2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
42 struct page
*dst_page
, int dst_offset
,
43 struct page
*src_page
, int src_offset
, int size
,
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
47 struct page
*dst_page
, int dst_offset
,
48 struct page
*src_page
, int src_offset
, int size
,
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
58 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
62 for (x
= 0; x
< src_size
; x
++)
63 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
68 * @dst: Buffer to take the bytes from src hex; must be at least of
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
73 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
78 for (x
= 0; x
< dst_size
; x
++) {
80 tmp
[1] = src
[x
* 2 + 1];
81 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
95 static int ecryptfs_calculate_md5(char *dst
,
96 struct ecryptfs_crypt_stat
*crypt_stat
,
99 struct scatterlist sg
;
100 struct hash_desc desc
= {
101 .tfm
= crypt_stat
->hash_tfm
,
102 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
106 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
107 sg_init_one(&sg
, (u8
*)src
, len
);
109 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
111 if (IS_ERR(desc
.tfm
)) {
112 rc
= PTR_ERR(desc
.tfm
);
113 ecryptfs_printk(KERN_ERR
, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
118 crypt_stat
->hash_tfm
= desc
.tfm
;
120 rc
= crypto_hash_init(&desc
);
123 "%s: Error initializing crypto hash; rc = [%d]\n",
127 rc
= crypto_hash_update(&desc
, &sg
, len
);
130 "%s: Error updating crypto hash; rc = [%d]\n",
134 rc
= crypto_hash_final(&desc
, dst
);
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
142 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
148 char *chaining_modifier
)
150 int cipher_name_len
= strlen(cipher_name
);
151 int chaining_modifier_len
= strlen(chaining_modifier
);
152 int algified_name_len
;
155 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
156 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
157 if (!(*algified_name
)) {
161 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
162 chaining_modifier
, cipher_name
);
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
174 * Generate the initialization vector from the given root IV and page
177 * Returns zero on success; non-zero on error.
179 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
183 char dst
[MD5_DIGEST_SIZE
];
184 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
186 if (unlikely(ecryptfs_verbosity
> 0)) {
187 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
195 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
196 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
197 if (unlikely(ecryptfs_verbosity
> 0)) {
198 ecryptfs_printk(KERN_DEBUG
, "source:\n");
199 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
201 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
202 (crypt_stat
->iv_bytes
+ 16));
204 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
208 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
209 if (unlikely(ecryptfs_verbosity
> 0)) {
210 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
211 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
221 * Initialize the crypt_stat structure.
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
226 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
227 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
228 mutex_init(&crypt_stat
->keysig_list_mutex
);
229 mutex_init(&crypt_stat
->cs_mutex
);
230 mutex_init(&crypt_stat
->cs_tfm_mutex
);
231 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
232 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
239 * Releases all memory associated with a crypt_stat struct.
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
243 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
246 crypto_free_blkcipher(crypt_stat
->tfm
);
247 if (crypt_stat
->hash_tfm
)
248 crypto_free_hash(crypt_stat
->hash_tfm
);
249 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
250 &crypt_stat
->keysig_list
, crypt_stat_list
) {
251 list_del(&key_sig
->crypt_stat_list
);
252 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
254 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
260 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
262 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
264 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
265 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
266 &mount_crypt_stat
->global_auth_tok_list
,
267 mount_crypt_stat_list
) {
268 list_del(&auth_tok
->mount_crypt_stat_list
);
269 if (auth_tok
->global_auth_tok_key
270 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
271 key_put(auth_tok
->global_auth_tok_key
);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
274 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
275 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
286 * Fills in a scatterlist array with page references for a passed
289 * Returns the number of scatterlist structs in array used
291 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
297 int remainder_of_page
;
299 sg_init_table(sg
, sg_size
);
301 while (size
> 0 && i
< sg_size
) {
302 pg
= virt_to_page(addr
);
303 offset
= offset_in_page(addr
);
305 sg_set_page(&sg
[i
], pg
, 0, offset
);
306 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
307 if (size
>= remainder_of_page
) {
309 sg
[i
].length
= remainder_of_page
;
310 addr
+= remainder_of_page
;
311 size
-= remainder_of_page
;
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
333 * Returns the number of bytes encrypted; negative value on error
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
336 struct scatterlist
*dest_sg
,
337 struct scatterlist
*src_sg
, int size
,
340 struct blkcipher_desc desc
= {
341 .tfm
= crypt_stat
->tfm
,
343 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
347 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
348 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
349 if (unlikely(ecryptfs_verbosity
> 0)) {
350 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
351 crypt_stat
->key_size
);
352 ecryptfs_dump_hex(crypt_stat
->key
,
353 crypt_stat
->key_size
);
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
357 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
358 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
359 crypt_stat
->key_size
);
360 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
363 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
365 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
369 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
370 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
371 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
377 * ecryptfs_lower_offset_for_extent
379 * Convert an eCryptfs page index into a lower byte offset
381 static void ecryptfs_lower_offset_for_extent(loff_t
*offset
, loff_t extent_num
,
382 struct ecryptfs_crypt_stat
*crypt_stat
)
384 (*offset
) = ecryptfs_lower_header_size(crypt_stat
)
385 + (crypt_stat
->extent_size
* extent_num
);
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
397 * Encrypts one extent of data.
399 * Return zero on success; non-zero otherwise
401 static int ecryptfs_encrypt_extent(struct page
*enc_extent_page
,
402 struct ecryptfs_crypt_stat
*crypt_stat
,
404 unsigned long extent_offset
)
407 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
410 extent_base
= (((loff_t
)page
->index
)
411 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
412 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
413 (extent_base
+ extent_offset
));
415 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
416 "extent [0x%.16llx]; rc = [%d]\n",
417 (unsigned long long)(extent_base
+ extent_offset
), rc
);
420 rc
= ecryptfs_encrypt_page_offset(crypt_stat
, enc_extent_page
, 0,
422 * crypt_stat
->extent_size
),
423 crypt_stat
->extent_size
, extent_iv
);
425 printk(KERN_ERR
"%s: Error attempting to encrypt page with "
426 "page->index = [%ld], extent_offset = [%ld]; "
427 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
437 * ecryptfs_encrypt_page
438 * @page: Page mapped from the eCryptfs inode for the file; contains
439 * decrypted content that needs to be encrypted (to a temporary
440 * page; not in place) and written out to the lower file
442 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
443 * that eCryptfs pages may straddle the lower pages -- for instance,
444 * if the file was created on a machine with an 8K page size
445 * (resulting in an 8K header), and then the file is copied onto a
446 * host with a 32K page size, then when reading page 0 of the eCryptfs
447 * file, 24K of page 0 of the lower file will be read and decrypted,
448 * and then 8K of page 1 of the lower file will be read and decrypted.
450 * Returns zero on success; negative on error
452 int ecryptfs_encrypt_page(struct page
*page
)
454 struct inode
*ecryptfs_inode
;
455 struct ecryptfs_crypt_stat
*crypt_stat
;
456 char *enc_extent_virt
;
457 struct page
*enc_extent_page
= NULL
;
458 loff_t extent_offset
;
461 ecryptfs_inode
= page
->mapping
->host
;
463 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
464 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
465 enc_extent_page
= alloc_page(GFP_USER
);
466 if (!enc_extent_page
) {
468 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
469 "encrypted extent\n");
472 enc_extent_virt
= kmap(enc_extent_page
);
473 for (extent_offset
= 0;
474 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
478 rc
= ecryptfs_encrypt_extent(enc_extent_page
, crypt_stat
, page
,
481 printk(KERN_ERR
"%s: Error encrypting extent; "
482 "rc = [%d]\n", __func__
, rc
);
485 ecryptfs_lower_offset_for_extent(
486 &offset
, ((((loff_t
)page
->index
)
488 / crypt_stat
->extent_size
))
489 + extent_offset
), crypt_stat
);
490 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
,
491 offset
, crypt_stat
->extent_size
);
493 ecryptfs_printk(KERN_ERR
, "Error attempting "
494 "to write lower page; rc = [%d]"
501 if (enc_extent_page
) {
502 kunmap(enc_extent_page
);
503 __free_page(enc_extent_page
);
508 static int ecryptfs_decrypt_extent(struct page
*page
,
509 struct ecryptfs_crypt_stat
*crypt_stat
,
510 struct page
*enc_extent_page
,
511 unsigned long extent_offset
)
514 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
517 extent_base
= (((loff_t
)page
->index
)
518 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
519 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
520 (extent_base
+ extent_offset
));
522 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
523 "extent [0x%.16llx]; rc = [%d]\n",
524 (unsigned long long)(extent_base
+ extent_offset
), rc
);
527 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
529 * crypt_stat
->extent_size
),
531 crypt_stat
->extent_size
, extent_iv
);
533 printk(KERN_ERR
"%s: Error attempting to decrypt to page with "
534 "page->index = [%ld], extent_offset = [%ld]; "
535 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
545 * ecryptfs_decrypt_page
546 * @page: Page mapped from the eCryptfs inode for the file; data read
547 * and decrypted from the lower file will be written into this
550 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
551 * that eCryptfs pages may straddle the lower pages -- for instance,
552 * if the file was created on a machine with an 8K page size
553 * (resulting in an 8K header), and then the file is copied onto a
554 * host with a 32K page size, then when reading page 0 of the eCryptfs
555 * file, 24K of page 0 of the lower file will be read and decrypted,
556 * and then 8K of page 1 of the lower file will be read and decrypted.
558 * Returns zero on success; negative on error
560 int ecryptfs_decrypt_page(struct page
*page
)
562 struct inode
*ecryptfs_inode
;
563 struct ecryptfs_crypt_stat
*crypt_stat
;
564 char *enc_extent_virt
;
565 struct page
*enc_extent_page
= NULL
;
566 unsigned long extent_offset
;
569 ecryptfs_inode
= page
->mapping
->host
;
571 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
572 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
573 enc_extent_page
= alloc_page(GFP_USER
);
574 if (!enc_extent_page
) {
576 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
577 "encrypted extent\n");
580 enc_extent_virt
= kmap(enc_extent_page
);
581 for (extent_offset
= 0;
582 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
586 ecryptfs_lower_offset_for_extent(
587 &offset
, ((page
->index
* (PAGE_CACHE_SIZE
588 / crypt_stat
->extent_size
))
589 + extent_offset
), crypt_stat
);
590 rc
= ecryptfs_read_lower(enc_extent_virt
, offset
,
591 crypt_stat
->extent_size
,
594 ecryptfs_printk(KERN_ERR
, "Error attempting "
595 "to read lower page; rc = [%d]"
599 rc
= ecryptfs_decrypt_extent(page
, crypt_stat
, enc_extent_page
,
602 printk(KERN_ERR
"%s: Error encrypting extent; "
603 "rc = [%d]\n", __func__
, rc
);
608 if (enc_extent_page
) {
609 kunmap(enc_extent_page
);
610 __free_page(enc_extent_page
);
616 * decrypt_scatterlist
617 * @crypt_stat: Cryptographic context
618 * @dest_sg: The destination scatterlist to decrypt into
619 * @src_sg: The source scatterlist to decrypt from
620 * @size: The number of bytes to decrypt
621 * @iv: The initialization vector to use for the decryption
623 * Returns the number of bytes decrypted; negative value on error
625 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
626 struct scatterlist
*dest_sg
,
627 struct scatterlist
*src_sg
, int size
,
630 struct blkcipher_desc desc
= {
631 .tfm
= crypt_stat
->tfm
,
633 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
637 /* Consider doing this once, when the file is opened */
638 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
639 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
640 crypt_stat
->key_size
);
642 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
644 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
648 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
649 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
650 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
652 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
662 * ecryptfs_encrypt_page_offset
663 * @crypt_stat: The cryptographic context
664 * @dst_page: The page to encrypt into
665 * @dst_offset: The offset in the page to encrypt into
666 * @src_page: The page to encrypt from
667 * @src_offset: The offset in the page to encrypt from
668 * @size: The number of bytes to encrypt
669 * @iv: The initialization vector to use for the encryption
671 * Returns the number of bytes encrypted
674 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
675 struct page
*dst_page
, int dst_offset
,
676 struct page
*src_page
, int src_offset
, int size
,
679 struct scatterlist src_sg
, dst_sg
;
681 sg_init_table(&src_sg
, 1);
682 sg_init_table(&dst_sg
, 1);
684 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
685 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
686 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
690 * ecryptfs_decrypt_page_offset
691 * @crypt_stat: The cryptographic context
692 * @dst_page: The page to decrypt into
693 * @dst_offset: The offset in the page to decrypt into
694 * @src_page: The page to decrypt from
695 * @src_offset: The offset in the page to decrypt from
696 * @size: The number of bytes to decrypt
697 * @iv: The initialization vector to use for the decryption
699 * Returns the number of bytes decrypted
702 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
703 struct page
*dst_page
, int dst_offset
,
704 struct page
*src_page
, int src_offset
, int size
,
707 struct scatterlist src_sg
, dst_sg
;
709 sg_init_table(&src_sg
, 1);
710 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
712 sg_init_table(&dst_sg
, 1);
713 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
715 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
718 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
721 * ecryptfs_init_crypt_ctx
722 * @crypt_stat: Uninitialized crypt stats structure
724 * Initialize the crypto context.
726 * TODO: Performance: Keep a cache of initialized cipher contexts;
727 * only init if needed
729 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
734 if (!crypt_stat
->cipher
) {
735 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
738 ecryptfs_printk(KERN_DEBUG
,
739 "Initializing cipher [%s]; strlen = [%d]; "
740 "key_size_bits = [%zd]\n",
741 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
742 crypt_stat
->key_size
<< 3);
743 if (crypt_stat
->tfm
) {
747 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
748 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
749 crypt_stat
->cipher
, "cbc");
752 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
754 kfree(full_alg_name
);
755 if (IS_ERR(crypt_stat
->tfm
)) {
756 rc
= PTR_ERR(crypt_stat
->tfm
);
757 crypt_stat
->tfm
= NULL
;
758 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
759 "Error initializing cipher [%s]\n",
763 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
766 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
771 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
775 crypt_stat
->extent_mask
= 0xFFFFFFFF;
776 crypt_stat
->extent_shift
= 0;
777 if (crypt_stat
->extent_size
== 0)
779 extent_size_tmp
= crypt_stat
->extent_size
;
780 while ((extent_size_tmp
& 0x01) == 0) {
781 extent_size_tmp
>>= 1;
782 crypt_stat
->extent_mask
<<= 1;
783 crypt_stat
->extent_shift
++;
787 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
789 /* Default values; may be overwritten as we are parsing the
791 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
792 set_extent_mask_and_shift(crypt_stat
);
793 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
794 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
795 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
797 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
798 crypt_stat
->metadata_size
=
799 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
801 crypt_stat
->metadata_size
= PAGE_CACHE_SIZE
;
806 * ecryptfs_compute_root_iv
809 * On error, sets the root IV to all 0's.
811 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
814 char dst
[MD5_DIGEST_SIZE
];
816 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
817 BUG_ON(crypt_stat
->iv_bytes
<= 0);
818 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
820 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
821 "cannot generate root IV\n");
824 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
825 crypt_stat
->key_size
);
827 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
828 "MD5 while generating root IV\n");
831 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
834 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
835 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
840 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
842 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
843 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
844 ecryptfs_compute_root_iv(crypt_stat
);
845 if (unlikely(ecryptfs_verbosity
> 0)) {
846 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
847 ecryptfs_dump_hex(crypt_stat
->key
,
848 crypt_stat
->key_size
);
853 * ecryptfs_copy_mount_wide_flags_to_inode_flags
854 * @crypt_stat: The inode's cryptographic context
855 * @mount_crypt_stat: The mount point's cryptographic context
857 * This function propagates the mount-wide flags to individual inode
860 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
861 struct ecryptfs_crypt_stat
*crypt_stat
,
862 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
864 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
865 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
866 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
867 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
868 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
869 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
870 if (mount_crypt_stat
->flags
871 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
872 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
873 else if (mount_crypt_stat
->flags
874 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
875 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
879 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
880 struct ecryptfs_crypt_stat
*crypt_stat
,
881 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
883 struct ecryptfs_global_auth_tok
*global_auth_tok
;
886 mutex_lock(&crypt_stat
->keysig_list_mutex
);
887 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
889 list_for_each_entry(global_auth_tok
,
890 &mount_crypt_stat
->global_auth_tok_list
,
891 mount_crypt_stat_list
) {
892 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
894 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
896 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
902 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
903 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
908 * ecryptfs_set_default_crypt_stat_vals
909 * @crypt_stat: The inode's cryptographic context
910 * @mount_crypt_stat: The mount point's cryptographic context
912 * Default values in the event that policy does not override them.
914 static void ecryptfs_set_default_crypt_stat_vals(
915 struct ecryptfs_crypt_stat
*crypt_stat
,
916 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
918 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
920 ecryptfs_set_default_sizes(crypt_stat
);
921 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
922 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
923 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
924 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
925 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
929 * ecryptfs_new_file_context
930 * @ecryptfs_inode: The eCryptfs inode
932 * If the crypto context for the file has not yet been established,
933 * this is where we do that. Establishing a new crypto context
934 * involves the following decisions:
935 * - What cipher to use?
936 * - What set of authentication tokens to use?
937 * Here we just worry about getting enough information into the
938 * authentication tokens so that we know that they are available.
939 * We associate the available authentication tokens with the new file
940 * via the set of signatures in the crypt_stat struct. Later, when
941 * the headers are actually written out, we may again defer to
942 * userspace to perform the encryption of the session key; for the
943 * foreseeable future, this will be the case with public key packets.
945 * Returns zero on success; non-zero otherwise
947 int ecryptfs_new_file_context(struct inode
*ecryptfs_inode
)
949 struct ecryptfs_crypt_stat
*crypt_stat
=
950 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
951 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
952 &ecryptfs_superblock_to_private(
953 ecryptfs_inode
->i_sb
)->mount_crypt_stat
;
957 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
958 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
961 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
964 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
965 "to the inode key sigs; rc = [%d]\n", rc
);
969 strlen(mount_crypt_stat
->global_default_cipher_name
);
970 memcpy(crypt_stat
->cipher
,
971 mount_crypt_stat
->global_default_cipher_name
,
973 crypt_stat
->cipher
[cipher_name_len
] = '\0';
974 crypt_stat
->key_size
=
975 mount_crypt_stat
->global_default_cipher_key_size
;
976 ecryptfs_generate_new_key(crypt_stat
);
977 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
979 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
980 "context for cipher [%s]: rc = [%d]\n",
981 crypt_stat
->cipher
, rc
);
987 * ecryptfs_validate_marker - check for the ecryptfs marker
988 * @data: The data block in which to check
990 * Returns zero if marker found; -EINVAL if not found
992 static int ecryptfs_validate_marker(char *data
)
996 m_1
= get_unaligned_be32(data
);
997 m_2
= get_unaligned_be32(data
+ 4);
998 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
1000 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1001 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
1002 MAGIC_ECRYPTFS_MARKER
);
1003 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1004 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1008 struct ecryptfs_flag_map_elem
{
1013 /* Add support for additional flags by adding elements here. */
1014 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1015 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1016 {0x00000002, ECRYPTFS_ENCRYPTED
},
1017 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
1018 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
1022 * ecryptfs_process_flags
1023 * @crypt_stat: The cryptographic context
1024 * @page_virt: Source data to be parsed
1025 * @bytes_read: Updated with the number of bytes read
1027 * Returns zero on success; non-zero if the flag set is invalid
1029 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1030 char *page_virt
, int *bytes_read
)
1036 flags
= get_unaligned_be32(page_virt
);
1037 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1038 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1039 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1040 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1042 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1043 /* Version is in top 8 bits of the 32-bit flag vector */
1044 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1050 * write_ecryptfs_marker
1051 * @page_virt: The pointer to in a page to begin writing the marker
1052 * @written: Number of bytes written
1054 * Marker = 0x3c81b7f5
1056 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1060 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1061 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1062 put_unaligned_be32(m_1
, page_virt
);
1063 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
1064 put_unaligned_be32(m_2
, page_virt
);
1065 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1068 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
1069 struct ecryptfs_crypt_stat
*crypt_stat
,
1075 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1076 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1077 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1078 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1079 /* Version is in top 8 bits of the 32-bit flag vector */
1080 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1081 put_unaligned_be32(flags
, page_virt
);
1085 struct ecryptfs_cipher_code_str_map_elem
{
1086 char cipher_str
[16];
1090 /* Add support for additional ciphers by adding elements here. The
1091 * cipher_code is whatever OpenPGP applicatoins use to identify the
1092 * ciphers. List in order of probability. */
1093 static struct ecryptfs_cipher_code_str_map_elem
1094 ecryptfs_cipher_code_str_map
[] = {
1095 {"aes",RFC2440_CIPHER_AES_128
},
1096 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1097 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1098 {"cast5", RFC2440_CIPHER_CAST_5
},
1099 {"twofish", RFC2440_CIPHER_TWOFISH
},
1100 {"cast6", RFC2440_CIPHER_CAST_6
},
1101 {"aes", RFC2440_CIPHER_AES_192
},
1102 {"aes", RFC2440_CIPHER_AES_256
}
1106 * ecryptfs_code_for_cipher_string
1107 * @cipher_name: The string alias for the cipher
1108 * @key_bytes: Length of key in bytes; used for AES code selection
1110 * Returns zero on no match, or the cipher code on match
1112 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
1116 struct ecryptfs_cipher_code_str_map_elem
*map
=
1117 ecryptfs_cipher_code_str_map
;
1119 if (strcmp(cipher_name
, "aes") == 0) {
1120 switch (key_bytes
) {
1122 code
= RFC2440_CIPHER_AES_128
;
1125 code
= RFC2440_CIPHER_AES_192
;
1128 code
= RFC2440_CIPHER_AES_256
;
1131 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1132 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1133 code
= map
[i
].cipher_code
;
1141 * ecryptfs_cipher_code_to_string
1142 * @str: Destination to write out the cipher name
1143 * @cipher_code: The code to convert to cipher name string
1145 * Returns zero on success
1147 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1153 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1154 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1155 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1156 if (str
[0] == '\0') {
1157 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1158 "[%d]\n", cipher_code
);
1164 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
1166 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1167 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1170 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
1172 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1173 return rc
>= 0 ? -EINVAL
: rc
;
1174 rc
= ecryptfs_validate_marker(marker
);
1176 ecryptfs_i_size_init(file_size
, inode
);
1181 ecryptfs_write_header_metadata(char *virt
,
1182 struct ecryptfs_crypt_stat
*crypt_stat
,
1185 u32 header_extent_size
;
1186 u16 num_header_extents_at_front
;
1188 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1189 num_header_extents_at_front
=
1190 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1191 put_unaligned_be32(header_extent_size
, virt
);
1193 put_unaligned_be16(num_header_extents_at_front
, virt
);
1197 struct kmem_cache
*ecryptfs_header_cache
;
1200 * ecryptfs_write_headers_virt
1201 * @page_virt: The virtual address to write the headers to
1202 * @max: The size of memory allocated at page_virt
1203 * @size: Set to the number of bytes written by this function
1204 * @crypt_stat: The cryptographic context
1205 * @ecryptfs_dentry: The eCryptfs dentry
1210 * Octets 0-7: Unencrypted file size (big-endian)
1211 * Octets 8-15: eCryptfs special marker
1212 * Octets 16-19: Flags
1213 * Octet 16: File format version number (between 0 and 255)
1214 * Octets 17-18: Reserved
1215 * Octet 19: Bit 1 (lsb): Reserved
1217 * Bits 3-8: Reserved
1218 * Octets 20-23: Header extent size (big-endian)
1219 * Octets 24-25: Number of header extents at front of file
1221 * Octet 26: Begin RFC 2440 authentication token packet set
1223 * Lower data (CBC encrypted)
1225 * Lower data (CBC encrypted)
1228 * Returns zero on success
1230 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1232 struct ecryptfs_crypt_stat
*crypt_stat
,
1233 struct dentry
*ecryptfs_dentry
)
1239 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1240 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1242 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1245 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1248 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1249 ecryptfs_dentry
, &written
,
1252 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1253 "set; rc = [%d]\n", rc
);
1262 ecryptfs_write_metadata_to_contents(struct inode
*ecryptfs_inode
,
1263 char *virt
, size_t virt_len
)
1267 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
,
1270 printk(KERN_ERR
"%s: Error attempting to write header "
1271 "information to lower file; rc = [%d]\n", __func__
, rc
);
1278 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1279 char *page_virt
, size_t size
)
1283 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1288 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1293 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1295 return (unsigned long) page_address(page
);
1300 * ecryptfs_write_metadata
1301 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1302 * @ecryptfs_inode: The newly created eCryptfs inode
1304 * Write the file headers out. This will likely involve a userspace
1305 * callout, in which the session key is encrypted with one or more
1306 * public keys and/or the passphrase necessary to do the encryption is
1307 * retrieved via a prompt. Exactly what happens at this point should
1308 * be policy-dependent.
1310 * Returns zero on success; non-zero on error
1312 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1313 struct inode
*ecryptfs_inode
)
1315 struct ecryptfs_crypt_stat
*crypt_stat
=
1316 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1323 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1324 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1325 printk(KERN_ERR
"Key is invalid; bailing out\n");
1330 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1335 virt_len
= crypt_stat
->metadata_size
;
1336 order
= get_order(virt_len
);
1337 /* Released in this function */
1338 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1340 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1344 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1345 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1348 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1352 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1353 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1356 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_inode
, virt
,
1359 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1360 "rc = [%d]\n", __func__
, rc
);
1364 free_pages((unsigned long)virt
, order
);
1369 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1370 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1371 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1372 char *virt
, int *bytes_read
,
1373 int validate_header_size
)
1376 u32 header_extent_size
;
1377 u16 num_header_extents_at_front
;
1379 header_extent_size
= get_unaligned_be32(virt
);
1380 virt
+= sizeof(__be32
);
1381 num_header_extents_at_front
= get_unaligned_be16(virt
);
1382 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1383 * (size_t)header_extent_size
));
1384 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1385 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1386 && (crypt_stat
->metadata_size
1387 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1389 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1390 crypt_stat
->metadata_size
);
1396 * set_default_header_data
1397 * @crypt_stat: The cryptographic context
1399 * For version 0 file format; this function is only for backwards
1400 * compatibility for files created with the prior versions of
1403 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1405 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1408 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1410 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1411 struct ecryptfs_crypt_stat
*crypt_stat
;
1414 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1416 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1417 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1418 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1419 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1420 file_size
+= crypt_stat
->metadata_size
;
1422 file_size
= get_unaligned_be64(page_virt
);
1423 i_size_write(inode
, (loff_t
)file_size
);
1424 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1428 * ecryptfs_read_headers_virt
1429 * @page_virt: The virtual address into which to read the headers
1430 * @crypt_stat: The cryptographic context
1431 * @ecryptfs_dentry: The eCryptfs dentry
1432 * @validate_header_size: Whether to validate the header size while reading
1434 * Read/parse the header data. The header format is detailed in the
1435 * comment block for the ecryptfs_write_headers_virt() function.
1437 * Returns zero on success
1439 static int ecryptfs_read_headers_virt(char *page_virt
,
1440 struct ecryptfs_crypt_stat
*crypt_stat
,
1441 struct dentry
*ecryptfs_dentry
,
1442 int validate_header_size
)
1448 ecryptfs_set_default_sizes(crypt_stat
);
1449 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1450 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1451 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1452 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1455 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1456 ecryptfs_i_size_init(page_virt
, ecryptfs_dentry
->d_inode
);
1457 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1458 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1461 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1464 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1465 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1466 "file version [%d] is supported by this "
1467 "version of eCryptfs\n",
1468 crypt_stat
->file_version
,
1469 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1473 offset
+= bytes_read
;
1474 if (crypt_stat
->file_version
>= 1) {
1475 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1476 &bytes_read
, validate_header_size
);
1478 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1479 "metadata; rc = [%d]\n", rc
);
1481 offset
+= bytes_read
;
1483 set_default_header_data(crypt_stat
);
1484 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1491 * ecryptfs_read_xattr_region
1492 * @page_virt: The vitual address into which to read the xattr data
1493 * @ecryptfs_inode: The eCryptfs inode
1495 * Attempts to read the crypto metadata from the extended attribute
1496 * region of the lower file.
1498 * Returns zero on success; non-zero on error
1500 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1502 struct dentry
*lower_dentry
=
1503 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1507 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1508 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1510 if (unlikely(ecryptfs_verbosity
> 0))
1511 printk(KERN_INFO
"Error attempting to read the [%s] "
1512 "xattr from the lower file; return value = "
1513 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1521 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1522 struct inode
*inode
)
1524 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1525 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1528 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1529 ECRYPTFS_XATTR_NAME
, file_size
,
1530 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1531 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1532 return rc
>= 0 ? -EINVAL
: rc
;
1533 rc
= ecryptfs_validate_marker(marker
);
1535 ecryptfs_i_size_init(file_size
, inode
);
1540 * ecryptfs_read_metadata
1542 * Common entry point for reading file metadata. From here, we could
1543 * retrieve the header information from the header region of the file,
1544 * the xattr region of the file, or some other repostory that is
1545 * stored separately from the file itself. The current implementation
1546 * supports retrieving the metadata information from the file contents
1547 * and from the xattr region.
1549 * Returns zero if valid headers found and parsed; non-zero otherwise
1551 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1555 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1556 struct ecryptfs_crypt_stat
*crypt_stat
=
1557 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1558 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1559 &ecryptfs_superblock_to_private(
1560 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1562 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1564 /* Read the first page from the underlying file */
1565 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1568 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1572 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1575 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1577 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1579 /* metadata is not in the file header, so try xattrs */
1580 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1581 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1583 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1584 "file header region or xattr region, inode %lu\n",
1585 ecryptfs_inode
->i_ino
);
1589 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1591 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1593 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1594 "file xattr region either, inode %lu\n",
1595 ecryptfs_inode
->i_ino
);
1598 if (crypt_stat
->mount_crypt_stat
->flags
1599 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1600 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1602 printk(KERN_WARNING
"Attempt to access file with "
1603 "crypto metadata only in the extended attribute "
1604 "region, but eCryptfs was mounted without "
1605 "xattr support enabled. eCryptfs will not treat "
1606 "this like an encrypted file, inode %lu\n",
1607 ecryptfs_inode
->i_ino
);
1613 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1614 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1620 * ecryptfs_encrypt_filename - encrypt filename
1622 * CBC-encrypts the filename. We do not want to encrypt the same
1623 * filename with the same key and IV, which may happen with hard
1624 * links, so we prepend random bits to each filename.
1626 * Returns zero on success; non-zero otherwise
1629 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1630 struct ecryptfs_crypt_stat
*crypt_stat
,
1631 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1635 filename
->encrypted_filename
= NULL
;
1636 filename
->encrypted_filename_size
= 0;
1637 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1638 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1639 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1641 size_t remaining_bytes
;
1643 rc
= ecryptfs_write_tag_70_packet(
1645 &filename
->encrypted_filename_size
,
1646 mount_crypt_stat
, NULL
,
1647 filename
->filename_size
);
1649 printk(KERN_ERR
"%s: Error attempting to get packet "
1650 "size for tag 72; rc = [%d]\n", __func__
,
1652 filename
->encrypted_filename_size
= 0;
1655 filename
->encrypted_filename
=
1656 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1657 if (!filename
->encrypted_filename
) {
1658 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1659 "to kmalloc [%zd] bytes\n", __func__
,
1660 filename
->encrypted_filename_size
);
1664 remaining_bytes
= filename
->encrypted_filename_size
;
1665 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1670 filename
->filename_size
);
1672 printk(KERN_ERR
"%s: Error attempting to generate "
1673 "tag 70 packet; rc = [%d]\n", __func__
,
1675 kfree(filename
->encrypted_filename
);
1676 filename
->encrypted_filename
= NULL
;
1677 filename
->encrypted_filename_size
= 0;
1680 filename
->encrypted_filename_size
= packet_size
;
1682 printk(KERN_ERR
"%s: No support for requested filename "
1683 "encryption method in this release\n", __func__
);
1691 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1692 const char *name
, size_t name_size
)
1696 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1697 if (!(*copied_name
)) {
1701 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1702 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1703 * in printing out the
1706 (*copied_name_size
) = name_size
;
1712 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1713 * @key_tfm: Crypto context for key material, set by this function
1714 * @cipher_name: Name of the cipher
1715 * @key_size: Size of the key in bytes
1717 * Returns zero on success. Any crypto_tfm structs allocated here
1718 * should be released by other functions, such as on a superblock put
1719 * event, regardless of whether this function succeeds for fails.
1722 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1723 char *cipher_name
, size_t *key_size
)
1725 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1726 char *full_alg_name
= NULL
;
1730 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1732 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1733 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1736 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1740 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1741 if (IS_ERR(*key_tfm
)) {
1742 rc
= PTR_ERR(*key_tfm
);
1743 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1744 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1747 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1748 if (*key_size
== 0) {
1749 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1751 *key_size
= alg
->max_keysize
;
1753 get_random_bytes(dummy_key
, *key_size
);
1754 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1756 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1757 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1763 kfree(full_alg_name
);
1767 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1768 static struct list_head key_tfm_list
;
1769 struct mutex key_tfm_list_mutex
;
1771 int __init
ecryptfs_init_crypto(void)
1773 mutex_init(&key_tfm_list_mutex
);
1774 INIT_LIST_HEAD(&key_tfm_list
);
1779 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1781 * Called only at module unload time
1783 int ecryptfs_destroy_crypto(void)
1785 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1787 mutex_lock(&key_tfm_list_mutex
);
1788 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1790 list_del(&key_tfm
->key_tfm_list
);
1791 if (key_tfm
->key_tfm
)
1792 crypto_free_blkcipher(key_tfm
->key_tfm
);
1793 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1795 mutex_unlock(&key_tfm_list_mutex
);
1800 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1803 struct ecryptfs_key_tfm
*tmp_tfm
;
1806 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1808 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1809 if (key_tfm
!= NULL
)
1810 (*key_tfm
) = tmp_tfm
;
1813 printk(KERN_ERR
"Error attempting to allocate from "
1814 "ecryptfs_key_tfm_cache\n");
1817 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1818 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1819 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1820 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1821 tmp_tfm
->key_size
= key_size
;
1822 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1823 tmp_tfm
->cipher_name
,
1824 &tmp_tfm
->key_size
);
1826 printk(KERN_ERR
"Error attempting to initialize key TFM "
1827 "cipher with name = [%s]; rc = [%d]\n",
1828 tmp_tfm
->cipher_name
, rc
);
1829 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1830 if (key_tfm
!= NULL
)
1834 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1840 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1841 * @cipher_name: the name of the cipher to search for
1842 * @key_tfm: set to corresponding tfm if found
1844 * Searches for cached key_tfm matching @cipher_name
1845 * Must be called with &key_tfm_list_mutex held
1846 * Returns 1 if found, with @key_tfm set
1847 * Returns 0 if not found, with @key_tfm set to NULL
1849 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1851 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1853 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1855 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1856 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1858 (*key_tfm
) = tmp_key_tfm
;
1868 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1870 * @tfm: set to cached tfm found, or new tfm created
1871 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1872 * @cipher_name: the name of the cipher to search for and/or add
1874 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1875 * Searches for cached item first, and creates new if not found.
1876 * Returns 0 on success, non-zero if adding new cipher failed
1878 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1879 struct mutex
**tfm_mutex
,
1882 struct ecryptfs_key_tfm
*key_tfm
;
1886 (*tfm_mutex
) = NULL
;
1888 mutex_lock(&key_tfm_list_mutex
);
1889 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1890 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1892 printk(KERN_ERR
"Error adding new key_tfm to list; "
1897 (*tfm
) = key_tfm
->key_tfm
;
1898 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1900 mutex_unlock(&key_tfm_list_mutex
);
1904 /* 64 characters forming a 6-bit target field */
1905 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1908 "klmnopqrstuvwxyz");
1910 /* We could either offset on every reverse map or just pad some 0x00's
1911 * at the front here */
1912 static const unsigned char filename_rev_map
[256] = {
1913 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1916 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1917 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1918 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1919 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1920 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1921 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1922 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1923 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1924 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1925 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1926 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1927 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1928 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1932 * ecryptfs_encode_for_filename
1933 * @dst: Destination location for encoded filename
1934 * @dst_size: Size of the encoded filename in bytes
1935 * @src: Source location for the filename to encode
1936 * @src_size: Size of the source in bytes
1938 void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1939 unsigned char *src
, size_t src_size
)
1942 size_t block_num
= 0;
1943 size_t dst_offset
= 0;
1944 unsigned char last_block
[3];
1946 if (src_size
== 0) {
1950 num_blocks
= (src_size
/ 3);
1951 if ((src_size
% 3) == 0) {
1952 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1955 last_block
[2] = 0x00;
1956 switch (src_size
% 3) {
1958 last_block
[0] = src
[src_size
- 1];
1959 last_block
[1] = 0x00;
1962 last_block
[0] = src
[src_size
- 2];
1963 last_block
[1] = src
[src_size
- 1];
1966 (*dst_size
) = (num_blocks
* 4);
1969 while (block_num
< num_blocks
) {
1970 unsigned char *src_block
;
1971 unsigned char dst_block
[4];
1973 if (block_num
== (num_blocks
- 1))
1974 src_block
= last_block
;
1976 src_block
= &src
[block_num
* 3];
1977 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1978 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1979 | ((src_block
[1] >> 4) & 0x0F));
1980 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
1981 | ((src_block
[2] >> 6) & 0x03));
1982 dst_block
[3] = (src_block
[2] & 0x3F);
1983 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
1984 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
1985 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
1986 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
1993 static size_t ecryptfs_max_decoded_size(size_t encoded_size
)
1995 /* Not exact; conservatively long. Every block of 4
1996 * encoded characters decodes into a block of 3
1997 * decoded characters. This segment of code provides
1998 * the caller with the maximum amount of allocated
1999 * space that @dst will need to point to in a
2000 * subsequent call. */
2001 return ((encoded_size
+ 1) * 3) / 4;
2005 * ecryptfs_decode_from_filename
2006 * @dst: If NULL, this function only sets @dst_size and returns. If
2007 * non-NULL, this function decodes the encoded octets in @src
2008 * into the memory that @dst points to.
2009 * @dst_size: Set to the size of the decoded string.
2010 * @src: The encoded set of octets to decode.
2011 * @src_size: The size of the encoded set of octets to decode.
2014 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
2015 const unsigned char *src
, size_t src_size
)
2017 u8 current_bit_offset
= 0;
2018 size_t src_byte_offset
= 0;
2019 size_t dst_byte_offset
= 0;
2022 (*dst_size
) = ecryptfs_max_decoded_size(src_size
);
2025 while (src_byte_offset
< src_size
) {
2026 unsigned char src_byte
=
2027 filename_rev_map
[(int)src
[src_byte_offset
]];
2029 switch (current_bit_offset
) {
2031 dst
[dst_byte_offset
] = (src_byte
<< 2);
2032 current_bit_offset
= 6;
2035 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
2036 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
2038 current_bit_offset
= 4;
2041 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
2042 dst
[dst_byte_offset
] = (src_byte
<< 6);
2043 current_bit_offset
= 2;
2046 dst
[dst_byte_offset
++] |= (src_byte
);
2047 dst
[dst_byte_offset
] = 0;
2048 current_bit_offset
= 0;
2053 (*dst_size
) = dst_byte_offset
;
2059 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2060 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2061 * @name: The plaintext name
2062 * @length: The length of the plaintext
2063 * @encoded_name: The encypted name
2065 * Encrypts and encodes a filename into something that constitutes a
2066 * valid filename for a filesystem, with printable characters.
2068 * We assume that we have a properly initialized crypto context,
2069 * pointed to by crypt_stat->tfm.
2071 * Returns zero on success; non-zero on otherwise
2073 int ecryptfs_encrypt_and_encode_filename(
2074 char **encoded_name
,
2075 size_t *encoded_name_size
,
2076 struct ecryptfs_crypt_stat
*crypt_stat
,
2077 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
2078 const char *name
, size_t name_size
)
2080 size_t encoded_name_no_prefix_size
;
2083 (*encoded_name
) = NULL
;
2084 (*encoded_name_size
) = 0;
2085 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
2086 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
2087 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
2088 struct ecryptfs_filename
*filename
;
2090 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
2092 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2093 "to kzalloc [%zd] bytes\n", __func__
,
2098 filename
->filename
= (char *)name
;
2099 filename
->filename_size
= name_size
;
2100 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
2103 printk(KERN_ERR
"%s: Error attempting to encrypt "
2104 "filename; rc = [%d]\n", __func__
, rc
);
2108 ecryptfs_encode_for_filename(
2109 NULL
, &encoded_name_no_prefix_size
,
2110 filename
->encrypted_filename
,
2111 filename
->encrypted_filename_size
);
2112 if ((crypt_stat
&& (crypt_stat
->flags
2113 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2114 || (mount_crypt_stat
2115 && (mount_crypt_stat
->flags
2116 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
2117 (*encoded_name_size
) =
2118 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2119 + encoded_name_no_prefix_size
);
2121 (*encoded_name_size
) =
2122 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2123 + encoded_name_no_prefix_size
);
2124 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
2125 if (!(*encoded_name
)) {
2126 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2127 "to kzalloc [%zd] bytes\n", __func__
,
2128 (*encoded_name_size
));
2130 kfree(filename
->encrypted_filename
);
2134 if ((crypt_stat
&& (crypt_stat
->flags
2135 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2136 || (mount_crypt_stat
2137 && (mount_crypt_stat
->flags
2138 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2139 memcpy((*encoded_name
),
2140 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2141 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2142 ecryptfs_encode_for_filename(
2144 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2145 &encoded_name_no_prefix_size
,
2146 filename
->encrypted_filename
,
2147 filename
->encrypted_filename_size
);
2148 (*encoded_name_size
) =
2149 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2150 + encoded_name_no_prefix_size
);
2151 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2156 printk(KERN_ERR
"%s: Error attempting to encode "
2157 "encrypted filename; rc = [%d]\n", __func__
,
2159 kfree((*encoded_name
));
2160 (*encoded_name
) = NULL
;
2161 (*encoded_name_size
) = 0;
2163 kfree(filename
->encrypted_filename
);
2166 rc
= ecryptfs_copy_filename(encoded_name
,
2175 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2176 * @plaintext_name: The plaintext name
2177 * @plaintext_name_size: The plaintext name size
2178 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2179 * @name: The filename in cipher text
2180 * @name_size: The cipher text name size
2182 * Decrypts and decodes the filename.
2184 * Returns zero on error; non-zero otherwise
2186 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2187 size_t *plaintext_name_size
,
2188 struct dentry
*ecryptfs_dir_dentry
,
2189 const char *name
, size_t name_size
)
2191 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2192 &ecryptfs_superblock_to_private(
2193 ecryptfs_dir_dentry
->d_sb
)->mount_crypt_stat
;
2195 size_t decoded_name_size
;
2199 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2200 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2201 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2202 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2203 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2204 const char *orig_name
= name
;
2205 size_t orig_name_size
= name_size
;
2207 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2208 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2209 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2211 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2212 if (!decoded_name
) {
2213 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2214 "to kmalloc [%zd] bytes\n", __func__
,
2219 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2221 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2222 plaintext_name_size
,
2228 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2229 "from filename; copying through filename "
2230 "as-is\n", __func__
);
2231 rc
= ecryptfs_copy_filename(plaintext_name
,
2232 plaintext_name_size
,
2233 orig_name
, orig_name_size
);
2237 rc
= ecryptfs_copy_filename(plaintext_name
,
2238 plaintext_name_size
,
2243 kfree(decoded_name
);
2248 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2250 int ecryptfs_set_f_namelen(long *namelen
, long lower_namelen
,
2251 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
2253 struct blkcipher_desc desc
;
2254 struct mutex
*tfm_mutex
;
2255 size_t cipher_blocksize
;
2258 if (!(mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
2259 (*namelen
) = lower_namelen
;
2263 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc
.tfm
, &tfm_mutex
,
2264 mount_crypt_stat
->global_default_fn_cipher_name
);
2270 mutex_lock(tfm_mutex
);
2271 cipher_blocksize
= crypto_blkcipher_blocksize(desc
.tfm
);
2272 mutex_unlock(tfm_mutex
);
2274 /* Return an exact amount for the common cases */
2275 if (lower_namelen
== NAME_MAX
2276 && (cipher_blocksize
== 8 || cipher_blocksize
== 16)) {
2277 (*namelen
) = ENC_NAME_MAX_BLOCKLEN_8_OR_16
;
2281 /* Return a safe estimate for the uncommon cases */
2282 (*namelen
) = lower_namelen
;
2283 (*namelen
) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2284 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2285 (*namelen
) = ecryptfs_max_decoded_size(*namelen
) - 3;
2286 (*namelen
) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE
;
2287 (*namelen
) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
;
2288 /* Worst case is that the filename is padded nearly a full block size */
2289 (*namelen
) -= cipher_blocksize
- 1;