md: Remove the AllReserved flag for component devices.
[linux-2.6/libata-dev.git] / drivers / net / ixgbe / ixgbe_common.c
blobd5ede2df3e425955f75d48f9e652eac0a03f1a22
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43 u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
50 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
52 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
53 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
55 /**
56 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
57 * @hw: pointer to hardware structure
59 * Starts the hardware by filling the bus info structure and media type, clears
60 * all on chip counters, initializes receive address registers, multicast
61 * table, VLAN filter table, calls routine to set up link and flow control
62 * settings, and leaves transmit and receive units disabled and uninitialized
63 **/
64 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
66 u32 ctrl_ext;
68 /* Set the media type */
69 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
71 /* Identify the PHY */
72 hw->phy.ops.identify(hw);
74 /* Clear the VLAN filter table */
75 hw->mac.ops.clear_vfta(hw);
77 /* Clear statistics registers */
78 hw->mac.ops.clear_hw_cntrs(hw);
80 /* Set No Snoop Disable */
81 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
82 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
83 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
84 IXGBE_WRITE_FLUSH(hw);
86 /* Setup flow control */
87 ixgbe_setup_fc(hw, 0);
89 /* Clear adapter stopped flag */
90 hw->adapter_stopped = false;
92 return 0;
95 /**
96 * ixgbe_init_hw_generic - Generic hardware initialization
97 * @hw: pointer to hardware structure
99 * Initialize the hardware by resetting the hardware, filling the bus info
100 * structure and media type, clears all on chip counters, initializes receive
101 * address registers, multicast table, VLAN filter table, calls routine to set
102 * up link and flow control settings, and leaves transmit and receive units
103 * disabled and uninitialized
105 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
107 s32 status;
109 /* Reset the hardware */
110 status = hw->mac.ops.reset_hw(hw);
112 if (status == 0) {
113 /* Start the HW */
114 status = hw->mac.ops.start_hw(hw);
117 return status;
121 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
122 * @hw: pointer to hardware structure
124 * Clears all hardware statistics counters by reading them from the hardware
125 * Statistics counters are clear on read.
127 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
129 u16 i = 0;
131 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
132 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
133 IXGBE_READ_REG(hw, IXGBE_ERRBC);
134 IXGBE_READ_REG(hw, IXGBE_MSPDC);
135 for (i = 0; i < 8; i++)
136 IXGBE_READ_REG(hw, IXGBE_MPC(i));
138 IXGBE_READ_REG(hw, IXGBE_MLFC);
139 IXGBE_READ_REG(hw, IXGBE_MRFC);
140 IXGBE_READ_REG(hw, IXGBE_RLEC);
141 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
142 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
143 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
144 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
146 for (i = 0; i < 8; i++) {
147 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
148 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
149 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
150 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
153 IXGBE_READ_REG(hw, IXGBE_PRC64);
154 IXGBE_READ_REG(hw, IXGBE_PRC127);
155 IXGBE_READ_REG(hw, IXGBE_PRC255);
156 IXGBE_READ_REG(hw, IXGBE_PRC511);
157 IXGBE_READ_REG(hw, IXGBE_PRC1023);
158 IXGBE_READ_REG(hw, IXGBE_PRC1522);
159 IXGBE_READ_REG(hw, IXGBE_GPRC);
160 IXGBE_READ_REG(hw, IXGBE_BPRC);
161 IXGBE_READ_REG(hw, IXGBE_MPRC);
162 IXGBE_READ_REG(hw, IXGBE_GPTC);
163 IXGBE_READ_REG(hw, IXGBE_GORCL);
164 IXGBE_READ_REG(hw, IXGBE_GORCH);
165 IXGBE_READ_REG(hw, IXGBE_GOTCL);
166 IXGBE_READ_REG(hw, IXGBE_GOTCH);
167 for (i = 0; i < 8; i++)
168 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
169 IXGBE_READ_REG(hw, IXGBE_RUC);
170 IXGBE_READ_REG(hw, IXGBE_RFC);
171 IXGBE_READ_REG(hw, IXGBE_ROC);
172 IXGBE_READ_REG(hw, IXGBE_RJC);
173 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
174 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
175 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
176 IXGBE_READ_REG(hw, IXGBE_TORL);
177 IXGBE_READ_REG(hw, IXGBE_TORH);
178 IXGBE_READ_REG(hw, IXGBE_TPR);
179 IXGBE_READ_REG(hw, IXGBE_TPT);
180 IXGBE_READ_REG(hw, IXGBE_PTC64);
181 IXGBE_READ_REG(hw, IXGBE_PTC127);
182 IXGBE_READ_REG(hw, IXGBE_PTC255);
183 IXGBE_READ_REG(hw, IXGBE_PTC511);
184 IXGBE_READ_REG(hw, IXGBE_PTC1023);
185 IXGBE_READ_REG(hw, IXGBE_PTC1522);
186 IXGBE_READ_REG(hw, IXGBE_MPTC);
187 IXGBE_READ_REG(hw, IXGBE_BPTC);
188 for (i = 0; i < 16; i++) {
189 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
190 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
191 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
192 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
195 return 0;
199 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
200 * @hw: pointer to hardware structure
201 * @pba_num: stores the part number string from the EEPROM
202 * @pba_num_size: part number string buffer length
204 * Reads the part number string from the EEPROM.
206 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
207 u32 pba_num_size)
209 s32 ret_val;
210 u16 data;
211 u16 pba_ptr;
212 u16 offset;
213 u16 length;
215 if (pba_num == NULL) {
216 hw_dbg(hw, "PBA string buffer was null\n");
217 return IXGBE_ERR_INVALID_ARGUMENT;
220 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
221 if (ret_val) {
222 hw_dbg(hw, "NVM Read Error\n");
223 return ret_val;
226 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
227 if (ret_val) {
228 hw_dbg(hw, "NVM Read Error\n");
229 return ret_val;
233 * if data is not ptr guard the PBA must be in legacy format which
234 * means pba_ptr is actually our second data word for the PBA number
235 * and we can decode it into an ascii string
237 if (data != IXGBE_PBANUM_PTR_GUARD) {
238 hw_dbg(hw, "NVM PBA number is not stored as string\n");
240 /* we will need 11 characters to store the PBA */
241 if (pba_num_size < 11) {
242 hw_dbg(hw, "PBA string buffer too small\n");
243 return IXGBE_ERR_NO_SPACE;
246 /* extract hex string from data and pba_ptr */
247 pba_num[0] = (data >> 12) & 0xF;
248 pba_num[1] = (data >> 8) & 0xF;
249 pba_num[2] = (data >> 4) & 0xF;
250 pba_num[3] = data & 0xF;
251 pba_num[4] = (pba_ptr >> 12) & 0xF;
252 pba_num[5] = (pba_ptr >> 8) & 0xF;
253 pba_num[6] = '-';
254 pba_num[7] = 0;
255 pba_num[8] = (pba_ptr >> 4) & 0xF;
256 pba_num[9] = pba_ptr & 0xF;
258 /* put a null character on the end of our string */
259 pba_num[10] = '\0';
261 /* switch all the data but the '-' to hex char */
262 for (offset = 0; offset < 10; offset++) {
263 if (pba_num[offset] < 0xA)
264 pba_num[offset] += '0';
265 else if (pba_num[offset] < 0x10)
266 pba_num[offset] += 'A' - 0xA;
269 return 0;
272 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
273 if (ret_val) {
274 hw_dbg(hw, "NVM Read Error\n");
275 return ret_val;
278 if (length == 0xFFFF || length == 0) {
279 hw_dbg(hw, "NVM PBA number section invalid length\n");
280 return IXGBE_ERR_PBA_SECTION;
283 /* check if pba_num buffer is big enough */
284 if (pba_num_size < (((u32)length * 2) - 1)) {
285 hw_dbg(hw, "PBA string buffer too small\n");
286 return IXGBE_ERR_NO_SPACE;
289 /* trim pba length from start of string */
290 pba_ptr++;
291 length--;
293 for (offset = 0; offset < length; offset++) {
294 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
295 if (ret_val) {
296 hw_dbg(hw, "NVM Read Error\n");
297 return ret_val;
299 pba_num[offset * 2] = (u8)(data >> 8);
300 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
302 pba_num[offset * 2] = '\0';
304 return 0;
308 * ixgbe_get_mac_addr_generic - Generic get MAC address
309 * @hw: pointer to hardware structure
310 * @mac_addr: Adapter MAC address
312 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
313 * A reset of the adapter must be performed prior to calling this function
314 * in order for the MAC address to have been loaded from the EEPROM into RAR0
316 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
318 u32 rar_high;
319 u32 rar_low;
320 u16 i;
322 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
323 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
325 for (i = 0; i < 4; i++)
326 mac_addr[i] = (u8)(rar_low >> (i*8));
328 for (i = 0; i < 2; i++)
329 mac_addr[i+4] = (u8)(rar_high >> (i*8));
331 return 0;
335 * ixgbe_get_bus_info_generic - Generic set PCI bus info
336 * @hw: pointer to hardware structure
338 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
340 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
342 struct ixgbe_adapter *adapter = hw->back;
343 struct ixgbe_mac_info *mac = &hw->mac;
344 u16 link_status;
346 hw->bus.type = ixgbe_bus_type_pci_express;
348 /* Get the negotiated link width and speed from PCI config space */
349 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
350 &link_status);
352 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
353 case IXGBE_PCI_LINK_WIDTH_1:
354 hw->bus.width = ixgbe_bus_width_pcie_x1;
355 break;
356 case IXGBE_PCI_LINK_WIDTH_2:
357 hw->bus.width = ixgbe_bus_width_pcie_x2;
358 break;
359 case IXGBE_PCI_LINK_WIDTH_4:
360 hw->bus.width = ixgbe_bus_width_pcie_x4;
361 break;
362 case IXGBE_PCI_LINK_WIDTH_8:
363 hw->bus.width = ixgbe_bus_width_pcie_x8;
364 break;
365 default:
366 hw->bus.width = ixgbe_bus_width_unknown;
367 break;
370 switch (link_status & IXGBE_PCI_LINK_SPEED) {
371 case IXGBE_PCI_LINK_SPEED_2500:
372 hw->bus.speed = ixgbe_bus_speed_2500;
373 break;
374 case IXGBE_PCI_LINK_SPEED_5000:
375 hw->bus.speed = ixgbe_bus_speed_5000;
376 break;
377 default:
378 hw->bus.speed = ixgbe_bus_speed_unknown;
379 break;
382 mac->ops.set_lan_id(hw);
384 return 0;
388 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
389 * @hw: pointer to the HW structure
391 * Determines the LAN function id by reading memory-mapped registers
392 * and swaps the port value if requested.
394 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
396 struct ixgbe_bus_info *bus = &hw->bus;
397 u32 reg;
399 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
400 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
401 bus->lan_id = bus->func;
403 /* check for a port swap */
404 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
405 if (reg & IXGBE_FACTPS_LFS)
406 bus->func ^= 0x1;
410 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
411 * @hw: pointer to hardware structure
413 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
414 * disables transmit and receive units. The adapter_stopped flag is used by
415 * the shared code and drivers to determine if the adapter is in a stopped
416 * state and should not touch the hardware.
418 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
420 u32 number_of_queues;
421 u32 reg_val;
422 u16 i;
425 * Set the adapter_stopped flag so other driver functions stop touching
426 * the hardware
428 hw->adapter_stopped = true;
430 /* Disable the receive unit */
431 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
432 reg_val &= ~(IXGBE_RXCTRL_RXEN);
433 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
434 IXGBE_WRITE_FLUSH(hw);
435 msleep(2);
437 /* Clear interrupt mask to stop from interrupts being generated */
438 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
440 /* Clear any pending interrupts */
441 IXGBE_READ_REG(hw, IXGBE_EICR);
443 /* Disable the transmit unit. Each queue must be disabled. */
444 number_of_queues = hw->mac.max_tx_queues;
445 for (i = 0; i < number_of_queues; i++) {
446 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
447 if (reg_val & IXGBE_TXDCTL_ENABLE) {
448 reg_val &= ~IXGBE_TXDCTL_ENABLE;
449 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
454 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
455 * access and verify no pending requests
457 if (ixgbe_disable_pcie_master(hw) != 0)
458 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
460 return 0;
464 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
465 * @hw: pointer to hardware structure
466 * @index: led number to turn on
468 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
470 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
472 /* To turn on the LED, set mode to ON. */
473 led_reg &= ~IXGBE_LED_MODE_MASK(index);
474 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
475 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
476 IXGBE_WRITE_FLUSH(hw);
478 return 0;
482 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
483 * @hw: pointer to hardware structure
484 * @index: led number to turn off
486 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
488 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
490 /* To turn off the LED, set mode to OFF. */
491 led_reg &= ~IXGBE_LED_MODE_MASK(index);
492 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
493 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
494 IXGBE_WRITE_FLUSH(hw);
496 return 0;
500 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
501 * @hw: pointer to hardware structure
503 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
504 * ixgbe_hw struct in order to set up EEPROM access.
506 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
508 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
509 u32 eec;
510 u16 eeprom_size;
512 if (eeprom->type == ixgbe_eeprom_uninitialized) {
513 eeprom->type = ixgbe_eeprom_none;
514 /* Set default semaphore delay to 10ms which is a well
515 * tested value */
516 eeprom->semaphore_delay = 10;
519 * Check for EEPROM present first.
520 * If not present leave as none
522 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
523 if (eec & IXGBE_EEC_PRES) {
524 eeprom->type = ixgbe_eeprom_spi;
527 * SPI EEPROM is assumed here. This code would need to
528 * change if a future EEPROM is not SPI.
530 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
531 IXGBE_EEC_SIZE_SHIFT);
532 eeprom->word_size = 1 << (eeprom_size +
533 IXGBE_EEPROM_WORD_SIZE_SHIFT);
536 if (eec & IXGBE_EEC_ADDR_SIZE)
537 eeprom->address_bits = 16;
538 else
539 eeprom->address_bits = 8;
540 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
541 "%d\n", eeprom->type, eeprom->word_size,
542 eeprom->address_bits);
545 return 0;
549 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
550 * @hw: pointer to hardware structure
551 * @offset: offset within the EEPROM to be written to
552 * @data: 16 bit word to be written to the EEPROM
554 * If ixgbe_eeprom_update_checksum is not called after this function, the
555 * EEPROM will most likely contain an invalid checksum.
557 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
559 s32 status;
560 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
562 hw->eeprom.ops.init_params(hw);
564 if (offset >= hw->eeprom.word_size) {
565 status = IXGBE_ERR_EEPROM;
566 goto out;
569 /* Prepare the EEPROM for writing */
570 status = ixgbe_acquire_eeprom(hw);
572 if (status == 0) {
573 if (ixgbe_ready_eeprom(hw) != 0) {
574 ixgbe_release_eeprom(hw);
575 status = IXGBE_ERR_EEPROM;
579 if (status == 0) {
580 ixgbe_standby_eeprom(hw);
582 /* Send the WRITE ENABLE command (8 bit opcode ) */
583 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
584 IXGBE_EEPROM_OPCODE_BITS);
586 ixgbe_standby_eeprom(hw);
589 * Some SPI eeproms use the 8th address bit embedded in the
590 * opcode
592 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
593 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
595 /* Send the Write command (8-bit opcode + addr) */
596 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
597 IXGBE_EEPROM_OPCODE_BITS);
598 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
599 hw->eeprom.address_bits);
601 /* Send the data */
602 data = (data >> 8) | (data << 8);
603 ixgbe_shift_out_eeprom_bits(hw, data, 16);
604 ixgbe_standby_eeprom(hw);
606 msleep(hw->eeprom.semaphore_delay);
607 /* Done with writing - release the EEPROM */
608 ixgbe_release_eeprom(hw);
611 out:
612 return status;
616 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
617 * @hw: pointer to hardware structure
618 * @offset: offset within the EEPROM to be read
619 * @data: read 16 bit value from EEPROM
621 * Reads 16 bit value from EEPROM through bit-bang method
623 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
624 u16 *data)
626 s32 status;
627 u16 word_in;
628 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
630 hw->eeprom.ops.init_params(hw);
632 if (offset >= hw->eeprom.word_size) {
633 status = IXGBE_ERR_EEPROM;
634 goto out;
637 /* Prepare the EEPROM for reading */
638 status = ixgbe_acquire_eeprom(hw);
640 if (status == 0) {
641 if (ixgbe_ready_eeprom(hw) != 0) {
642 ixgbe_release_eeprom(hw);
643 status = IXGBE_ERR_EEPROM;
647 if (status == 0) {
648 ixgbe_standby_eeprom(hw);
651 * Some SPI eeproms use the 8th address bit embedded in the
652 * opcode
654 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
655 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
657 /* Send the READ command (opcode + addr) */
658 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
659 IXGBE_EEPROM_OPCODE_BITS);
660 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
661 hw->eeprom.address_bits);
663 /* Read the data. */
664 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
665 *data = (word_in >> 8) | (word_in << 8);
667 /* End this read operation */
668 ixgbe_release_eeprom(hw);
671 out:
672 return status;
676 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
677 * @hw: pointer to hardware structure
678 * @offset: offset of word in the EEPROM to read
679 * @data: word read from the EEPROM
681 * Reads a 16 bit word from the EEPROM using the EERD register.
683 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
685 u32 eerd;
686 s32 status;
688 hw->eeprom.ops.init_params(hw);
690 if (offset >= hw->eeprom.word_size) {
691 status = IXGBE_ERR_EEPROM;
692 goto out;
695 eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
696 IXGBE_EEPROM_RW_REG_START;
698 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
699 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
701 if (status == 0)
702 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
703 IXGBE_EEPROM_RW_REG_DATA);
704 else
705 hw_dbg(hw, "Eeprom read timed out\n");
707 out:
708 return status;
712 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
713 * @hw: pointer to hardware structure
714 * @ee_reg: EEPROM flag for polling
716 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
717 * read or write is done respectively.
719 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
721 u32 i;
722 u32 reg;
723 s32 status = IXGBE_ERR_EEPROM;
725 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
726 if (ee_reg == IXGBE_NVM_POLL_READ)
727 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
728 else
729 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
731 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
732 status = 0;
733 break;
735 udelay(5);
737 return status;
741 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
742 * @hw: pointer to hardware structure
744 * Prepares EEPROM for access using bit-bang method. This function should
745 * be called before issuing a command to the EEPROM.
747 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
749 s32 status = 0;
750 u32 eec = 0;
751 u32 i;
753 if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
754 status = IXGBE_ERR_SWFW_SYNC;
756 if (status == 0) {
757 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
759 /* Request EEPROM Access */
760 eec |= IXGBE_EEC_REQ;
761 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
763 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
764 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
765 if (eec & IXGBE_EEC_GNT)
766 break;
767 udelay(5);
770 /* Release if grant not acquired */
771 if (!(eec & IXGBE_EEC_GNT)) {
772 eec &= ~IXGBE_EEC_REQ;
773 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
774 hw_dbg(hw, "Could not acquire EEPROM grant\n");
776 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
777 status = IXGBE_ERR_EEPROM;
781 /* Setup EEPROM for Read/Write */
782 if (status == 0) {
783 /* Clear CS and SK */
784 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
785 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
786 IXGBE_WRITE_FLUSH(hw);
787 udelay(1);
789 return status;
793 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
794 * @hw: pointer to hardware structure
796 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
798 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
800 s32 status = IXGBE_ERR_EEPROM;
801 u32 timeout;
802 u32 i;
803 u32 swsm;
805 /* Set timeout value based on size of EEPROM */
806 timeout = hw->eeprom.word_size + 1;
808 /* Get SMBI software semaphore between device drivers first */
809 for (i = 0; i < timeout; i++) {
811 * If the SMBI bit is 0 when we read it, then the bit will be
812 * set and we have the semaphore
814 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
815 if (!(swsm & IXGBE_SWSM_SMBI)) {
816 status = 0;
817 break;
819 msleep(1);
822 /* Now get the semaphore between SW/FW through the SWESMBI bit */
823 if (status == 0) {
824 for (i = 0; i < timeout; i++) {
825 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
827 /* Set the SW EEPROM semaphore bit to request access */
828 swsm |= IXGBE_SWSM_SWESMBI;
829 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
832 * If we set the bit successfully then we got the
833 * semaphore.
835 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
836 if (swsm & IXGBE_SWSM_SWESMBI)
837 break;
839 udelay(50);
843 * Release semaphores and return error if SW EEPROM semaphore
844 * was not granted because we don't have access to the EEPROM
846 if (i >= timeout) {
847 hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
848 "not granted.\n");
849 ixgbe_release_eeprom_semaphore(hw);
850 status = IXGBE_ERR_EEPROM;
854 return status;
858 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
859 * @hw: pointer to hardware structure
861 * This function clears hardware semaphore bits.
863 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
865 u32 swsm;
867 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
869 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
870 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
871 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
872 IXGBE_WRITE_FLUSH(hw);
876 * ixgbe_ready_eeprom - Polls for EEPROM ready
877 * @hw: pointer to hardware structure
879 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
881 s32 status = 0;
882 u16 i;
883 u8 spi_stat_reg;
886 * Read "Status Register" repeatedly until the LSB is cleared. The
887 * EEPROM will signal that the command has been completed by clearing
888 * bit 0 of the internal status register. If it's not cleared within
889 * 5 milliseconds, then error out.
891 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
892 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
893 IXGBE_EEPROM_OPCODE_BITS);
894 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
895 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
896 break;
898 udelay(5);
899 ixgbe_standby_eeprom(hw);
903 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
904 * devices (and only 0-5mSec on 5V devices)
906 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
907 hw_dbg(hw, "SPI EEPROM Status error\n");
908 status = IXGBE_ERR_EEPROM;
911 return status;
915 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
916 * @hw: pointer to hardware structure
918 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
920 u32 eec;
922 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
924 /* Toggle CS to flush commands */
925 eec |= IXGBE_EEC_CS;
926 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
927 IXGBE_WRITE_FLUSH(hw);
928 udelay(1);
929 eec &= ~IXGBE_EEC_CS;
930 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
931 IXGBE_WRITE_FLUSH(hw);
932 udelay(1);
936 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
937 * @hw: pointer to hardware structure
938 * @data: data to send to the EEPROM
939 * @count: number of bits to shift out
941 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
942 u16 count)
944 u32 eec;
945 u32 mask;
946 u32 i;
948 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
951 * Mask is used to shift "count" bits of "data" out to the EEPROM
952 * one bit at a time. Determine the starting bit based on count
954 mask = 0x01 << (count - 1);
956 for (i = 0; i < count; i++) {
958 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
959 * "1", and then raising and then lowering the clock (the SK
960 * bit controls the clock input to the EEPROM). A "0" is
961 * shifted out to the EEPROM by setting "DI" to "0" and then
962 * raising and then lowering the clock.
964 if (data & mask)
965 eec |= IXGBE_EEC_DI;
966 else
967 eec &= ~IXGBE_EEC_DI;
969 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
970 IXGBE_WRITE_FLUSH(hw);
972 udelay(1);
974 ixgbe_raise_eeprom_clk(hw, &eec);
975 ixgbe_lower_eeprom_clk(hw, &eec);
978 * Shift mask to signify next bit of data to shift in to the
979 * EEPROM
981 mask = mask >> 1;
984 /* We leave the "DI" bit set to "0" when we leave this routine. */
985 eec &= ~IXGBE_EEC_DI;
986 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
987 IXGBE_WRITE_FLUSH(hw);
991 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
992 * @hw: pointer to hardware structure
994 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
996 u32 eec;
997 u32 i;
998 u16 data = 0;
1001 * In order to read a register from the EEPROM, we need to shift
1002 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1003 * the clock input to the EEPROM (setting the SK bit), and then reading
1004 * the value of the "DO" bit. During this "shifting in" process the
1005 * "DI" bit should always be clear.
1007 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1009 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1011 for (i = 0; i < count; i++) {
1012 data = data << 1;
1013 ixgbe_raise_eeprom_clk(hw, &eec);
1015 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1017 eec &= ~(IXGBE_EEC_DI);
1018 if (eec & IXGBE_EEC_DO)
1019 data |= 1;
1021 ixgbe_lower_eeprom_clk(hw, &eec);
1024 return data;
1028 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1029 * @hw: pointer to hardware structure
1030 * @eec: EEC register's current value
1032 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1035 * Raise the clock input to the EEPROM
1036 * (setting the SK bit), then delay
1038 *eec = *eec | IXGBE_EEC_SK;
1039 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1040 IXGBE_WRITE_FLUSH(hw);
1041 udelay(1);
1045 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1046 * @hw: pointer to hardware structure
1047 * @eecd: EECD's current value
1049 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1052 * Lower the clock input to the EEPROM (clearing the SK bit), then
1053 * delay
1055 *eec = *eec & ~IXGBE_EEC_SK;
1056 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1057 IXGBE_WRITE_FLUSH(hw);
1058 udelay(1);
1062 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1063 * @hw: pointer to hardware structure
1065 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1067 u32 eec;
1069 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1071 eec |= IXGBE_EEC_CS; /* Pull CS high */
1072 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1074 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1075 IXGBE_WRITE_FLUSH(hw);
1077 udelay(1);
1079 /* Stop requesting EEPROM access */
1080 eec &= ~IXGBE_EEC_REQ;
1081 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1083 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1087 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1088 * @hw: pointer to hardware structure
1090 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1092 u16 i;
1093 u16 j;
1094 u16 checksum = 0;
1095 u16 length = 0;
1096 u16 pointer = 0;
1097 u16 word = 0;
1099 /* Include 0x0-0x3F in the checksum */
1100 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1101 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1102 hw_dbg(hw, "EEPROM read failed\n");
1103 break;
1105 checksum += word;
1108 /* Include all data from pointers except for the fw pointer */
1109 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1110 hw->eeprom.ops.read(hw, i, &pointer);
1112 /* Make sure the pointer seems valid */
1113 if (pointer != 0xFFFF && pointer != 0) {
1114 hw->eeprom.ops.read(hw, pointer, &length);
1116 if (length != 0xFFFF && length != 0) {
1117 for (j = pointer+1; j <= pointer+length; j++) {
1118 hw->eeprom.ops.read(hw, j, &word);
1119 checksum += word;
1125 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1127 return checksum;
1131 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1132 * @hw: pointer to hardware structure
1133 * @checksum_val: calculated checksum
1135 * Performs checksum calculation and validates the EEPROM checksum. If the
1136 * caller does not need checksum_val, the value can be NULL.
1138 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1139 u16 *checksum_val)
1141 s32 status;
1142 u16 checksum;
1143 u16 read_checksum = 0;
1146 * Read the first word from the EEPROM. If this times out or fails, do
1147 * not continue or we could be in for a very long wait while every
1148 * EEPROM read fails
1150 status = hw->eeprom.ops.read(hw, 0, &checksum);
1152 if (status == 0) {
1153 checksum = hw->eeprom.ops.calc_checksum(hw);
1155 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1158 * Verify read checksum from EEPROM is the same as
1159 * calculated checksum
1161 if (read_checksum != checksum)
1162 status = IXGBE_ERR_EEPROM_CHECKSUM;
1164 /* If the user cares, return the calculated checksum */
1165 if (checksum_val)
1166 *checksum_val = checksum;
1167 } else {
1168 hw_dbg(hw, "EEPROM read failed\n");
1171 return status;
1175 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1176 * @hw: pointer to hardware structure
1178 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1180 s32 status;
1181 u16 checksum;
1184 * Read the first word from the EEPROM. If this times out or fails, do
1185 * not continue or we could be in for a very long wait while every
1186 * EEPROM read fails
1188 status = hw->eeprom.ops.read(hw, 0, &checksum);
1190 if (status == 0) {
1191 checksum = hw->eeprom.ops.calc_checksum(hw);
1192 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1193 checksum);
1194 } else {
1195 hw_dbg(hw, "EEPROM read failed\n");
1198 return status;
1202 * ixgbe_validate_mac_addr - Validate MAC address
1203 * @mac_addr: pointer to MAC address.
1205 * Tests a MAC address to ensure it is a valid Individual Address
1207 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1209 s32 status = 0;
1211 /* Make sure it is not a multicast address */
1212 if (IXGBE_IS_MULTICAST(mac_addr))
1213 status = IXGBE_ERR_INVALID_MAC_ADDR;
1214 /* Not a broadcast address */
1215 else if (IXGBE_IS_BROADCAST(mac_addr))
1216 status = IXGBE_ERR_INVALID_MAC_ADDR;
1217 /* Reject the zero address */
1218 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1219 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1220 status = IXGBE_ERR_INVALID_MAC_ADDR;
1222 return status;
1226 * ixgbe_set_rar_generic - Set Rx address register
1227 * @hw: pointer to hardware structure
1228 * @index: Receive address register to write
1229 * @addr: Address to put into receive address register
1230 * @vmdq: VMDq "set" or "pool" index
1231 * @enable_addr: set flag that address is active
1233 * Puts an ethernet address into a receive address register.
1235 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1236 u32 enable_addr)
1238 u32 rar_low, rar_high;
1239 u32 rar_entries = hw->mac.num_rar_entries;
1241 /* setup VMDq pool selection before this RAR gets enabled */
1242 hw->mac.ops.set_vmdq(hw, index, vmdq);
1244 /* Make sure we are using a valid rar index range */
1245 if (index < rar_entries) {
1247 * HW expects these in little endian so we reverse the byte
1248 * order from network order (big endian) to little endian
1250 rar_low = ((u32)addr[0] |
1251 ((u32)addr[1] << 8) |
1252 ((u32)addr[2] << 16) |
1253 ((u32)addr[3] << 24));
1255 * Some parts put the VMDq setting in the extra RAH bits,
1256 * so save everything except the lower 16 bits that hold part
1257 * of the address and the address valid bit.
1259 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1260 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1261 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1263 if (enable_addr != 0)
1264 rar_high |= IXGBE_RAH_AV;
1266 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1267 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1268 } else {
1269 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1270 return IXGBE_ERR_RAR_INDEX;
1273 return 0;
1277 * ixgbe_clear_rar_generic - Remove Rx address register
1278 * @hw: pointer to hardware structure
1279 * @index: Receive address register to write
1281 * Clears an ethernet address from a receive address register.
1283 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1285 u32 rar_high;
1286 u32 rar_entries = hw->mac.num_rar_entries;
1288 /* Make sure we are using a valid rar index range */
1289 if (index < rar_entries) {
1291 * Some parts put the VMDq setting in the extra RAH bits,
1292 * so save everything except the lower 16 bits that hold part
1293 * of the address and the address valid bit.
1295 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1296 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1298 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1299 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1300 } else {
1301 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1302 return IXGBE_ERR_RAR_INDEX;
1305 /* clear VMDq pool/queue selection for this RAR */
1306 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1308 return 0;
1312 * ixgbe_enable_rar - Enable Rx address register
1313 * @hw: pointer to hardware structure
1314 * @index: index into the RAR table
1316 * Enables the select receive address register.
1318 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
1320 u32 rar_high;
1322 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1323 rar_high |= IXGBE_RAH_AV;
1324 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1328 * ixgbe_disable_rar - Disable Rx address register
1329 * @hw: pointer to hardware structure
1330 * @index: index into the RAR table
1332 * Disables the select receive address register.
1334 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
1336 u32 rar_high;
1338 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1339 rar_high &= (~IXGBE_RAH_AV);
1340 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1344 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1345 * @hw: pointer to hardware structure
1347 * Places the MAC address in receive address register 0 and clears the rest
1348 * of the receive address registers. Clears the multicast table. Assumes
1349 * the receiver is in reset when the routine is called.
1351 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1353 u32 i;
1354 u32 rar_entries = hw->mac.num_rar_entries;
1357 * If the current mac address is valid, assume it is a software override
1358 * to the permanent address.
1359 * Otherwise, use the permanent address from the eeprom.
1361 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1362 IXGBE_ERR_INVALID_MAC_ADDR) {
1363 /* Get the MAC address from the RAR0 for later reference */
1364 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1366 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1367 } else {
1368 /* Setup the receive address. */
1369 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1370 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1372 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1374 hw->addr_ctrl.overflow_promisc = 0;
1376 hw->addr_ctrl.rar_used_count = 1;
1378 /* Zero out the other receive addresses. */
1379 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1380 for (i = 1; i < rar_entries; i++) {
1381 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1382 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1385 /* Clear the MTA */
1386 hw->addr_ctrl.mc_addr_in_rar_count = 0;
1387 hw->addr_ctrl.mta_in_use = 0;
1388 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1390 hw_dbg(hw, " Clearing MTA\n");
1391 for (i = 0; i < hw->mac.mcft_size; i++)
1392 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1394 if (hw->mac.ops.init_uta_tables)
1395 hw->mac.ops.init_uta_tables(hw);
1397 return 0;
1401 * ixgbe_add_uc_addr - Adds a secondary unicast address.
1402 * @hw: pointer to hardware structure
1403 * @addr: new address
1405 * Adds it to unused receive address register or goes into promiscuous mode.
1407 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1409 u32 rar_entries = hw->mac.num_rar_entries;
1410 u32 rar;
1412 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1413 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1416 * Place this address in the RAR if there is room,
1417 * else put the controller into promiscuous mode
1419 if (hw->addr_ctrl.rar_used_count < rar_entries) {
1420 rar = hw->addr_ctrl.rar_used_count -
1421 hw->addr_ctrl.mc_addr_in_rar_count;
1422 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1423 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
1424 hw->addr_ctrl.rar_used_count++;
1425 } else {
1426 hw->addr_ctrl.overflow_promisc++;
1429 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
1433 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1434 * @hw: pointer to hardware structure
1435 * @netdev: pointer to net device structure
1437 * The given list replaces any existing list. Clears the secondary addrs from
1438 * receive address registers. Uses unused receive address registers for the
1439 * first secondary addresses, and falls back to promiscuous mode as needed.
1441 * Drivers using secondary unicast addresses must set user_set_promisc when
1442 * manually putting the device into promiscuous mode.
1444 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw,
1445 struct net_device *netdev)
1447 u32 i;
1448 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1449 u32 uc_addr_in_use;
1450 u32 fctrl;
1451 struct netdev_hw_addr *ha;
1454 * Clear accounting of old secondary address list,
1455 * don't count RAR[0]
1457 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
1458 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1459 hw->addr_ctrl.overflow_promisc = 0;
1461 /* Zero out the other receive addresses */
1462 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use + 1);
1463 for (i = 0; i < uc_addr_in_use; i++) {
1464 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
1465 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
1468 /* Add the new addresses */
1469 netdev_for_each_uc_addr(ha, netdev) {
1470 hw_dbg(hw, " Adding the secondary addresses:\n");
1471 ixgbe_add_uc_addr(hw, ha->addr, 0);
1474 if (hw->addr_ctrl.overflow_promisc) {
1475 /* enable promisc if not already in overflow or set by user */
1476 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1477 hw_dbg(hw, " Entering address overflow promisc mode\n");
1478 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1479 fctrl |= IXGBE_FCTRL_UPE;
1480 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1481 hw->addr_ctrl.uc_set_promisc = true;
1483 } else {
1484 /* only disable if set by overflow, not by user */
1485 if ((old_promisc_setting && hw->addr_ctrl.uc_set_promisc) &&
1486 !(hw->addr_ctrl.user_set_promisc)) {
1487 hw_dbg(hw, " Leaving address overflow promisc mode\n");
1488 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1489 fctrl &= ~IXGBE_FCTRL_UPE;
1490 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1491 hw->addr_ctrl.uc_set_promisc = false;
1495 hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
1496 return 0;
1500 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1501 * @hw: pointer to hardware structure
1502 * @mc_addr: the multicast address
1504 * Extracts the 12 bits, from a multicast address, to determine which
1505 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1506 * incoming rx multicast addresses, to determine the bit-vector to check in
1507 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1508 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1509 * to mc_filter_type.
1511 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1513 u32 vector = 0;
1515 switch (hw->mac.mc_filter_type) {
1516 case 0: /* use bits [47:36] of the address */
1517 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1518 break;
1519 case 1: /* use bits [46:35] of the address */
1520 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1521 break;
1522 case 2: /* use bits [45:34] of the address */
1523 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1524 break;
1525 case 3: /* use bits [43:32] of the address */
1526 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1527 break;
1528 default: /* Invalid mc_filter_type */
1529 hw_dbg(hw, "MC filter type param set incorrectly\n");
1530 break;
1533 /* vector can only be 12-bits or boundary will be exceeded */
1534 vector &= 0xFFF;
1535 return vector;
1539 * ixgbe_set_mta - Set bit-vector in multicast table
1540 * @hw: pointer to hardware structure
1541 * @hash_value: Multicast address hash value
1543 * Sets the bit-vector in the multicast table.
1545 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1547 u32 vector;
1548 u32 vector_bit;
1549 u32 vector_reg;
1550 u32 mta_reg;
1552 hw->addr_ctrl.mta_in_use++;
1554 vector = ixgbe_mta_vector(hw, mc_addr);
1555 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1558 * The MTA is a register array of 128 32-bit registers. It is treated
1559 * like an array of 4096 bits. We want to set bit
1560 * BitArray[vector_value]. So we figure out what register the bit is
1561 * in, read it, OR in the new bit, then write back the new value. The
1562 * register is determined by the upper 7 bits of the vector value and
1563 * the bit within that register are determined by the lower 5 bits of
1564 * the value.
1566 vector_reg = (vector >> 5) & 0x7F;
1567 vector_bit = vector & 0x1F;
1568 mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
1569 mta_reg |= (1 << vector_bit);
1570 IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
1574 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1575 * @hw: pointer to hardware structure
1576 * @netdev: pointer to net device structure
1578 * The given list replaces any existing list. Clears the MC addrs from receive
1579 * address registers and the multicast table. Uses unused receive address
1580 * registers for the first multicast addresses, and hashes the rest into the
1581 * multicast table.
1583 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1584 struct net_device *netdev)
1586 struct netdev_hw_addr *ha;
1587 u32 i;
1590 * Set the new number of MC addresses that we are being requested to
1591 * use.
1593 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1594 hw->addr_ctrl.mta_in_use = 0;
1596 /* Clear the MTA */
1597 hw_dbg(hw, " Clearing MTA\n");
1598 for (i = 0; i < hw->mac.mcft_size; i++)
1599 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1601 /* Add the new addresses */
1602 netdev_for_each_mc_addr(ha, netdev) {
1603 hw_dbg(hw, " Adding the multicast addresses:\n");
1604 ixgbe_set_mta(hw, ha->addr);
1607 /* Enable mta */
1608 if (hw->addr_ctrl.mta_in_use > 0)
1609 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1610 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1612 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1613 return 0;
1617 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1618 * @hw: pointer to hardware structure
1620 * Enables multicast address in RAR and the use of the multicast hash table.
1622 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1624 u32 i;
1625 u32 rar_entries = hw->mac.num_rar_entries;
1626 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1628 if (a->mc_addr_in_rar_count > 0)
1629 for (i = (rar_entries - a->mc_addr_in_rar_count);
1630 i < rar_entries; i++)
1631 ixgbe_enable_rar(hw, i);
1633 if (a->mta_in_use > 0)
1634 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1635 hw->mac.mc_filter_type);
1637 return 0;
1641 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1642 * @hw: pointer to hardware structure
1644 * Disables multicast address in RAR and the use of the multicast hash table.
1646 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1648 u32 i;
1649 u32 rar_entries = hw->mac.num_rar_entries;
1650 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1652 if (a->mc_addr_in_rar_count > 0)
1653 for (i = (rar_entries - a->mc_addr_in_rar_count);
1654 i < rar_entries; i++)
1655 ixgbe_disable_rar(hw, i);
1657 if (a->mta_in_use > 0)
1658 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1660 return 0;
1664 * ixgbe_fc_enable_generic - Enable flow control
1665 * @hw: pointer to hardware structure
1666 * @packetbuf_num: packet buffer number (0-7)
1668 * Enable flow control according to the current settings.
1670 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1672 s32 ret_val = 0;
1673 u32 mflcn_reg, fccfg_reg;
1674 u32 reg;
1675 u32 rx_pba_size;
1676 u32 fcrtl, fcrth;
1678 #ifdef CONFIG_DCB
1679 if (hw->fc.requested_mode == ixgbe_fc_pfc)
1680 goto out;
1682 #endif /* CONFIG_DCB */
1683 /* Negotiate the fc mode to use */
1684 ret_val = ixgbe_fc_autoneg(hw);
1685 if (ret_val)
1686 goto out;
1688 /* Disable any previous flow control settings */
1689 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1690 mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1692 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1693 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1696 * The possible values of fc.current_mode are:
1697 * 0: Flow control is completely disabled
1698 * 1: Rx flow control is enabled (we can receive pause frames,
1699 * but not send pause frames).
1700 * 2: Tx flow control is enabled (we can send pause frames but
1701 * we do not support receiving pause frames).
1702 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1703 * 4: Priority Flow Control is enabled.
1704 * other: Invalid.
1706 switch (hw->fc.current_mode) {
1707 case ixgbe_fc_none:
1709 * Flow control is disabled by software override or autoneg.
1710 * The code below will actually disable it in the HW.
1712 break;
1713 case ixgbe_fc_rx_pause:
1715 * Rx Flow control is enabled and Tx Flow control is
1716 * disabled by software override. Since there really
1717 * isn't a way to advertise that we are capable of RX
1718 * Pause ONLY, we will advertise that we support both
1719 * symmetric and asymmetric Rx PAUSE. Later, we will
1720 * disable the adapter's ability to send PAUSE frames.
1722 mflcn_reg |= IXGBE_MFLCN_RFCE;
1723 break;
1724 case ixgbe_fc_tx_pause:
1726 * Tx Flow control is enabled, and Rx Flow control is
1727 * disabled by software override.
1729 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1730 break;
1731 case ixgbe_fc_full:
1732 /* Flow control (both Rx and Tx) is enabled by SW override. */
1733 mflcn_reg |= IXGBE_MFLCN_RFCE;
1734 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1735 break;
1736 #ifdef CONFIG_DCB
1737 case ixgbe_fc_pfc:
1738 goto out;
1739 break;
1740 #endif /* CONFIG_DCB */
1741 default:
1742 hw_dbg(hw, "Flow control param set incorrectly\n");
1743 ret_val = IXGBE_ERR_CONFIG;
1744 goto out;
1745 break;
1748 /* Set 802.3x based flow control settings. */
1749 mflcn_reg |= IXGBE_MFLCN_DPF;
1750 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1751 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1753 rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
1754 rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
1756 fcrth = (rx_pba_size - hw->fc.high_water) << 10;
1757 fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
1759 if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1760 fcrth |= IXGBE_FCRTH_FCEN;
1761 if (hw->fc.send_xon)
1762 fcrtl |= IXGBE_FCRTL_XONE;
1765 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
1766 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
1768 /* Configure pause time (2 TCs per register) */
1769 reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
1770 if ((packetbuf_num & 1) == 0)
1771 reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1772 else
1773 reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1774 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1776 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1778 out:
1779 return ret_val;
1783 * ixgbe_fc_autoneg - Configure flow control
1784 * @hw: pointer to hardware structure
1786 * Compares our advertised flow control capabilities to those advertised by
1787 * our link partner, and determines the proper flow control mode to use.
1789 s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1791 s32 ret_val = 0;
1792 ixgbe_link_speed speed;
1793 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
1794 u32 links2, anlp1_reg, autoc_reg, links;
1795 bool link_up;
1798 * AN should have completed when the cable was plugged in.
1799 * Look for reasons to bail out. Bail out if:
1800 * - FC autoneg is disabled, or if
1801 * - link is not up.
1803 * Since we're being called from an LSC, link is already known to be up.
1804 * So use link_up_wait_to_complete=false.
1806 hw->mac.ops.check_link(hw, &speed, &link_up, false);
1808 if (hw->fc.disable_fc_autoneg || (!link_up)) {
1809 hw->fc.fc_was_autonegged = false;
1810 hw->fc.current_mode = hw->fc.requested_mode;
1811 goto out;
1815 * On backplane, bail out if
1816 * - backplane autoneg was not completed, or if
1817 * - we are 82599 and link partner is not AN enabled
1819 if (hw->phy.media_type == ixgbe_media_type_backplane) {
1820 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
1821 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
1822 hw->fc.fc_was_autonegged = false;
1823 hw->fc.current_mode = hw->fc.requested_mode;
1824 goto out;
1827 if (hw->mac.type == ixgbe_mac_82599EB) {
1828 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
1829 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
1830 hw->fc.fc_was_autonegged = false;
1831 hw->fc.current_mode = hw->fc.requested_mode;
1832 goto out;
1838 * On multispeed fiber at 1g, bail out if
1839 * - link is up but AN did not complete, or if
1840 * - link is up and AN completed but timed out
1842 if (hw->phy.multispeed_fiber && (speed == IXGBE_LINK_SPEED_1GB_FULL)) {
1843 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1844 if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
1845 ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
1846 hw->fc.fc_was_autonegged = false;
1847 hw->fc.current_mode = hw->fc.requested_mode;
1848 goto out;
1853 * Bail out on
1854 * - copper or CX4 adapters
1855 * - fiber adapters running at 10gig
1857 if ((hw->phy.media_type == ixgbe_media_type_copper) ||
1858 (hw->phy.media_type == ixgbe_media_type_cx4) ||
1859 ((hw->phy.media_type == ixgbe_media_type_fiber) &&
1860 (speed == IXGBE_LINK_SPEED_10GB_FULL))) {
1861 hw->fc.fc_was_autonegged = false;
1862 hw->fc.current_mode = hw->fc.requested_mode;
1863 goto out;
1867 * Read the AN advertisement and LP ability registers and resolve
1868 * local flow control settings accordingly
1870 if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
1871 (hw->phy.media_type != ixgbe_media_type_backplane)) {
1872 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1873 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1874 if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1875 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
1877 * Now we need to check if the user selected Rx ONLY
1878 * of pause frames. In this case, we had to advertise
1879 * FULL flow control because we could not advertise RX
1880 * ONLY. Hence, we must now check to see if we need to
1881 * turn OFF the TRANSMISSION of PAUSE frames.
1883 if (hw->fc.requested_mode == ixgbe_fc_full) {
1884 hw->fc.current_mode = ixgbe_fc_full;
1885 hw_dbg(hw, "Flow Control = FULL.\n");
1886 } else {
1887 hw->fc.current_mode = ixgbe_fc_rx_pause;
1888 hw_dbg(hw, "Flow Control=RX PAUSE only\n");
1890 } else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1891 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1892 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1893 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1894 hw->fc.current_mode = ixgbe_fc_tx_pause;
1895 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1896 } else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1897 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1898 !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1899 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1900 hw->fc.current_mode = ixgbe_fc_rx_pause;
1901 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1902 } else {
1903 hw->fc.current_mode = ixgbe_fc_none;
1904 hw_dbg(hw, "Flow Control = NONE.\n");
1908 if (hw->phy.media_type == ixgbe_media_type_backplane) {
1910 * Read the 10g AN autoc and LP ability registers and resolve
1911 * local flow control settings accordingly
1913 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
1914 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
1916 if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1917 (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE)) {
1919 * Now we need to check if the user selected Rx ONLY
1920 * of pause frames. In this case, we had to advertise
1921 * FULL flow control because we could not advertise RX
1922 * ONLY. Hence, we must now check to see if we need to
1923 * turn OFF the TRANSMISSION of PAUSE frames.
1925 if (hw->fc.requested_mode == ixgbe_fc_full) {
1926 hw->fc.current_mode = ixgbe_fc_full;
1927 hw_dbg(hw, "Flow Control = FULL.\n");
1928 } else {
1929 hw->fc.current_mode = ixgbe_fc_rx_pause;
1930 hw_dbg(hw, "Flow Control=RX PAUSE only\n");
1932 } else if (!(autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1933 (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
1934 (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
1935 (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
1936 hw->fc.current_mode = ixgbe_fc_tx_pause;
1937 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1938 } else if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1939 (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
1940 !(anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
1941 (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
1942 hw->fc.current_mode = ixgbe_fc_rx_pause;
1943 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1944 } else {
1945 hw->fc.current_mode = ixgbe_fc_none;
1946 hw_dbg(hw, "Flow Control = NONE.\n");
1949 /* Record that current_mode is the result of a successful autoneg */
1950 hw->fc.fc_was_autonegged = true;
1952 out:
1953 return ret_val;
1957 * ixgbe_setup_fc - Set up flow control
1958 * @hw: pointer to hardware structure
1960 * Called at init time to set up flow control.
1962 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
1964 s32 ret_val = 0;
1965 u32 reg;
1967 #ifdef CONFIG_DCB
1968 if (hw->fc.requested_mode == ixgbe_fc_pfc) {
1969 hw->fc.current_mode = hw->fc.requested_mode;
1970 goto out;
1973 #endif
1974 /* Validate the packetbuf configuration */
1975 if (packetbuf_num < 0 || packetbuf_num > 7) {
1976 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1977 "is 0-7\n", packetbuf_num);
1978 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1979 goto out;
1983 * Validate the water mark configuration. Zero water marks are invalid
1984 * because it causes the controller to just blast out fc packets.
1986 if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1987 hw_dbg(hw, "Invalid water mark configuration\n");
1988 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1989 goto out;
1993 * Validate the requested mode. Strict IEEE mode does not allow
1994 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
1996 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
1997 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
1998 "IEEE mode\n");
1999 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2000 goto out;
2004 * 10gig parts do not have a word in the EEPROM to determine the
2005 * default flow control setting, so we explicitly set it to full.
2007 if (hw->fc.requested_mode == ixgbe_fc_default)
2008 hw->fc.requested_mode = ixgbe_fc_full;
2011 * Set up the 1G flow control advertisement registers so the HW will be
2012 * able to do fc autoneg once the cable is plugged in. If we end up
2013 * using 10g instead, this is harmless.
2015 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2018 * The possible values of fc.requested_mode are:
2019 * 0: Flow control is completely disabled
2020 * 1: Rx flow control is enabled (we can receive pause frames,
2021 * but not send pause frames).
2022 * 2: Tx flow control is enabled (we can send pause frames but
2023 * we do not support receiving pause frames).
2024 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2025 #ifdef CONFIG_DCB
2026 * 4: Priority Flow Control is enabled.
2027 #endif
2028 * other: Invalid.
2030 switch (hw->fc.requested_mode) {
2031 case ixgbe_fc_none:
2032 /* Flow control completely disabled by software override. */
2033 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2034 break;
2035 case ixgbe_fc_rx_pause:
2037 * Rx Flow control is enabled and Tx Flow control is
2038 * disabled by software override. Since there really
2039 * isn't a way to advertise that we are capable of RX
2040 * Pause ONLY, we will advertise that we support both
2041 * symmetric and asymmetric Rx PAUSE. Later, we will
2042 * disable the adapter's ability to send PAUSE frames.
2044 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2045 break;
2046 case ixgbe_fc_tx_pause:
2048 * Tx Flow control is enabled, and Rx Flow control is
2049 * disabled by software override.
2051 reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2052 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2053 break;
2054 case ixgbe_fc_full:
2055 /* Flow control (both Rx and Tx) is enabled by SW override. */
2056 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2057 break;
2058 #ifdef CONFIG_DCB
2059 case ixgbe_fc_pfc:
2060 goto out;
2061 break;
2062 #endif /* CONFIG_DCB */
2063 default:
2064 hw_dbg(hw, "Flow control param set incorrectly\n");
2065 ret_val = IXGBE_ERR_CONFIG;
2066 goto out;
2067 break;
2070 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2071 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2073 /* Disable AN timeout */
2074 if (hw->fc.strict_ieee)
2075 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2077 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2078 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2081 * Set up the 10G flow control advertisement registers so the HW
2082 * can do fc autoneg once the cable is plugged in. If we end up
2083 * using 1g instead, this is harmless.
2085 reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2088 * The possible values of fc.requested_mode are:
2089 * 0: Flow control is completely disabled
2090 * 1: Rx flow control is enabled (we can receive pause frames,
2091 * but not send pause frames).
2092 * 2: Tx flow control is enabled (we can send pause frames but
2093 * we do not support receiving pause frames).
2094 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2095 * other: Invalid.
2097 switch (hw->fc.requested_mode) {
2098 case ixgbe_fc_none:
2099 /* Flow control completely disabled by software override. */
2100 reg &= ~(IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2101 break;
2102 case ixgbe_fc_rx_pause:
2104 * Rx Flow control is enabled and Tx Flow control is
2105 * disabled by software override. Since there really
2106 * isn't a way to advertise that we are capable of RX
2107 * Pause ONLY, we will advertise that we support both
2108 * symmetric and asymmetric Rx PAUSE. Later, we will
2109 * disable the adapter's ability to send PAUSE frames.
2111 reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2112 break;
2113 case ixgbe_fc_tx_pause:
2115 * Tx Flow control is enabled, and Rx Flow control is
2116 * disabled by software override.
2118 reg |= (IXGBE_AUTOC_ASM_PAUSE);
2119 reg &= ~(IXGBE_AUTOC_SYM_PAUSE);
2120 break;
2121 case ixgbe_fc_full:
2122 /* Flow control (both Rx and Tx) is enabled by SW override. */
2123 reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2124 break;
2125 #ifdef CONFIG_DCB
2126 case ixgbe_fc_pfc:
2127 goto out;
2128 break;
2129 #endif /* CONFIG_DCB */
2130 default:
2131 hw_dbg(hw, "Flow control param set incorrectly\n");
2132 ret_val = IXGBE_ERR_CONFIG;
2133 goto out;
2134 break;
2137 * AUTOC restart handles negotiation of 1G and 10G. There is
2138 * no need to set the PCS1GCTL register.
2140 reg |= IXGBE_AUTOC_AN_RESTART;
2141 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg);
2142 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2144 out:
2145 return ret_val;
2149 * ixgbe_disable_pcie_master - Disable PCI-express master access
2150 * @hw: pointer to hardware structure
2152 * Disables PCI-Express master access and verifies there are no pending
2153 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2154 * bit hasn't caused the master requests to be disabled, else 0
2155 * is returned signifying master requests disabled.
2157 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2159 u32 i;
2160 u32 reg_val;
2161 u32 number_of_queues;
2162 s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2164 /* Disable the receive unit by stopping each queue */
2165 number_of_queues = hw->mac.max_rx_queues;
2166 for (i = 0; i < number_of_queues; i++) {
2167 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2168 if (reg_val & IXGBE_RXDCTL_ENABLE) {
2169 reg_val &= ~IXGBE_RXDCTL_ENABLE;
2170 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2174 reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2175 reg_val |= IXGBE_CTRL_GIO_DIS;
2176 IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
2178 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2179 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
2180 status = 0;
2181 break;
2183 udelay(100);
2186 return status;
2191 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2192 * @hw: pointer to hardware structure
2193 * @mask: Mask to specify which semaphore to acquire
2195 * Acquires the SWFW semaphore thought the GSSR register for the specified
2196 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2198 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2200 u32 gssr;
2201 u32 swmask = mask;
2202 u32 fwmask = mask << 5;
2203 s32 timeout = 200;
2205 while (timeout) {
2206 if (ixgbe_get_eeprom_semaphore(hw))
2207 return IXGBE_ERR_SWFW_SYNC;
2209 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2210 if (!(gssr & (fwmask | swmask)))
2211 break;
2214 * Firmware currently using resource (fwmask) or other software
2215 * thread currently using resource (swmask)
2217 ixgbe_release_eeprom_semaphore(hw);
2218 msleep(5);
2219 timeout--;
2222 if (!timeout) {
2223 hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
2224 return IXGBE_ERR_SWFW_SYNC;
2227 gssr |= swmask;
2228 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2230 ixgbe_release_eeprom_semaphore(hw);
2231 return 0;
2235 * ixgbe_release_swfw_sync - Release SWFW semaphore
2236 * @hw: pointer to hardware structure
2237 * @mask: Mask to specify which semaphore to release
2239 * Releases the SWFW semaphore thought the GSSR register for the specified
2240 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2242 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2244 u32 gssr;
2245 u32 swmask = mask;
2247 ixgbe_get_eeprom_semaphore(hw);
2249 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2250 gssr &= ~swmask;
2251 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2253 ixgbe_release_eeprom_semaphore(hw);
2257 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2258 * @hw: pointer to hardware structure
2259 * @regval: register value to write to RXCTRL
2261 * Enables the Rx DMA unit
2263 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2265 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2267 return 0;
2271 * ixgbe_blink_led_start_generic - Blink LED based on index.
2272 * @hw: pointer to hardware structure
2273 * @index: led number to blink
2275 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2277 ixgbe_link_speed speed = 0;
2278 bool link_up = 0;
2279 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2280 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2283 * Link must be up to auto-blink the LEDs;
2284 * Force it if link is down.
2286 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2288 if (!link_up) {
2289 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2290 autoc_reg |= IXGBE_AUTOC_FLU;
2291 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2292 msleep(10);
2295 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2296 led_reg |= IXGBE_LED_BLINK(index);
2297 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2298 IXGBE_WRITE_FLUSH(hw);
2300 return 0;
2304 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2305 * @hw: pointer to hardware structure
2306 * @index: led number to stop blinking
2308 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2310 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2311 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2313 autoc_reg &= ~IXGBE_AUTOC_FLU;
2314 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2315 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2317 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2318 led_reg &= ~IXGBE_LED_BLINK(index);
2319 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2320 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2321 IXGBE_WRITE_FLUSH(hw);
2323 return 0;
2327 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2328 * @hw: pointer to hardware structure
2329 * @san_mac_offset: SAN MAC address offset
2331 * This function will read the EEPROM location for the SAN MAC address
2332 * pointer, and returns the value at that location. This is used in both
2333 * get and set mac_addr routines.
2335 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2336 u16 *san_mac_offset)
2339 * First read the EEPROM pointer to see if the MAC addresses are
2340 * available.
2342 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2344 return 0;
2348 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2349 * @hw: pointer to hardware structure
2350 * @san_mac_addr: SAN MAC address
2352 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2353 * per-port, so set_lan_id() must be called before reading the addresses.
2354 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2355 * upon for non-SFP connections, so we must call it here.
2357 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2359 u16 san_mac_data, san_mac_offset;
2360 u8 i;
2363 * First read the EEPROM pointer to see if the MAC addresses are
2364 * available. If they're not, no point in calling set_lan_id() here.
2366 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2368 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2370 * No addresses available in this EEPROM. It's not an
2371 * error though, so just wipe the local address and return.
2373 for (i = 0; i < 6; i++)
2374 san_mac_addr[i] = 0xFF;
2376 goto san_mac_addr_out;
2379 /* make sure we know which port we need to program */
2380 hw->mac.ops.set_lan_id(hw);
2381 /* apply the port offset to the address offset */
2382 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2383 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2384 for (i = 0; i < 3; i++) {
2385 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2386 san_mac_addr[i * 2] = (u8)(san_mac_data);
2387 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2388 san_mac_offset++;
2391 san_mac_addr_out:
2392 return 0;
2396 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2397 * @hw: pointer to hardware structure
2399 * Read PCIe configuration space, and get the MSI-X vector count from
2400 * the capabilities table.
2402 u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2404 struct ixgbe_adapter *adapter = hw->back;
2405 u16 msix_count;
2406 pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2407 &msix_count);
2408 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2410 /* MSI-X count is zero-based in HW, so increment to give proper value */
2411 msix_count++;
2413 return msix_count;
2417 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2418 * @hw: pointer to hardware struct
2419 * @rar: receive address register index to disassociate
2420 * @vmdq: VMDq pool index to remove from the rar
2422 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2424 u32 mpsar_lo, mpsar_hi;
2425 u32 rar_entries = hw->mac.num_rar_entries;
2427 if (rar < rar_entries) {
2428 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2429 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2431 if (!mpsar_lo && !mpsar_hi)
2432 goto done;
2434 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2435 if (mpsar_lo) {
2436 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2437 mpsar_lo = 0;
2439 if (mpsar_hi) {
2440 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2441 mpsar_hi = 0;
2443 } else if (vmdq < 32) {
2444 mpsar_lo &= ~(1 << vmdq);
2445 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2446 } else {
2447 mpsar_hi &= ~(1 << (vmdq - 32));
2448 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2451 /* was that the last pool using this rar? */
2452 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2453 hw->mac.ops.clear_rar(hw, rar);
2454 } else {
2455 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2458 done:
2459 return 0;
2463 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2464 * @hw: pointer to hardware struct
2465 * @rar: receive address register index to associate with a VMDq index
2466 * @vmdq: VMDq pool index
2468 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2470 u32 mpsar;
2471 u32 rar_entries = hw->mac.num_rar_entries;
2473 if (rar < rar_entries) {
2474 if (vmdq < 32) {
2475 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2476 mpsar |= 1 << vmdq;
2477 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2478 } else {
2479 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2480 mpsar |= 1 << (vmdq - 32);
2481 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2483 } else {
2484 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2486 return 0;
2490 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2491 * @hw: pointer to hardware structure
2493 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2495 int i;
2498 for (i = 0; i < 128; i++)
2499 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2501 return 0;
2505 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2506 * @hw: pointer to hardware structure
2507 * @vlan: VLAN id to write to VLAN filter
2509 * return the VLVF index where this VLAN id should be placed
2512 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2514 u32 bits = 0;
2515 u32 first_empty_slot = 0;
2516 s32 regindex;
2518 /* short cut the special case */
2519 if (vlan == 0)
2520 return 0;
2523 * Search for the vlan id in the VLVF entries. Save off the first empty
2524 * slot found along the way
2526 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2527 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2528 if (!bits && !(first_empty_slot))
2529 first_empty_slot = regindex;
2530 else if ((bits & 0x0FFF) == vlan)
2531 break;
2535 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2536 * in the VLVF. Else use the first empty VLVF register for this
2537 * vlan id.
2539 if (regindex >= IXGBE_VLVF_ENTRIES) {
2540 if (first_empty_slot)
2541 regindex = first_empty_slot;
2542 else {
2543 hw_dbg(hw, "No space in VLVF.\n");
2544 regindex = IXGBE_ERR_NO_SPACE;
2548 return regindex;
2552 * ixgbe_set_vfta_generic - Set VLAN filter table
2553 * @hw: pointer to hardware structure
2554 * @vlan: VLAN id to write to VLAN filter
2555 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2556 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2558 * Turn on/off specified VLAN in the VLAN filter table.
2560 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2561 bool vlan_on)
2563 s32 regindex;
2564 u32 bitindex;
2565 u32 vfta;
2566 u32 bits;
2567 u32 vt;
2568 u32 targetbit;
2569 bool vfta_changed = false;
2571 if (vlan > 4095)
2572 return IXGBE_ERR_PARAM;
2575 * this is a 2 part operation - first the VFTA, then the
2576 * VLVF and VLVFB if VT Mode is set
2577 * We don't write the VFTA until we know the VLVF part succeeded.
2580 /* Part 1
2581 * The VFTA is a bitstring made up of 128 32-bit registers
2582 * that enable the particular VLAN id, much like the MTA:
2583 * bits[11-5]: which register
2584 * bits[4-0]: which bit in the register
2586 regindex = (vlan >> 5) & 0x7F;
2587 bitindex = vlan & 0x1F;
2588 targetbit = (1 << bitindex);
2589 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2591 if (vlan_on) {
2592 if (!(vfta & targetbit)) {
2593 vfta |= targetbit;
2594 vfta_changed = true;
2596 } else {
2597 if ((vfta & targetbit)) {
2598 vfta &= ~targetbit;
2599 vfta_changed = true;
2603 /* Part 2
2604 * If VT Mode is set
2605 * Either vlan_on
2606 * make sure the vlan is in VLVF
2607 * set the vind bit in the matching VLVFB
2608 * Or !vlan_on
2609 * clear the pool bit and possibly the vind
2611 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2612 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2613 s32 vlvf_index;
2615 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2616 if (vlvf_index < 0)
2617 return vlvf_index;
2619 if (vlan_on) {
2620 /* set the pool bit */
2621 if (vind < 32) {
2622 bits = IXGBE_READ_REG(hw,
2623 IXGBE_VLVFB(vlvf_index*2));
2624 bits |= (1 << vind);
2625 IXGBE_WRITE_REG(hw,
2626 IXGBE_VLVFB(vlvf_index*2),
2627 bits);
2628 } else {
2629 bits = IXGBE_READ_REG(hw,
2630 IXGBE_VLVFB((vlvf_index*2)+1));
2631 bits |= (1 << (vind-32));
2632 IXGBE_WRITE_REG(hw,
2633 IXGBE_VLVFB((vlvf_index*2)+1),
2634 bits);
2636 } else {
2637 /* clear the pool bit */
2638 if (vind < 32) {
2639 bits = IXGBE_READ_REG(hw,
2640 IXGBE_VLVFB(vlvf_index*2));
2641 bits &= ~(1 << vind);
2642 IXGBE_WRITE_REG(hw,
2643 IXGBE_VLVFB(vlvf_index*2),
2644 bits);
2645 bits |= IXGBE_READ_REG(hw,
2646 IXGBE_VLVFB((vlvf_index*2)+1));
2647 } else {
2648 bits = IXGBE_READ_REG(hw,
2649 IXGBE_VLVFB((vlvf_index*2)+1));
2650 bits &= ~(1 << (vind-32));
2651 IXGBE_WRITE_REG(hw,
2652 IXGBE_VLVFB((vlvf_index*2)+1),
2653 bits);
2654 bits |= IXGBE_READ_REG(hw,
2655 IXGBE_VLVFB(vlvf_index*2));
2660 * If there are still bits set in the VLVFB registers
2661 * for the VLAN ID indicated we need to see if the
2662 * caller is requesting that we clear the VFTA entry bit.
2663 * If the caller has requested that we clear the VFTA
2664 * entry bit but there are still pools/VFs using this VLAN
2665 * ID entry then ignore the request. We're not worried
2666 * about the case where we're turning the VFTA VLAN ID
2667 * entry bit on, only when requested to turn it off as
2668 * there may be multiple pools and/or VFs using the
2669 * VLAN ID entry. In that case we cannot clear the
2670 * VFTA bit until all pools/VFs using that VLAN ID have also
2671 * been cleared. This will be indicated by "bits" being
2672 * zero.
2674 if (bits) {
2675 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
2676 (IXGBE_VLVF_VIEN | vlan));
2677 if (!vlan_on) {
2678 /* someone wants to clear the vfta entry
2679 * but some pools/VFs are still using it.
2680 * Ignore it. */
2681 vfta_changed = false;
2684 else
2685 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
2688 if (vfta_changed)
2689 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
2691 return 0;
2695 * ixgbe_clear_vfta_generic - Clear VLAN filter table
2696 * @hw: pointer to hardware structure
2698 * Clears the VLAN filer table, and the VMDq index associated with the filter
2700 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
2702 u32 offset;
2704 for (offset = 0; offset < hw->mac.vft_size; offset++)
2705 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
2707 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
2708 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
2709 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
2710 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
2713 return 0;
2717 * ixgbe_check_mac_link_generic - Determine link and speed status
2718 * @hw: pointer to hardware structure
2719 * @speed: pointer to link speed
2720 * @link_up: true when link is up
2721 * @link_up_wait_to_complete: bool used to wait for link up or not
2723 * Reads the links register to determine if link is up and the current speed
2725 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
2726 bool *link_up, bool link_up_wait_to_complete)
2728 u32 links_reg;
2729 u32 i;
2731 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2732 if (link_up_wait_to_complete) {
2733 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
2734 if (links_reg & IXGBE_LINKS_UP) {
2735 *link_up = true;
2736 break;
2737 } else {
2738 *link_up = false;
2740 msleep(100);
2741 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2743 } else {
2744 if (links_reg & IXGBE_LINKS_UP)
2745 *link_up = true;
2746 else
2747 *link_up = false;
2750 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2751 IXGBE_LINKS_SPEED_10G_82599)
2752 *speed = IXGBE_LINK_SPEED_10GB_FULL;
2753 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2754 IXGBE_LINKS_SPEED_1G_82599)
2755 *speed = IXGBE_LINK_SPEED_1GB_FULL;
2756 else
2757 *speed = IXGBE_LINK_SPEED_100_FULL;
2759 /* if link is down, zero out the current_mode */
2760 if (*link_up == false) {
2761 hw->fc.current_mode = ixgbe_fc_none;
2762 hw->fc.fc_was_autonegged = false;
2765 return 0;
2769 * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
2770 * the EEPROM
2771 * @hw: pointer to hardware structure
2772 * @wwnn_prefix: the alternative WWNN prefix
2773 * @wwpn_prefix: the alternative WWPN prefix
2775 * This function will read the EEPROM from the alternative SAN MAC address
2776 * block to check the support for the alternative WWNN/WWPN prefix support.
2778 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
2779 u16 *wwpn_prefix)
2781 u16 offset, caps;
2782 u16 alt_san_mac_blk_offset;
2784 /* clear output first */
2785 *wwnn_prefix = 0xFFFF;
2786 *wwpn_prefix = 0xFFFF;
2788 /* check if alternative SAN MAC is supported */
2789 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
2790 &alt_san_mac_blk_offset);
2792 if ((alt_san_mac_blk_offset == 0) ||
2793 (alt_san_mac_blk_offset == 0xFFFF))
2794 goto wwn_prefix_out;
2796 /* check capability in alternative san mac address block */
2797 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
2798 hw->eeprom.ops.read(hw, offset, &caps);
2799 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
2800 goto wwn_prefix_out;
2802 /* get the corresponding prefix for WWNN/WWPN */
2803 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
2804 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
2806 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
2807 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
2809 wwn_prefix_out:
2810 return 0;
2814 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
2815 * @hw: pointer to hardware structure
2816 * @enable: enable or disable switch for anti-spoofing
2817 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
2820 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
2822 int j;
2823 int pf_target_reg = pf >> 3;
2824 int pf_target_shift = pf % 8;
2825 u32 pfvfspoof = 0;
2827 if (hw->mac.type == ixgbe_mac_82598EB)
2828 return;
2830 if (enable)
2831 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
2834 * PFVFSPOOF register array is size 8 with 8 bits assigned to
2835 * MAC anti-spoof enables in each register array element.
2837 for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
2838 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
2840 /* If not enabling anti-spoofing then done */
2841 if (!enable)
2842 return;
2845 * The PF should be allowed to spoof so that it can support
2846 * emulation mode NICs. Reset the bit assigned to the PF
2848 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
2849 pfvfspoof ^= (1 << pf_target_shift);
2850 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
2854 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
2855 * @hw: pointer to hardware structure
2856 * @enable: enable or disable switch for VLAN anti-spoofing
2857 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
2860 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
2862 int vf_target_reg = vf >> 3;
2863 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
2864 u32 pfvfspoof;
2866 if (hw->mac.type == ixgbe_mac_82598EB)
2867 return;
2869 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
2870 if (enable)
2871 pfvfspoof |= (1 << vf_target_shift);
2872 else
2873 pfvfspoof &= ~(1 << vf_target_shift);
2874 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);