[PATCH] i2lib unused variable cleanup
[linux-2.6/libata-dev.git] / kernel / signal.c
blobbc972d7e6319729b832fd1bde49b70f49549ec58
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <asm/param.h>
28 #include <asm/uaccess.h>
29 #include <asm/unistd.h>
30 #include <asm/siginfo.h>
31 #include "audit.h" /* audit_signal_info() */
34 * SLAB caches for signal bits.
37 static struct kmem_cache *sigqueue_cachep;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
151 #define sig_user_defined(t, signr) \
152 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
153 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
155 #define sig_fatal(t, signr) \
156 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
157 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
159 static int sig_ignored(struct task_struct *t, int sig)
161 void __user * handler;
164 * Tracers always want to know about signals..
166 if (t->ptrace & PT_PTRACED)
167 return 0;
170 * Blocked signals are never ignored, since the
171 * signal handler may change by the time it is
172 * unblocked.
174 if (sigismember(&t->blocked, sig))
175 return 0;
177 /* Is it explicitly or implicitly ignored? */
178 handler = t->sighand->action[sig-1].sa.sa_handler;
179 return handler == SIG_IGN ||
180 (handler == SIG_DFL && sig_kernel_ignore(sig));
184 * Re-calculate pending state from the set of locally pending
185 * signals, globally pending signals, and blocked signals.
187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
189 unsigned long ready;
190 long i;
192 switch (_NSIG_WORDS) {
193 default:
194 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
195 ready |= signal->sig[i] &~ blocked->sig[i];
196 break;
198 case 4: ready = signal->sig[3] &~ blocked->sig[3];
199 ready |= signal->sig[2] &~ blocked->sig[2];
200 ready |= signal->sig[1] &~ blocked->sig[1];
201 ready |= signal->sig[0] &~ blocked->sig[0];
202 break;
204 case 2: ready = signal->sig[1] &~ blocked->sig[1];
205 ready |= signal->sig[0] &~ blocked->sig[0];
206 break;
208 case 1: ready = signal->sig[0] &~ blocked->sig[0];
210 return ready != 0;
213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
215 fastcall void recalc_sigpending_tsk(struct task_struct *t)
217 if (t->signal->group_stop_count > 0 ||
218 (freezing(t)) ||
219 PENDING(&t->pending, &t->blocked) ||
220 PENDING(&t->signal->shared_pending, &t->blocked))
221 set_tsk_thread_flag(t, TIF_SIGPENDING);
222 else
223 clear_tsk_thread_flag(t, TIF_SIGPENDING);
226 void recalc_sigpending(void)
228 recalc_sigpending_tsk(current);
231 /* Given the mask, find the first available signal that should be serviced. */
233 static int
234 next_signal(struct sigpending *pending, sigset_t *mask)
236 unsigned long i, *s, *m, x;
237 int sig = 0;
239 s = pending->signal.sig;
240 m = mask->sig;
241 switch (_NSIG_WORDS) {
242 default:
243 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
244 if ((x = *s &~ *m) != 0) {
245 sig = ffz(~x) + i*_NSIG_BPW + 1;
246 break;
248 break;
250 case 2: if ((x = s[0] &~ m[0]) != 0)
251 sig = 1;
252 else if ((x = s[1] &~ m[1]) != 0)
253 sig = _NSIG_BPW + 1;
254 else
255 break;
256 sig += ffz(~x);
257 break;
259 case 1: if ((x = *s &~ *m) != 0)
260 sig = ffz(~x) + 1;
261 break;
264 return sig;
267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 int override_rlimit)
270 struct sigqueue *q = NULL;
271 struct user_struct *user;
274 * In order to avoid problems with "switch_user()", we want to make
275 * sure that the compiler doesn't re-load "t->user"
277 user = t->user;
278 barrier();
279 atomic_inc(&user->sigpending);
280 if (override_rlimit ||
281 atomic_read(&user->sigpending) <=
282 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
283 q = kmem_cache_alloc(sigqueue_cachep, flags);
284 if (unlikely(q == NULL)) {
285 atomic_dec(&user->sigpending);
286 } else {
287 INIT_LIST_HEAD(&q->list);
288 q->flags = 0;
289 q->user = get_uid(user);
291 return(q);
294 static void __sigqueue_free(struct sigqueue *q)
296 if (q->flags & SIGQUEUE_PREALLOC)
297 return;
298 atomic_dec(&q->user->sigpending);
299 free_uid(q->user);
300 kmem_cache_free(sigqueue_cachep, q);
303 void flush_sigqueue(struct sigpending *queue)
305 struct sigqueue *q;
307 sigemptyset(&queue->signal);
308 while (!list_empty(&queue->list)) {
309 q = list_entry(queue->list.next, struct sigqueue , list);
310 list_del_init(&q->list);
311 __sigqueue_free(q);
316 * Flush all pending signals for a task.
318 void flush_signals(struct task_struct *t)
320 unsigned long flags;
322 spin_lock_irqsave(&t->sighand->siglock, flags);
323 clear_tsk_thread_flag(t,TIF_SIGPENDING);
324 flush_sigqueue(&t->pending);
325 flush_sigqueue(&t->signal->shared_pending);
326 spin_unlock_irqrestore(&t->sighand->siglock, flags);
330 * Flush all handlers for a task.
333 void
334 flush_signal_handlers(struct task_struct *t, int force_default)
336 int i;
337 struct k_sigaction *ka = &t->sighand->action[0];
338 for (i = _NSIG ; i != 0 ; i--) {
339 if (force_default || ka->sa.sa_handler != SIG_IGN)
340 ka->sa.sa_handler = SIG_DFL;
341 ka->sa.sa_flags = 0;
342 sigemptyset(&ka->sa.sa_mask);
343 ka++;
348 /* Notify the system that a driver wants to block all signals for this
349 * process, and wants to be notified if any signals at all were to be
350 * sent/acted upon. If the notifier routine returns non-zero, then the
351 * signal will be acted upon after all. If the notifier routine returns 0,
352 * then then signal will be blocked. Only one block per process is
353 * allowed. priv is a pointer to private data that the notifier routine
354 * can use to determine if the signal should be blocked or not. */
356 void
357 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
359 unsigned long flags;
361 spin_lock_irqsave(&current->sighand->siglock, flags);
362 current->notifier_mask = mask;
363 current->notifier_data = priv;
364 current->notifier = notifier;
365 spin_unlock_irqrestore(&current->sighand->siglock, flags);
368 /* Notify the system that blocking has ended. */
370 void
371 unblock_all_signals(void)
373 unsigned long flags;
375 spin_lock_irqsave(&current->sighand->siglock, flags);
376 current->notifier = NULL;
377 current->notifier_data = NULL;
378 recalc_sigpending();
379 spin_unlock_irqrestore(&current->sighand->siglock, flags);
382 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
384 struct sigqueue *q, *first = NULL;
385 int still_pending = 0;
387 if (unlikely(!sigismember(&list->signal, sig)))
388 return 0;
391 * Collect the siginfo appropriate to this signal. Check if
392 * there is another siginfo for the same signal.
394 list_for_each_entry(q, &list->list, list) {
395 if (q->info.si_signo == sig) {
396 if (first) {
397 still_pending = 1;
398 break;
400 first = q;
403 if (first) {
404 list_del_init(&first->list);
405 copy_siginfo(info, &first->info);
406 __sigqueue_free(first);
407 if (!still_pending)
408 sigdelset(&list->signal, sig);
409 } else {
411 /* Ok, it wasn't in the queue. This must be
412 a fast-pathed signal or we must have been
413 out of queue space. So zero out the info.
415 sigdelset(&list->signal, sig);
416 info->si_signo = sig;
417 info->si_errno = 0;
418 info->si_code = 0;
419 info->si_pid = 0;
420 info->si_uid = 0;
422 return 1;
425 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
426 siginfo_t *info)
428 int sig = next_signal(pending, mask);
430 if (sig) {
431 if (current->notifier) {
432 if (sigismember(current->notifier_mask, sig)) {
433 if (!(current->notifier)(current->notifier_data)) {
434 clear_thread_flag(TIF_SIGPENDING);
435 return 0;
440 if (!collect_signal(sig, pending, info))
441 sig = 0;
444 return sig;
448 * Dequeue a signal and return the element to the caller, which is
449 * expected to free it.
451 * All callers have to hold the siglock.
453 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
455 int signr = __dequeue_signal(&tsk->pending, mask, info);
456 if (!signr)
457 signr = __dequeue_signal(&tsk->signal->shared_pending,
458 mask, info);
459 recalc_sigpending_tsk(tsk);
460 if (signr && unlikely(sig_kernel_stop(signr))) {
462 * Set a marker that we have dequeued a stop signal. Our
463 * caller might release the siglock and then the pending
464 * stop signal it is about to process is no longer in the
465 * pending bitmasks, but must still be cleared by a SIGCONT
466 * (and overruled by a SIGKILL). So those cases clear this
467 * shared flag after we've set it. Note that this flag may
468 * remain set after the signal we return is ignored or
469 * handled. That doesn't matter because its only purpose
470 * is to alert stop-signal processing code when another
471 * processor has come along and cleared the flag.
473 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
474 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
476 if ( signr &&
477 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
478 info->si_sys_private){
480 * Release the siglock to ensure proper locking order
481 * of timer locks outside of siglocks. Note, we leave
482 * irqs disabled here, since the posix-timers code is
483 * about to disable them again anyway.
485 spin_unlock(&tsk->sighand->siglock);
486 do_schedule_next_timer(info);
487 spin_lock(&tsk->sighand->siglock);
489 return signr;
493 * Tell a process that it has a new active signal..
495 * NOTE! we rely on the previous spin_lock to
496 * lock interrupts for us! We can only be called with
497 * "siglock" held, and the local interrupt must
498 * have been disabled when that got acquired!
500 * No need to set need_resched since signal event passing
501 * goes through ->blocked
503 void signal_wake_up(struct task_struct *t, int resume)
505 unsigned int mask;
507 set_tsk_thread_flag(t, TIF_SIGPENDING);
510 * For SIGKILL, we want to wake it up in the stopped/traced case.
511 * We don't check t->state here because there is a race with it
512 * executing another processor and just now entering stopped state.
513 * By using wake_up_state, we ensure the process will wake up and
514 * handle its death signal.
516 mask = TASK_INTERRUPTIBLE;
517 if (resume)
518 mask |= TASK_STOPPED | TASK_TRACED;
519 if (!wake_up_state(t, mask))
520 kick_process(t);
524 * Remove signals in mask from the pending set and queue.
525 * Returns 1 if any signals were found.
527 * All callers must be holding the siglock.
529 * This version takes a sigset mask and looks at all signals,
530 * not just those in the first mask word.
532 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
534 struct sigqueue *q, *n;
535 sigset_t m;
537 sigandsets(&m, mask, &s->signal);
538 if (sigisemptyset(&m))
539 return 0;
541 signandsets(&s->signal, &s->signal, mask);
542 list_for_each_entry_safe(q, n, &s->list, list) {
543 if (sigismember(mask, q->info.si_signo)) {
544 list_del_init(&q->list);
545 __sigqueue_free(q);
548 return 1;
551 * Remove signals in mask from the pending set and queue.
552 * Returns 1 if any signals were found.
554 * All callers must be holding the siglock.
556 static int rm_from_queue(unsigned long mask, struct sigpending *s)
558 struct sigqueue *q, *n;
560 if (!sigtestsetmask(&s->signal, mask))
561 return 0;
563 sigdelsetmask(&s->signal, mask);
564 list_for_each_entry_safe(q, n, &s->list, list) {
565 if (q->info.si_signo < SIGRTMIN &&
566 (mask & sigmask(q->info.si_signo))) {
567 list_del_init(&q->list);
568 __sigqueue_free(q);
571 return 1;
575 * Bad permissions for sending the signal
577 static int check_kill_permission(int sig, struct siginfo *info,
578 struct task_struct *t)
580 int error = -EINVAL;
581 if (!valid_signal(sig))
582 return error;
583 error = -EPERM;
584 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
585 && ((sig != SIGCONT) ||
586 (current->signal->session != t->signal->session))
587 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
588 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
589 && !capable(CAP_KILL))
590 return error;
592 error = security_task_kill(t, info, sig, 0);
593 if (!error)
594 audit_signal_info(sig, t); /* Let audit system see the signal */
595 return error;
598 /* forward decl */
599 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
602 * Handle magic process-wide effects of stop/continue signals.
603 * Unlike the signal actions, these happen immediately at signal-generation
604 * time regardless of blocking, ignoring, or handling. This does the
605 * actual continuing for SIGCONT, but not the actual stopping for stop
606 * signals. The process stop is done as a signal action for SIG_DFL.
608 static void handle_stop_signal(int sig, struct task_struct *p)
610 struct task_struct *t;
612 if (p->signal->flags & SIGNAL_GROUP_EXIT)
614 * The process is in the middle of dying already.
616 return;
618 if (sig_kernel_stop(sig)) {
620 * This is a stop signal. Remove SIGCONT from all queues.
622 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
623 t = p;
624 do {
625 rm_from_queue(sigmask(SIGCONT), &t->pending);
626 t = next_thread(t);
627 } while (t != p);
628 } else if (sig == SIGCONT) {
630 * Remove all stop signals from all queues,
631 * and wake all threads.
633 if (unlikely(p->signal->group_stop_count > 0)) {
635 * There was a group stop in progress. We'll
636 * pretend it finished before we got here. We are
637 * obliged to report it to the parent: if the
638 * SIGSTOP happened "after" this SIGCONT, then it
639 * would have cleared this pending SIGCONT. If it
640 * happened "before" this SIGCONT, then the parent
641 * got the SIGCHLD about the stop finishing before
642 * the continue happened. We do the notification
643 * now, and it's as if the stop had finished and
644 * the SIGCHLD was pending on entry to this kill.
646 p->signal->group_stop_count = 0;
647 p->signal->flags = SIGNAL_STOP_CONTINUED;
648 spin_unlock(&p->sighand->siglock);
649 do_notify_parent_cldstop(p, CLD_STOPPED);
650 spin_lock(&p->sighand->siglock);
652 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
653 t = p;
654 do {
655 unsigned int state;
656 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
659 * If there is a handler for SIGCONT, we must make
660 * sure that no thread returns to user mode before
661 * we post the signal, in case it was the only
662 * thread eligible to run the signal handler--then
663 * it must not do anything between resuming and
664 * running the handler. With the TIF_SIGPENDING
665 * flag set, the thread will pause and acquire the
666 * siglock that we hold now and until we've queued
667 * the pending signal.
669 * Wake up the stopped thread _after_ setting
670 * TIF_SIGPENDING
672 state = TASK_STOPPED;
673 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
674 set_tsk_thread_flag(t, TIF_SIGPENDING);
675 state |= TASK_INTERRUPTIBLE;
677 wake_up_state(t, state);
679 t = next_thread(t);
680 } while (t != p);
682 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
684 * We were in fact stopped, and are now continued.
685 * Notify the parent with CLD_CONTINUED.
687 p->signal->flags = SIGNAL_STOP_CONTINUED;
688 p->signal->group_exit_code = 0;
689 spin_unlock(&p->sighand->siglock);
690 do_notify_parent_cldstop(p, CLD_CONTINUED);
691 spin_lock(&p->sighand->siglock);
692 } else {
694 * We are not stopped, but there could be a stop
695 * signal in the middle of being processed after
696 * being removed from the queue. Clear that too.
698 p->signal->flags = 0;
700 } else if (sig == SIGKILL) {
702 * Make sure that any pending stop signal already dequeued
703 * is undone by the wakeup for SIGKILL.
705 p->signal->flags = 0;
709 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
710 struct sigpending *signals)
712 struct sigqueue * q = NULL;
713 int ret = 0;
716 * fast-pathed signals for kernel-internal things like SIGSTOP
717 * or SIGKILL.
719 if (info == SEND_SIG_FORCED)
720 goto out_set;
722 /* Real-time signals must be queued if sent by sigqueue, or
723 some other real-time mechanism. It is implementation
724 defined whether kill() does so. We attempt to do so, on
725 the principle of least surprise, but since kill is not
726 allowed to fail with EAGAIN when low on memory we just
727 make sure at least one signal gets delivered and don't
728 pass on the info struct. */
730 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
731 (is_si_special(info) ||
732 info->si_code >= 0)));
733 if (q) {
734 list_add_tail(&q->list, &signals->list);
735 switch ((unsigned long) info) {
736 case (unsigned long) SEND_SIG_NOINFO:
737 q->info.si_signo = sig;
738 q->info.si_errno = 0;
739 q->info.si_code = SI_USER;
740 q->info.si_pid = current->pid;
741 q->info.si_uid = current->uid;
742 break;
743 case (unsigned long) SEND_SIG_PRIV:
744 q->info.si_signo = sig;
745 q->info.si_errno = 0;
746 q->info.si_code = SI_KERNEL;
747 q->info.si_pid = 0;
748 q->info.si_uid = 0;
749 break;
750 default:
751 copy_siginfo(&q->info, info);
752 break;
754 } else if (!is_si_special(info)) {
755 if (sig >= SIGRTMIN && info->si_code != SI_USER)
757 * Queue overflow, abort. We may abort if the signal was rt
758 * and sent by user using something other than kill().
760 return -EAGAIN;
763 out_set:
764 sigaddset(&signals->signal, sig);
765 return ret;
768 #define LEGACY_QUEUE(sigptr, sig) \
769 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
772 static int
773 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
775 int ret = 0;
777 BUG_ON(!irqs_disabled());
778 assert_spin_locked(&t->sighand->siglock);
780 /* Short-circuit ignored signals. */
781 if (sig_ignored(t, sig))
782 goto out;
784 /* Support queueing exactly one non-rt signal, so that we
785 can get more detailed information about the cause of
786 the signal. */
787 if (LEGACY_QUEUE(&t->pending, sig))
788 goto out;
790 ret = send_signal(sig, info, t, &t->pending);
791 if (!ret && !sigismember(&t->blocked, sig))
792 signal_wake_up(t, sig == SIGKILL);
793 out:
794 return ret;
798 * Force a signal that the process can't ignore: if necessary
799 * we unblock the signal and change any SIG_IGN to SIG_DFL.
801 * Note: If we unblock the signal, we always reset it to SIG_DFL,
802 * since we do not want to have a signal handler that was blocked
803 * be invoked when user space had explicitly blocked it.
805 * We don't want to have recursive SIGSEGV's etc, for example.
808 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
810 unsigned long int flags;
811 int ret, blocked, ignored;
812 struct k_sigaction *action;
814 spin_lock_irqsave(&t->sighand->siglock, flags);
815 action = &t->sighand->action[sig-1];
816 ignored = action->sa.sa_handler == SIG_IGN;
817 blocked = sigismember(&t->blocked, sig);
818 if (blocked || ignored) {
819 action->sa.sa_handler = SIG_DFL;
820 if (blocked) {
821 sigdelset(&t->blocked, sig);
822 recalc_sigpending_tsk(t);
825 ret = specific_send_sig_info(sig, info, t);
826 spin_unlock_irqrestore(&t->sighand->siglock, flags);
828 return ret;
831 void
832 force_sig_specific(int sig, struct task_struct *t)
834 force_sig_info(sig, SEND_SIG_FORCED, t);
838 * Test if P wants to take SIG. After we've checked all threads with this,
839 * it's equivalent to finding no threads not blocking SIG. Any threads not
840 * blocking SIG were ruled out because they are not running and already
841 * have pending signals. Such threads will dequeue from the shared queue
842 * as soon as they're available, so putting the signal on the shared queue
843 * will be equivalent to sending it to one such thread.
845 static inline int wants_signal(int sig, struct task_struct *p)
847 if (sigismember(&p->blocked, sig))
848 return 0;
849 if (p->flags & PF_EXITING)
850 return 0;
851 if (sig == SIGKILL)
852 return 1;
853 if (p->state & (TASK_STOPPED | TASK_TRACED))
854 return 0;
855 return task_curr(p) || !signal_pending(p);
858 static void
859 __group_complete_signal(int sig, struct task_struct *p)
861 struct task_struct *t;
864 * Now find a thread we can wake up to take the signal off the queue.
866 * If the main thread wants the signal, it gets first crack.
867 * Probably the least surprising to the average bear.
869 if (wants_signal(sig, p))
870 t = p;
871 else if (thread_group_empty(p))
873 * There is just one thread and it does not need to be woken.
874 * It will dequeue unblocked signals before it runs again.
876 return;
877 else {
879 * Otherwise try to find a suitable thread.
881 t = p->signal->curr_target;
882 if (t == NULL)
883 /* restart balancing at this thread */
884 t = p->signal->curr_target = p;
886 while (!wants_signal(sig, t)) {
887 t = next_thread(t);
888 if (t == p->signal->curr_target)
890 * No thread needs to be woken.
891 * Any eligible threads will see
892 * the signal in the queue soon.
894 return;
896 p->signal->curr_target = t;
900 * Found a killable thread. If the signal will be fatal,
901 * then start taking the whole group down immediately.
903 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
904 !sigismember(&t->real_blocked, sig) &&
905 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
907 * This signal will be fatal to the whole group.
909 if (!sig_kernel_coredump(sig)) {
911 * Start a group exit and wake everybody up.
912 * This way we don't have other threads
913 * running and doing things after a slower
914 * thread has the fatal signal pending.
916 p->signal->flags = SIGNAL_GROUP_EXIT;
917 p->signal->group_exit_code = sig;
918 p->signal->group_stop_count = 0;
919 t = p;
920 do {
921 sigaddset(&t->pending.signal, SIGKILL);
922 signal_wake_up(t, 1);
923 t = next_thread(t);
924 } while (t != p);
925 return;
929 * There will be a core dump. We make all threads other
930 * than the chosen one go into a group stop so that nothing
931 * happens until it gets scheduled, takes the signal off
932 * the shared queue, and does the core dump. This is a
933 * little more complicated than strictly necessary, but it
934 * keeps the signal state that winds up in the core dump
935 * unchanged from the death state, e.g. which thread had
936 * the core-dump signal unblocked.
938 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
939 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
940 p->signal->group_stop_count = 0;
941 p->signal->group_exit_task = t;
942 t = p;
943 do {
944 p->signal->group_stop_count++;
945 signal_wake_up(t, 0);
946 t = next_thread(t);
947 } while (t != p);
948 wake_up_process(p->signal->group_exit_task);
949 return;
953 * The signal is already in the shared-pending queue.
954 * Tell the chosen thread to wake up and dequeue it.
956 signal_wake_up(t, sig == SIGKILL);
957 return;
961 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
963 int ret = 0;
965 assert_spin_locked(&p->sighand->siglock);
966 handle_stop_signal(sig, p);
968 /* Short-circuit ignored signals. */
969 if (sig_ignored(p, sig))
970 return ret;
972 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
973 /* This is a non-RT signal and we already have one queued. */
974 return ret;
977 * Put this signal on the shared-pending queue, or fail with EAGAIN.
978 * We always use the shared queue for process-wide signals,
979 * to avoid several races.
981 ret = send_signal(sig, info, p, &p->signal->shared_pending);
982 if (unlikely(ret))
983 return ret;
985 __group_complete_signal(sig, p);
986 return 0;
990 * Nuke all other threads in the group.
992 void zap_other_threads(struct task_struct *p)
994 struct task_struct *t;
996 p->signal->flags = SIGNAL_GROUP_EXIT;
997 p->signal->group_stop_count = 0;
999 if (thread_group_empty(p))
1000 return;
1002 for (t = next_thread(p); t != p; t = next_thread(t)) {
1004 * Don't bother with already dead threads
1006 if (t->exit_state)
1007 continue;
1010 * We don't want to notify the parent, since we are
1011 * killed as part of a thread group due to another
1012 * thread doing an execve() or similar. So set the
1013 * exit signal to -1 to allow immediate reaping of
1014 * the process. But don't detach the thread group
1015 * leader.
1017 if (t != p->group_leader)
1018 t->exit_signal = -1;
1020 /* SIGKILL will be handled before any pending SIGSTOP */
1021 sigaddset(&t->pending.signal, SIGKILL);
1022 signal_wake_up(t, 1);
1027 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1029 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1031 struct sighand_struct *sighand;
1033 for (;;) {
1034 sighand = rcu_dereference(tsk->sighand);
1035 if (unlikely(sighand == NULL))
1036 break;
1038 spin_lock_irqsave(&sighand->siglock, *flags);
1039 if (likely(sighand == tsk->sighand))
1040 break;
1041 spin_unlock_irqrestore(&sighand->siglock, *flags);
1044 return sighand;
1047 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1049 unsigned long flags;
1050 int ret;
1052 ret = check_kill_permission(sig, info, p);
1054 if (!ret && sig) {
1055 ret = -ESRCH;
1056 if (lock_task_sighand(p, &flags)) {
1057 ret = __group_send_sig_info(sig, info, p);
1058 unlock_task_sighand(p, &flags);
1062 return ret;
1066 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1067 * control characters do (^C, ^Z etc)
1070 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1072 struct task_struct *p = NULL;
1073 int retval, success;
1075 success = 0;
1076 retval = -ESRCH;
1077 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1078 int err = group_send_sig_info(sig, info, p);
1079 success |= !err;
1080 retval = err;
1081 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1082 return success ? 0 : retval;
1085 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1087 int retval;
1089 read_lock(&tasklist_lock);
1090 retval = __kill_pgrp_info(sig, info, pgrp);
1091 read_unlock(&tasklist_lock);
1093 return retval;
1096 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1098 if (pgrp <= 0)
1099 return -EINVAL;
1101 return __kill_pgrp_info(sig, info, find_pid(pgrp));
1105 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1107 int retval;
1109 read_lock(&tasklist_lock);
1110 retval = __kill_pg_info(sig, info, pgrp);
1111 read_unlock(&tasklist_lock);
1113 return retval;
1116 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1118 int error;
1119 int acquired_tasklist_lock = 0;
1120 struct task_struct *p;
1122 rcu_read_lock();
1123 if (unlikely(sig_needs_tasklist(sig))) {
1124 read_lock(&tasklist_lock);
1125 acquired_tasklist_lock = 1;
1127 p = pid_task(pid, PIDTYPE_PID);
1128 error = -ESRCH;
1129 if (p)
1130 error = group_send_sig_info(sig, info, p);
1131 if (unlikely(acquired_tasklist_lock))
1132 read_unlock(&tasklist_lock);
1133 rcu_read_unlock();
1134 return error;
1138 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1140 int error;
1141 rcu_read_lock();
1142 error = kill_pid_info(sig, info, find_pid(pid));
1143 rcu_read_unlock();
1144 return error;
1147 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1148 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1149 uid_t uid, uid_t euid, u32 secid)
1151 int ret = -EINVAL;
1152 struct task_struct *p;
1154 if (!valid_signal(sig))
1155 return ret;
1157 read_lock(&tasklist_lock);
1158 p = pid_task(pid, PIDTYPE_PID);
1159 if (!p) {
1160 ret = -ESRCH;
1161 goto out_unlock;
1163 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1164 && (euid != p->suid) && (euid != p->uid)
1165 && (uid != p->suid) && (uid != p->uid)) {
1166 ret = -EPERM;
1167 goto out_unlock;
1169 ret = security_task_kill(p, info, sig, secid);
1170 if (ret)
1171 goto out_unlock;
1172 if (sig && p->sighand) {
1173 unsigned long flags;
1174 spin_lock_irqsave(&p->sighand->siglock, flags);
1175 ret = __group_send_sig_info(sig, info, p);
1176 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1178 out_unlock:
1179 read_unlock(&tasklist_lock);
1180 return ret;
1182 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1185 * kill_something_info() interprets pid in interesting ways just like kill(2).
1187 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1188 * is probably wrong. Should make it like BSD or SYSV.
1191 static int kill_something_info(int sig, struct siginfo *info, int pid)
1193 if (!pid) {
1194 return kill_pg_info(sig, info, process_group(current));
1195 } else if (pid == -1) {
1196 int retval = 0, count = 0;
1197 struct task_struct * p;
1199 read_lock(&tasklist_lock);
1200 for_each_process(p) {
1201 if (p->pid > 1 && p->tgid != current->tgid) {
1202 int err = group_send_sig_info(sig, info, p);
1203 ++count;
1204 if (err != -EPERM)
1205 retval = err;
1208 read_unlock(&tasklist_lock);
1209 return count ? retval : -ESRCH;
1210 } else if (pid < 0) {
1211 return kill_pg_info(sig, info, -pid);
1212 } else {
1213 return kill_proc_info(sig, info, pid);
1218 * These are for backward compatibility with the rest of the kernel source.
1222 * These two are the most common entry points. They send a signal
1223 * just to the specific thread.
1226 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1228 int ret;
1229 unsigned long flags;
1232 * Make sure legacy kernel users don't send in bad values
1233 * (normal paths check this in check_kill_permission).
1235 if (!valid_signal(sig))
1236 return -EINVAL;
1239 * We need the tasklist lock even for the specific
1240 * thread case (when we don't need to follow the group
1241 * lists) in order to avoid races with "p->sighand"
1242 * going away or changing from under us.
1244 read_lock(&tasklist_lock);
1245 spin_lock_irqsave(&p->sighand->siglock, flags);
1246 ret = specific_send_sig_info(sig, info, p);
1247 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1248 read_unlock(&tasklist_lock);
1249 return ret;
1252 #define __si_special(priv) \
1253 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1256 send_sig(int sig, struct task_struct *p, int priv)
1258 return send_sig_info(sig, __si_special(priv), p);
1262 * This is the entry point for "process-wide" signals.
1263 * They will go to an appropriate thread in the thread group.
1266 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1268 int ret;
1269 read_lock(&tasklist_lock);
1270 ret = group_send_sig_info(sig, info, p);
1271 read_unlock(&tasklist_lock);
1272 return ret;
1275 void
1276 force_sig(int sig, struct task_struct *p)
1278 force_sig_info(sig, SEND_SIG_PRIV, p);
1282 * When things go south during signal handling, we
1283 * will force a SIGSEGV. And if the signal that caused
1284 * the problem was already a SIGSEGV, we'll want to
1285 * make sure we don't even try to deliver the signal..
1288 force_sigsegv(int sig, struct task_struct *p)
1290 if (sig == SIGSEGV) {
1291 unsigned long flags;
1292 spin_lock_irqsave(&p->sighand->siglock, flags);
1293 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1294 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1296 force_sig(SIGSEGV, p);
1297 return 0;
1300 int kill_pgrp(struct pid *pid, int sig, int priv)
1302 return kill_pgrp_info(sig, __si_special(priv), pid);
1304 EXPORT_SYMBOL(kill_pgrp);
1306 int kill_pid(struct pid *pid, int sig, int priv)
1308 return kill_pid_info(sig, __si_special(priv), pid);
1310 EXPORT_SYMBOL(kill_pid);
1313 kill_pg(pid_t pgrp, int sig, int priv)
1315 return kill_pg_info(sig, __si_special(priv), pgrp);
1319 kill_proc(pid_t pid, int sig, int priv)
1321 return kill_proc_info(sig, __si_special(priv), pid);
1325 * These functions support sending signals using preallocated sigqueue
1326 * structures. This is needed "because realtime applications cannot
1327 * afford to lose notifications of asynchronous events, like timer
1328 * expirations or I/O completions". In the case of Posix Timers
1329 * we allocate the sigqueue structure from the timer_create. If this
1330 * allocation fails we are able to report the failure to the application
1331 * with an EAGAIN error.
1334 struct sigqueue *sigqueue_alloc(void)
1336 struct sigqueue *q;
1338 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1339 q->flags |= SIGQUEUE_PREALLOC;
1340 return(q);
1343 void sigqueue_free(struct sigqueue *q)
1345 unsigned long flags;
1346 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1348 * If the signal is still pending remove it from the
1349 * pending queue.
1351 if (unlikely(!list_empty(&q->list))) {
1352 spinlock_t *lock = &current->sighand->siglock;
1353 read_lock(&tasklist_lock);
1354 spin_lock_irqsave(lock, flags);
1355 if (!list_empty(&q->list))
1356 list_del_init(&q->list);
1357 spin_unlock_irqrestore(lock, flags);
1358 read_unlock(&tasklist_lock);
1360 q->flags &= ~SIGQUEUE_PREALLOC;
1361 __sigqueue_free(q);
1364 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1366 unsigned long flags;
1367 int ret = 0;
1369 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1372 * The rcu based delayed sighand destroy makes it possible to
1373 * run this without tasklist lock held. The task struct itself
1374 * cannot go away as create_timer did get_task_struct().
1376 * We return -1, when the task is marked exiting, so
1377 * posix_timer_event can redirect it to the group leader
1379 rcu_read_lock();
1381 if (!likely(lock_task_sighand(p, &flags))) {
1382 ret = -1;
1383 goto out_err;
1386 if (unlikely(!list_empty(&q->list))) {
1388 * If an SI_TIMER entry is already queue just increment
1389 * the overrun count.
1391 BUG_ON(q->info.si_code != SI_TIMER);
1392 q->info.si_overrun++;
1393 goto out;
1395 /* Short-circuit ignored signals. */
1396 if (sig_ignored(p, sig)) {
1397 ret = 1;
1398 goto out;
1401 list_add_tail(&q->list, &p->pending.list);
1402 sigaddset(&p->pending.signal, sig);
1403 if (!sigismember(&p->blocked, sig))
1404 signal_wake_up(p, sig == SIGKILL);
1406 out:
1407 unlock_task_sighand(p, &flags);
1408 out_err:
1409 rcu_read_unlock();
1411 return ret;
1415 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1417 unsigned long flags;
1418 int ret = 0;
1420 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1422 read_lock(&tasklist_lock);
1423 /* Since it_lock is held, p->sighand cannot be NULL. */
1424 spin_lock_irqsave(&p->sighand->siglock, flags);
1425 handle_stop_signal(sig, p);
1427 /* Short-circuit ignored signals. */
1428 if (sig_ignored(p, sig)) {
1429 ret = 1;
1430 goto out;
1433 if (unlikely(!list_empty(&q->list))) {
1435 * If an SI_TIMER entry is already queue just increment
1436 * the overrun count. Other uses should not try to
1437 * send the signal multiple times.
1439 BUG_ON(q->info.si_code != SI_TIMER);
1440 q->info.si_overrun++;
1441 goto out;
1445 * Put this signal on the shared-pending queue.
1446 * We always use the shared queue for process-wide signals,
1447 * to avoid several races.
1449 list_add_tail(&q->list, &p->signal->shared_pending.list);
1450 sigaddset(&p->signal->shared_pending.signal, sig);
1452 __group_complete_signal(sig, p);
1453 out:
1454 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1455 read_unlock(&tasklist_lock);
1456 return ret;
1460 * Wake up any threads in the parent blocked in wait* syscalls.
1462 static inline void __wake_up_parent(struct task_struct *p,
1463 struct task_struct *parent)
1465 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1469 * Let a parent know about the death of a child.
1470 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1473 void do_notify_parent(struct task_struct *tsk, int sig)
1475 struct siginfo info;
1476 unsigned long flags;
1477 struct sighand_struct *psig;
1479 BUG_ON(sig == -1);
1481 /* do_notify_parent_cldstop should have been called instead. */
1482 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1484 BUG_ON(!tsk->ptrace &&
1485 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1487 info.si_signo = sig;
1488 info.si_errno = 0;
1489 info.si_pid = tsk->pid;
1490 info.si_uid = tsk->uid;
1492 /* FIXME: find out whether or not this is supposed to be c*time. */
1493 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1494 tsk->signal->utime));
1495 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1496 tsk->signal->stime));
1498 info.si_status = tsk->exit_code & 0x7f;
1499 if (tsk->exit_code & 0x80)
1500 info.si_code = CLD_DUMPED;
1501 else if (tsk->exit_code & 0x7f)
1502 info.si_code = CLD_KILLED;
1503 else {
1504 info.si_code = CLD_EXITED;
1505 info.si_status = tsk->exit_code >> 8;
1508 psig = tsk->parent->sighand;
1509 spin_lock_irqsave(&psig->siglock, flags);
1510 if (!tsk->ptrace && sig == SIGCHLD &&
1511 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1512 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1514 * We are exiting and our parent doesn't care. POSIX.1
1515 * defines special semantics for setting SIGCHLD to SIG_IGN
1516 * or setting the SA_NOCLDWAIT flag: we should be reaped
1517 * automatically and not left for our parent's wait4 call.
1518 * Rather than having the parent do it as a magic kind of
1519 * signal handler, we just set this to tell do_exit that we
1520 * can be cleaned up without becoming a zombie. Note that
1521 * we still call __wake_up_parent in this case, because a
1522 * blocked sys_wait4 might now return -ECHILD.
1524 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1525 * is implementation-defined: we do (if you don't want
1526 * it, just use SIG_IGN instead).
1528 tsk->exit_signal = -1;
1529 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1530 sig = 0;
1532 if (valid_signal(sig) && sig > 0)
1533 __group_send_sig_info(sig, &info, tsk->parent);
1534 __wake_up_parent(tsk, tsk->parent);
1535 spin_unlock_irqrestore(&psig->siglock, flags);
1538 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1540 struct siginfo info;
1541 unsigned long flags;
1542 struct task_struct *parent;
1543 struct sighand_struct *sighand;
1545 if (tsk->ptrace & PT_PTRACED)
1546 parent = tsk->parent;
1547 else {
1548 tsk = tsk->group_leader;
1549 parent = tsk->real_parent;
1552 info.si_signo = SIGCHLD;
1553 info.si_errno = 0;
1554 info.si_pid = tsk->pid;
1555 info.si_uid = tsk->uid;
1557 /* FIXME: find out whether or not this is supposed to be c*time. */
1558 info.si_utime = cputime_to_jiffies(tsk->utime);
1559 info.si_stime = cputime_to_jiffies(tsk->stime);
1561 info.si_code = why;
1562 switch (why) {
1563 case CLD_CONTINUED:
1564 info.si_status = SIGCONT;
1565 break;
1566 case CLD_STOPPED:
1567 info.si_status = tsk->signal->group_exit_code & 0x7f;
1568 break;
1569 case CLD_TRAPPED:
1570 info.si_status = tsk->exit_code & 0x7f;
1571 break;
1572 default:
1573 BUG();
1576 sighand = parent->sighand;
1577 spin_lock_irqsave(&sighand->siglock, flags);
1578 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1579 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1580 __group_send_sig_info(SIGCHLD, &info, parent);
1582 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1584 __wake_up_parent(tsk, parent);
1585 spin_unlock_irqrestore(&sighand->siglock, flags);
1588 static inline int may_ptrace_stop(void)
1590 if (!likely(current->ptrace & PT_PTRACED))
1591 return 0;
1593 if (unlikely(current->parent == current->real_parent &&
1594 (current->ptrace & PT_ATTACHED)))
1595 return 0;
1597 if (unlikely(current->signal == current->parent->signal) &&
1598 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1599 return 0;
1602 * Are we in the middle of do_coredump?
1603 * If so and our tracer is also part of the coredump stopping
1604 * is a deadlock situation, and pointless because our tracer
1605 * is dead so don't allow us to stop.
1606 * If SIGKILL was already sent before the caller unlocked
1607 * ->siglock we must see ->core_waiters != 0. Otherwise it
1608 * is safe to enter schedule().
1610 if (unlikely(current->mm->core_waiters) &&
1611 unlikely(current->mm == current->parent->mm))
1612 return 0;
1614 return 1;
1618 * This must be called with current->sighand->siglock held.
1620 * This should be the path for all ptrace stops.
1621 * We always set current->last_siginfo while stopped here.
1622 * That makes it a way to test a stopped process for
1623 * being ptrace-stopped vs being job-control-stopped.
1625 * If we actually decide not to stop at all because the tracer is gone,
1626 * we leave nostop_code in current->exit_code.
1628 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1631 * If there is a group stop in progress,
1632 * we must participate in the bookkeeping.
1634 if (current->signal->group_stop_count > 0)
1635 --current->signal->group_stop_count;
1637 current->last_siginfo = info;
1638 current->exit_code = exit_code;
1640 /* Let the debugger run. */
1641 set_current_state(TASK_TRACED);
1642 spin_unlock_irq(&current->sighand->siglock);
1643 try_to_freeze();
1644 read_lock(&tasklist_lock);
1645 if (may_ptrace_stop()) {
1646 do_notify_parent_cldstop(current, CLD_TRAPPED);
1647 read_unlock(&tasklist_lock);
1648 schedule();
1649 } else {
1651 * By the time we got the lock, our tracer went away.
1652 * Don't stop here.
1654 read_unlock(&tasklist_lock);
1655 set_current_state(TASK_RUNNING);
1656 current->exit_code = nostop_code;
1660 * We are back. Now reacquire the siglock before touching
1661 * last_siginfo, so that we are sure to have synchronized with
1662 * any signal-sending on another CPU that wants to examine it.
1664 spin_lock_irq(&current->sighand->siglock);
1665 current->last_siginfo = NULL;
1668 * Queued signals ignored us while we were stopped for tracing.
1669 * So check for any that we should take before resuming user mode.
1671 recalc_sigpending();
1674 void ptrace_notify(int exit_code)
1676 siginfo_t info;
1678 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1680 memset(&info, 0, sizeof info);
1681 info.si_signo = SIGTRAP;
1682 info.si_code = exit_code;
1683 info.si_pid = current->pid;
1684 info.si_uid = current->uid;
1686 /* Let the debugger run. */
1687 spin_lock_irq(&current->sighand->siglock);
1688 ptrace_stop(exit_code, 0, &info);
1689 spin_unlock_irq(&current->sighand->siglock);
1692 static void
1693 finish_stop(int stop_count)
1696 * If there are no other threads in the group, or if there is
1697 * a group stop in progress and we are the last to stop,
1698 * report to the parent. When ptraced, every thread reports itself.
1700 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1701 read_lock(&tasklist_lock);
1702 do_notify_parent_cldstop(current, CLD_STOPPED);
1703 read_unlock(&tasklist_lock);
1706 schedule();
1708 * Now we don't run again until continued.
1710 current->exit_code = 0;
1714 * This performs the stopping for SIGSTOP and other stop signals.
1715 * We have to stop all threads in the thread group.
1716 * Returns nonzero if we've actually stopped and released the siglock.
1717 * Returns zero if we didn't stop and still hold the siglock.
1719 static int do_signal_stop(int signr)
1721 struct signal_struct *sig = current->signal;
1722 int stop_count;
1724 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1725 return 0;
1727 if (sig->group_stop_count > 0) {
1729 * There is a group stop in progress. We don't need to
1730 * start another one.
1732 stop_count = --sig->group_stop_count;
1733 } else {
1735 * There is no group stop already in progress.
1736 * We must initiate one now.
1738 struct task_struct *t;
1740 sig->group_exit_code = signr;
1742 stop_count = 0;
1743 for (t = next_thread(current); t != current; t = next_thread(t))
1745 * Setting state to TASK_STOPPED for a group
1746 * stop is always done with the siglock held,
1747 * so this check has no races.
1749 if (!t->exit_state &&
1750 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1751 stop_count++;
1752 signal_wake_up(t, 0);
1754 sig->group_stop_count = stop_count;
1757 if (stop_count == 0)
1758 sig->flags = SIGNAL_STOP_STOPPED;
1759 current->exit_code = sig->group_exit_code;
1760 __set_current_state(TASK_STOPPED);
1762 spin_unlock_irq(&current->sighand->siglock);
1763 finish_stop(stop_count);
1764 return 1;
1768 * Do appropriate magic when group_stop_count > 0.
1769 * We return nonzero if we stopped, after releasing the siglock.
1770 * We return zero if we still hold the siglock and should look
1771 * for another signal without checking group_stop_count again.
1773 static int handle_group_stop(void)
1775 int stop_count;
1777 if (current->signal->group_exit_task == current) {
1779 * Group stop is so we can do a core dump,
1780 * We are the initiating thread, so get on with it.
1782 current->signal->group_exit_task = NULL;
1783 return 0;
1786 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1788 * Group stop is so another thread can do a core dump,
1789 * or else we are racing against a death signal.
1790 * Just punt the stop so we can get the next signal.
1792 return 0;
1795 * There is a group stop in progress. We stop
1796 * without any associated signal being in our queue.
1798 stop_count = --current->signal->group_stop_count;
1799 if (stop_count == 0)
1800 current->signal->flags = SIGNAL_STOP_STOPPED;
1801 current->exit_code = current->signal->group_exit_code;
1802 set_current_state(TASK_STOPPED);
1803 spin_unlock_irq(&current->sighand->siglock);
1804 finish_stop(stop_count);
1805 return 1;
1808 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1809 struct pt_regs *regs, void *cookie)
1811 sigset_t *mask = &current->blocked;
1812 int signr = 0;
1814 try_to_freeze();
1816 relock:
1817 spin_lock_irq(&current->sighand->siglock);
1818 for (;;) {
1819 struct k_sigaction *ka;
1821 if (unlikely(current->signal->group_stop_count > 0) &&
1822 handle_group_stop())
1823 goto relock;
1825 signr = dequeue_signal(current, mask, info);
1827 if (!signr)
1828 break; /* will return 0 */
1830 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1831 ptrace_signal_deliver(regs, cookie);
1833 /* Let the debugger run. */
1834 ptrace_stop(signr, signr, info);
1836 /* We're back. Did the debugger cancel the sig? */
1837 signr = current->exit_code;
1838 if (signr == 0)
1839 continue;
1841 current->exit_code = 0;
1843 /* Update the siginfo structure if the signal has
1844 changed. If the debugger wanted something
1845 specific in the siginfo structure then it should
1846 have updated *info via PTRACE_SETSIGINFO. */
1847 if (signr != info->si_signo) {
1848 info->si_signo = signr;
1849 info->si_errno = 0;
1850 info->si_code = SI_USER;
1851 info->si_pid = current->parent->pid;
1852 info->si_uid = current->parent->uid;
1855 /* If the (new) signal is now blocked, requeue it. */
1856 if (sigismember(&current->blocked, signr)) {
1857 specific_send_sig_info(signr, info, current);
1858 continue;
1862 ka = &current->sighand->action[signr-1];
1863 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1864 continue;
1865 if (ka->sa.sa_handler != SIG_DFL) {
1866 /* Run the handler. */
1867 *return_ka = *ka;
1869 if (ka->sa.sa_flags & SA_ONESHOT)
1870 ka->sa.sa_handler = SIG_DFL;
1872 break; /* will return non-zero "signr" value */
1876 * Now we are doing the default action for this signal.
1878 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1879 continue;
1881 /* Init gets no signals it doesn't want. */
1882 if (current == child_reaper)
1883 continue;
1885 if (sig_kernel_stop(signr)) {
1887 * The default action is to stop all threads in
1888 * the thread group. The job control signals
1889 * do nothing in an orphaned pgrp, but SIGSTOP
1890 * always works. Note that siglock needs to be
1891 * dropped during the call to is_orphaned_pgrp()
1892 * because of lock ordering with tasklist_lock.
1893 * This allows an intervening SIGCONT to be posted.
1894 * We need to check for that and bail out if necessary.
1896 if (signr != SIGSTOP) {
1897 spin_unlock_irq(&current->sighand->siglock);
1899 /* signals can be posted during this window */
1901 if (is_orphaned_pgrp(process_group(current)))
1902 goto relock;
1904 spin_lock_irq(&current->sighand->siglock);
1907 if (likely(do_signal_stop(signr))) {
1908 /* It released the siglock. */
1909 goto relock;
1913 * We didn't actually stop, due to a race
1914 * with SIGCONT or something like that.
1916 continue;
1919 spin_unlock_irq(&current->sighand->siglock);
1922 * Anything else is fatal, maybe with a core dump.
1924 current->flags |= PF_SIGNALED;
1925 if (sig_kernel_coredump(signr)) {
1927 * If it was able to dump core, this kills all
1928 * other threads in the group and synchronizes with
1929 * their demise. If we lost the race with another
1930 * thread getting here, it set group_exit_code
1931 * first and our do_group_exit call below will use
1932 * that value and ignore the one we pass it.
1934 do_coredump((long)signr, signr, regs);
1938 * Death signals, no core dump.
1940 do_group_exit(signr);
1941 /* NOTREACHED */
1943 spin_unlock_irq(&current->sighand->siglock);
1944 return signr;
1947 EXPORT_SYMBOL(recalc_sigpending);
1948 EXPORT_SYMBOL_GPL(dequeue_signal);
1949 EXPORT_SYMBOL(flush_signals);
1950 EXPORT_SYMBOL(force_sig);
1951 EXPORT_SYMBOL(kill_pg);
1952 EXPORT_SYMBOL(kill_proc);
1953 EXPORT_SYMBOL(ptrace_notify);
1954 EXPORT_SYMBOL(send_sig);
1955 EXPORT_SYMBOL(send_sig_info);
1956 EXPORT_SYMBOL(sigprocmask);
1957 EXPORT_SYMBOL(block_all_signals);
1958 EXPORT_SYMBOL(unblock_all_signals);
1962 * System call entry points.
1965 asmlinkage long sys_restart_syscall(void)
1967 struct restart_block *restart = &current_thread_info()->restart_block;
1968 return restart->fn(restart);
1971 long do_no_restart_syscall(struct restart_block *param)
1973 return -EINTR;
1977 * We don't need to get the kernel lock - this is all local to this
1978 * particular thread.. (and that's good, because this is _heavily_
1979 * used by various programs)
1983 * This is also useful for kernel threads that want to temporarily
1984 * (or permanently) block certain signals.
1986 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1987 * interface happily blocks "unblockable" signals like SIGKILL
1988 * and friends.
1990 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1992 int error;
1994 spin_lock_irq(&current->sighand->siglock);
1995 if (oldset)
1996 *oldset = current->blocked;
1998 error = 0;
1999 switch (how) {
2000 case SIG_BLOCK:
2001 sigorsets(&current->blocked, &current->blocked, set);
2002 break;
2003 case SIG_UNBLOCK:
2004 signandsets(&current->blocked, &current->blocked, set);
2005 break;
2006 case SIG_SETMASK:
2007 current->blocked = *set;
2008 break;
2009 default:
2010 error = -EINVAL;
2012 recalc_sigpending();
2013 spin_unlock_irq(&current->sighand->siglock);
2015 return error;
2018 asmlinkage long
2019 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2021 int error = -EINVAL;
2022 sigset_t old_set, new_set;
2024 /* XXX: Don't preclude handling different sized sigset_t's. */
2025 if (sigsetsize != sizeof(sigset_t))
2026 goto out;
2028 if (set) {
2029 error = -EFAULT;
2030 if (copy_from_user(&new_set, set, sizeof(*set)))
2031 goto out;
2032 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2034 error = sigprocmask(how, &new_set, &old_set);
2035 if (error)
2036 goto out;
2037 if (oset)
2038 goto set_old;
2039 } else if (oset) {
2040 spin_lock_irq(&current->sighand->siglock);
2041 old_set = current->blocked;
2042 spin_unlock_irq(&current->sighand->siglock);
2044 set_old:
2045 error = -EFAULT;
2046 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2047 goto out;
2049 error = 0;
2050 out:
2051 return error;
2054 long do_sigpending(void __user *set, unsigned long sigsetsize)
2056 long error = -EINVAL;
2057 sigset_t pending;
2059 if (sigsetsize > sizeof(sigset_t))
2060 goto out;
2062 spin_lock_irq(&current->sighand->siglock);
2063 sigorsets(&pending, &current->pending.signal,
2064 &current->signal->shared_pending.signal);
2065 spin_unlock_irq(&current->sighand->siglock);
2067 /* Outside the lock because only this thread touches it. */
2068 sigandsets(&pending, &current->blocked, &pending);
2070 error = -EFAULT;
2071 if (!copy_to_user(set, &pending, sigsetsize))
2072 error = 0;
2074 out:
2075 return error;
2078 asmlinkage long
2079 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2081 return do_sigpending(set, sigsetsize);
2084 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2086 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2088 int err;
2090 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2091 return -EFAULT;
2092 if (from->si_code < 0)
2093 return __copy_to_user(to, from, sizeof(siginfo_t))
2094 ? -EFAULT : 0;
2096 * If you change siginfo_t structure, please be sure
2097 * this code is fixed accordingly.
2098 * It should never copy any pad contained in the structure
2099 * to avoid security leaks, but must copy the generic
2100 * 3 ints plus the relevant union member.
2102 err = __put_user(from->si_signo, &to->si_signo);
2103 err |= __put_user(from->si_errno, &to->si_errno);
2104 err |= __put_user((short)from->si_code, &to->si_code);
2105 switch (from->si_code & __SI_MASK) {
2106 case __SI_KILL:
2107 err |= __put_user(from->si_pid, &to->si_pid);
2108 err |= __put_user(from->si_uid, &to->si_uid);
2109 break;
2110 case __SI_TIMER:
2111 err |= __put_user(from->si_tid, &to->si_tid);
2112 err |= __put_user(from->si_overrun, &to->si_overrun);
2113 err |= __put_user(from->si_ptr, &to->si_ptr);
2114 break;
2115 case __SI_POLL:
2116 err |= __put_user(from->si_band, &to->si_band);
2117 err |= __put_user(from->si_fd, &to->si_fd);
2118 break;
2119 case __SI_FAULT:
2120 err |= __put_user(from->si_addr, &to->si_addr);
2121 #ifdef __ARCH_SI_TRAPNO
2122 err |= __put_user(from->si_trapno, &to->si_trapno);
2123 #endif
2124 break;
2125 case __SI_CHLD:
2126 err |= __put_user(from->si_pid, &to->si_pid);
2127 err |= __put_user(from->si_uid, &to->si_uid);
2128 err |= __put_user(from->si_status, &to->si_status);
2129 err |= __put_user(from->si_utime, &to->si_utime);
2130 err |= __put_user(from->si_stime, &to->si_stime);
2131 break;
2132 case __SI_RT: /* This is not generated by the kernel as of now. */
2133 case __SI_MESGQ: /* But this is */
2134 err |= __put_user(from->si_pid, &to->si_pid);
2135 err |= __put_user(from->si_uid, &to->si_uid);
2136 err |= __put_user(from->si_ptr, &to->si_ptr);
2137 break;
2138 default: /* this is just in case for now ... */
2139 err |= __put_user(from->si_pid, &to->si_pid);
2140 err |= __put_user(from->si_uid, &to->si_uid);
2141 break;
2143 return err;
2146 #endif
2148 asmlinkage long
2149 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2150 siginfo_t __user *uinfo,
2151 const struct timespec __user *uts,
2152 size_t sigsetsize)
2154 int ret, sig;
2155 sigset_t these;
2156 struct timespec ts;
2157 siginfo_t info;
2158 long timeout = 0;
2160 /* XXX: Don't preclude handling different sized sigset_t's. */
2161 if (sigsetsize != sizeof(sigset_t))
2162 return -EINVAL;
2164 if (copy_from_user(&these, uthese, sizeof(these)))
2165 return -EFAULT;
2168 * Invert the set of allowed signals to get those we
2169 * want to block.
2171 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2172 signotset(&these);
2174 if (uts) {
2175 if (copy_from_user(&ts, uts, sizeof(ts)))
2176 return -EFAULT;
2177 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2178 || ts.tv_sec < 0)
2179 return -EINVAL;
2182 spin_lock_irq(&current->sighand->siglock);
2183 sig = dequeue_signal(current, &these, &info);
2184 if (!sig) {
2185 timeout = MAX_SCHEDULE_TIMEOUT;
2186 if (uts)
2187 timeout = (timespec_to_jiffies(&ts)
2188 + (ts.tv_sec || ts.tv_nsec));
2190 if (timeout) {
2191 /* None ready -- temporarily unblock those we're
2192 * interested while we are sleeping in so that we'll
2193 * be awakened when they arrive. */
2194 current->real_blocked = current->blocked;
2195 sigandsets(&current->blocked, &current->blocked, &these);
2196 recalc_sigpending();
2197 spin_unlock_irq(&current->sighand->siglock);
2199 timeout = schedule_timeout_interruptible(timeout);
2201 spin_lock_irq(&current->sighand->siglock);
2202 sig = dequeue_signal(current, &these, &info);
2203 current->blocked = current->real_blocked;
2204 siginitset(&current->real_blocked, 0);
2205 recalc_sigpending();
2208 spin_unlock_irq(&current->sighand->siglock);
2210 if (sig) {
2211 ret = sig;
2212 if (uinfo) {
2213 if (copy_siginfo_to_user(uinfo, &info))
2214 ret = -EFAULT;
2216 } else {
2217 ret = -EAGAIN;
2218 if (timeout)
2219 ret = -EINTR;
2222 return ret;
2225 asmlinkage long
2226 sys_kill(int pid, int sig)
2228 struct siginfo info;
2230 info.si_signo = sig;
2231 info.si_errno = 0;
2232 info.si_code = SI_USER;
2233 info.si_pid = current->tgid;
2234 info.si_uid = current->uid;
2236 return kill_something_info(sig, &info, pid);
2239 static int do_tkill(int tgid, int pid, int sig)
2241 int error;
2242 struct siginfo info;
2243 struct task_struct *p;
2245 error = -ESRCH;
2246 info.si_signo = sig;
2247 info.si_errno = 0;
2248 info.si_code = SI_TKILL;
2249 info.si_pid = current->tgid;
2250 info.si_uid = current->uid;
2252 read_lock(&tasklist_lock);
2253 p = find_task_by_pid(pid);
2254 if (p && (tgid <= 0 || p->tgid == tgid)) {
2255 error = check_kill_permission(sig, &info, p);
2257 * The null signal is a permissions and process existence
2258 * probe. No signal is actually delivered.
2260 if (!error && sig && p->sighand) {
2261 spin_lock_irq(&p->sighand->siglock);
2262 handle_stop_signal(sig, p);
2263 error = specific_send_sig_info(sig, &info, p);
2264 spin_unlock_irq(&p->sighand->siglock);
2267 read_unlock(&tasklist_lock);
2269 return error;
2273 * sys_tgkill - send signal to one specific thread
2274 * @tgid: the thread group ID of the thread
2275 * @pid: the PID of the thread
2276 * @sig: signal to be sent
2278 * This syscall also checks the tgid and returns -ESRCH even if the PID
2279 * exists but it's not belonging to the target process anymore. This
2280 * method solves the problem of threads exiting and PIDs getting reused.
2282 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2284 /* This is only valid for single tasks */
2285 if (pid <= 0 || tgid <= 0)
2286 return -EINVAL;
2288 return do_tkill(tgid, pid, sig);
2292 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2294 asmlinkage long
2295 sys_tkill(int pid, int sig)
2297 /* This is only valid for single tasks */
2298 if (pid <= 0)
2299 return -EINVAL;
2301 return do_tkill(0, pid, sig);
2304 asmlinkage long
2305 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2307 siginfo_t info;
2309 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2310 return -EFAULT;
2312 /* Not even root can pretend to send signals from the kernel.
2313 Nor can they impersonate a kill(), which adds source info. */
2314 if (info.si_code >= 0)
2315 return -EPERM;
2316 info.si_signo = sig;
2318 /* POSIX.1b doesn't mention process groups. */
2319 return kill_proc_info(sig, &info, pid);
2322 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2324 struct k_sigaction *k;
2325 sigset_t mask;
2327 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2328 return -EINVAL;
2330 k = &current->sighand->action[sig-1];
2332 spin_lock_irq(&current->sighand->siglock);
2333 if (signal_pending(current)) {
2335 * If there might be a fatal signal pending on multiple
2336 * threads, make sure we take it before changing the action.
2338 spin_unlock_irq(&current->sighand->siglock);
2339 return -ERESTARTNOINTR;
2342 if (oact)
2343 *oact = *k;
2345 if (act) {
2346 sigdelsetmask(&act->sa.sa_mask,
2347 sigmask(SIGKILL) | sigmask(SIGSTOP));
2348 *k = *act;
2350 * POSIX 3.3.1.3:
2351 * "Setting a signal action to SIG_IGN for a signal that is
2352 * pending shall cause the pending signal to be discarded,
2353 * whether or not it is blocked."
2355 * "Setting a signal action to SIG_DFL for a signal that is
2356 * pending and whose default action is to ignore the signal
2357 * (for example, SIGCHLD), shall cause the pending signal to
2358 * be discarded, whether or not it is blocked"
2360 if (act->sa.sa_handler == SIG_IGN ||
2361 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2362 struct task_struct *t = current;
2363 sigemptyset(&mask);
2364 sigaddset(&mask, sig);
2365 rm_from_queue_full(&mask, &t->signal->shared_pending);
2366 do {
2367 rm_from_queue_full(&mask, &t->pending);
2368 recalc_sigpending_tsk(t);
2369 t = next_thread(t);
2370 } while (t != current);
2374 spin_unlock_irq(&current->sighand->siglock);
2375 return 0;
2378 int
2379 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2381 stack_t oss;
2382 int error;
2384 if (uoss) {
2385 oss.ss_sp = (void __user *) current->sas_ss_sp;
2386 oss.ss_size = current->sas_ss_size;
2387 oss.ss_flags = sas_ss_flags(sp);
2390 if (uss) {
2391 void __user *ss_sp;
2392 size_t ss_size;
2393 int ss_flags;
2395 error = -EFAULT;
2396 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2397 || __get_user(ss_sp, &uss->ss_sp)
2398 || __get_user(ss_flags, &uss->ss_flags)
2399 || __get_user(ss_size, &uss->ss_size))
2400 goto out;
2402 error = -EPERM;
2403 if (on_sig_stack(sp))
2404 goto out;
2406 error = -EINVAL;
2409 * Note - this code used to test ss_flags incorrectly
2410 * old code may have been written using ss_flags==0
2411 * to mean ss_flags==SS_ONSTACK (as this was the only
2412 * way that worked) - this fix preserves that older
2413 * mechanism
2415 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2416 goto out;
2418 if (ss_flags == SS_DISABLE) {
2419 ss_size = 0;
2420 ss_sp = NULL;
2421 } else {
2422 error = -ENOMEM;
2423 if (ss_size < MINSIGSTKSZ)
2424 goto out;
2427 current->sas_ss_sp = (unsigned long) ss_sp;
2428 current->sas_ss_size = ss_size;
2431 if (uoss) {
2432 error = -EFAULT;
2433 if (copy_to_user(uoss, &oss, sizeof(oss)))
2434 goto out;
2437 error = 0;
2438 out:
2439 return error;
2442 #ifdef __ARCH_WANT_SYS_SIGPENDING
2444 asmlinkage long
2445 sys_sigpending(old_sigset_t __user *set)
2447 return do_sigpending(set, sizeof(*set));
2450 #endif
2452 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2453 /* Some platforms have their own version with special arguments others
2454 support only sys_rt_sigprocmask. */
2456 asmlinkage long
2457 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2459 int error;
2460 old_sigset_t old_set, new_set;
2462 if (set) {
2463 error = -EFAULT;
2464 if (copy_from_user(&new_set, set, sizeof(*set)))
2465 goto out;
2466 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2468 spin_lock_irq(&current->sighand->siglock);
2469 old_set = current->blocked.sig[0];
2471 error = 0;
2472 switch (how) {
2473 default:
2474 error = -EINVAL;
2475 break;
2476 case SIG_BLOCK:
2477 sigaddsetmask(&current->blocked, new_set);
2478 break;
2479 case SIG_UNBLOCK:
2480 sigdelsetmask(&current->blocked, new_set);
2481 break;
2482 case SIG_SETMASK:
2483 current->blocked.sig[0] = new_set;
2484 break;
2487 recalc_sigpending();
2488 spin_unlock_irq(&current->sighand->siglock);
2489 if (error)
2490 goto out;
2491 if (oset)
2492 goto set_old;
2493 } else if (oset) {
2494 old_set = current->blocked.sig[0];
2495 set_old:
2496 error = -EFAULT;
2497 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2498 goto out;
2500 error = 0;
2501 out:
2502 return error;
2504 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2506 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2507 asmlinkage long
2508 sys_rt_sigaction(int sig,
2509 const struct sigaction __user *act,
2510 struct sigaction __user *oact,
2511 size_t sigsetsize)
2513 struct k_sigaction new_sa, old_sa;
2514 int ret = -EINVAL;
2516 /* XXX: Don't preclude handling different sized sigset_t's. */
2517 if (sigsetsize != sizeof(sigset_t))
2518 goto out;
2520 if (act) {
2521 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2522 return -EFAULT;
2525 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2527 if (!ret && oact) {
2528 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2529 return -EFAULT;
2531 out:
2532 return ret;
2534 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2536 #ifdef __ARCH_WANT_SYS_SGETMASK
2539 * For backwards compatibility. Functionality superseded by sigprocmask.
2541 asmlinkage long
2542 sys_sgetmask(void)
2544 /* SMP safe */
2545 return current->blocked.sig[0];
2548 asmlinkage long
2549 sys_ssetmask(int newmask)
2551 int old;
2553 spin_lock_irq(&current->sighand->siglock);
2554 old = current->blocked.sig[0];
2556 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2557 sigmask(SIGSTOP)));
2558 recalc_sigpending();
2559 spin_unlock_irq(&current->sighand->siglock);
2561 return old;
2563 #endif /* __ARCH_WANT_SGETMASK */
2565 #ifdef __ARCH_WANT_SYS_SIGNAL
2567 * For backwards compatibility. Functionality superseded by sigaction.
2569 asmlinkage unsigned long
2570 sys_signal(int sig, __sighandler_t handler)
2572 struct k_sigaction new_sa, old_sa;
2573 int ret;
2575 new_sa.sa.sa_handler = handler;
2576 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2577 sigemptyset(&new_sa.sa.sa_mask);
2579 ret = do_sigaction(sig, &new_sa, &old_sa);
2581 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2583 #endif /* __ARCH_WANT_SYS_SIGNAL */
2585 #ifdef __ARCH_WANT_SYS_PAUSE
2587 asmlinkage long
2588 sys_pause(void)
2590 current->state = TASK_INTERRUPTIBLE;
2591 schedule();
2592 return -ERESTARTNOHAND;
2595 #endif
2597 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2598 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2600 sigset_t newset;
2602 /* XXX: Don't preclude handling different sized sigset_t's. */
2603 if (sigsetsize != sizeof(sigset_t))
2604 return -EINVAL;
2606 if (copy_from_user(&newset, unewset, sizeof(newset)))
2607 return -EFAULT;
2608 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2610 spin_lock_irq(&current->sighand->siglock);
2611 current->saved_sigmask = current->blocked;
2612 current->blocked = newset;
2613 recalc_sigpending();
2614 spin_unlock_irq(&current->sighand->siglock);
2616 current->state = TASK_INTERRUPTIBLE;
2617 schedule();
2618 set_thread_flag(TIF_RESTORE_SIGMASK);
2619 return -ERESTARTNOHAND;
2621 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2623 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2625 return NULL;
2628 void __init signals_init(void)
2630 sigqueue_cachep =
2631 kmem_cache_create("sigqueue",
2632 sizeof(struct sigqueue),
2633 __alignof__(struct sigqueue),
2634 SLAB_PANIC, NULL, NULL);