ext4_journal_stop(handle);
5330 if (ext4_should_order_data(inode)) {
5331 error = ext4_begin_ordered_truncate(inode,
5332 attr->ia_size);
5333 if (error) {
5334 /* Do as much error cleanup as possible */
5335 handle = ext4_journal_start(inode, 3);
5336 if (IS_ERR(handle)) {
5337 ext4_orphan_del(NULL, inode);
5338 goto err_out;
5340 ext4_orphan_del(handle, inode);
5341 ext4_journal_stop(handle);
5342 goto err_out;
5347 rc = inode_setattr(inode, attr);
5349 /* If inode_setattr's call to ext4_truncate failed to get a
5350 * transaction handle at all, we need to clean up the in-core
5351 * orphan list manually. */
5352 if (inode->i_nlink)
5353 ext4_orphan_del(NULL, inode);
5355 if (!rc && (ia_valid & ATTR_MODE))
5356 rc = ext4_acl_chmod(inode);
5358 err_out:
5359 ext4_std_error(inode->i_sb, error);
5360 if (!error)
5361 error = rc;
5362 return error;
5365 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5366 struct kstat *stat)
5368 struct inode *inode;
5369 unsigned long delalloc_blocks;
5371 inode = dentry->d_inode;
5372 generic_fillattr(inode, stat);
5375 * We can't update i_blocks if the block allocation is delayed
5376 * otherwise in the case of system crash before the real block
5377 * allocation is done, we will have i_blocks inconsistent with
5378 * on-disk file blocks.
5379 * We always keep i_blocks updated together with real
5380 * allocation. But to not confuse with user, stat
5381 * will return the blocks that include the delayed allocation
5382 * blocks for this file.
5384 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5385 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5388 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5389 return 0;
5392 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5393 int chunk)
5395 int indirects;
5397 /* if nrblocks are contiguous */
5398 if (chunk) {
5400 * With N contiguous data blocks, it need at most
5401 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5402 * 2 dindirect blocks
5403 * 1 tindirect block
5405 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5406 return indirects + 3;
5409 * if nrblocks are not contiguous, worse case, each block touch
5410 * a indirect block, and each indirect block touch a double indirect
5411 * block, plus a triple indirect block
5413 indirects = nrblocks * 2 + 1;
5414 return indirects;
5417 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5419 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5420 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5421 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5425 * Account for index blocks, block groups bitmaps and block group
5426 * descriptor blocks if modify datablocks and index blocks
5427 * worse case, the indexs blocks spread over different block groups
5429 * If datablocks are discontiguous, they are possible to spread over
5430 * different block groups too. If they are contiuguous, with flexbg,
5431 * they could still across block group boundary.
5433 * Also account for superblock, inode, quota and xattr blocks
5435 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5437 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5438 int gdpblocks;
5439 int idxblocks;
5440 int ret = 0;
5443 * How many index blocks need to touch to modify nrblocks?
5444 * The "Chunk" flag indicating whether the nrblocks is
5445 * physically contiguous on disk
5447 * For Direct IO and fallocate, they calls get_block to allocate
5448 * one single extent at a time, so they could set the "Chunk" flag
5450 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5452 ret = idxblocks;
5455 * Now let's see how many group bitmaps and group descriptors need
5456 * to account
5458 groups = idxblocks;
5459 if (chunk)
5460 groups += 1;
5461 else
5462 groups += nrblocks;
5464 gdpblocks = groups;
5465 if (groups > ngroups)
5466 groups = ngroups;
5467 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5468 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5470 /* bitmaps and block group descriptor blocks */
5471 ret += groups + gdpblocks;
5473 /* Blocks for super block, inode, quota and xattr blocks */
5474 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5476 return ret;
5480 * Calulate the total number of credits to reserve to fit
5481 * the modification of a single pages into a single transaction,
5482 * which may include multiple chunks of block allocations.
5484 * This could be called via ext4_write_begin()
5486 * We need to consider the worse case, when
5487 * one new block per extent.
5489 int ext4_writepage_trans_blocks(struct inode *inode)
5491 int bpp = ext4_journal_blocks_per_page(inode);
5492 int ret;
5494 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5496 /* Account for data blocks for journalled mode */
5497 if (ext4_should_journal_data(inode))
5498 ret += bpp;
5499 return ret;
5503 * Calculate the journal credits for a chunk of data modification.
5505 * This is called from DIO, fallocate or whoever calling
5506 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5508 * journal buffers for data blocks are not included here, as DIO
5509 * and fallocate do no need to journal data buffers.
5511 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5513 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5517 * The caller must have previously called ext4_reserve_inode_write().
5518 * Give this, we know that the caller already has write access to iloc->bh.
5520 int ext4_mark_iloc_dirty(handle_t *handle,
5521 struct inode *inode, struct ext4_iloc *iloc)
5523 int err = 0;
5525 if (test_opt(inode->i_sb, I_VERSION))
5526 inode_inc_iversion(inode);
5528 /* the do_update_inode consumes one bh->b_count */
5529 get_bh(iloc->bh);
5531 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5532 err = ext4_do_update_inode(handle, inode, iloc);
5533 put_bh(iloc->bh);
5534 return err;
5538 * On success, We end up with an outstanding reference count against
5539 * iloc->bh. This _must_ be cleaned up later.
5543 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5544 struct ext4_iloc *iloc)
5546 int err;
5548 err = ext4_get_inode_loc(inode, iloc);
5549 if (!err) {
5550 BUFFER_TRACE(iloc->bh, "get_write_access");
5551 err = ext4_journal_get_write_access(handle, iloc->bh);
5552 if (err) {
5553 brelse(iloc->bh);
5554 iloc->bh = NULL;
5557 ext4_std_error(inode->i_sb, err);
5558 return err;
5562 * Expand an inode by new_extra_isize bytes.
5563 * Returns 0 on success or negative error number on failure.
5565 static int ext4_expand_extra_isize(struct inode *inode,
5566 unsigned int new_extra_isize,
5567 struct ext4_iloc iloc,
5568 handle_t *handle)
5570 struct ext4_inode *raw_inode;
5571 struct ext4_xattr_ibody_header *header;
5572 struct ext4_xattr_entry *entry;
5574 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5575 return 0;
5577 raw_inode = ext4_raw_inode(&iloc);
5579 header = IHDR(inode, raw_inode);
5580 entry = IFIRST(header);
5582 /* No extended attributes present */
5583 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5584 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5585 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5586 new_extra_isize);
5587 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5588 return 0;
5591 /* try to expand with EAs present */
5592 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5593 raw_inode, handle);
5597 * What we do here is to mark the in-core inode as clean with respect to inode
5598 * dirtiness (it may still be data-dirty).
5599 * This means that the in-core inode may be reaped by prune_icache
5600 * without having to perform any I/O. This is a very good thing,
5601 * because *any* task may call prune_icache - even ones which
5602 * have a transaction open against a different journal.
5604 * Is this cheating? Not really. Sure, we haven't written the
5605 * inode out, but prune_icache isn't a user-visible syncing function.
5606 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5607 * we start and wait on commits.
5609 * Is this efficient/effective? Well, we're being nice to the system
5610 * by cleaning up our inodes proactively so they can be reaped
5611 * without I/O. But we are potentially leaving up to five seconds'
5612 * worth of inodes floating about which prune_icache wants us to
5613 * write out. One way to fix that would be to get prune_icache()
5614 * to do a write_super() to free up some memory. It has the desired
5615 * effect.
5617 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5619 struct ext4_iloc iloc;
5620 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5621 static unsigned int mnt_count;
5622 int err, ret;
5624 might_sleep();
5625 err = ext4_reserve_inode_write(handle, inode, &iloc);
5626 if (ext4_handle_valid(handle) &&
5627 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5628 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5630 * We need extra buffer credits since we may write into EA block
5631 * with this same handle. If journal_extend fails, then it will
5632 * only result in a minor loss of functionality for that inode.
5633 * If this is felt to be critical, then e2fsck should be run to
5634 * force a large enough s_min_extra_isize.
5636 if ((jbd2_journal_extend(handle,
5637 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5638 ret = ext4_expand_extra_isize(inode,
5639 sbi->s_want_extra_isize,
5640 iloc, handle);
5641 if (ret) {
5642 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5643 if (mnt_count !=
5644 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5645 ext4_warning(inode->i_sb, __func__,
5646 "Unable to expand inode %lu. Delete"
5647 " some EAs or run e2fsck.",
5648 inode->i_ino);
5649 mnt_count =
5650 le16_to_cpu(sbi->s_es->s_mnt_count);
5655 if (!err)
5656 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5657 return err;
5661 * ext4_dirty_inode() is called from __mark_inode_dirty()
5663 * We're really interested in the case where a file is being extended.
5664 * i_size has been changed by generic_commit_write() and we thus need
5665 * to include the updated inode in the current transaction.
5667 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5668 * are allocated to the file.
5670 * If the inode is marked synchronous, we don't honour that here - doing
5671 * so would cause a commit on atime updates, which we don't bother doing.
5672 * We handle synchronous inodes at the highest possible level.
5674 void ext4_dirty_inode(struct inode *inode)
5676 handle_t *handle;
5678 handle = ext4_journal_start(inode, 2);
5679 if (IS_ERR(handle))
5680 goto out;
5682 ext4_mark_inode_dirty(handle, inode);
5684 ext4_journal_stop(handle);
5685 out:
5686 return;
5689 #if 0
5691 * Bind an inode's backing buffer_head into this transaction, to prevent
5692 * it from being flushed to disk early. Unlike
5693 * ext4_reserve_inode_write, this leaves behind no bh reference and
5694 * returns no iloc structure, so the caller needs to repeat the iloc
5695 * lookup to mark the inode dirty later.
5697 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5699 struct ext4_iloc iloc;
5701 int err = 0;
5702 if (handle) {
5703 err = ext4_get_inode_loc(inode, &iloc);
5704 if (!err) {
5705 BUFFER_TRACE(iloc.bh, "get_write_access");
5706 err = jbd2_journal_get_write_access(handle, iloc.bh);
5707 if (!err)
5708 err = ext4_handle_dirty_metadata(handle,
5709 inode,
5710 iloc.bh);
5711 brelse(iloc.bh);
5714 ext4_std_error(inode->i_sb, err);
5715 return err;
5717 #endif
5719 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5721 journal_t *journal;
5722 handle_t *handle;
5723 int err;
5726 * We have to be very careful here: changing a data block's
5727 * journaling status dynamically is dangerous. If we write a
5728 * data block to the journal, change the status and then delete
5729 * that block, we risk forgetting to revoke the old log record
5730 * from the journal and so a subsequent replay can corrupt data.
5731 * So, first we make sure that the journal is empty and that
5732 * nobody is changing anything.
5735 journal = EXT4_JOURNAL(inode);
5736 if (!journal)
5737 return 0;
5738 if (is_journal_aborted(journal))
5739 return -EROFS;
5741 jbd2_journal_lock_updates(journal);
5742 jbd2_journal_flush(journal);
5745 * OK, there are no updates running now, and all cached data is
5746 * synced to disk. We are now in a completely consistent state
5747 * which doesn't have anything in the journal, and we know that
5748 * no filesystem updates are running, so it is safe to modify
5749 * the inode's in-core data-journaling state flag now.
5752 if (val)
5753 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5754 else
5755 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5756 ext4_set_aops(inode);
5758 jbd2_journal_unlock_updates(journal);
5760 /* Finally we can mark the inode as dirty. */
5762 handle = ext4_journal_start(inode, 1);
5763 if (IS_ERR(handle))
5764 return PTR_ERR(handle);
5766 err = ext4_mark_inode_dirty(handle, inode);
5767 ext4_handle_sync(handle);
5768 ext4_journal_stop(handle);
5769 ext4_std_error(inode->i_sb, err);
5771 return err;
5774 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5776 return !buffer_mapped(bh);
5779 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5781 struct page *page = vmf->page;
5782 loff_t size;
5783 unsigned long len;
5784 int ret = -EINVAL;
5785 void *fsdata;
5786 struct file *file = vma->vm_file;
5787 struct inode *inode = file->f_path.dentry->d_inode;
5788 struct address_space *mapping = inode->i_mapping;
5791 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5792 * get i_mutex because we are already holding mmap_sem.
5794 down_read(&inode->i_alloc_sem);
5795 size = i_size_read(inode);
5796 if (page->mapping != mapping || size <= page_offset(page)
5797 || !PageUptodate(page)) {
5798 /* page got truncated from under us? */
5799 goto out_unlock;
5801 ret = 0;
5802 if (PageMappedToDisk(page))
5803 goto out_unlock;
5805 if (page->index == size >> PAGE_CACHE_SHIFT)
5806 len = size & ~PAGE_CACHE_MASK;
5807 else
5808 len = PAGE_CACHE_SIZE;
5810 lock_page(page);
5812 * return if we have all the buffers mapped. This avoid
5813 * the need to call write_begin/write_end which does a
5814 * journal_start/journal_stop which can block and take
5815 * long time
5817 if (page_has_buffers(page)) {
5818 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5819 ext4_bh_unmapped)) {
5820 unlock_page(page);
5821 goto out_unlock;
5824 unlock_page(page);
5826 * OK, we need to fill the hole... Do write_begin write_end
5827 * to do block allocation/reservation.We are not holding
5828 * inode.i__mutex here. That allow * parallel write_begin,
5829 * write_end call. lock_page prevent this from happening
5830 * on the same page though
5832 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5833 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5834 if (ret < 0)
5835 goto out_unlock;
5836 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5837 len, len, page, fsdata);
5838 if (ret < 0)
5839 goto out_unlock;
5840 ret = 0;
5841 out_unlock:
5842 if (ret)
5843 ret = VM_FAULT_SIGBUS;
5844 up_read(&inode->i_alloc_sem);
5845 return ret;