2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
65 #include <linux/atomic.h>
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
86 static DEFINE_MUTEX(cgroup_mutex
);
87 static DEFINE_MUTEX(cgroup_root_mutex
);
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
98 #include <linux/cgroup_subsys.h>
101 #define MAX_CGROUP_ROOT_NAMELEN 64
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
108 struct cgroupfs_root
{
109 struct super_block
*sb
;
112 * The bitmask of subsystems intended to be attached to this
115 unsigned long subsys_mask
;
117 /* Unique id for this hierarchy. */
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask
;
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list
;
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup
;
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups
;
132 /* A list running through the active hierarchies */
133 struct list_head root_list
;
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list
;
138 /* Hierarchy-specific flags */
141 /* The path to use for release notifications. */
142 char release_agent_path
[PATH_MAX
];
144 /* The name for this hierarchy - may be empty */
145 char name
[MAX_CGROUP_ROOT_NAMELEN
];
149 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
150 * subsystems that are otherwise unattached - it never has more than a
151 * single cgroup, and all tasks are part of that cgroup.
153 static struct cgroupfs_root rootnode
;
156 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
159 struct list_head node
;
160 struct dentry
*dentry
;
165 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
166 * cgroup_subsys->use_id != 0.
168 #define CSS_ID_MAX (65535)
171 * The css to which this ID points. This pointer is set to valid value
172 * after cgroup is populated. If cgroup is removed, this will be NULL.
173 * This pointer is expected to be RCU-safe because destroy()
174 * is called after synchronize_rcu(). But for safe use, css_is_removed()
175 * css_tryget() should be used for avoiding race.
177 struct cgroup_subsys_state __rcu
*css
;
183 * Depth in hierarchy which this ID belongs to.
185 unsigned short depth
;
187 * ID is freed by RCU. (and lookup routine is RCU safe.)
189 struct rcu_head rcu_head
;
191 * Hierarchy of CSS ID belongs to.
193 unsigned short stack
[0]; /* Array of Length (depth+1) */
197 * cgroup_event represents events which userspace want to receive.
199 struct cgroup_event
{
201 * Cgroup which the event belongs to.
205 * Control file which the event associated.
209 * eventfd to signal userspace about the event.
211 struct eventfd_ctx
*eventfd
;
213 * Each of these stored in a list by the cgroup.
215 struct list_head list
;
217 * All fields below needed to unregister event when
218 * userspace closes eventfd.
221 wait_queue_head_t
*wqh
;
223 struct work_struct remove
;
226 /* The list of hierarchy roots */
228 static LIST_HEAD(roots
);
229 static int root_count
;
231 static DEFINE_IDA(hierarchy_ida
);
232 static int next_hierarchy_id
;
233 static DEFINE_SPINLOCK(hierarchy_id_lock
);
235 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
236 #define dummytop (&rootnode.top_cgroup)
238 /* This flag indicates whether tasks in the fork and exit paths should
239 * check for fork/exit handlers to call. This avoids us having to do
240 * extra work in the fork/exit path if none of the subsystems need to
243 static int need_forkexit_callback __read_mostly
;
245 #ifdef CONFIG_PROVE_LOCKING
246 int cgroup_lock_is_held(void)
248 return lockdep_is_held(&cgroup_mutex
);
250 #else /* #ifdef CONFIG_PROVE_LOCKING */
251 int cgroup_lock_is_held(void)
253 return mutex_is_locked(&cgroup_mutex
);
255 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
257 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
259 static int css_unbias_refcnt(int refcnt
)
261 return refcnt
>= 0 ? refcnt
: refcnt
- CSS_DEACT_BIAS
;
264 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
265 static int css_refcnt(struct cgroup_subsys_state
*css
)
267 int v
= atomic_read(&css
->refcnt
);
269 return css_unbias_refcnt(v
);
272 /* convenient tests for these bits */
273 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
275 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
278 /* bits in struct cgroupfs_root flags field */
280 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
281 ROOT_XATTR
, /* supports extended attributes */
284 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
287 (1 << CGRP_RELEASABLE
) |
288 (1 << CGRP_NOTIFY_ON_RELEASE
);
289 return (cgrp
->flags
& bits
) == bits
;
292 static int notify_on_release(const struct cgroup
*cgrp
)
294 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
297 static int clone_children(const struct cgroup
*cgrp
)
299 return test_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
303 * for_each_subsys() allows you to iterate on each subsystem attached to
304 * an active hierarchy
306 #define for_each_subsys(_root, _ss) \
307 list_for_each_entry(_ss, &_root->subsys_list, sibling)
309 /* for_each_active_root() allows you to iterate across the active hierarchies */
310 #define for_each_active_root(_root) \
311 list_for_each_entry(_root, &roots, root_list)
313 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
315 return dentry
->d_fsdata
;
318 static inline struct cfent
*__d_cfe(struct dentry
*dentry
)
320 return dentry
->d_fsdata
;
323 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
325 return __d_cfe(dentry
)->type
;
328 /* the list of cgroups eligible for automatic release. Protected by
329 * release_list_lock */
330 static LIST_HEAD(release_list
);
331 static DEFINE_RAW_SPINLOCK(release_list_lock
);
332 static void cgroup_release_agent(struct work_struct
*work
);
333 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
334 static void check_for_release(struct cgroup
*cgrp
);
336 /* Link structure for associating css_set objects with cgroups */
337 struct cg_cgroup_link
{
339 * List running through cg_cgroup_links associated with a
340 * cgroup, anchored on cgroup->css_sets
342 struct list_head cgrp_link_list
;
345 * List running through cg_cgroup_links pointing at a
346 * single css_set object, anchored on css_set->cg_links
348 struct list_head cg_link_list
;
352 /* The default css_set - used by init and its children prior to any
353 * hierarchies being mounted. It contains a pointer to the root state
354 * for each subsystem. Also used to anchor the list of css_sets. Not
355 * reference-counted, to improve performance when child cgroups
356 * haven't been created.
359 static struct css_set init_css_set
;
360 static struct cg_cgroup_link init_css_set_link
;
362 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
363 struct cgroup_subsys_state
*css
);
365 /* css_set_lock protects the list of css_set objects, and the
366 * chain of tasks off each css_set. Nests outside task->alloc_lock
367 * due to cgroup_iter_start() */
368 static DEFINE_RWLOCK(css_set_lock
);
369 static int css_set_count
;
372 * hash table for cgroup groups. This improves the performance to find
373 * an existing css_set. This hash doesn't (currently) take into
374 * account cgroups in empty hierarchies.
376 #define CSS_SET_HASH_BITS 7
377 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
378 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
380 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
384 unsigned long tmp
= 0UL;
386 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
387 tmp
+= (unsigned long)css
[i
];
388 tmp
= (tmp
>> 16) ^ tmp
;
390 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
392 return &css_set_table
[index
];
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly
;
401 static void __put_css_set(struct css_set
*cg
, int taskexit
)
403 struct cg_cgroup_link
*link
;
404 struct cg_cgroup_link
*saved_link
;
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
410 if (atomic_add_unless(&cg
->refcount
, -1, 1))
412 write_lock(&css_set_lock
);
413 if (!atomic_dec_and_test(&cg
->refcount
)) {
414 write_unlock(&css_set_lock
);
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hlist_del(&cg
->hlist
);
422 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
424 struct cgroup
*cgrp
= link
->cgrp
;
425 list_del(&link
->cg_link_list
);
426 list_del(&link
->cgrp_link_list
);
427 if (atomic_dec_and_test(&cgrp
->count
) &&
428 notify_on_release(cgrp
)) {
430 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
431 check_for_release(cgrp
);
437 write_unlock(&css_set_lock
);
438 kfree_rcu(cg
, rcu_head
);
442 * refcounted get/put for css_set objects
444 static inline void get_css_set(struct css_set
*cg
)
446 atomic_inc(&cg
->refcount
);
449 static inline void put_css_set(struct css_set
*cg
)
451 __put_css_set(cg
, 0);
454 static inline void put_css_set_taskexit(struct css_set
*cg
)
456 __put_css_set(cg
, 1);
460 * compare_css_sets - helper function for find_existing_css_set().
461 * @cg: candidate css_set being tested
462 * @old_cg: existing css_set for a task
463 * @new_cgrp: cgroup that's being entered by the task
464 * @template: desired set of css pointers in css_set (pre-calculated)
466 * Returns true if "cg" matches "old_cg" except for the hierarchy
467 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
469 static bool compare_css_sets(struct css_set
*cg
,
470 struct css_set
*old_cg
,
471 struct cgroup
*new_cgrp
,
472 struct cgroup_subsys_state
*template[])
474 struct list_head
*l1
, *l2
;
476 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
477 /* Not all subsystems matched */
482 * Compare cgroup pointers in order to distinguish between
483 * different cgroups in heirarchies with no subsystems. We
484 * could get by with just this check alone (and skip the
485 * memcmp above) but on most setups the memcmp check will
486 * avoid the need for this more expensive check on almost all
491 l2
= &old_cg
->cg_links
;
493 struct cg_cgroup_link
*cgl1
, *cgl2
;
494 struct cgroup
*cg1
, *cg2
;
498 /* See if we reached the end - both lists are equal length. */
499 if (l1
== &cg
->cg_links
) {
500 BUG_ON(l2
!= &old_cg
->cg_links
);
503 BUG_ON(l2
== &old_cg
->cg_links
);
505 /* Locate the cgroups associated with these links. */
506 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
507 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
510 /* Hierarchies should be linked in the same order. */
511 BUG_ON(cg1
->root
!= cg2
->root
);
514 * If this hierarchy is the hierarchy of the cgroup
515 * that's changing, then we need to check that this
516 * css_set points to the new cgroup; if it's any other
517 * hierarchy, then this css_set should point to the
518 * same cgroup as the old css_set.
520 if (cg1
->root
== new_cgrp
->root
) {
532 * find_existing_css_set() is a helper for
533 * find_css_set(), and checks to see whether an existing
534 * css_set is suitable.
536 * oldcg: the cgroup group that we're using before the cgroup
539 * cgrp: the cgroup that we're moving into
541 * template: location in which to build the desired set of subsystem
542 * state objects for the new cgroup group
544 static struct css_set
*find_existing_css_set(
545 struct css_set
*oldcg
,
547 struct cgroup_subsys_state
*template[])
550 struct cgroupfs_root
*root
= cgrp
->root
;
551 struct hlist_head
*hhead
;
552 struct hlist_node
*node
;
556 * Build the set of subsystem state objects that we want to see in the
557 * new css_set. while subsystems can change globally, the entries here
558 * won't change, so no need for locking.
560 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
561 if (root
->subsys_mask
& (1UL << i
)) {
562 /* Subsystem is in this hierarchy. So we want
563 * the subsystem state from the new
565 template[i
] = cgrp
->subsys
[i
];
567 /* Subsystem is not in this hierarchy, so we
568 * don't want to change the subsystem state */
569 template[i
] = oldcg
->subsys
[i
];
573 hhead
= css_set_hash(template);
574 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
575 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
578 /* This css_set matches what we need */
582 /* No existing cgroup group matched */
586 static void free_cg_links(struct list_head
*tmp
)
588 struct cg_cgroup_link
*link
;
589 struct cg_cgroup_link
*saved_link
;
591 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
592 list_del(&link
->cgrp_link_list
);
598 * allocate_cg_links() allocates "count" cg_cgroup_link structures
599 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
600 * success or a negative error
602 static int allocate_cg_links(int count
, struct list_head
*tmp
)
604 struct cg_cgroup_link
*link
;
607 for (i
= 0; i
< count
; i
++) {
608 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
613 list_add(&link
->cgrp_link_list
, tmp
);
619 * link_css_set - a helper function to link a css_set to a cgroup
620 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
621 * @cg: the css_set to be linked
622 * @cgrp: the destination cgroup
624 static void link_css_set(struct list_head
*tmp_cg_links
,
625 struct css_set
*cg
, struct cgroup
*cgrp
)
627 struct cg_cgroup_link
*link
;
629 BUG_ON(list_empty(tmp_cg_links
));
630 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
634 atomic_inc(&cgrp
->count
);
635 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
637 * Always add links to the tail of the list so that the list
638 * is sorted by order of hierarchy creation
640 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
644 * find_css_set() takes an existing cgroup group and a
645 * cgroup object, and returns a css_set object that's
646 * equivalent to the old group, but with the given cgroup
647 * substituted into the appropriate hierarchy. Must be called with
650 static struct css_set
*find_css_set(
651 struct css_set
*oldcg
, struct cgroup
*cgrp
)
654 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
656 struct list_head tmp_cg_links
;
658 struct hlist_head
*hhead
;
659 struct cg_cgroup_link
*link
;
661 /* First see if we already have a cgroup group that matches
663 read_lock(&css_set_lock
);
664 res
= find_existing_css_set(oldcg
, cgrp
, template);
667 read_unlock(&css_set_lock
);
672 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
676 /* Allocate all the cg_cgroup_link objects that we'll need */
677 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
682 atomic_set(&res
->refcount
, 1);
683 INIT_LIST_HEAD(&res
->cg_links
);
684 INIT_LIST_HEAD(&res
->tasks
);
685 INIT_HLIST_NODE(&res
->hlist
);
687 /* Copy the set of subsystem state objects generated in
688 * find_existing_css_set() */
689 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
691 write_lock(&css_set_lock
);
692 /* Add reference counts and links from the new css_set. */
693 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
694 struct cgroup
*c
= link
->cgrp
;
695 if (c
->root
== cgrp
->root
)
697 link_css_set(&tmp_cg_links
, res
, c
);
700 BUG_ON(!list_empty(&tmp_cg_links
));
704 /* Add this cgroup group to the hash table */
705 hhead
= css_set_hash(res
->subsys
);
706 hlist_add_head(&res
->hlist
, hhead
);
708 write_unlock(&css_set_lock
);
714 * Return the cgroup for "task" from the given hierarchy. Must be
715 * called with cgroup_mutex held.
717 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
718 struct cgroupfs_root
*root
)
721 struct cgroup
*res
= NULL
;
723 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
724 read_lock(&css_set_lock
);
726 * No need to lock the task - since we hold cgroup_mutex the
727 * task can't change groups, so the only thing that can happen
728 * is that it exits and its css is set back to init_css_set.
731 if (css
== &init_css_set
) {
732 res
= &root
->top_cgroup
;
734 struct cg_cgroup_link
*link
;
735 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
736 struct cgroup
*c
= link
->cgrp
;
737 if (c
->root
== root
) {
743 read_unlock(&css_set_lock
);
749 * There is one global cgroup mutex. We also require taking
750 * task_lock() when dereferencing a task's cgroup subsys pointers.
751 * See "The task_lock() exception", at the end of this comment.
753 * A task must hold cgroup_mutex to modify cgroups.
755 * Any task can increment and decrement the count field without lock.
756 * So in general, code holding cgroup_mutex can't rely on the count
757 * field not changing. However, if the count goes to zero, then only
758 * cgroup_attach_task() can increment it again. Because a count of zero
759 * means that no tasks are currently attached, therefore there is no
760 * way a task attached to that cgroup can fork (the other way to
761 * increment the count). So code holding cgroup_mutex can safely
762 * assume that if the count is zero, it will stay zero. Similarly, if
763 * a task holds cgroup_mutex on a cgroup with zero count, it
764 * knows that the cgroup won't be removed, as cgroup_rmdir()
767 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
768 * (usually) take cgroup_mutex. These are the two most performance
769 * critical pieces of code here. The exception occurs on cgroup_exit(),
770 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
771 * is taken, and if the cgroup count is zero, a usermode call made
772 * to the release agent with the name of the cgroup (path relative to
773 * the root of cgroup file system) as the argument.
775 * A cgroup can only be deleted if both its 'count' of using tasks
776 * is zero, and its list of 'children' cgroups is empty. Since all
777 * tasks in the system use _some_ cgroup, and since there is always at
778 * least one task in the system (init, pid == 1), therefore, top_cgroup
779 * always has either children cgroups and/or using tasks. So we don't
780 * need a special hack to ensure that top_cgroup cannot be deleted.
782 * The task_lock() exception
784 * The need for this exception arises from the action of
785 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
786 * another. It does so using cgroup_mutex, however there are
787 * several performance critical places that need to reference
788 * task->cgroup without the expense of grabbing a system global
789 * mutex. Therefore except as noted below, when dereferencing or, as
790 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
791 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
792 * the task_struct routinely used for such matters.
794 * P.S. One more locking exception. RCU is used to guard the
795 * update of a tasks cgroup pointer by cgroup_attach_task()
799 * cgroup_lock - lock out any changes to cgroup structures
802 void cgroup_lock(void)
804 mutex_lock(&cgroup_mutex
);
806 EXPORT_SYMBOL_GPL(cgroup_lock
);
809 * cgroup_unlock - release lock on cgroup changes
811 * Undo the lock taken in a previous cgroup_lock() call.
813 void cgroup_unlock(void)
815 mutex_unlock(&cgroup_mutex
);
817 EXPORT_SYMBOL_GPL(cgroup_unlock
);
820 * A couple of forward declarations required, due to cyclic reference loop:
821 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
822 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
826 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
);
827 static struct dentry
*cgroup_lookup(struct inode
*, struct dentry
*, unsigned int);
828 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
829 static int cgroup_populate_dir(struct cgroup
*cgrp
, bool base_files
,
830 unsigned long subsys_mask
);
831 static const struct inode_operations cgroup_dir_inode_operations
;
832 static const struct file_operations proc_cgroupstats_operations
;
834 static struct backing_dev_info cgroup_backing_dev_info
= {
836 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
839 static int alloc_css_id(struct cgroup_subsys
*ss
,
840 struct cgroup
*parent
, struct cgroup
*child
);
842 static struct inode
*cgroup_new_inode(umode_t mode
, struct super_block
*sb
)
844 struct inode
*inode
= new_inode(sb
);
847 inode
->i_ino
= get_next_ino();
848 inode
->i_mode
= mode
;
849 inode
->i_uid
= current_fsuid();
850 inode
->i_gid
= current_fsgid();
851 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
852 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
858 * Call subsys's pre_destroy handler.
859 * This is called before css refcnt check.
861 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
863 struct cgroup_subsys
*ss
;
866 for_each_subsys(cgrp
->root
, ss
) {
867 if (!ss
->pre_destroy
)
870 ret
= ss
->pre_destroy(cgrp
);
872 /* ->pre_destroy() failure is being deprecated */
873 WARN_ON_ONCE(!ss
->__DEPRECATED_clear_css_refs
);
881 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
883 /* is dentry a directory ? if so, kfree() associated cgroup */
884 if (S_ISDIR(inode
->i_mode
)) {
885 struct cgroup
*cgrp
= dentry
->d_fsdata
;
886 struct cgroup_subsys
*ss
;
887 BUG_ON(!(cgroup_is_removed(cgrp
)));
888 /* It's possible for external users to be holding css
889 * reference counts on a cgroup; css_put() needs to
890 * be able to access the cgroup after decrementing
891 * the reference count in order to know if it needs to
892 * queue the cgroup to be handled by the release
896 mutex_lock(&cgroup_mutex
);
898 * Release the subsystem state objects.
900 for_each_subsys(cgrp
->root
, ss
)
903 cgrp
->root
->number_of_cgroups
--;
904 mutex_unlock(&cgroup_mutex
);
907 * Drop the active superblock reference that we took when we
910 deactivate_super(cgrp
->root
->sb
);
913 * if we're getting rid of the cgroup, refcount should ensure
914 * that there are no pidlists left.
916 BUG_ON(!list_empty(&cgrp
->pidlists
));
918 simple_xattrs_free(&cgrp
->xattrs
);
920 kfree_rcu(cgrp
, rcu_head
);
922 struct cfent
*cfe
= __d_cfe(dentry
);
923 struct cgroup
*cgrp
= dentry
->d_parent
->d_fsdata
;
924 struct cftype
*cft
= cfe
->type
;
926 WARN_ONCE(!list_empty(&cfe
->node
) &&
927 cgrp
!= &cgrp
->root
->top_cgroup
,
928 "cfe still linked for %s\n", cfe
->type
->name
);
930 simple_xattrs_free(&cft
->xattrs
);
935 static int cgroup_delete(const struct dentry
*d
)
940 static void remove_dir(struct dentry
*d
)
942 struct dentry
*parent
= dget(d
->d_parent
);
945 simple_rmdir(parent
->d_inode
, d
);
949 static int cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
953 lockdep_assert_held(&cgrp
->dentry
->d_inode
->i_mutex
);
954 lockdep_assert_held(&cgroup_mutex
);
956 list_for_each_entry(cfe
, &cgrp
->files
, node
) {
957 struct dentry
*d
= cfe
->dentry
;
959 if (cft
&& cfe
->type
!= cft
)
964 simple_unlink(cgrp
->dentry
->d_inode
, d
);
965 list_del_init(&cfe
->node
);
974 * cgroup_clear_directory - selective removal of base and subsystem files
975 * @dir: directory containing the files
976 * @base_files: true if the base files should be removed
977 * @subsys_mask: mask of the subsystem ids whose files should be removed
979 static void cgroup_clear_directory(struct dentry
*dir
, bool base_files
,
980 unsigned long subsys_mask
)
982 struct cgroup
*cgrp
= __d_cgrp(dir
);
983 struct cgroup_subsys
*ss
;
985 for_each_subsys(cgrp
->root
, ss
) {
986 struct cftype_set
*set
;
987 if (!test_bit(ss
->subsys_id
, &subsys_mask
))
989 list_for_each_entry(set
, &ss
->cftsets
, node
)
990 cgroup_rm_file(cgrp
, set
->cfts
);
993 while (!list_empty(&cgrp
->files
))
994 cgroup_rm_file(cgrp
, NULL
);
999 * NOTE : the dentry must have been dget()'ed
1001 static void cgroup_d_remove_dir(struct dentry
*dentry
)
1003 struct dentry
*parent
;
1004 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
1006 cgroup_clear_directory(dentry
, true, root
->subsys_mask
);
1008 parent
= dentry
->d_parent
;
1009 spin_lock(&parent
->d_lock
);
1010 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1011 list_del_init(&dentry
->d_u
.d_child
);
1012 spin_unlock(&dentry
->d_lock
);
1013 spin_unlock(&parent
->d_lock
);
1018 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
1019 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
1020 * reference to css->refcnt. In general, this refcnt is expected to goes down
1023 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
1025 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
1027 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
1029 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
1030 wake_up_all(&cgroup_rmdir_waitq
);
1033 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
1038 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
1040 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
1045 * Call with cgroup_mutex held. Drops reference counts on modules, including
1046 * any duplicate ones that parse_cgroupfs_options took. If this function
1047 * returns an error, no reference counts are touched.
1049 static int rebind_subsystems(struct cgroupfs_root
*root
,
1050 unsigned long final_subsys_mask
)
1052 unsigned long added_mask
, removed_mask
;
1053 struct cgroup
*cgrp
= &root
->top_cgroup
;
1056 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1057 BUG_ON(!mutex_is_locked(&cgroup_root_mutex
));
1059 removed_mask
= root
->actual_subsys_mask
& ~final_subsys_mask
;
1060 added_mask
= final_subsys_mask
& ~root
->actual_subsys_mask
;
1061 /* Check that any added subsystems are currently free */
1062 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1063 unsigned long bit
= 1UL << i
;
1064 struct cgroup_subsys
*ss
= subsys
[i
];
1065 if (!(bit
& added_mask
))
1068 * Nobody should tell us to do a subsys that doesn't exist:
1069 * parse_cgroupfs_options should catch that case and refcounts
1070 * ensure that subsystems won't disappear once selected.
1073 if (ss
->root
!= &rootnode
) {
1074 /* Subsystem isn't free */
1079 /* Currently we don't handle adding/removing subsystems when
1080 * any child cgroups exist. This is theoretically supportable
1081 * but involves complex error handling, so it's being left until
1083 if (root
->number_of_cgroups
> 1)
1086 /* Process each subsystem */
1087 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1088 struct cgroup_subsys
*ss
= subsys
[i
];
1089 unsigned long bit
= 1UL << i
;
1090 if (bit
& added_mask
) {
1091 /* We're binding this subsystem to this hierarchy */
1093 BUG_ON(cgrp
->subsys
[i
]);
1094 BUG_ON(!dummytop
->subsys
[i
]);
1095 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
1096 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
1097 cgrp
->subsys
[i
]->cgroup
= cgrp
;
1098 list_move(&ss
->sibling
, &root
->subsys_list
);
1102 /* refcount was already taken, and we're keeping it */
1103 } else if (bit
& removed_mask
) {
1104 /* We're removing this subsystem */
1106 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
1107 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
1110 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1111 cgrp
->subsys
[i
] = NULL
;
1112 subsys
[i
]->root
= &rootnode
;
1113 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1114 /* subsystem is now free - drop reference on module */
1115 module_put(ss
->module
);
1116 } else if (bit
& final_subsys_mask
) {
1117 /* Subsystem state should already exist */
1119 BUG_ON(!cgrp
->subsys
[i
]);
1121 * a refcount was taken, but we already had one, so
1122 * drop the extra reference.
1124 module_put(ss
->module
);
1125 #ifdef CONFIG_MODULE_UNLOAD
1126 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1129 /* Subsystem state shouldn't exist */
1130 BUG_ON(cgrp
->subsys
[i
]);
1133 root
->subsys_mask
= root
->actual_subsys_mask
= final_subsys_mask
;
1139 static int cgroup_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1141 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
1142 struct cgroup_subsys
*ss
;
1144 mutex_lock(&cgroup_root_mutex
);
1145 for_each_subsys(root
, ss
)
1146 seq_printf(seq
, ",%s", ss
->name
);
1147 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1148 seq_puts(seq
, ",noprefix");
1149 if (test_bit(ROOT_XATTR
, &root
->flags
))
1150 seq_puts(seq
, ",xattr");
1151 if (strlen(root
->release_agent_path
))
1152 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1153 if (clone_children(&root
->top_cgroup
))
1154 seq_puts(seq
, ",clone_children");
1155 if (strlen(root
->name
))
1156 seq_printf(seq
, ",name=%s", root
->name
);
1157 mutex_unlock(&cgroup_root_mutex
);
1161 struct cgroup_sb_opts
{
1162 unsigned long subsys_mask
;
1163 unsigned long flags
;
1164 char *release_agent
;
1165 bool clone_children
;
1167 /* User explicitly requested empty subsystem */
1170 struct cgroupfs_root
*new_root
;
1175 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1176 * with cgroup_mutex held to protect the subsys[] array. This function takes
1177 * refcounts on subsystems to be used, unless it returns error, in which case
1178 * no refcounts are taken.
1180 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1182 char *token
, *o
= data
;
1183 bool all_ss
= false, one_ss
= false;
1184 unsigned long mask
= (unsigned long)-1;
1186 bool module_pin_failed
= false;
1188 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1190 #ifdef CONFIG_CPUSETS
1191 mask
= ~(1UL << cpuset_subsys_id
);
1194 memset(opts
, 0, sizeof(*opts
));
1196 while ((token
= strsep(&o
, ",")) != NULL
) {
1199 if (!strcmp(token
, "none")) {
1200 /* Explicitly have no subsystems */
1204 if (!strcmp(token
, "all")) {
1205 /* Mutually exclusive option 'all' + subsystem name */
1211 if (!strcmp(token
, "noprefix")) {
1212 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1215 if (!strcmp(token
, "clone_children")) {
1216 opts
->clone_children
= true;
1219 if (!strcmp(token
, "xattr")) {
1220 set_bit(ROOT_XATTR
, &opts
->flags
);
1223 if (!strncmp(token
, "release_agent=", 14)) {
1224 /* Specifying two release agents is forbidden */
1225 if (opts
->release_agent
)
1227 opts
->release_agent
=
1228 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1229 if (!opts
->release_agent
)
1233 if (!strncmp(token
, "name=", 5)) {
1234 const char *name
= token
+ 5;
1235 /* Can't specify an empty name */
1238 /* Must match [\w.-]+ */
1239 for (i
= 0; i
< strlen(name
); i
++) {
1243 if ((c
== '.') || (c
== '-') || (c
== '_'))
1247 /* Specifying two names is forbidden */
1250 opts
->name
= kstrndup(name
,
1251 MAX_CGROUP_ROOT_NAMELEN
- 1,
1259 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1260 struct cgroup_subsys
*ss
= subsys
[i
];
1263 if (strcmp(token
, ss
->name
))
1268 /* Mutually exclusive option 'all' + subsystem name */
1271 set_bit(i
, &opts
->subsys_mask
);
1276 if (i
== CGROUP_SUBSYS_COUNT
)
1281 * If the 'all' option was specified select all the subsystems,
1282 * otherwise if 'none', 'name=' and a subsystem name options
1283 * were not specified, let's default to 'all'
1285 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
)) {
1286 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1287 struct cgroup_subsys
*ss
= subsys
[i
];
1292 set_bit(i
, &opts
->subsys_mask
);
1296 /* Consistency checks */
1299 * Option noprefix was introduced just for backward compatibility
1300 * with the old cpuset, so we allow noprefix only if mounting just
1301 * the cpuset subsystem.
1303 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1304 (opts
->subsys_mask
& mask
))
1308 /* Can't specify "none" and some subsystems */
1309 if (opts
->subsys_mask
&& opts
->none
)
1313 * We either have to specify by name or by subsystems. (So all
1314 * empty hierarchies must have a name).
1316 if (!opts
->subsys_mask
&& !opts
->name
)
1320 * Grab references on all the modules we'll need, so the subsystems
1321 * don't dance around before rebind_subsystems attaches them. This may
1322 * take duplicate reference counts on a subsystem that's already used,
1323 * but rebind_subsystems handles this case.
1325 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1326 unsigned long bit
= 1UL << i
;
1328 if (!(bit
& opts
->subsys_mask
))
1330 if (!try_module_get(subsys
[i
]->module
)) {
1331 module_pin_failed
= true;
1335 if (module_pin_failed
) {
1337 * oops, one of the modules was going away. this means that we
1338 * raced with a module_delete call, and to the user this is
1339 * essentially a "subsystem doesn't exist" case.
1341 for (i
--; i
>= 0; i
--) {
1342 /* drop refcounts only on the ones we took */
1343 unsigned long bit
= 1UL << i
;
1345 if (!(bit
& opts
->subsys_mask
))
1347 module_put(subsys
[i
]->module
);
1355 static void drop_parsed_module_refcounts(unsigned long subsys_mask
)
1358 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1359 unsigned long bit
= 1UL << i
;
1361 if (!(bit
& subsys_mask
))
1363 module_put(subsys
[i
]->module
);
1367 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1370 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1371 struct cgroup
*cgrp
= &root
->top_cgroup
;
1372 struct cgroup_sb_opts opts
;
1373 unsigned long added_mask
, removed_mask
;
1375 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1376 mutex_lock(&cgroup_mutex
);
1377 mutex_lock(&cgroup_root_mutex
);
1379 /* See what subsystems are wanted */
1380 ret
= parse_cgroupfs_options(data
, &opts
);
1384 /* See feature-removal-schedule.txt */
1385 if (opts
.subsys_mask
!= root
->actual_subsys_mask
|| opts
.release_agent
)
1386 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1387 task_tgid_nr(current
), current
->comm
);
1389 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1390 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1392 /* Don't allow flags or name to change at remount */
1393 if (opts
.flags
!= root
->flags
||
1394 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1396 drop_parsed_module_refcounts(opts
.subsys_mask
);
1400 ret
= rebind_subsystems(root
, opts
.subsys_mask
);
1402 drop_parsed_module_refcounts(opts
.subsys_mask
);
1406 /* clear out any existing files and repopulate subsystem files */
1407 cgroup_clear_directory(cgrp
->dentry
, false, removed_mask
);
1408 /* re-populate subsystem files */
1409 cgroup_populate_dir(cgrp
, false, added_mask
);
1411 if (opts
.release_agent
)
1412 strcpy(root
->release_agent_path
, opts
.release_agent
);
1414 kfree(opts
.release_agent
);
1416 mutex_unlock(&cgroup_root_mutex
);
1417 mutex_unlock(&cgroup_mutex
);
1418 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1422 static const struct super_operations cgroup_ops
= {
1423 .statfs
= simple_statfs
,
1424 .drop_inode
= generic_delete_inode
,
1425 .show_options
= cgroup_show_options
,
1426 .remount_fs
= cgroup_remount
,
1429 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1431 INIT_LIST_HEAD(&cgrp
->sibling
);
1432 INIT_LIST_HEAD(&cgrp
->children
);
1433 INIT_LIST_HEAD(&cgrp
->files
);
1434 INIT_LIST_HEAD(&cgrp
->css_sets
);
1435 INIT_LIST_HEAD(&cgrp
->release_list
);
1436 INIT_LIST_HEAD(&cgrp
->pidlists
);
1437 mutex_init(&cgrp
->pidlist_mutex
);
1438 INIT_LIST_HEAD(&cgrp
->event_list
);
1439 spin_lock_init(&cgrp
->event_list_lock
);
1440 simple_xattrs_init(&cgrp
->xattrs
);
1443 static void init_cgroup_root(struct cgroupfs_root
*root
)
1445 struct cgroup
*cgrp
= &root
->top_cgroup
;
1447 INIT_LIST_HEAD(&root
->subsys_list
);
1448 INIT_LIST_HEAD(&root
->root_list
);
1449 INIT_LIST_HEAD(&root
->allcg_list
);
1450 root
->number_of_cgroups
= 1;
1452 cgrp
->top_cgroup
= cgrp
;
1453 list_add_tail(&cgrp
->allcg_node
, &root
->allcg_list
);
1454 init_cgroup_housekeeping(cgrp
);
1457 static bool init_root_id(struct cgroupfs_root
*root
)
1462 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1464 spin_lock(&hierarchy_id_lock
);
1465 /* Try to allocate the next unused ID */
1466 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1467 &root
->hierarchy_id
);
1469 /* Try again starting from 0 */
1470 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1472 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1473 } else if (ret
!= -EAGAIN
) {
1474 /* Can only get here if the 31-bit IDR is full ... */
1477 spin_unlock(&hierarchy_id_lock
);
1482 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1484 struct cgroup_sb_opts
*opts
= data
;
1485 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1487 /* If we asked for a name then it must match */
1488 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1492 * If we asked for subsystems (or explicitly for no
1493 * subsystems) then they must match
1495 if ((opts
->subsys_mask
|| opts
->none
)
1496 && (opts
->subsys_mask
!= root
->subsys_mask
))
1502 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1504 struct cgroupfs_root
*root
;
1506 if (!opts
->subsys_mask
&& !opts
->none
)
1509 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1511 return ERR_PTR(-ENOMEM
);
1513 if (!init_root_id(root
)) {
1515 return ERR_PTR(-ENOMEM
);
1517 init_cgroup_root(root
);
1519 root
->subsys_mask
= opts
->subsys_mask
;
1520 root
->flags
= opts
->flags
;
1521 if (opts
->release_agent
)
1522 strcpy(root
->release_agent_path
, opts
->release_agent
);
1524 strcpy(root
->name
, opts
->name
);
1525 if (opts
->clone_children
)
1526 set_bit(CGRP_CLONE_CHILDREN
, &root
->top_cgroup
.flags
);
1530 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1535 BUG_ON(!root
->hierarchy_id
);
1536 spin_lock(&hierarchy_id_lock
);
1537 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1538 spin_unlock(&hierarchy_id_lock
);
1542 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1545 struct cgroup_sb_opts
*opts
= data
;
1547 /* If we don't have a new root, we can't set up a new sb */
1548 if (!opts
->new_root
)
1551 BUG_ON(!opts
->subsys_mask
&& !opts
->none
);
1553 ret
= set_anon_super(sb
, NULL
);
1557 sb
->s_fs_info
= opts
->new_root
;
1558 opts
->new_root
->sb
= sb
;
1560 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1561 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1562 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1563 sb
->s_op
= &cgroup_ops
;
1568 static int cgroup_get_rootdir(struct super_block
*sb
)
1570 static const struct dentry_operations cgroup_dops
= {
1571 .d_iput
= cgroup_diput
,
1572 .d_delete
= cgroup_delete
,
1575 struct inode
*inode
=
1576 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1581 inode
->i_fop
= &simple_dir_operations
;
1582 inode
->i_op
= &cgroup_dir_inode_operations
;
1583 /* directories start off with i_nlink == 2 (for "." entry) */
1585 sb
->s_root
= d_make_root(inode
);
1588 /* for everything else we want ->d_op set */
1589 sb
->s_d_op
= &cgroup_dops
;
1593 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1594 int flags
, const char *unused_dev_name
,
1597 struct cgroup_sb_opts opts
;
1598 struct cgroupfs_root
*root
;
1600 struct super_block
*sb
;
1601 struct cgroupfs_root
*new_root
;
1602 struct inode
*inode
;
1604 /* First find the desired set of subsystems */
1605 mutex_lock(&cgroup_mutex
);
1606 ret
= parse_cgroupfs_options(data
, &opts
);
1607 mutex_unlock(&cgroup_mutex
);
1612 * Allocate a new cgroup root. We may not need it if we're
1613 * reusing an existing hierarchy.
1615 new_root
= cgroup_root_from_opts(&opts
);
1616 if (IS_ERR(new_root
)) {
1617 ret
= PTR_ERR(new_root
);
1620 opts
.new_root
= new_root
;
1622 /* Locate an existing or new sb for this hierarchy */
1623 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, 0, &opts
);
1626 cgroup_drop_root(opts
.new_root
);
1630 root
= sb
->s_fs_info
;
1632 if (root
== opts
.new_root
) {
1633 /* We used the new root structure, so this is a new hierarchy */
1634 struct list_head tmp_cg_links
;
1635 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1636 struct cgroupfs_root
*existing_root
;
1637 const struct cred
*cred
;
1640 BUG_ON(sb
->s_root
!= NULL
);
1642 ret
= cgroup_get_rootdir(sb
);
1644 goto drop_new_super
;
1645 inode
= sb
->s_root
->d_inode
;
1647 mutex_lock(&inode
->i_mutex
);
1648 mutex_lock(&cgroup_mutex
);
1649 mutex_lock(&cgroup_root_mutex
);
1651 /* Check for name clashes with existing mounts */
1653 if (strlen(root
->name
))
1654 for_each_active_root(existing_root
)
1655 if (!strcmp(existing_root
->name
, root
->name
))
1659 * We're accessing css_set_count without locking
1660 * css_set_lock here, but that's OK - it can only be
1661 * increased by someone holding cgroup_lock, and
1662 * that's us. The worst that can happen is that we
1663 * have some link structures left over
1665 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1669 ret
= rebind_subsystems(root
, root
->subsys_mask
);
1670 if (ret
== -EBUSY
) {
1671 free_cg_links(&tmp_cg_links
);
1675 * There must be no failure case after here, since rebinding
1676 * takes care of subsystems' refcounts, which are explicitly
1677 * dropped in the failure exit path.
1680 /* EBUSY should be the only error here */
1683 list_add(&root
->root_list
, &roots
);
1686 sb
->s_root
->d_fsdata
= root_cgrp
;
1687 root
->top_cgroup
.dentry
= sb
->s_root
;
1689 /* Link the top cgroup in this hierarchy into all
1690 * the css_set objects */
1691 write_lock(&css_set_lock
);
1692 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1693 struct hlist_head
*hhead
= &css_set_table
[i
];
1694 struct hlist_node
*node
;
1697 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1698 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1700 write_unlock(&css_set_lock
);
1702 free_cg_links(&tmp_cg_links
);
1704 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1705 BUG_ON(!list_empty(&root_cgrp
->children
));
1706 BUG_ON(root
->number_of_cgroups
!= 1);
1708 cred
= override_creds(&init_cred
);
1709 cgroup_populate_dir(root_cgrp
, true, root
->subsys_mask
);
1711 mutex_unlock(&cgroup_root_mutex
);
1712 mutex_unlock(&cgroup_mutex
);
1713 mutex_unlock(&inode
->i_mutex
);
1716 * We re-used an existing hierarchy - the new root (if
1717 * any) is not needed
1719 cgroup_drop_root(opts
.new_root
);
1720 /* no subsys rebinding, so refcounts don't change */
1721 drop_parsed_module_refcounts(opts
.subsys_mask
);
1724 kfree(opts
.release_agent
);
1726 return dget(sb
->s_root
);
1729 mutex_unlock(&cgroup_root_mutex
);
1730 mutex_unlock(&cgroup_mutex
);
1731 mutex_unlock(&inode
->i_mutex
);
1733 deactivate_locked_super(sb
);
1735 drop_parsed_module_refcounts(opts
.subsys_mask
);
1737 kfree(opts
.release_agent
);
1739 return ERR_PTR(ret
);
1742 static void cgroup_kill_sb(struct super_block
*sb
) {
1743 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1744 struct cgroup
*cgrp
= &root
->top_cgroup
;
1746 struct cg_cgroup_link
*link
;
1747 struct cg_cgroup_link
*saved_link
;
1751 BUG_ON(root
->number_of_cgroups
!= 1);
1752 BUG_ON(!list_empty(&cgrp
->children
));
1753 BUG_ON(!list_empty(&cgrp
->sibling
));
1755 mutex_lock(&cgroup_mutex
);
1756 mutex_lock(&cgroup_root_mutex
);
1758 /* Rebind all subsystems back to the default hierarchy */
1759 ret
= rebind_subsystems(root
, 0);
1760 /* Shouldn't be able to fail ... */
1764 * Release all the links from css_sets to this hierarchy's
1767 write_lock(&css_set_lock
);
1769 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1771 list_del(&link
->cg_link_list
);
1772 list_del(&link
->cgrp_link_list
);
1775 write_unlock(&css_set_lock
);
1777 if (!list_empty(&root
->root_list
)) {
1778 list_del(&root
->root_list
);
1782 mutex_unlock(&cgroup_root_mutex
);
1783 mutex_unlock(&cgroup_mutex
);
1785 simple_xattrs_free(&cgrp
->xattrs
);
1787 kill_litter_super(sb
);
1788 cgroup_drop_root(root
);
1791 static struct file_system_type cgroup_fs_type
= {
1793 .mount
= cgroup_mount
,
1794 .kill_sb
= cgroup_kill_sb
,
1797 static struct kobject
*cgroup_kobj
;
1800 * cgroup_path - generate the path of a cgroup
1801 * @cgrp: the cgroup in question
1802 * @buf: the buffer to write the path into
1803 * @buflen: the length of the buffer
1805 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1806 * reference. Writes path of cgroup into buf. Returns 0 on success,
1809 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1812 struct dentry
*dentry
= rcu_dereference_check(cgrp
->dentry
,
1813 cgroup_lock_is_held());
1815 if (!dentry
|| cgrp
== dummytop
) {
1817 * Inactive subsystems have no dentry for their root
1824 start
= buf
+ buflen
;
1828 int len
= dentry
->d_name
.len
;
1830 if ((start
-= len
) < buf
)
1831 return -ENAMETOOLONG
;
1832 memcpy(start
, dentry
->d_name
.name
, len
);
1833 cgrp
= cgrp
->parent
;
1837 dentry
= rcu_dereference_check(cgrp
->dentry
,
1838 cgroup_lock_is_held());
1842 return -ENAMETOOLONG
;
1845 memmove(buf
, start
, buf
+ buflen
- start
);
1848 EXPORT_SYMBOL_GPL(cgroup_path
);
1851 * Control Group taskset
1853 struct task_and_cgroup
{
1854 struct task_struct
*task
;
1855 struct cgroup
*cgrp
;
1859 struct cgroup_taskset
{
1860 struct task_and_cgroup single
;
1861 struct flex_array
*tc_array
;
1864 struct cgroup
*cur_cgrp
;
1868 * cgroup_taskset_first - reset taskset and return the first task
1869 * @tset: taskset of interest
1871 * @tset iteration is initialized and the first task is returned.
1873 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
1875 if (tset
->tc_array
) {
1877 return cgroup_taskset_next(tset
);
1879 tset
->cur_cgrp
= tset
->single
.cgrp
;
1880 return tset
->single
.task
;
1883 EXPORT_SYMBOL_GPL(cgroup_taskset_first
);
1886 * cgroup_taskset_next - iterate to the next task in taskset
1887 * @tset: taskset of interest
1889 * Return the next task in @tset. Iteration must have been initialized
1890 * with cgroup_taskset_first().
1892 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
1894 struct task_and_cgroup
*tc
;
1896 if (!tset
->tc_array
|| tset
->idx
>= tset
->tc_array_len
)
1899 tc
= flex_array_get(tset
->tc_array
, tset
->idx
++);
1900 tset
->cur_cgrp
= tc
->cgrp
;
1903 EXPORT_SYMBOL_GPL(cgroup_taskset_next
);
1906 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1907 * @tset: taskset of interest
1909 * Return the cgroup for the current (last returned) task of @tset. This
1910 * function must be preceded by either cgroup_taskset_first() or
1911 * cgroup_taskset_next().
1913 struct cgroup
*cgroup_taskset_cur_cgroup(struct cgroup_taskset
*tset
)
1915 return tset
->cur_cgrp
;
1917 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup
);
1920 * cgroup_taskset_size - return the number of tasks in taskset
1921 * @tset: taskset of interest
1923 int cgroup_taskset_size(struct cgroup_taskset
*tset
)
1925 return tset
->tc_array
? tset
->tc_array_len
: 1;
1927 EXPORT_SYMBOL_GPL(cgroup_taskset_size
);
1931 * cgroup_task_migrate - move a task from one cgroup to another.
1933 * 'guarantee' is set if the caller promises that a new css_set for the task
1934 * will already exist. If not set, this function might sleep, and can fail with
1935 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1937 static void cgroup_task_migrate(struct cgroup
*cgrp
, struct cgroup
*oldcgrp
,
1938 struct task_struct
*tsk
, struct css_set
*newcg
)
1940 struct css_set
*oldcg
;
1943 * We are synchronized through threadgroup_lock() against PF_EXITING
1944 * setting such that we can't race against cgroup_exit() changing the
1945 * css_set to init_css_set and dropping the old one.
1947 WARN_ON_ONCE(tsk
->flags
& PF_EXITING
);
1948 oldcg
= tsk
->cgroups
;
1951 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1954 /* Update the css_set linked lists if we're using them */
1955 write_lock(&css_set_lock
);
1956 if (!list_empty(&tsk
->cg_list
))
1957 list_move(&tsk
->cg_list
, &newcg
->tasks
);
1958 write_unlock(&css_set_lock
);
1961 * We just gained a reference on oldcg by taking it from the task. As
1962 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1963 * it here; it will be freed under RCU.
1967 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1971 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1972 * @cgrp: the cgroup the task is attaching to
1973 * @tsk: the task to be attached
1975 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1978 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1981 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1982 struct cgroup
*oldcgrp
;
1983 struct cgroupfs_root
*root
= cgrp
->root
;
1984 struct cgroup_taskset tset
= { };
1985 struct css_set
*newcg
;
1987 /* @tsk either already exited or can't exit until the end */
1988 if (tsk
->flags
& PF_EXITING
)
1991 /* Nothing to do if the task is already in that cgroup */
1992 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1993 if (cgrp
== oldcgrp
)
1996 tset
.single
.task
= tsk
;
1997 tset
.single
.cgrp
= oldcgrp
;
1999 for_each_subsys(root
, ss
) {
2000 if (ss
->can_attach
) {
2001 retval
= ss
->can_attach(cgrp
, &tset
);
2004 * Remember on which subsystem the can_attach()
2005 * failed, so that we only call cancel_attach()
2006 * against the subsystems whose can_attach()
2007 * succeeded. (See below)
2015 newcg
= find_css_set(tsk
->cgroups
, cgrp
);
2021 cgroup_task_migrate(cgrp
, oldcgrp
, tsk
, newcg
);
2023 for_each_subsys(root
, ss
) {
2025 ss
->attach(cgrp
, &tset
);
2031 * wake up rmdir() waiter. the rmdir should fail since the cgroup
2032 * is no longer empty.
2034 cgroup_wakeup_rmdir_waiter(cgrp
);
2037 for_each_subsys(root
, ss
) {
2038 if (ss
== failed_ss
)
2040 * This subsystem was the one that failed the
2041 * can_attach() check earlier, so we don't need
2042 * to call cancel_attach() against it or any
2043 * remaining subsystems.
2046 if (ss
->cancel_attach
)
2047 ss
->cancel_attach(cgrp
, &tset
);
2054 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2055 * @from: attach to all cgroups of a given task
2056 * @tsk: the task to be attached
2058 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2060 struct cgroupfs_root
*root
;
2064 for_each_active_root(root
) {
2065 struct cgroup
*from_cg
= task_cgroup_from_root(from
, root
);
2067 retval
= cgroup_attach_task(from_cg
, tsk
);
2075 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2078 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2079 * @cgrp: the cgroup to attach to
2080 * @leader: the threadgroup leader task_struct of the group to be attached
2082 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2083 * task_lock of each thread in leader's threadgroup individually in turn.
2085 static int cgroup_attach_proc(struct cgroup
*cgrp
, struct task_struct
*leader
)
2087 int retval
, i
, group_size
;
2088 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
2089 /* guaranteed to be initialized later, but the compiler needs this */
2090 struct cgroupfs_root
*root
= cgrp
->root
;
2091 /* threadgroup list cursor and array */
2092 struct task_struct
*tsk
;
2093 struct task_and_cgroup
*tc
;
2094 struct flex_array
*group
;
2095 struct cgroup_taskset tset
= { };
2098 * step 0: in order to do expensive, possibly blocking operations for
2099 * every thread, we cannot iterate the thread group list, since it needs
2100 * rcu or tasklist locked. instead, build an array of all threads in the
2101 * group - group_rwsem prevents new threads from appearing, and if
2102 * threads exit, this will just be an over-estimate.
2104 group_size
= get_nr_threads(leader
);
2105 /* flex_array supports very large thread-groups better than kmalloc. */
2106 group
= flex_array_alloc(sizeof(*tc
), group_size
, GFP_KERNEL
);
2109 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2110 retval
= flex_array_prealloc(group
, 0, group_size
- 1, GFP_KERNEL
);
2112 goto out_free_group_list
;
2117 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2118 * already PF_EXITING could be freed from underneath us unless we
2119 * take an rcu_read_lock.
2123 struct task_and_cgroup ent
;
2125 /* @tsk either already exited or can't exit until the end */
2126 if (tsk
->flags
& PF_EXITING
)
2129 /* as per above, nr_threads may decrease, but not increase. */
2130 BUG_ON(i
>= group_size
);
2132 ent
.cgrp
= task_cgroup_from_root(tsk
, root
);
2133 /* nothing to do if this task is already in the cgroup */
2134 if (ent
.cgrp
== cgrp
)
2137 * saying GFP_ATOMIC has no effect here because we did prealloc
2138 * earlier, but it's good form to communicate our expectations.
2140 retval
= flex_array_put(group
, i
, &ent
, GFP_ATOMIC
);
2141 BUG_ON(retval
!= 0);
2143 } while_each_thread(leader
, tsk
);
2145 /* remember the number of threads in the array for later. */
2147 tset
.tc_array
= group
;
2148 tset
.tc_array_len
= group_size
;
2150 /* methods shouldn't be called if no task is actually migrating */
2153 goto out_free_group_list
;
2156 * step 1: check that we can legitimately attach to the cgroup.
2158 for_each_subsys(root
, ss
) {
2159 if (ss
->can_attach
) {
2160 retval
= ss
->can_attach(cgrp
, &tset
);
2163 goto out_cancel_attach
;
2169 * step 2: make sure css_sets exist for all threads to be migrated.
2170 * we use find_css_set, which allocates a new one if necessary.
2172 for (i
= 0; i
< group_size
; i
++) {
2173 tc
= flex_array_get(group
, i
);
2174 tc
->cg
= find_css_set(tc
->task
->cgroups
, cgrp
);
2177 goto out_put_css_set_refs
;
2182 * step 3: now that we're guaranteed success wrt the css_sets,
2183 * proceed to move all tasks to the new cgroup. There are no
2184 * failure cases after here, so this is the commit point.
2186 for (i
= 0; i
< group_size
; i
++) {
2187 tc
= flex_array_get(group
, i
);
2188 cgroup_task_migrate(cgrp
, tc
->cgrp
, tc
->task
, tc
->cg
);
2190 /* nothing is sensitive to fork() after this point. */
2193 * step 4: do subsystem attach callbacks.
2195 for_each_subsys(root
, ss
) {
2197 ss
->attach(cgrp
, &tset
);
2201 * step 5: success! and cleanup
2204 cgroup_wakeup_rmdir_waiter(cgrp
);
2206 out_put_css_set_refs
:
2208 for (i
= 0; i
< group_size
; i
++) {
2209 tc
= flex_array_get(group
, i
);
2212 put_css_set(tc
->cg
);
2217 for_each_subsys(root
, ss
) {
2218 if (ss
== failed_ss
)
2220 if (ss
->cancel_attach
)
2221 ss
->cancel_attach(cgrp
, &tset
);
2224 out_free_group_list
:
2225 flex_array_free(group
);
2230 * Find the task_struct of the task to attach by vpid and pass it along to the
2231 * function to attach either it or all tasks in its threadgroup. Will lock
2232 * cgroup_mutex and threadgroup; may take task_lock of task.
2234 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
, bool threadgroup
)
2236 struct task_struct
*tsk
;
2237 const struct cred
*cred
= current_cred(), *tcred
;
2240 if (!cgroup_lock_live_group(cgrp
))
2246 tsk
= find_task_by_vpid(pid
);
2250 goto out_unlock_cgroup
;
2253 * even if we're attaching all tasks in the thread group, we
2254 * only need to check permissions on one of them.
2256 tcred
= __task_cred(tsk
);
2257 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2258 !uid_eq(cred
->euid
, tcred
->uid
) &&
2259 !uid_eq(cred
->euid
, tcred
->suid
)) {
2262 goto out_unlock_cgroup
;
2268 tsk
= tsk
->group_leader
;
2271 * Workqueue threads may acquire PF_THREAD_BOUND and become
2272 * trapped in a cpuset, or RT worker may be born in a cgroup
2273 * with no rt_runtime allocated. Just say no.
2275 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_THREAD_BOUND
)) {
2278 goto out_unlock_cgroup
;
2281 get_task_struct(tsk
);
2284 threadgroup_lock(tsk
);
2286 if (!thread_group_leader(tsk
)) {
2288 * a race with de_thread from another thread's exec()
2289 * may strip us of our leadership, if this happens,
2290 * there is no choice but to throw this task away and
2291 * try again; this is
2292 * "double-double-toil-and-trouble-check locking".
2294 threadgroup_unlock(tsk
);
2295 put_task_struct(tsk
);
2296 goto retry_find_task
;
2298 ret
= cgroup_attach_proc(cgrp
, tsk
);
2300 ret
= cgroup_attach_task(cgrp
, tsk
);
2301 threadgroup_unlock(tsk
);
2303 put_task_struct(tsk
);
2309 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
2311 return attach_task_by_pid(cgrp
, pid
, false);
2314 static int cgroup_procs_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 tgid
)
2316 return attach_task_by_pid(cgrp
, tgid
, true);
2320 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2321 * @cgrp: the cgroup to be checked for liveness
2323 * On success, returns true; the lock should be later released with
2324 * cgroup_unlock(). On failure returns false with no lock held.
2326 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
2328 mutex_lock(&cgroup_mutex
);
2329 if (cgroup_is_removed(cgrp
)) {
2330 mutex_unlock(&cgroup_mutex
);
2335 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
2337 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
2340 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2341 if (strlen(buffer
) >= PATH_MAX
)
2343 if (!cgroup_lock_live_group(cgrp
))
2345 mutex_lock(&cgroup_root_mutex
);
2346 strcpy(cgrp
->root
->release_agent_path
, buffer
);
2347 mutex_unlock(&cgroup_root_mutex
);
2352 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
2353 struct seq_file
*seq
)
2355 if (!cgroup_lock_live_group(cgrp
))
2357 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2358 seq_putc(seq
, '\n');
2363 /* A buffer size big enough for numbers or short strings */
2364 #define CGROUP_LOCAL_BUFFER_SIZE 64
2366 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
2368 const char __user
*userbuf
,
2369 size_t nbytes
, loff_t
*unused_ppos
)
2371 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2377 if (nbytes
>= sizeof(buffer
))
2379 if (copy_from_user(buffer
, userbuf
, nbytes
))
2382 buffer
[nbytes
] = 0; /* nul-terminate */
2383 if (cft
->write_u64
) {
2384 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
2387 retval
= cft
->write_u64(cgrp
, cft
, val
);
2389 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
2392 retval
= cft
->write_s64(cgrp
, cft
, val
);
2399 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
2401 const char __user
*userbuf
,
2402 size_t nbytes
, loff_t
*unused_ppos
)
2404 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2406 size_t max_bytes
= cft
->max_write_len
;
2407 char *buffer
= local_buffer
;
2410 max_bytes
= sizeof(local_buffer
) - 1;
2411 if (nbytes
>= max_bytes
)
2413 /* Allocate a dynamic buffer if we need one */
2414 if (nbytes
>= sizeof(local_buffer
)) {
2415 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
2419 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
2424 buffer
[nbytes
] = 0; /* nul-terminate */
2425 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
2429 if (buffer
!= local_buffer
)
2434 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
2435 size_t nbytes
, loff_t
*ppos
)
2437 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2438 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2440 if (cgroup_is_removed(cgrp
))
2443 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2444 if (cft
->write_u64
|| cft
->write_s64
)
2445 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2446 if (cft
->write_string
)
2447 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2449 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
2450 return ret
? ret
: nbytes
;
2455 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
2457 char __user
*buf
, size_t nbytes
,
2460 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2461 u64 val
= cft
->read_u64(cgrp
, cft
);
2462 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2464 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2467 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
2469 char __user
*buf
, size_t nbytes
,
2472 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2473 s64 val
= cft
->read_s64(cgrp
, cft
);
2474 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2476 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2479 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2480 size_t nbytes
, loff_t
*ppos
)
2482 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2483 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2485 if (cgroup_is_removed(cgrp
))
2489 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2491 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2493 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2498 * seqfile ops/methods for returning structured data. Currently just
2499 * supports string->u64 maps, but can be extended in future.
2502 struct cgroup_seqfile_state
{
2504 struct cgroup
*cgroup
;
2507 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2509 struct seq_file
*sf
= cb
->state
;
2510 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2513 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2515 struct cgroup_seqfile_state
*state
= m
->private;
2516 struct cftype
*cft
= state
->cft
;
2517 if (cft
->read_map
) {
2518 struct cgroup_map_cb cb
= {
2519 .fill
= cgroup_map_add
,
2522 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2524 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2527 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2529 struct seq_file
*seq
= file
->private_data
;
2530 kfree(seq
->private);
2531 return single_release(inode
, file
);
2534 static const struct file_operations cgroup_seqfile_operations
= {
2536 .write
= cgroup_file_write
,
2537 .llseek
= seq_lseek
,
2538 .release
= cgroup_seqfile_release
,
2541 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2546 err
= generic_file_open(inode
, file
);
2549 cft
= __d_cft(file
->f_dentry
);
2551 if (cft
->read_map
|| cft
->read_seq_string
) {
2552 struct cgroup_seqfile_state
*state
=
2553 kzalloc(sizeof(*state
), GFP_USER
);
2557 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2558 file
->f_op
= &cgroup_seqfile_operations
;
2559 err
= single_open(file
, cgroup_seqfile_show
, state
);
2562 } else if (cft
->open
)
2563 err
= cft
->open(inode
, file
);
2570 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2572 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2574 return cft
->release(inode
, file
);
2579 * cgroup_rename - Only allow simple rename of directories in place.
2581 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2582 struct inode
*new_dir
, struct dentry
*new_dentry
)
2584 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2586 if (new_dentry
->d_inode
)
2588 if (old_dir
!= new_dir
)
2590 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2593 static struct simple_xattrs
*__d_xattrs(struct dentry
*dentry
)
2595 if (S_ISDIR(dentry
->d_inode
->i_mode
))
2596 return &__d_cgrp(dentry
)->xattrs
;
2598 return &__d_cft(dentry
)->xattrs
;
2601 static inline int xattr_enabled(struct dentry
*dentry
)
2603 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
2604 return test_bit(ROOT_XATTR
, &root
->flags
);
2607 static bool is_valid_xattr(const char *name
)
2609 if (!strncmp(name
, XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
) ||
2610 !strncmp(name
, XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
))
2615 static int cgroup_setxattr(struct dentry
*dentry
, const char *name
,
2616 const void *val
, size_t size
, int flags
)
2618 if (!xattr_enabled(dentry
))
2620 if (!is_valid_xattr(name
))
2622 return simple_xattr_set(__d_xattrs(dentry
), name
, val
, size
, flags
);
2625 static int cgroup_removexattr(struct dentry
*dentry
, const char *name
)
2627 if (!xattr_enabled(dentry
))
2629 if (!is_valid_xattr(name
))
2631 return simple_xattr_remove(__d_xattrs(dentry
), name
);
2634 static ssize_t
cgroup_getxattr(struct dentry
*dentry
, const char *name
,
2635 void *buf
, size_t size
)
2637 if (!xattr_enabled(dentry
))
2639 if (!is_valid_xattr(name
))
2641 return simple_xattr_get(__d_xattrs(dentry
), name
, buf
, size
);
2644 static ssize_t
cgroup_listxattr(struct dentry
*dentry
, char *buf
, size_t size
)
2646 if (!xattr_enabled(dentry
))
2648 return simple_xattr_list(__d_xattrs(dentry
), buf
, size
);
2651 static const struct file_operations cgroup_file_operations
= {
2652 .read
= cgroup_file_read
,
2653 .write
= cgroup_file_write
,
2654 .llseek
= generic_file_llseek
,
2655 .open
= cgroup_file_open
,
2656 .release
= cgroup_file_release
,
2659 static const struct inode_operations cgroup_file_inode_operations
= {
2660 .setxattr
= cgroup_setxattr
,
2661 .getxattr
= cgroup_getxattr
,
2662 .listxattr
= cgroup_listxattr
,
2663 .removexattr
= cgroup_removexattr
,
2666 static const struct inode_operations cgroup_dir_inode_operations
= {
2667 .lookup
= cgroup_lookup
,
2668 .mkdir
= cgroup_mkdir
,
2669 .rmdir
= cgroup_rmdir
,
2670 .rename
= cgroup_rename
,
2671 .setxattr
= cgroup_setxattr
,
2672 .getxattr
= cgroup_getxattr
,
2673 .listxattr
= cgroup_listxattr
,
2674 .removexattr
= cgroup_removexattr
,
2677 static struct dentry
*cgroup_lookup(struct inode
*dir
, struct dentry
*dentry
, unsigned int flags
)
2679 if (dentry
->d_name
.len
> NAME_MAX
)
2680 return ERR_PTR(-ENAMETOOLONG
);
2681 d_add(dentry
, NULL
);
2686 * Check if a file is a control file
2688 static inline struct cftype
*__file_cft(struct file
*file
)
2690 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2691 return ERR_PTR(-EINVAL
);
2692 return __d_cft(file
->f_dentry
);
2695 static int cgroup_create_file(struct dentry
*dentry
, umode_t mode
,
2696 struct super_block
*sb
)
2698 struct inode
*inode
;
2702 if (dentry
->d_inode
)
2705 inode
= cgroup_new_inode(mode
, sb
);
2709 if (S_ISDIR(mode
)) {
2710 inode
->i_op
= &cgroup_dir_inode_operations
;
2711 inode
->i_fop
= &simple_dir_operations
;
2713 /* start off with i_nlink == 2 (for "." entry) */
2716 /* start with the directory inode held, so that we can
2717 * populate it without racing with another mkdir */
2718 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2719 } else if (S_ISREG(mode
)) {
2721 inode
->i_fop
= &cgroup_file_operations
;
2722 inode
->i_op
= &cgroup_file_inode_operations
;
2724 d_instantiate(dentry
, inode
);
2725 dget(dentry
); /* Extra count - pin the dentry in core */
2730 * cgroup_create_dir - create a directory for an object.
2731 * @cgrp: the cgroup we create the directory for. It must have a valid
2732 * ->parent field. And we are going to fill its ->dentry field.
2733 * @dentry: dentry of the new cgroup
2734 * @mode: mode to set on new directory.
2736 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2739 struct dentry
*parent
;
2742 parent
= cgrp
->parent
->dentry
;
2743 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2745 dentry
->d_fsdata
= cgrp
;
2746 inc_nlink(parent
->d_inode
);
2747 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2756 * cgroup_file_mode - deduce file mode of a control file
2757 * @cft: the control file in question
2759 * returns cft->mode if ->mode is not 0
2760 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2761 * returns S_IRUGO if it has only a read handler
2762 * returns S_IWUSR if it has only a write hander
2764 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
2771 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2772 cft
->read_map
|| cft
->read_seq_string
)
2775 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2776 cft
->write_string
|| cft
->trigger
)
2782 static int cgroup_add_file(struct cgroup
*cgrp
, struct cgroup_subsys
*subsys
,
2785 struct dentry
*dir
= cgrp
->dentry
;
2786 struct cgroup
*parent
= __d_cgrp(dir
);
2787 struct dentry
*dentry
;
2791 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2793 simple_xattrs_init(&cft
->xattrs
);
2795 /* does @cft->flags tell us to skip creation on @cgrp? */
2796 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgrp
->parent
)
2798 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgrp
->parent
)
2801 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2802 strcpy(name
, subsys
->name
);
2805 strcat(name
, cft
->name
);
2807 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2809 cfe
= kzalloc(sizeof(*cfe
), GFP_KERNEL
);
2813 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2814 if (IS_ERR(dentry
)) {
2815 error
= PTR_ERR(dentry
);
2819 mode
= cgroup_file_mode(cft
);
2820 error
= cgroup_create_file(dentry
, mode
| S_IFREG
, cgrp
->root
->sb
);
2822 cfe
->type
= (void *)cft
;
2823 cfe
->dentry
= dentry
;
2824 dentry
->d_fsdata
= cfe
;
2825 list_add_tail(&cfe
->node
, &parent
->files
);
2834 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cgroup_subsys
*subsys
,
2835 struct cftype cfts
[], bool is_add
)
2840 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
2842 err
= cgroup_add_file(cgrp
, subsys
, cft
);
2844 err
= cgroup_rm_file(cgrp
, cft
);
2846 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2847 is_add
? "add" : "remove", cft
->name
, err
);
2854 static DEFINE_MUTEX(cgroup_cft_mutex
);
2856 static void cgroup_cfts_prepare(void)
2857 __acquires(&cgroup_cft_mutex
) __acquires(&cgroup_mutex
)
2860 * Thanks to the entanglement with vfs inode locking, we can't walk
2861 * the existing cgroups under cgroup_mutex and create files.
2862 * Instead, we increment reference on all cgroups and build list of
2863 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2864 * exclusive access to the field.
2866 mutex_lock(&cgroup_cft_mutex
);
2867 mutex_lock(&cgroup_mutex
);
2870 static void cgroup_cfts_commit(struct cgroup_subsys
*ss
,
2871 struct cftype
*cfts
, bool is_add
)
2872 __releases(&cgroup_mutex
) __releases(&cgroup_cft_mutex
)
2875 struct cgroup
*cgrp
, *n
;
2877 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2878 if (cfts
&& ss
->root
!= &rootnode
) {
2879 list_for_each_entry(cgrp
, &ss
->root
->allcg_list
, allcg_node
) {
2881 list_add_tail(&cgrp
->cft_q_node
, &pending
);
2885 mutex_unlock(&cgroup_mutex
);
2888 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2889 * files for all cgroups which were created before.
2891 list_for_each_entry_safe(cgrp
, n
, &pending
, cft_q_node
) {
2892 struct inode
*inode
= cgrp
->dentry
->d_inode
;
2894 mutex_lock(&inode
->i_mutex
);
2895 mutex_lock(&cgroup_mutex
);
2896 if (!cgroup_is_removed(cgrp
))
2897 cgroup_addrm_files(cgrp
, ss
, cfts
, is_add
);
2898 mutex_unlock(&cgroup_mutex
);
2899 mutex_unlock(&inode
->i_mutex
);
2901 list_del_init(&cgrp
->cft_q_node
);
2905 mutex_unlock(&cgroup_cft_mutex
);
2909 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2910 * @ss: target cgroup subsystem
2911 * @cfts: zero-length name terminated array of cftypes
2913 * Register @cfts to @ss. Files described by @cfts are created for all
2914 * existing cgroups to which @ss is attached and all future cgroups will
2915 * have them too. This function can be called anytime whether @ss is
2918 * Returns 0 on successful registration, -errno on failure. Note that this
2919 * function currently returns 0 as long as @cfts registration is successful
2920 * even if some file creation attempts on existing cgroups fail.
2922 int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
2924 struct cftype_set
*set
;
2926 set
= kzalloc(sizeof(*set
), GFP_KERNEL
);
2930 cgroup_cfts_prepare();
2932 list_add_tail(&set
->node
, &ss
->cftsets
);
2933 cgroup_cfts_commit(ss
, cfts
, true);
2937 EXPORT_SYMBOL_GPL(cgroup_add_cftypes
);
2940 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2941 * @ss: target cgroup subsystem
2942 * @cfts: zero-length name terminated array of cftypes
2944 * Unregister @cfts from @ss. Files described by @cfts are removed from
2945 * all existing cgroups to which @ss is attached and all future cgroups
2946 * won't have them either. This function can be called anytime whether @ss
2947 * is attached or not.
2949 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2950 * registered with @ss.
2952 int cgroup_rm_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
2954 struct cftype_set
*set
;
2956 cgroup_cfts_prepare();
2958 list_for_each_entry(set
, &ss
->cftsets
, node
) {
2959 if (set
->cfts
== cfts
) {
2960 list_del_init(&set
->node
);
2961 cgroup_cfts_commit(ss
, cfts
, false);
2966 cgroup_cfts_commit(ss
, NULL
, false);
2971 * cgroup_task_count - count the number of tasks in a cgroup.
2972 * @cgrp: the cgroup in question
2974 * Return the number of tasks in the cgroup.
2976 int cgroup_task_count(const struct cgroup
*cgrp
)
2979 struct cg_cgroup_link
*link
;
2981 read_lock(&css_set_lock
);
2982 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2983 count
+= atomic_read(&link
->cg
->refcount
);
2985 read_unlock(&css_set_lock
);
2990 * Advance a list_head iterator. The iterator should be positioned at
2991 * the start of a css_set
2993 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2994 struct cgroup_iter
*it
)
2996 struct list_head
*l
= it
->cg_link
;
2997 struct cg_cgroup_link
*link
;
3000 /* Advance to the next non-empty css_set */
3003 if (l
== &cgrp
->css_sets
) {
3007 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
3009 } while (list_empty(&cg
->tasks
));
3011 it
->task
= cg
->tasks
.next
;
3015 * To reduce the fork() overhead for systems that are not actually
3016 * using their cgroups capability, we don't maintain the lists running
3017 * through each css_set to its tasks until we see the list actually
3018 * used - in other words after the first call to cgroup_iter_start().
3020 static void cgroup_enable_task_cg_lists(void)
3022 struct task_struct
*p
, *g
;
3023 write_lock(&css_set_lock
);
3024 use_task_css_set_links
= 1;
3026 * We need tasklist_lock because RCU is not safe against
3027 * while_each_thread(). Besides, a forking task that has passed
3028 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3029 * is not guaranteed to have its child immediately visible in the
3030 * tasklist if we walk through it with RCU.
3032 read_lock(&tasklist_lock
);
3033 do_each_thread(g
, p
) {
3036 * We should check if the process is exiting, otherwise
3037 * it will race with cgroup_exit() in that the list
3038 * entry won't be deleted though the process has exited.
3040 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
3041 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
3043 } while_each_thread(g
, p
);
3044 read_unlock(&tasklist_lock
);
3045 write_unlock(&css_set_lock
);
3048 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
3049 __acquires(css_set_lock
)
3052 * The first time anyone tries to iterate across a cgroup,
3053 * we need to enable the list linking each css_set to its
3054 * tasks, and fix up all existing tasks.
3056 if (!use_task_css_set_links
)
3057 cgroup_enable_task_cg_lists();
3059 read_lock(&css_set_lock
);
3060 it
->cg_link
= &cgrp
->css_sets
;
3061 cgroup_advance_iter(cgrp
, it
);
3064 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
3065 struct cgroup_iter
*it
)
3067 struct task_struct
*res
;
3068 struct list_head
*l
= it
->task
;
3069 struct cg_cgroup_link
*link
;
3071 /* If the iterator cg is NULL, we have no tasks */
3074 res
= list_entry(l
, struct task_struct
, cg_list
);
3075 /* Advance iterator to find next entry */
3077 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
3078 if (l
== &link
->cg
->tasks
) {
3079 /* We reached the end of this task list - move on to
3080 * the next cg_cgroup_link */
3081 cgroup_advance_iter(cgrp
, it
);
3088 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
3089 __releases(css_set_lock
)
3091 read_unlock(&css_set_lock
);
3094 static inline int started_after_time(struct task_struct
*t1
,
3095 struct timespec
*time
,
3096 struct task_struct
*t2
)
3098 int start_diff
= timespec_compare(&t1
->start_time
, time
);
3099 if (start_diff
> 0) {
3101 } else if (start_diff
< 0) {
3105 * Arbitrarily, if two processes started at the same
3106 * time, we'll say that the lower pointer value
3107 * started first. Note that t2 may have exited by now
3108 * so this may not be a valid pointer any longer, but
3109 * that's fine - it still serves to distinguish
3110 * between two tasks started (effectively) simultaneously.
3117 * This function is a callback from heap_insert() and is used to order
3119 * In this case we order the heap in descending task start time.
3121 static inline int started_after(void *p1
, void *p2
)
3123 struct task_struct
*t1
= p1
;
3124 struct task_struct
*t2
= p2
;
3125 return started_after_time(t1
, &t2
->start_time
, t2
);
3129 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3130 * @scan: struct cgroup_scanner containing arguments for the scan
3132 * Arguments include pointers to callback functions test_task() and
3134 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3135 * and if it returns true, call process_task() for it also.
3136 * The test_task pointer may be NULL, meaning always true (select all tasks).
3137 * Effectively duplicates cgroup_iter_{start,next,end}()
3138 * but does not lock css_set_lock for the call to process_task().
3139 * The struct cgroup_scanner may be embedded in any structure of the caller's
3141 * It is guaranteed that process_task() will act on every task that
3142 * is a member of the cgroup for the duration of this call. This
3143 * function may or may not call process_task() for tasks that exit
3144 * or move to a different cgroup during the call, or are forked or
3145 * move into the cgroup during the call.
3147 * Note that test_task() may be called with locks held, and may in some
3148 * situations be called multiple times for the same task, so it should
3150 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3151 * pre-allocated and will be used for heap operations (and its "gt" member will
3152 * be overwritten), else a temporary heap will be used (allocation of which
3153 * may cause this function to fail).
3155 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
3158 struct cgroup_iter it
;
3159 struct task_struct
*p
, *dropped
;
3160 /* Never dereference latest_task, since it's not refcounted */
3161 struct task_struct
*latest_task
= NULL
;
3162 struct ptr_heap tmp_heap
;
3163 struct ptr_heap
*heap
;
3164 struct timespec latest_time
= { 0, 0 };
3167 /* The caller supplied our heap and pre-allocated its memory */
3169 heap
->gt
= &started_after
;
3171 /* We need to allocate our own heap memory */
3173 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
3175 /* cannot allocate the heap */
3181 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3182 * to determine which are of interest, and using the scanner's
3183 * "process_task" callback to process any of them that need an update.
3184 * Since we don't want to hold any locks during the task updates,
3185 * gather tasks to be processed in a heap structure.
3186 * The heap is sorted by descending task start time.
3187 * If the statically-sized heap fills up, we overflow tasks that
3188 * started later, and in future iterations only consider tasks that
3189 * started after the latest task in the previous pass. This
3190 * guarantees forward progress and that we don't miss any tasks.
3193 cgroup_iter_start(scan
->cg
, &it
);
3194 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
3196 * Only affect tasks that qualify per the caller's callback,
3197 * if he provided one
3199 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
3202 * Only process tasks that started after the last task
3205 if (!started_after_time(p
, &latest_time
, latest_task
))
3207 dropped
= heap_insert(heap
, p
);
3208 if (dropped
== NULL
) {
3210 * The new task was inserted; the heap wasn't
3214 } else if (dropped
!= p
) {
3216 * The new task was inserted, and pushed out a
3220 put_task_struct(dropped
);
3223 * Else the new task was newer than anything already in
3224 * the heap and wasn't inserted
3227 cgroup_iter_end(scan
->cg
, &it
);
3230 for (i
= 0; i
< heap
->size
; i
++) {
3231 struct task_struct
*q
= heap
->ptrs
[i
];
3233 latest_time
= q
->start_time
;
3236 /* Process the task per the caller's callback */
3237 scan
->process_task(q
, scan
);
3241 * If we had to process any tasks at all, scan again
3242 * in case some of them were in the middle of forking
3243 * children that didn't get processed.
3244 * Not the most efficient way to do it, but it avoids
3245 * having to take callback_mutex in the fork path
3249 if (heap
== &tmp_heap
)
3250 heap_free(&tmp_heap
);
3255 * Stuff for reading the 'tasks'/'procs' files.
3257 * Reading this file can return large amounts of data if a cgroup has
3258 * *lots* of attached tasks. So it may need several calls to read(),
3259 * but we cannot guarantee that the information we produce is correct
3260 * unless we produce it entirely atomically.
3264 /* which pidlist file are we talking about? */
3265 enum cgroup_filetype
{
3271 * A pidlist is a list of pids that virtually represents the contents of one
3272 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3273 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3276 struct cgroup_pidlist
{
3278 * used to find which pidlist is wanted. doesn't change as long as
3279 * this particular list stays in the list.
3281 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
3284 /* how many elements the above list has */
3286 /* how many files are using the current array */
3288 /* each of these stored in a list by its cgroup */
3289 struct list_head links
;
3290 /* pointer to the cgroup we belong to, for list removal purposes */
3291 struct cgroup
*owner
;
3292 /* protects the other fields */
3293 struct rw_semaphore mutex
;
3297 * The following two functions "fix" the issue where there are more pids
3298 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3299 * TODO: replace with a kernel-wide solution to this problem
3301 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3302 static void *pidlist_allocate(int count
)
3304 if (PIDLIST_TOO_LARGE(count
))
3305 return vmalloc(count
* sizeof(pid_t
));
3307 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3309 static void pidlist_free(void *p
)
3311 if (is_vmalloc_addr(p
))
3316 static void *pidlist_resize(void *p
, int newcount
)
3319 /* note: if new alloc fails, old p will still be valid either way */
3320 if (is_vmalloc_addr(p
)) {
3321 newlist
= vmalloc(newcount
* sizeof(pid_t
));
3324 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
3327 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
3333 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3334 * If the new stripped list is sufficiently smaller and there's enough memory
3335 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3336 * number of unique elements.
3338 /* is the size difference enough that we should re-allocate the array? */
3339 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3340 static int pidlist_uniq(pid_t
**p
, int length
)
3347 * we presume the 0th element is unique, so i starts at 1. trivial
3348 * edge cases first; no work needs to be done for either
3350 if (length
== 0 || length
== 1)
3352 /* src and dest walk down the list; dest counts unique elements */
3353 for (src
= 1; src
< length
; src
++) {
3354 /* find next unique element */
3355 while (list
[src
] == list
[src
-1]) {
3360 /* dest always points to where the next unique element goes */
3361 list
[dest
] = list
[src
];
3366 * if the length difference is large enough, we want to allocate a
3367 * smaller buffer to save memory. if this fails due to out of memory,
3368 * we'll just stay with what we've got.
3370 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
3371 newlist
= pidlist_resize(list
, dest
);
3378 static int cmppid(const void *a
, const void *b
)
3380 return *(pid_t
*)a
- *(pid_t
*)b
;
3384 * find the appropriate pidlist for our purpose (given procs vs tasks)
3385 * returns with the lock on that pidlist already held, and takes care
3386 * of the use count, or returns NULL with no locks held if we're out of
3389 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
3390 enum cgroup_filetype type
)
3392 struct cgroup_pidlist
*l
;
3393 /* don't need task_nsproxy() if we're looking at ourself */
3394 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
3397 * We can't drop the pidlist_mutex before taking the l->mutex in case
3398 * the last ref-holder is trying to remove l from the list at the same
3399 * time. Holding the pidlist_mutex precludes somebody taking whichever
3400 * list we find out from under us - compare release_pid_array().
3402 mutex_lock(&cgrp
->pidlist_mutex
);
3403 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
3404 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
3405 /* make sure l doesn't vanish out from under us */
3406 down_write(&l
->mutex
);
3407 mutex_unlock(&cgrp
->pidlist_mutex
);
3411 /* entry not found; create a new one */
3412 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
3414 mutex_unlock(&cgrp
->pidlist_mutex
);
3417 init_rwsem(&l
->mutex
);
3418 down_write(&l
->mutex
);
3420 l
->key
.ns
= get_pid_ns(ns
);
3421 l
->use_count
= 0; /* don't increment here */
3424 list_add(&l
->links
, &cgrp
->pidlists
);
3425 mutex_unlock(&cgrp
->pidlist_mutex
);
3430 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3432 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
3433 struct cgroup_pidlist
**lp
)
3437 int pid
, n
= 0; /* used for populating the array */
3438 struct cgroup_iter it
;
3439 struct task_struct
*tsk
;
3440 struct cgroup_pidlist
*l
;
3443 * If cgroup gets more users after we read count, we won't have
3444 * enough space - tough. This race is indistinguishable to the
3445 * caller from the case that the additional cgroup users didn't
3446 * show up until sometime later on.
3448 length
= cgroup_task_count(cgrp
);
3449 array
= pidlist_allocate(length
);
3452 /* now, populate the array */
3453 cgroup_iter_start(cgrp
, &it
);
3454 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
3455 if (unlikely(n
== length
))
3457 /* get tgid or pid for procs or tasks file respectively */
3458 if (type
== CGROUP_FILE_PROCS
)
3459 pid
= task_tgid_vnr(tsk
);
3461 pid
= task_pid_vnr(tsk
);
3462 if (pid
> 0) /* make sure to only use valid results */
3465 cgroup_iter_end(cgrp
, &it
);
3467 /* now sort & (if procs) strip out duplicates */
3468 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
3469 if (type
== CGROUP_FILE_PROCS
)
3470 length
= pidlist_uniq(&array
, length
);
3471 l
= cgroup_pidlist_find(cgrp
, type
);
3473 pidlist_free(array
);
3476 /* store array, freeing old if necessary - lock already held */
3477 pidlist_free(l
->list
);
3481 up_write(&l
->mutex
);
3487 * cgroupstats_build - build and fill cgroupstats
3488 * @stats: cgroupstats to fill information into
3489 * @dentry: A dentry entry belonging to the cgroup for which stats have
3492 * Build and fill cgroupstats so that taskstats can export it to user
3495 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
3498 struct cgroup
*cgrp
;
3499 struct cgroup_iter it
;
3500 struct task_struct
*tsk
;
3503 * Validate dentry by checking the superblock operations,
3504 * and make sure it's a directory.
3506 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
3507 !S_ISDIR(dentry
->d_inode
->i_mode
))
3511 cgrp
= dentry
->d_fsdata
;
3513 cgroup_iter_start(cgrp
, &it
);
3514 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
3515 switch (tsk
->state
) {
3517 stats
->nr_running
++;
3519 case TASK_INTERRUPTIBLE
:
3520 stats
->nr_sleeping
++;
3522 case TASK_UNINTERRUPTIBLE
:
3523 stats
->nr_uninterruptible
++;
3526 stats
->nr_stopped
++;
3529 if (delayacct_is_task_waiting_on_io(tsk
))
3530 stats
->nr_io_wait
++;
3534 cgroup_iter_end(cgrp
, &it
);
3542 * seq_file methods for the tasks/procs files. The seq_file position is the
3543 * next pid to display; the seq_file iterator is a pointer to the pid
3544 * in the cgroup->l->list array.
3547 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
3550 * Initially we receive a position value that corresponds to
3551 * one more than the last pid shown (or 0 on the first call or
3552 * after a seek to the start). Use a binary-search to find the
3553 * next pid to display, if any
3555 struct cgroup_pidlist
*l
= s
->private;
3556 int index
= 0, pid
= *pos
;
3559 down_read(&l
->mutex
);
3561 int end
= l
->length
;
3563 while (index
< end
) {
3564 int mid
= (index
+ end
) / 2;
3565 if (l
->list
[mid
] == pid
) {
3568 } else if (l
->list
[mid
] <= pid
)
3574 /* If we're off the end of the array, we're done */
3575 if (index
>= l
->length
)
3577 /* Update the abstract position to be the actual pid that we found */
3578 iter
= l
->list
+ index
;
3583 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
3585 struct cgroup_pidlist
*l
= s
->private;
3589 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
3591 struct cgroup_pidlist
*l
= s
->private;
3593 pid_t
*end
= l
->list
+ l
->length
;
3595 * Advance to the next pid in the array. If this goes off the
3607 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
3609 return seq_printf(s
, "%d\n", *(int *)v
);
3613 * seq_operations functions for iterating on pidlists through seq_file -
3614 * independent of whether it's tasks or procs
3616 static const struct seq_operations cgroup_pidlist_seq_operations
= {
3617 .start
= cgroup_pidlist_start
,
3618 .stop
= cgroup_pidlist_stop
,
3619 .next
= cgroup_pidlist_next
,
3620 .show
= cgroup_pidlist_show
,
3623 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
3626 * the case where we're the last user of this particular pidlist will
3627 * have us remove it from the cgroup's list, which entails taking the
3628 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3629 * pidlist_mutex, we have to take pidlist_mutex first.
3631 mutex_lock(&l
->owner
->pidlist_mutex
);
3632 down_write(&l
->mutex
);
3633 BUG_ON(!l
->use_count
);
3634 if (!--l
->use_count
) {
3635 /* we're the last user if refcount is 0; remove and free */
3636 list_del(&l
->links
);
3637 mutex_unlock(&l
->owner
->pidlist_mutex
);
3638 pidlist_free(l
->list
);
3639 put_pid_ns(l
->key
.ns
);
3640 up_write(&l
->mutex
);
3644 mutex_unlock(&l
->owner
->pidlist_mutex
);
3645 up_write(&l
->mutex
);
3648 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
3650 struct cgroup_pidlist
*l
;
3651 if (!(file
->f_mode
& FMODE_READ
))
3654 * the seq_file will only be initialized if the file was opened for
3655 * reading; hence we check if it's not null only in that case.
3657 l
= ((struct seq_file
*)file
->private_data
)->private;
3658 cgroup_release_pid_array(l
);
3659 return seq_release(inode
, file
);
3662 static const struct file_operations cgroup_pidlist_operations
= {
3664 .llseek
= seq_lseek
,
3665 .write
= cgroup_file_write
,
3666 .release
= cgroup_pidlist_release
,
3670 * The following functions handle opens on a file that displays a pidlist
3671 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3674 /* helper function for the two below it */
3675 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
3677 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
3678 struct cgroup_pidlist
*l
;
3681 /* Nothing to do for write-only files */
3682 if (!(file
->f_mode
& FMODE_READ
))
3685 /* have the array populated */
3686 retval
= pidlist_array_load(cgrp
, type
, &l
);
3689 /* configure file information */
3690 file
->f_op
= &cgroup_pidlist_operations
;
3692 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
3694 cgroup_release_pid_array(l
);
3697 ((struct seq_file
*)file
->private_data
)->private = l
;
3700 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
3702 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
3704 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
3706 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
3709 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
3712 return notify_on_release(cgrp
);
3715 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
3719 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3721 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3723 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3728 * Unregister event and free resources.
3730 * Gets called from workqueue.
3732 static void cgroup_event_remove(struct work_struct
*work
)
3734 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3736 struct cgroup
*cgrp
= event
->cgrp
;
3738 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3740 eventfd_ctx_put(event
->eventfd
);
3746 * Gets called on POLLHUP on eventfd when user closes it.
3748 * Called with wqh->lock held and interrupts disabled.
3750 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3751 int sync
, void *key
)
3753 struct cgroup_event
*event
= container_of(wait
,
3754 struct cgroup_event
, wait
);
3755 struct cgroup
*cgrp
= event
->cgrp
;
3756 unsigned long flags
= (unsigned long)key
;
3758 if (flags
& POLLHUP
) {
3759 __remove_wait_queue(event
->wqh
, &event
->wait
);
3760 spin_lock(&cgrp
->event_list_lock
);
3761 list_del(&event
->list
);
3762 spin_unlock(&cgrp
->event_list_lock
);
3764 * We are in atomic context, but cgroup_event_remove() may
3765 * sleep, so we have to call it in workqueue.
3767 schedule_work(&event
->remove
);
3773 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3774 wait_queue_head_t
*wqh
, poll_table
*pt
)
3776 struct cgroup_event
*event
= container_of(pt
,
3777 struct cgroup_event
, pt
);
3780 add_wait_queue(wqh
, &event
->wait
);
3784 * Parse input and register new cgroup event handler.
3786 * Input must be in format '<event_fd> <control_fd> <args>'.
3787 * Interpretation of args is defined by control file implementation.
3789 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3792 struct cgroup_event
*event
= NULL
;
3793 unsigned int efd
, cfd
;
3794 struct file
*efile
= NULL
;
3795 struct file
*cfile
= NULL
;
3799 efd
= simple_strtoul(buffer
, &endp
, 10);
3804 cfd
= simple_strtoul(buffer
, &endp
, 10);
3805 if ((*endp
!= ' ') && (*endp
!= '\0'))
3809 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3813 INIT_LIST_HEAD(&event
->list
);
3814 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3815 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3816 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3818 efile
= eventfd_fget(efd
);
3819 if (IS_ERR(efile
)) {
3820 ret
= PTR_ERR(efile
);
3824 event
->eventfd
= eventfd_ctx_fileget(efile
);
3825 if (IS_ERR(event
->eventfd
)) {
3826 ret
= PTR_ERR(event
->eventfd
);
3836 /* the process need read permission on control file */
3837 /* AV: shouldn't we check that it's been opened for read instead? */
3838 ret
= inode_permission(cfile
->f_path
.dentry
->d_inode
, MAY_READ
);
3842 event
->cft
= __file_cft(cfile
);
3843 if (IS_ERR(event
->cft
)) {
3844 ret
= PTR_ERR(event
->cft
);
3848 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3853 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3854 event
->eventfd
, buffer
);
3858 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3859 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3865 * Events should be removed after rmdir of cgroup directory, but before
3866 * destroying subsystem state objects. Let's take reference to cgroup
3867 * directory dentry to do that.
3871 spin_lock(&cgrp
->event_list_lock
);
3872 list_add(&event
->list
, &cgrp
->event_list
);
3873 spin_unlock(&cgrp
->event_list_lock
);
3884 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3885 eventfd_ctx_put(event
->eventfd
);
3887 if (!IS_ERR_OR_NULL(efile
))
3895 static u64
cgroup_clone_children_read(struct cgroup
*cgrp
,
3898 return clone_children(cgrp
);
3901 static int cgroup_clone_children_write(struct cgroup
*cgrp
,
3906 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3908 clear_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
3913 * for the common functions, 'private' gives the type of file
3915 /* for hysterical raisins, we can't put this on the older files */
3916 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3917 static struct cftype files
[] = {
3920 .open
= cgroup_tasks_open
,
3921 .write_u64
= cgroup_tasks_write
,
3922 .release
= cgroup_pidlist_release
,
3923 .mode
= S_IRUGO
| S_IWUSR
,
3926 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3927 .open
= cgroup_procs_open
,
3928 .write_u64
= cgroup_procs_write
,
3929 .release
= cgroup_pidlist_release
,
3930 .mode
= S_IRUGO
| S_IWUSR
,
3933 .name
= "notify_on_release",
3934 .read_u64
= cgroup_read_notify_on_release
,
3935 .write_u64
= cgroup_write_notify_on_release
,
3938 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3939 .write_string
= cgroup_write_event_control
,
3943 .name
= "cgroup.clone_children",
3944 .read_u64
= cgroup_clone_children_read
,
3945 .write_u64
= cgroup_clone_children_write
,
3948 .name
= "release_agent",
3949 .flags
= CFTYPE_ONLY_ON_ROOT
,
3950 .read_seq_string
= cgroup_release_agent_show
,
3951 .write_string
= cgroup_release_agent_write
,
3952 .max_write_len
= PATH_MAX
,
3958 * cgroup_populate_dir - selectively creation of files in a directory
3959 * @cgrp: target cgroup
3960 * @base_files: true if the base files should be added
3961 * @subsys_mask: mask of the subsystem ids whose files should be added
3963 static int cgroup_populate_dir(struct cgroup
*cgrp
, bool base_files
,
3964 unsigned long subsys_mask
)
3967 struct cgroup_subsys
*ss
;
3970 err
= cgroup_addrm_files(cgrp
, NULL
, files
, true);
3975 /* process cftsets of each subsystem */
3976 for_each_subsys(cgrp
->root
, ss
) {
3977 struct cftype_set
*set
;
3978 if (!test_bit(ss
->subsys_id
, &subsys_mask
))
3981 list_for_each_entry(set
, &ss
->cftsets
, node
)
3982 cgroup_addrm_files(cgrp
, ss
, set
->cfts
, true);
3985 /* This cgroup is ready now */
3986 for_each_subsys(cgrp
->root
, ss
) {
3987 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3989 * Update id->css pointer and make this css visible from
3990 * CSS ID functions. This pointer will be dereferened
3991 * from RCU-read-side without locks.
3994 rcu_assign_pointer(css
->id
->css
, css
);
4000 static void css_dput_fn(struct work_struct
*work
)
4002 struct cgroup_subsys_state
*css
=
4003 container_of(work
, struct cgroup_subsys_state
, dput_work
);
4004 struct dentry
*dentry
= css
->cgroup
->dentry
;
4005 struct super_block
*sb
= dentry
->d_sb
;
4007 atomic_inc(&sb
->s_active
);
4009 deactivate_super(sb
);
4012 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
4013 struct cgroup_subsys
*ss
,
4014 struct cgroup
*cgrp
)
4017 atomic_set(&css
->refcnt
, 1);
4020 if (cgrp
== dummytop
)
4021 set_bit(CSS_ROOT
, &css
->flags
);
4022 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
4023 cgrp
->subsys
[ss
->subsys_id
] = css
;
4026 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
4027 * which is put on the last css_put(). dput() requires process
4028 * context, which css_put() may be called without. @css->dput_work
4029 * will be used to invoke dput() asynchronously from css_put().
4031 INIT_WORK(&css
->dput_work
, css_dput_fn
);
4032 if (ss
->__DEPRECATED_clear_css_refs
)
4033 set_bit(CSS_CLEAR_CSS_REFS
, &css
->flags
);
4037 * cgroup_create - create a cgroup
4038 * @parent: cgroup that will be parent of the new cgroup
4039 * @dentry: dentry of the new cgroup
4040 * @mode: mode to set on new inode
4042 * Must be called with the mutex on the parent inode held
4044 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
4047 struct cgroup
*cgrp
;
4048 struct cgroupfs_root
*root
= parent
->root
;
4050 struct cgroup_subsys
*ss
;
4051 struct super_block
*sb
= root
->sb
;
4053 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4057 /* Grab a reference on the superblock so the hierarchy doesn't
4058 * get deleted on unmount if there are child cgroups. This
4059 * can be done outside cgroup_mutex, since the sb can't
4060 * disappear while someone has an open control file on the
4062 atomic_inc(&sb
->s_active
);
4064 mutex_lock(&cgroup_mutex
);
4066 init_cgroup_housekeeping(cgrp
);
4068 cgrp
->parent
= parent
;
4069 cgrp
->root
= parent
->root
;
4070 cgrp
->top_cgroup
= parent
->top_cgroup
;
4072 if (notify_on_release(parent
))
4073 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4075 if (clone_children(parent
))
4076 set_bit(CGRP_CLONE_CHILDREN
, &cgrp
->flags
);
4078 for_each_subsys(root
, ss
) {
4079 struct cgroup_subsys_state
*css
;
4081 css
= ss
->create(cgrp
);
4086 init_cgroup_css(css
, ss
, cgrp
);
4088 err
= alloc_css_id(ss
, parent
, cgrp
);
4092 /* At error, ->destroy() callback has to free assigned ID. */
4093 if (clone_children(parent
) && ss
->post_clone
)
4094 ss
->post_clone(cgrp
);
4096 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4098 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4099 current
->comm
, current
->pid
, ss
->name
);
4100 if (!strcmp(ss
->name
, "memory"))
4101 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4102 ss
->warned_broken_hierarchy
= true;
4106 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
4107 root
->number_of_cgroups
++;
4109 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
4113 /* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
4114 for_each_subsys(root
, ss
)
4115 if (!ss
->__DEPRECATED_clear_css_refs
)
4118 /* The cgroup directory was pre-locked for us */
4119 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
4121 list_add_tail(&cgrp
->allcg_node
, &root
->allcg_list
);
4123 err
= cgroup_populate_dir(cgrp
, true, root
->subsys_mask
);
4124 /* If err < 0, we have a half-filled directory - oh well ;) */
4126 mutex_unlock(&cgroup_mutex
);
4127 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
4133 list_del(&cgrp
->sibling
);
4134 root
->number_of_cgroups
--;
4138 for_each_subsys(root
, ss
) {
4139 if (cgrp
->subsys
[ss
->subsys_id
])
4143 mutex_unlock(&cgroup_mutex
);
4145 /* Release the reference count that we took on the superblock */
4146 deactivate_super(sb
);
4152 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
4154 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
4156 /* the vfs holds inode->i_mutex already */
4157 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
4161 * Check the reference count on each subsystem. Since we already
4162 * established that there are no tasks in the cgroup, if the css refcount
4163 * is also 1, then there should be no outstanding references, so the
4164 * subsystem is safe to destroy. We scan across all subsystems rather than
4165 * using the per-hierarchy linked list of mounted subsystems since we can
4166 * be called via check_for_release() with no synchronization other than
4167 * RCU, and the subsystem linked list isn't RCU-safe.
4169 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
4174 * We won't need to lock the subsys array, because the subsystems
4175 * we're concerned about aren't going anywhere since our cgroup root
4176 * has a reference on them.
4178 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4179 struct cgroup_subsys
*ss
= subsys
[i
];
4180 struct cgroup_subsys_state
*css
;
4182 /* Skip subsystems not present or not in this hierarchy */
4183 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
4186 css
= cgrp
->subsys
[ss
->subsys_id
];
4188 * When called from check_for_release() it's possible
4189 * that by this point the cgroup has been removed
4190 * and the css deleted. But a false-positive doesn't
4191 * matter, since it can only happen if the cgroup
4192 * has been deleted and hence no longer needs the
4193 * release agent to be called anyway.
4195 if (css
&& css_refcnt(css
) > 1)
4202 * Atomically mark all (or else none) of the cgroup's CSS objects as
4203 * CSS_REMOVED. Return true on success, or false if the cgroup has
4204 * busy subsystems. Call with cgroup_mutex held
4206 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
4207 * not, cgroup removal behaves differently.
4209 * If clear is set, css refcnt for the subsystem should be zero before
4210 * cgroup removal can be committed. This is implemented by
4211 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
4212 * called multiple times until all css refcnts reach zero and is allowed to
4213 * veto removal on any invocation. This behavior is deprecated and will be
4214 * removed as soon as the existing user (memcg) is updated.
4216 * If clear is not set, each css holds an extra reference to the cgroup's
4217 * dentry and cgroup removal proceeds regardless of css refs.
4218 * ->pre_destroy() will be called at least once and is not allowed to fail.
4219 * On the last put of each css, whenever that may be, the extra dentry ref
4220 * is put so that dentry destruction happens only after all css's are
4223 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
4225 struct cgroup_subsys
*ss
;
4226 unsigned long flags
;
4227 bool failed
= false;
4229 local_irq_save(flags
);
4232 * Block new css_tryget() by deactivating refcnt. If all refcnts
4233 * for subsystems w/ clear_css_refs set were 1 at the moment of
4234 * deactivation, we succeeded.
4236 for_each_subsys(cgrp
->root
, ss
) {
4237 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
4239 WARN_ON(atomic_read(&css
->refcnt
) < 0);
4240 atomic_add(CSS_DEACT_BIAS
, &css
->refcnt
);
4242 if (ss
->__DEPRECATED_clear_css_refs
)
4243 failed
|= css_refcnt(css
) != 1;
4247 * If succeeded, set REMOVED and put all the base refs; otherwise,
4248 * restore refcnts to positive values. Either way, all in-progress
4249 * css_tryget() will be released.
4251 for_each_subsys(cgrp
->root
, ss
) {
4252 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
4255 set_bit(CSS_REMOVED
, &css
->flags
);
4258 atomic_sub(CSS_DEACT_BIAS
, &css
->refcnt
);
4262 local_irq_restore(flags
);
4266 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
4268 struct cgroup
*cgrp
= dentry
->d_fsdata
;
4270 struct cgroup
*parent
;
4272 struct cgroup_event
*event
, *tmp
;
4275 /* the vfs holds both inode->i_mutex already */
4277 mutex_lock(&cgroup_mutex
);
4278 if (atomic_read(&cgrp
->count
) != 0) {
4279 mutex_unlock(&cgroup_mutex
);
4282 if (!list_empty(&cgrp
->children
)) {
4283 mutex_unlock(&cgroup_mutex
);
4286 mutex_unlock(&cgroup_mutex
);
4289 * In general, subsystem has no css->refcnt after pre_destroy(). But
4290 * in racy cases, subsystem may have to get css->refcnt after
4291 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4292 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4293 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4294 * and subsystem's reference count handling. Please see css_get/put
4295 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4297 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4300 * Call pre_destroy handlers of subsys. Notify subsystems
4301 * that rmdir() request comes.
4303 ret
= cgroup_call_pre_destroy(cgrp
);
4305 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4309 mutex_lock(&cgroup_mutex
);
4310 parent
= cgrp
->parent
;
4311 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
4312 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4313 mutex_unlock(&cgroup_mutex
);
4316 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
4317 if (!cgroup_clear_css_refs(cgrp
)) {
4318 mutex_unlock(&cgroup_mutex
);
4320 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4321 * prepare_to_wait(), we need to check this flag.
4323 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
4325 finish_wait(&cgroup_rmdir_waitq
, &wait
);
4326 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4327 if (signal_pending(current
))
4331 /* NO css_tryget() can success after here. */
4332 finish_wait(&cgroup_rmdir_waitq
, &wait
);
4333 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
4335 raw_spin_lock(&release_list_lock
);
4336 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
4337 if (!list_empty(&cgrp
->release_list
))
4338 list_del_init(&cgrp
->release_list
);
4339 raw_spin_unlock(&release_list_lock
);
4341 /* delete this cgroup from parent->children */
4342 list_del_init(&cgrp
->sibling
);
4344 list_del_init(&cgrp
->allcg_node
);
4346 d
= dget(cgrp
->dentry
);
4348 cgroup_d_remove_dir(d
);
4351 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
4352 check_for_release(parent
);
4355 * Unregister events and notify userspace.
4356 * Notify userspace about cgroup removing only after rmdir of cgroup
4357 * directory to avoid race between userspace and kernelspace
4359 spin_lock(&cgrp
->event_list_lock
);
4360 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
4361 list_del(&event
->list
);
4362 remove_wait_queue(event
->wqh
, &event
->wait
);
4363 eventfd_signal(event
->eventfd
, 1);
4364 schedule_work(&event
->remove
);
4366 spin_unlock(&cgrp
->event_list_lock
);
4368 mutex_unlock(&cgroup_mutex
);
4372 static void __init_or_module
cgroup_init_cftsets(struct cgroup_subsys
*ss
)
4374 INIT_LIST_HEAD(&ss
->cftsets
);
4377 * base_cftset is embedded in subsys itself, no need to worry about
4380 if (ss
->base_cftypes
) {
4381 ss
->base_cftset
.cfts
= ss
->base_cftypes
;
4382 list_add_tail(&ss
->base_cftset
.node
, &ss
->cftsets
);
4386 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
4388 struct cgroup_subsys_state
*css
;
4390 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4392 /* init base cftset */
4393 cgroup_init_cftsets(ss
);
4395 /* Create the top cgroup state for this subsystem */
4396 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
4397 ss
->root
= &rootnode
;
4398 css
= ss
->create(dummytop
);
4399 /* We don't handle early failures gracefully */
4400 BUG_ON(IS_ERR(css
));
4401 init_cgroup_css(css
, ss
, dummytop
);
4403 /* Update the init_css_set to contain a subsys
4404 * pointer to this state - since the subsystem is
4405 * newly registered, all tasks and hence the
4406 * init_css_set is in the subsystem's top cgroup. */
4407 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
4409 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
4411 /* At system boot, before all subsystems have been
4412 * registered, no tasks have been forked, so we don't
4413 * need to invoke fork callbacks here. */
4414 BUG_ON(!list_empty(&init_task
.tasks
));
4418 /* this function shouldn't be used with modular subsystems, since they
4419 * need to register a subsys_id, among other things */
4424 * cgroup_load_subsys: load and register a modular subsystem at runtime
4425 * @ss: the subsystem to load
4427 * This function should be called in a modular subsystem's initcall. If the
4428 * subsystem is built as a module, it will be assigned a new subsys_id and set
4429 * up for use. If the subsystem is built-in anyway, work is delegated to the
4430 * simpler cgroup_init_subsys.
4432 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
4435 struct cgroup_subsys_state
*css
;
4437 /* check name and function validity */
4438 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
4439 ss
->create
== NULL
|| ss
->destroy
== NULL
)
4443 * we don't support callbacks in modular subsystems. this check is
4444 * before the ss->module check for consistency; a subsystem that could
4445 * be a module should still have no callbacks even if the user isn't
4446 * compiling it as one.
4448 if (ss
->fork
|| ss
->exit
)
4452 * an optionally modular subsystem is built-in: we want to do nothing,
4453 * since cgroup_init_subsys will have already taken care of it.
4455 if (ss
->module
== NULL
) {
4456 /* a sanity check */
4457 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
4461 /* init base cftset */
4462 cgroup_init_cftsets(ss
);
4464 mutex_lock(&cgroup_mutex
);
4465 subsys
[ss
->subsys_id
] = ss
;
4468 * no ss->create seems to need anything important in the ss struct, so
4469 * this can happen first (i.e. before the rootnode attachment).
4471 css
= ss
->create(dummytop
);
4473 /* failure case - need to deassign the subsys[] slot. */
4474 subsys
[ss
->subsys_id
] = NULL
;
4475 mutex_unlock(&cgroup_mutex
);
4476 return PTR_ERR(css
);
4479 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
4480 ss
->root
= &rootnode
;
4482 /* our new subsystem will be attached to the dummy hierarchy. */
4483 init_cgroup_css(css
, ss
, dummytop
);
4484 /* init_idr must be after init_cgroup_css because it sets css->id. */
4486 int ret
= cgroup_init_idr(ss
, css
);
4488 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
4489 ss
->destroy(dummytop
);
4490 subsys
[ss
->subsys_id
] = NULL
;
4491 mutex_unlock(&cgroup_mutex
);
4497 * Now we need to entangle the css into the existing css_sets. unlike
4498 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4499 * will need a new pointer to it; done by iterating the css_set_table.
4500 * furthermore, modifying the existing css_sets will corrupt the hash
4501 * table state, so each changed css_set will need its hash recomputed.
4502 * this is all done under the css_set_lock.
4504 write_lock(&css_set_lock
);
4505 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
4507 struct hlist_node
*node
, *tmp
;
4508 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
4510 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
4511 /* skip entries that we already rehashed */
4512 if (cg
->subsys
[ss
->subsys_id
])
4514 /* remove existing entry */
4515 hlist_del(&cg
->hlist
);
4517 cg
->subsys
[ss
->subsys_id
] = css
;
4518 /* recompute hash and restore entry */
4519 new_bucket
= css_set_hash(cg
->subsys
);
4520 hlist_add_head(&cg
->hlist
, new_bucket
);
4523 write_unlock(&css_set_lock
);
4528 mutex_unlock(&cgroup_mutex
);
4531 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
4534 * cgroup_unload_subsys: unload a modular subsystem
4535 * @ss: the subsystem to unload
4537 * This function should be called in a modular subsystem's exitcall. When this
4538 * function is invoked, the refcount on the subsystem's module will be 0, so
4539 * the subsystem will not be attached to any hierarchy.
4541 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
4543 struct cg_cgroup_link
*link
;
4544 struct hlist_head
*hhead
;
4546 BUG_ON(ss
->module
== NULL
);
4549 * we shouldn't be called if the subsystem is in use, and the use of
4550 * try_module_get in parse_cgroupfs_options should ensure that it
4551 * doesn't start being used while we're killing it off.
4553 BUG_ON(ss
->root
!= &rootnode
);
4555 mutex_lock(&cgroup_mutex
);
4556 /* deassign the subsys_id */
4557 subsys
[ss
->subsys_id
] = NULL
;
4559 /* remove subsystem from rootnode's list of subsystems */
4560 list_del_init(&ss
->sibling
);
4563 * disentangle the css from all css_sets attached to the dummytop. as
4564 * in loading, we need to pay our respects to the hashtable gods.
4566 write_lock(&css_set_lock
);
4567 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
4568 struct css_set
*cg
= link
->cg
;
4570 hlist_del(&cg
->hlist
);
4571 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
4572 cg
->subsys
[ss
->subsys_id
] = NULL
;
4573 hhead
= css_set_hash(cg
->subsys
);
4574 hlist_add_head(&cg
->hlist
, hhead
);
4576 write_unlock(&css_set_lock
);
4579 * remove subsystem's css from the dummytop and free it - need to free
4580 * before marking as null because ss->destroy needs the cgrp->subsys
4581 * pointer to find their state. note that this also takes care of
4582 * freeing the css_id.
4584 ss
->destroy(dummytop
);
4585 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
4587 mutex_unlock(&cgroup_mutex
);
4589 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
4592 * cgroup_init_early - cgroup initialization at system boot
4594 * Initialize cgroups at system boot, and initialize any
4595 * subsystems that request early init.
4597 int __init
cgroup_init_early(void)
4600 atomic_set(&init_css_set
.refcount
, 1);
4601 INIT_LIST_HEAD(&init_css_set
.cg_links
);
4602 INIT_LIST_HEAD(&init_css_set
.tasks
);
4603 INIT_HLIST_NODE(&init_css_set
.hlist
);
4605 init_cgroup_root(&rootnode
);
4607 init_task
.cgroups
= &init_css_set
;
4609 init_css_set_link
.cg
= &init_css_set
;
4610 init_css_set_link
.cgrp
= dummytop
;
4611 list_add(&init_css_set_link
.cgrp_link_list
,
4612 &rootnode
.top_cgroup
.css_sets
);
4613 list_add(&init_css_set_link
.cg_link_list
,
4614 &init_css_set
.cg_links
);
4616 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
4617 INIT_HLIST_HEAD(&css_set_table
[i
]);
4619 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4620 struct cgroup_subsys
*ss
= subsys
[i
];
4622 /* at bootup time, we don't worry about modular subsystems */
4623 if (!ss
|| ss
->module
)
4627 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
4628 BUG_ON(!ss
->create
);
4629 BUG_ON(!ss
->destroy
);
4630 if (ss
->subsys_id
!= i
) {
4631 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
4632 ss
->name
, ss
->subsys_id
);
4637 cgroup_init_subsys(ss
);
4643 * cgroup_init - cgroup initialization
4645 * Register cgroup filesystem and /proc file, and initialize
4646 * any subsystems that didn't request early init.
4648 int __init
cgroup_init(void)
4652 struct hlist_head
*hhead
;
4654 err
= bdi_init(&cgroup_backing_dev_info
);
4658 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4659 struct cgroup_subsys
*ss
= subsys
[i
];
4661 /* at bootup time, we don't worry about modular subsystems */
4662 if (!ss
|| ss
->module
)
4664 if (!ss
->early_init
)
4665 cgroup_init_subsys(ss
);
4667 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
4670 /* Add init_css_set to the hash table */
4671 hhead
= css_set_hash(init_css_set
.subsys
);
4672 hlist_add_head(&init_css_set
.hlist
, hhead
);
4673 BUG_ON(!init_root_id(&rootnode
));
4675 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
4681 err
= register_filesystem(&cgroup_fs_type
);
4683 kobject_put(cgroup_kobj
);
4687 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
4691 bdi_destroy(&cgroup_backing_dev_info
);
4697 * proc_cgroup_show()
4698 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4699 * - Used for /proc/<pid>/cgroup.
4700 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4701 * doesn't really matter if tsk->cgroup changes after we read it,
4702 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4703 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4704 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4705 * cgroup to top_cgroup.
4708 /* TODO: Use a proper seq_file iterator */
4709 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
4712 struct task_struct
*tsk
;
4715 struct cgroupfs_root
*root
;
4718 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4724 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
4730 mutex_lock(&cgroup_mutex
);
4732 for_each_active_root(root
) {
4733 struct cgroup_subsys
*ss
;
4734 struct cgroup
*cgrp
;
4737 seq_printf(m
, "%d:", root
->hierarchy_id
);
4738 for_each_subsys(root
, ss
)
4739 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
4740 if (strlen(root
->name
))
4741 seq_printf(m
, "%sname=%s", count
? "," : "",
4744 cgrp
= task_cgroup_from_root(tsk
, root
);
4745 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
4753 mutex_unlock(&cgroup_mutex
);
4754 put_task_struct(tsk
);
4761 static int cgroup_open(struct inode
*inode
, struct file
*file
)
4763 struct pid
*pid
= PROC_I(inode
)->pid
;
4764 return single_open(file
, proc_cgroup_show
, pid
);
4767 const struct file_operations proc_cgroup_operations
= {
4768 .open
= cgroup_open
,
4770 .llseek
= seq_lseek
,
4771 .release
= single_release
,
4774 /* Display information about each subsystem and each hierarchy */
4775 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4779 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4781 * ideally we don't want subsystems moving around while we do this.
4782 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4783 * subsys/hierarchy state.
4785 mutex_lock(&cgroup_mutex
);
4786 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4787 struct cgroup_subsys
*ss
= subsys
[i
];
4790 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4791 ss
->name
, ss
->root
->hierarchy_id
,
4792 ss
->root
->number_of_cgroups
, !ss
->disabled
);
4794 mutex_unlock(&cgroup_mutex
);
4798 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4800 return single_open(file
, proc_cgroupstats_show
, NULL
);
4803 static const struct file_operations proc_cgroupstats_operations
= {
4804 .open
= cgroupstats_open
,
4806 .llseek
= seq_lseek
,
4807 .release
= single_release
,
4811 * cgroup_fork - attach newly forked task to its parents cgroup.
4812 * @child: pointer to task_struct of forking parent process.
4814 * Description: A task inherits its parent's cgroup at fork().
4816 * A pointer to the shared css_set was automatically copied in
4817 * fork.c by dup_task_struct(). However, we ignore that copy, since
4818 * it was not made under the protection of RCU, cgroup_mutex or
4819 * threadgroup_change_begin(), so it might no longer be a valid
4820 * cgroup pointer. cgroup_attach_task() might have already changed
4821 * current->cgroups, allowing the previously referenced cgroup
4822 * group to be removed and freed.
4824 * Outside the pointer validity we also need to process the css_set
4825 * inheritance between threadgoup_change_begin() and
4826 * threadgoup_change_end(), this way there is no leak in any process
4827 * wide migration performed by cgroup_attach_proc() that could otherwise
4828 * miss a thread because it is too early or too late in the fork stage.
4830 * At the point that cgroup_fork() is called, 'current' is the parent
4831 * task, and the passed argument 'child' points to the child task.
4833 void cgroup_fork(struct task_struct
*child
)
4836 * We don't need to task_lock() current because current->cgroups
4837 * can't be changed concurrently here. The parent obviously hasn't
4838 * exited and called cgroup_exit(), and we are synchronized against
4839 * cgroup migration through threadgroup_change_begin().
4841 child
->cgroups
= current
->cgroups
;
4842 get_css_set(child
->cgroups
);
4843 INIT_LIST_HEAD(&child
->cg_list
);
4847 * cgroup_fork_callbacks - run fork callbacks
4848 * @child: the new task
4850 * Called on a new task very soon before adding it to the
4851 * tasklist. No need to take any locks since no-one can
4852 * be operating on this task.
4854 void cgroup_fork_callbacks(struct task_struct
*child
)
4856 if (need_forkexit_callback
) {
4858 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4859 struct cgroup_subsys
*ss
= subsys
[i
];
4862 * forkexit callbacks are only supported for
4863 * builtin subsystems.
4865 if (!ss
|| ss
->module
)
4875 * cgroup_post_fork - called on a new task after adding it to the task list
4876 * @child: the task in question
4878 * Adds the task to the list running through its css_set if necessary.
4879 * Has to be after the task is visible on the task list in case we race
4880 * with the first call to cgroup_iter_start() - to guarantee that the
4881 * new task ends up on its list.
4883 void cgroup_post_fork(struct task_struct
*child
)
4886 * use_task_css_set_links is set to 1 before we walk the tasklist
4887 * under the tasklist_lock and we read it here after we added the child
4888 * to the tasklist under the tasklist_lock as well. If the child wasn't
4889 * yet in the tasklist when we walked through it from
4890 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4891 * should be visible now due to the paired locking and barriers implied
4892 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4893 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4896 if (use_task_css_set_links
) {
4897 write_lock(&css_set_lock
);
4898 if (list_empty(&child
->cg_list
)) {
4900 * It's safe to use child->cgroups without task_lock()
4901 * here because we are protected through
4902 * threadgroup_change_begin() against concurrent
4903 * css_set change in cgroup_task_migrate(). Also
4904 * the task can't exit at that point until
4905 * wake_up_new_task() is called, so we are protected
4906 * against cgroup_exit() setting child->cgroup to
4909 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4911 write_unlock(&css_set_lock
);
4915 * cgroup_exit - detach cgroup from exiting task
4916 * @tsk: pointer to task_struct of exiting process
4917 * @run_callback: run exit callbacks?
4919 * Description: Detach cgroup from @tsk and release it.
4921 * Note that cgroups marked notify_on_release force every task in
4922 * them to take the global cgroup_mutex mutex when exiting.
4923 * This could impact scaling on very large systems. Be reluctant to
4924 * use notify_on_release cgroups where very high task exit scaling
4925 * is required on large systems.
4927 * the_top_cgroup_hack:
4929 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4931 * We call cgroup_exit() while the task is still competent to
4932 * handle notify_on_release(), then leave the task attached to the
4933 * root cgroup in each hierarchy for the remainder of its exit.
4935 * To do this properly, we would increment the reference count on
4936 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4937 * code we would add a second cgroup function call, to drop that
4938 * reference. This would just create an unnecessary hot spot on
4939 * the top_cgroup reference count, to no avail.
4941 * Normally, holding a reference to a cgroup without bumping its
4942 * count is unsafe. The cgroup could go away, or someone could
4943 * attach us to a different cgroup, decrementing the count on
4944 * the first cgroup that we never incremented. But in this case,
4945 * top_cgroup isn't going away, and either task has PF_EXITING set,
4946 * which wards off any cgroup_attach_task() attempts, or task is a failed
4947 * fork, never visible to cgroup_attach_task.
4949 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4955 * Unlink from the css_set task list if necessary.
4956 * Optimistically check cg_list before taking
4959 if (!list_empty(&tsk
->cg_list
)) {
4960 write_lock(&css_set_lock
);
4961 if (!list_empty(&tsk
->cg_list
))
4962 list_del_init(&tsk
->cg_list
);
4963 write_unlock(&css_set_lock
);
4966 /* Reassign the task to the init_css_set. */
4969 tsk
->cgroups
= &init_css_set
;
4971 if (run_callbacks
&& need_forkexit_callback
) {
4972 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4973 struct cgroup_subsys
*ss
= subsys
[i
];
4975 /* modular subsystems can't use callbacks */
4976 if (!ss
|| ss
->module
)
4980 struct cgroup
*old_cgrp
=
4981 rcu_dereference_raw(cg
->subsys
[i
])->cgroup
;
4982 struct cgroup
*cgrp
= task_cgroup(tsk
, i
);
4983 ss
->exit(cgrp
, old_cgrp
, tsk
);
4990 put_css_set_taskexit(cg
);
4994 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4995 * @cgrp: the cgroup in question
4996 * @task: the task in question
4998 * See if @cgrp is a descendant of @task's cgroup in the appropriate
5001 * If we are sending in dummytop, then presumably we are creating
5002 * the top cgroup in the subsystem.
5004 * Called only by the ns (nsproxy) cgroup.
5006 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
5009 struct cgroup
*target
;
5011 if (cgrp
== dummytop
)
5014 target
= task_cgroup_from_root(task
, cgrp
->root
);
5015 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
5016 cgrp
= cgrp
->parent
;
5017 ret
= (cgrp
== target
);
5021 static void check_for_release(struct cgroup
*cgrp
)
5023 /* All of these checks rely on RCU to keep the cgroup
5024 * structure alive */
5025 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
5026 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
5027 /* Control Group is currently removeable. If it's not
5028 * already queued for a userspace notification, queue
5030 int need_schedule_work
= 0;
5031 raw_spin_lock(&release_list_lock
);
5032 if (!cgroup_is_removed(cgrp
) &&
5033 list_empty(&cgrp
->release_list
)) {
5034 list_add(&cgrp
->release_list
, &release_list
);
5035 need_schedule_work
= 1;
5037 raw_spin_unlock(&release_list_lock
);
5038 if (need_schedule_work
)
5039 schedule_work(&release_agent_work
);
5043 /* Caller must verify that the css is not for root cgroup */
5044 bool __css_tryget(struct cgroup_subsys_state
*css
)
5047 int v
= css_refcnt(css
);
5049 if (atomic_cmpxchg(&css
->refcnt
, v
, v
+ 1) == v
)
5052 } while (!test_bit(CSS_REMOVED
, &css
->flags
));
5056 EXPORT_SYMBOL_GPL(__css_tryget
);
5058 /* Caller must verify that the css is not for root cgroup */
5059 void __css_put(struct cgroup_subsys_state
*css
)
5061 struct cgroup
*cgrp
= css
->cgroup
;
5065 v
= css_unbias_refcnt(atomic_dec_return(&css
->refcnt
));
5069 if (notify_on_release(cgrp
)) {
5070 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
5071 check_for_release(cgrp
);
5073 cgroup_wakeup_rmdir_waiter(cgrp
);
5076 if (!test_bit(CSS_CLEAR_CSS_REFS
, &css
->flags
))
5077 schedule_work(&css
->dput_work
);
5082 EXPORT_SYMBOL_GPL(__css_put
);
5085 * Notify userspace when a cgroup is released, by running the
5086 * configured release agent with the name of the cgroup (path
5087 * relative to the root of cgroup file system) as the argument.
5089 * Most likely, this user command will try to rmdir this cgroup.
5091 * This races with the possibility that some other task will be
5092 * attached to this cgroup before it is removed, or that some other
5093 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5094 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5095 * unused, and this cgroup will be reprieved from its death sentence,
5096 * to continue to serve a useful existence. Next time it's released,
5097 * we will get notified again, if it still has 'notify_on_release' set.
5099 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5100 * means only wait until the task is successfully execve()'d. The
5101 * separate release agent task is forked by call_usermodehelper(),
5102 * then control in this thread returns here, without waiting for the
5103 * release agent task. We don't bother to wait because the caller of
5104 * this routine has no use for the exit status of the release agent
5105 * task, so no sense holding our caller up for that.
5107 static void cgroup_release_agent(struct work_struct
*work
)
5109 BUG_ON(work
!= &release_agent_work
);
5110 mutex_lock(&cgroup_mutex
);
5111 raw_spin_lock(&release_list_lock
);
5112 while (!list_empty(&release_list
)) {
5113 char *argv
[3], *envp
[3];
5115 char *pathbuf
= NULL
, *agentbuf
= NULL
;
5116 struct cgroup
*cgrp
= list_entry(release_list
.next
,
5119 list_del_init(&cgrp
->release_list
);
5120 raw_spin_unlock(&release_list_lock
);
5121 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
5124 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
5126 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5131 argv
[i
++] = agentbuf
;
5132 argv
[i
++] = pathbuf
;
5136 /* minimal command environment */
5137 envp
[i
++] = "HOME=/";
5138 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5141 /* Drop the lock while we invoke the usermode helper,
5142 * since the exec could involve hitting disk and hence
5143 * be a slow process */
5144 mutex_unlock(&cgroup_mutex
);
5145 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5146 mutex_lock(&cgroup_mutex
);
5150 raw_spin_lock(&release_list_lock
);
5152 raw_spin_unlock(&release_list_lock
);
5153 mutex_unlock(&cgroup_mutex
);
5156 static int __init
cgroup_disable(char *str
)
5161 while ((token
= strsep(&str
, ",")) != NULL
) {
5164 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
5165 struct cgroup_subsys
*ss
= subsys
[i
];
5168 * cgroup_disable, being at boot time, can't
5169 * know about module subsystems, so we don't
5172 if (!ss
|| ss
->module
)
5175 if (!strcmp(token
, ss
->name
)) {
5177 printk(KERN_INFO
"Disabling %s control group"
5178 " subsystem\n", ss
->name
);
5185 __setup("cgroup_disable=", cgroup_disable
);
5188 * Functons for CSS ID.
5192 *To get ID other than 0, this should be called when !cgroup_is_removed().
5194 unsigned short css_id(struct cgroup_subsys_state
*css
)
5196 struct css_id
*cssid
;
5199 * This css_id() can return correct value when somone has refcnt
5200 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5201 * it's unchanged until freed.
5203 cssid
= rcu_dereference_check(css
->id
, css_refcnt(css
));
5209 EXPORT_SYMBOL_GPL(css_id
);
5211 unsigned short css_depth(struct cgroup_subsys_state
*css
)
5213 struct css_id
*cssid
;
5215 cssid
= rcu_dereference_check(css
->id
, css_refcnt(css
));
5218 return cssid
->depth
;
5221 EXPORT_SYMBOL_GPL(css_depth
);
5224 * css_is_ancestor - test "root" css is an ancestor of "child"
5225 * @child: the css to be tested.
5226 * @root: the css supporsed to be an ancestor of the child.
5228 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5229 * this function reads css->id, the caller must hold rcu_read_lock().
5230 * But, considering usual usage, the csses should be valid objects after test.
5231 * Assuming that the caller will do some action to the child if this returns
5232 * returns true, the caller must take "child";s reference count.
5233 * If "child" is valid object and this returns true, "root" is valid, too.
5236 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
5237 const struct cgroup_subsys_state
*root
)
5239 struct css_id
*child_id
;
5240 struct css_id
*root_id
;
5242 child_id
= rcu_dereference(child
->id
);
5245 root_id
= rcu_dereference(root
->id
);
5248 if (child_id
->depth
< root_id
->depth
)
5250 if (child_id
->stack
[root_id
->depth
] != root_id
->id
)
5255 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
5257 struct css_id
*id
= css
->id
;
5258 /* When this is called before css_id initialization, id can be NULL */
5262 BUG_ON(!ss
->use_id
);
5264 rcu_assign_pointer(id
->css
, NULL
);
5265 rcu_assign_pointer(css
->id
, NULL
);
5266 spin_lock(&ss
->id_lock
);
5267 idr_remove(&ss
->idr
, id
->id
);
5268 spin_unlock(&ss
->id_lock
);
5269 kfree_rcu(id
, rcu_head
);
5271 EXPORT_SYMBOL_GPL(free_css_id
);
5274 * This is called by init or create(). Then, calls to this function are
5275 * always serialized (By cgroup_mutex() at create()).
5278 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
5280 struct css_id
*newid
;
5281 int myid
, error
, size
;
5283 BUG_ON(!ss
->use_id
);
5285 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
5286 newid
= kzalloc(size
, GFP_KERNEL
);
5288 return ERR_PTR(-ENOMEM
);
5290 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
5294 spin_lock(&ss
->id_lock
);
5295 /* Don't use 0. allocates an ID of 1-65535 */
5296 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
5297 spin_unlock(&ss
->id_lock
);
5299 /* Returns error when there are no free spaces for new ID.*/
5304 if (myid
> CSS_ID_MAX
)
5308 newid
->depth
= depth
;
5312 spin_lock(&ss
->id_lock
);
5313 idr_remove(&ss
->idr
, myid
);
5314 spin_unlock(&ss
->id_lock
);
5317 return ERR_PTR(error
);
5321 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
5322 struct cgroup_subsys_state
*rootcss
)
5324 struct css_id
*newid
;
5326 spin_lock_init(&ss
->id_lock
);
5329 newid
= get_new_cssid(ss
, 0);
5331 return PTR_ERR(newid
);
5333 newid
->stack
[0] = newid
->id
;
5334 newid
->css
= rootcss
;
5335 rootcss
->id
= newid
;
5339 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
5340 struct cgroup
*child
)
5342 int subsys_id
, i
, depth
= 0;
5343 struct cgroup_subsys_state
*parent_css
, *child_css
;
5344 struct css_id
*child_id
, *parent_id
;
5346 subsys_id
= ss
->subsys_id
;
5347 parent_css
= parent
->subsys
[subsys_id
];
5348 child_css
= child
->subsys
[subsys_id
];
5349 parent_id
= parent_css
->id
;
5350 depth
= parent_id
->depth
+ 1;
5352 child_id
= get_new_cssid(ss
, depth
);
5353 if (IS_ERR(child_id
))
5354 return PTR_ERR(child_id
);
5356 for (i
= 0; i
< depth
; i
++)
5357 child_id
->stack
[i
] = parent_id
->stack
[i
];
5358 child_id
->stack
[depth
] = child_id
->id
;
5360 * child_id->css pointer will be set after this cgroup is available
5361 * see cgroup_populate_dir()
5363 rcu_assign_pointer(child_css
->id
, child_id
);
5369 * css_lookup - lookup css by id
5370 * @ss: cgroup subsys to be looked into.
5373 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5374 * NULL if not. Should be called under rcu_read_lock()
5376 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
5378 struct css_id
*cssid
= NULL
;
5380 BUG_ON(!ss
->use_id
);
5381 cssid
= idr_find(&ss
->idr
, id
);
5383 if (unlikely(!cssid
))
5386 return rcu_dereference(cssid
->css
);
5388 EXPORT_SYMBOL_GPL(css_lookup
);
5391 * css_get_next - lookup next cgroup under specified hierarchy.
5392 * @ss: pointer to subsystem
5393 * @id: current position of iteration.
5394 * @root: pointer to css. search tree under this.
5395 * @foundid: position of found object.
5397 * Search next css under the specified hierarchy of rootid. Calling under
5398 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5400 struct cgroup_subsys_state
*
5401 css_get_next(struct cgroup_subsys
*ss
, int id
,
5402 struct cgroup_subsys_state
*root
, int *foundid
)
5404 struct cgroup_subsys_state
*ret
= NULL
;
5407 int rootid
= css_id(root
);
5408 int depth
= css_depth(root
);
5413 BUG_ON(!ss
->use_id
);
5414 WARN_ON_ONCE(!rcu_read_lock_held());
5416 /* fill start point for scan */
5420 * scan next entry from bitmap(tree), tmpid is updated after
5423 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
5426 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
5427 ret
= rcu_dereference(tmp
->css
);
5433 /* continue to scan from next id */
5440 * get corresponding css from file open on cgroupfs directory
5442 struct cgroup_subsys_state
*cgroup_css_from_dir(struct file
*f
, int id
)
5444 struct cgroup
*cgrp
;
5445 struct inode
*inode
;
5446 struct cgroup_subsys_state
*css
;
5448 inode
= f
->f_dentry
->d_inode
;
5449 /* check in cgroup filesystem dir */
5450 if (inode
->i_op
!= &cgroup_dir_inode_operations
)
5451 return ERR_PTR(-EBADF
);
5453 if (id
< 0 || id
>= CGROUP_SUBSYS_COUNT
)
5454 return ERR_PTR(-EINVAL
);
5457 cgrp
= __d_cgrp(f
->f_dentry
);
5458 css
= cgrp
->subsys
[id
];
5459 return css
? css
: ERR_PTR(-ENOENT
);
5462 #ifdef CONFIG_CGROUP_DEBUG
5463 static struct cgroup_subsys_state
*debug_create(struct cgroup
*cont
)
5465 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5468 return ERR_PTR(-ENOMEM
);
5473 static void debug_destroy(struct cgroup
*cont
)
5475 kfree(cont
->subsys
[debug_subsys_id
]);
5478 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
5480 return atomic_read(&cont
->count
);
5483 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
5485 return cgroup_task_count(cont
);
5488 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
5490 return (u64
)(unsigned long)current
->cgroups
;
5493 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
5499 count
= atomic_read(¤t
->cgroups
->refcount
);
5504 static int current_css_set_cg_links_read(struct cgroup
*cont
,
5506 struct seq_file
*seq
)
5508 struct cg_cgroup_link
*link
;
5511 read_lock(&css_set_lock
);
5513 cg
= rcu_dereference(current
->cgroups
);
5514 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
5515 struct cgroup
*c
= link
->cgrp
;
5519 name
= c
->dentry
->d_name
.name
;
5522 seq_printf(seq
, "Root %d group %s\n",
5523 c
->root
->hierarchy_id
, name
);
5526 read_unlock(&css_set_lock
);
5530 #define MAX_TASKS_SHOWN_PER_CSS 25
5531 static int cgroup_css_links_read(struct cgroup
*cont
,
5533 struct seq_file
*seq
)
5535 struct cg_cgroup_link
*link
;
5537 read_lock(&css_set_lock
);
5538 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
5539 struct css_set
*cg
= link
->cg
;
5540 struct task_struct
*task
;
5542 seq_printf(seq
, "css_set %p\n", cg
);
5543 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
5544 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
5545 seq_puts(seq
, " ...\n");
5548 seq_printf(seq
, " task %d\n",
5549 task_pid_vnr(task
));
5553 read_unlock(&css_set_lock
);
5557 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
5559 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
5562 static struct cftype debug_files
[] = {
5564 .name
= "cgroup_refcount",
5565 .read_u64
= cgroup_refcount_read
,
5568 .name
= "taskcount",
5569 .read_u64
= debug_taskcount_read
,
5573 .name
= "current_css_set",
5574 .read_u64
= current_css_set_read
,
5578 .name
= "current_css_set_refcount",
5579 .read_u64
= current_css_set_refcount_read
,
5583 .name
= "current_css_set_cg_links",
5584 .read_seq_string
= current_css_set_cg_links_read
,
5588 .name
= "cgroup_css_links",
5589 .read_seq_string
= cgroup_css_links_read
,
5593 .name
= "releasable",
5594 .read_u64
= releasable_read
,
5600 struct cgroup_subsys debug_subsys
= {
5602 .create
= debug_create
,
5603 .destroy
= debug_destroy
,
5604 .subsys_id
= debug_subsys_id
,
5605 .base_cftypes
= debug_files
,
5607 #endif /* CONFIG_CGROUP_DEBUG */