writeback: Remove wb->list_lock from writeback_single_inode()
[linux-2.6/libata-dev.git] / net / bluetooth / hci_core.c
blob92a857e3786d173273986ba179f7e9bac1856af7
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
26 /* Bluetooth HCI core. */
28 #include <linux/jiffies.h>
29 #include <linux/module.h>
30 #include <linux/kmod.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/poll.h>
38 #include <linux/fcntl.h>
39 #include <linux/init.h>
40 #include <linux/skbuff.h>
41 #include <linux/workqueue.h>
42 #include <linux/interrupt.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <linux/crypto.h>
46 #include <net/sock.h>
48 #include <linux/uaccess.h>
49 #include <asm/unaligned.h>
51 #include <net/bluetooth/bluetooth.h>
52 #include <net/bluetooth/hci_core.h>
54 #define AUTO_OFF_TIMEOUT 2000
56 static void hci_rx_work(struct work_struct *work);
57 static void hci_cmd_work(struct work_struct *work);
58 static void hci_tx_work(struct work_struct *work);
60 /* HCI device list */
61 LIST_HEAD(hci_dev_list);
62 DEFINE_RWLOCK(hci_dev_list_lock);
64 /* HCI callback list */
65 LIST_HEAD(hci_cb_list);
66 DEFINE_RWLOCK(hci_cb_list_lock);
68 /* ---- HCI notifications ---- */
70 static void hci_notify(struct hci_dev *hdev, int event)
72 hci_sock_dev_event(hdev, event);
75 /* ---- HCI requests ---- */
77 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
79 BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
81 /* If this is the init phase check if the completed command matches
82 * the last init command, and if not just return.
84 if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd) {
85 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
86 struct sk_buff *skb;
88 /* Some CSR based controllers generate a spontaneous
89 * reset complete event during init and any pending
90 * command will never be completed. In such a case we
91 * need to resend whatever was the last sent
92 * command.
95 if (cmd != HCI_OP_RESET || sent->opcode == HCI_OP_RESET)
96 return;
98 skb = skb_clone(hdev->sent_cmd, GFP_ATOMIC);
99 if (skb) {
100 skb_queue_head(&hdev->cmd_q, skb);
101 queue_work(hdev->workqueue, &hdev->cmd_work);
104 return;
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 wake_up_interruptible(&hdev->req_wait_q);
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
116 BT_DBG("%s err 0x%2.2x", hdev->name, err);
118 if (hdev->req_status == HCI_REQ_PEND) {
119 hdev->req_result = err;
120 hdev->req_status = HCI_REQ_CANCELED;
121 wake_up_interruptible(&hdev->req_wait_q);
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127 unsigned long opt, __u32 timeout)
129 DECLARE_WAITQUEUE(wait, current);
130 int err = 0;
132 BT_DBG("%s start", hdev->name);
134 hdev->req_status = HCI_REQ_PEND;
136 add_wait_queue(&hdev->req_wait_q, &wait);
137 set_current_state(TASK_INTERRUPTIBLE);
139 req(hdev, opt);
140 schedule_timeout(timeout);
142 remove_wait_queue(&hdev->req_wait_q, &wait);
144 if (signal_pending(current))
145 return -EINTR;
147 switch (hdev->req_status) {
148 case HCI_REQ_DONE:
149 err = -bt_to_errno(hdev->req_result);
150 break;
152 case HCI_REQ_CANCELED:
153 err = -hdev->req_result;
154 break;
156 default:
157 err = -ETIMEDOUT;
158 break;
161 hdev->req_status = hdev->req_result = 0;
163 BT_DBG("%s end: err %d", hdev->name, err);
165 return err;
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169 unsigned long opt, __u32 timeout)
171 int ret;
173 if (!test_bit(HCI_UP, &hdev->flags))
174 return -ENETDOWN;
176 /* Serialize all requests */
177 hci_req_lock(hdev);
178 ret = __hci_request(hdev, req, opt, timeout);
179 hci_req_unlock(hdev);
181 return ret;
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
186 BT_DBG("%s %ld", hdev->name, opt);
188 /* Reset device */
189 set_bit(HCI_RESET, &hdev->flags);
190 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
193 static void bredr_init(struct hci_dev *hdev)
195 struct hci_cp_delete_stored_link_key cp;
196 __le16 param;
197 __u8 flt_type;
199 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
201 /* Mandatory initialization */
203 /* Reset */
204 if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
205 set_bit(HCI_RESET, &hdev->flags);
206 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
209 /* Read Local Supported Features */
210 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
212 /* Read Local Version */
213 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
215 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
216 hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
218 /* Read BD Address */
219 hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
221 /* Read Class of Device */
222 hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
224 /* Read Local Name */
225 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
227 /* Read Voice Setting */
228 hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
230 /* Optional initialization */
232 /* Clear Event Filters */
233 flt_type = HCI_FLT_CLEAR_ALL;
234 hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
236 /* Connection accept timeout ~20 secs */
237 param = cpu_to_le16(0x7d00);
238 hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
240 bacpy(&cp.bdaddr, BDADDR_ANY);
241 cp.delete_all = 1;
242 hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
245 static void amp_init(struct hci_dev *hdev)
247 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
249 /* Reset */
250 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
252 /* Read Local Version */
253 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
256 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
258 struct sk_buff *skb;
260 BT_DBG("%s %ld", hdev->name, opt);
262 /* Driver initialization */
264 /* Special commands */
265 while ((skb = skb_dequeue(&hdev->driver_init))) {
266 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
267 skb->dev = (void *) hdev;
269 skb_queue_tail(&hdev->cmd_q, skb);
270 queue_work(hdev->workqueue, &hdev->cmd_work);
272 skb_queue_purge(&hdev->driver_init);
274 switch (hdev->dev_type) {
275 case HCI_BREDR:
276 bredr_init(hdev);
277 break;
279 case HCI_AMP:
280 amp_init(hdev);
281 break;
283 default:
284 BT_ERR("Unknown device type %d", hdev->dev_type);
285 break;
290 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
292 BT_DBG("%s", hdev->name);
294 /* Read LE buffer size */
295 hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
298 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
300 __u8 scan = opt;
302 BT_DBG("%s %x", hdev->name, scan);
304 /* Inquiry and Page scans */
305 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
308 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
310 __u8 auth = opt;
312 BT_DBG("%s %x", hdev->name, auth);
314 /* Authentication */
315 hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
318 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
320 __u8 encrypt = opt;
322 BT_DBG("%s %x", hdev->name, encrypt);
324 /* Encryption */
325 hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
328 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
330 __le16 policy = cpu_to_le16(opt);
332 BT_DBG("%s %x", hdev->name, policy);
334 /* Default link policy */
335 hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
338 /* Get HCI device by index.
339 * Device is held on return. */
340 struct hci_dev *hci_dev_get(int index)
342 struct hci_dev *hdev = NULL, *d;
344 BT_DBG("%d", index);
346 if (index < 0)
347 return NULL;
349 read_lock(&hci_dev_list_lock);
350 list_for_each_entry(d, &hci_dev_list, list) {
351 if (d->id == index) {
352 hdev = hci_dev_hold(d);
353 break;
356 read_unlock(&hci_dev_list_lock);
357 return hdev;
360 /* ---- Inquiry support ---- */
362 bool hci_discovery_active(struct hci_dev *hdev)
364 struct discovery_state *discov = &hdev->discovery;
366 switch (discov->state) {
367 case DISCOVERY_FINDING:
368 case DISCOVERY_RESOLVING:
369 return true;
371 default:
372 return false;
376 void hci_discovery_set_state(struct hci_dev *hdev, int state)
378 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
380 if (hdev->discovery.state == state)
381 return;
383 switch (state) {
384 case DISCOVERY_STOPPED:
385 if (hdev->discovery.state != DISCOVERY_STARTING)
386 mgmt_discovering(hdev, 0);
387 hdev->discovery.type = 0;
388 break;
389 case DISCOVERY_STARTING:
390 break;
391 case DISCOVERY_FINDING:
392 mgmt_discovering(hdev, 1);
393 break;
394 case DISCOVERY_RESOLVING:
395 break;
396 case DISCOVERY_STOPPING:
397 break;
400 hdev->discovery.state = state;
403 static void inquiry_cache_flush(struct hci_dev *hdev)
405 struct discovery_state *cache = &hdev->discovery;
406 struct inquiry_entry *p, *n;
408 list_for_each_entry_safe(p, n, &cache->all, all) {
409 list_del(&p->all);
410 kfree(p);
413 INIT_LIST_HEAD(&cache->unknown);
414 INIT_LIST_HEAD(&cache->resolve);
417 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
419 struct discovery_state *cache = &hdev->discovery;
420 struct inquiry_entry *e;
422 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
424 list_for_each_entry(e, &cache->all, all) {
425 if (!bacmp(&e->data.bdaddr, bdaddr))
426 return e;
429 return NULL;
432 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
433 bdaddr_t *bdaddr)
435 struct discovery_state *cache = &hdev->discovery;
436 struct inquiry_entry *e;
438 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
440 list_for_each_entry(e, &cache->unknown, list) {
441 if (!bacmp(&e->data.bdaddr, bdaddr))
442 return e;
445 return NULL;
448 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
449 bdaddr_t *bdaddr,
450 int state)
452 struct discovery_state *cache = &hdev->discovery;
453 struct inquiry_entry *e;
455 BT_DBG("cache %p bdaddr %s state %d", cache, batostr(bdaddr), state);
457 list_for_each_entry(e, &cache->resolve, list) {
458 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
459 return e;
460 if (!bacmp(&e->data.bdaddr, bdaddr))
461 return e;
464 return NULL;
467 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
468 struct inquiry_entry *ie)
470 struct discovery_state *cache = &hdev->discovery;
471 struct list_head *pos = &cache->resolve;
472 struct inquiry_entry *p;
474 list_del(&ie->list);
476 list_for_each_entry(p, &cache->resolve, list) {
477 if (p->name_state != NAME_PENDING &&
478 abs(p->data.rssi) >= abs(ie->data.rssi))
479 break;
480 pos = &p->list;
483 list_add(&ie->list, pos);
486 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
487 bool name_known, bool *ssp)
489 struct discovery_state *cache = &hdev->discovery;
490 struct inquiry_entry *ie;
492 BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
494 if (ssp)
495 *ssp = data->ssp_mode;
497 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
498 if (ie) {
499 if (ie->data.ssp_mode && ssp)
500 *ssp = true;
502 if (ie->name_state == NAME_NEEDED &&
503 data->rssi != ie->data.rssi) {
504 ie->data.rssi = data->rssi;
505 hci_inquiry_cache_update_resolve(hdev, ie);
508 goto update;
511 /* Entry not in the cache. Add new one. */
512 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
513 if (!ie)
514 return false;
516 list_add(&ie->all, &cache->all);
518 if (name_known) {
519 ie->name_state = NAME_KNOWN;
520 } else {
521 ie->name_state = NAME_NOT_KNOWN;
522 list_add(&ie->list, &cache->unknown);
525 update:
526 if (name_known && ie->name_state != NAME_KNOWN &&
527 ie->name_state != NAME_PENDING) {
528 ie->name_state = NAME_KNOWN;
529 list_del(&ie->list);
532 memcpy(&ie->data, data, sizeof(*data));
533 ie->timestamp = jiffies;
534 cache->timestamp = jiffies;
536 if (ie->name_state == NAME_NOT_KNOWN)
537 return false;
539 return true;
542 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
544 struct discovery_state *cache = &hdev->discovery;
545 struct inquiry_info *info = (struct inquiry_info *) buf;
546 struct inquiry_entry *e;
547 int copied = 0;
549 list_for_each_entry(e, &cache->all, all) {
550 struct inquiry_data *data = &e->data;
552 if (copied >= num)
553 break;
555 bacpy(&info->bdaddr, &data->bdaddr);
556 info->pscan_rep_mode = data->pscan_rep_mode;
557 info->pscan_period_mode = data->pscan_period_mode;
558 info->pscan_mode = data->pscan_mode;
559 memcpy(info->dev_class, data->dev_class, 3);
560 info->clock_offset = data->clock_offset;
562 info++;
563 copied++;
566 BT_DBG("cache %p, copied %d", cache, copied);
567 return copied;
570 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
572 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
573 struct hci_cp_inquiry cp;
575 BT_DBG("%s", hdev->name);
577 if (test_bit(HCI_INQUIRY, &hdev->flags))
578 return;
580 /* Start Inquiry */
581 memcpy(&cp.lap, &ir->lap, 3);
582 cp.length = ir->length;
583 cp.num_rsp = ir->num_rsp;
584 hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
587 int hci_inquiry(void __user *arg)
589 __u8 __user *ptr = arg;
590 struct hci_inquiry_req ir;
591 struct hci_dev *hdev;
592 int err = 0, do_inquiry = 0, max_rsp;
593 long timeo;
594 __u8 *buf;
596 if (copy_from_user(&ir, ptr, sizeof(ir)))
597 return -EFAULT;
599 hdev = hci_dev_get(ir.dev_id);
600 if (!hdev)
601 return -ENODEV;
603 hci_dev_lock(hdev);
604 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
605 inquiry_cache_empty(hdev) ||
606 ir.flags & IREQ_CACHE_FLUSH) {
607 inquiry_cache_flush(hdev);
608 do_inquiry = 1;
610 hci_dev_unlock(hdev);
612 timeo = ir.length * msecs_to_jiffies(2000);
614 if (do_inquiry) {
615 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
616 if (err < 0)
617 goto done;
620 /* for unlimited number of responses we will use buffer with 255 entries */
621 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
623 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
624 * copy it to the user space.
626 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
627 if (!buf) {
628 err = -ENOMEM;
629 goto done;
632 hci_dev_lock(hdev);
633 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
634 hci_dev_unlock(hdev);
636 BT_DBG("num_rsp %d", ir.num_rsp);
638 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
639 ptr += sizeof(ir);
640 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
641 ir.num_rsp))
642 err = -EFAULT;
643 } else
644 err = -EFAULT;
646 kfree(buf);
648 done:
649 hci_dev_put(hdev);
650 return err;
653 /* ---- HCI ioctl helpers ---- */
655 int hci_dev_open(__u16 dev)
657 struct hci_dev *hdev;
658 int ret = 0;
660 hdev = hci_dev_get(dev);
661 if (!hdev)
662 return -ENODEV;
664 BT_DBG("%s %p", hdev->name, hdev);
666 hci_req_lock(hdev);
668 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
669 ret = -ENODEV;
670 goto done;
673 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
674 ret = -ERFKILL;
675 goto done;
678 if (test_bit(HCI_UP, &hdev->flags)) {
679 ret = -EALREADY;
680 goto done;
683 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
684 set_bit(HCI_RAW, &hdev->flags);
686 /* Treat all non BR/EDR controllers as raw devices if
687 enable_hs is not set */
688 if (hdev->dev_type != HCI_BREDR && !enable_hs)
689 set_bit(HCI_RAW, &hdev->flags);
691 if (hdev->open(hdev)) {
692 ret = -EIO;
693 goto done;
696 if (!test_bit(HCI_RAW, &hdev->flags)) {
697 atomic_set(&hdev->cmd_cnt, 1);
698 set_bit(HCI_INIT, &hdev->flags);
699 hdev->init_last_cmd = 0;
701 ret = __hci_request(hdev, hci_init_req, 0,
702 msecs_to_jiffies(HCI_INIT_TIMEOUT));
704 if (lmp_host_le_capable(hdev))
705 ret = __hci_request(hdev, hci_le_init_req, 0,
706 msecs_to_jiffies(HCI_INIT_TIMEOUT));
708 clear_bit(HCI_INIT, &hdev->flags);
711 if (!ret) {
712 hci_dev_hold(hdev);
713 set_bit(HCI_UP, &hdev->flags);
714 hci_notify(hdev, HCI_DEV_UP);
715 if (!test_bit(HCI_SETUP, &hdev->dev_flags)) {
716 hci_dev_lock(hdev);
717 mgmt_powered(hdev, 1);
718 hci_dev_unlock(hdev);
720 } else {
721 /* Init failed, cleanup */
722 flush_work(&hdev->tx_work);
723 flush_work(&hdev->cmd_work);
724 flush_work(&hdev->rx_work);
726 skb_queue_purge(&hdev->cmd_q);
727 skb_queue_purge(&hdev->rx_q);
729 if (hdev->flush)
730 hdev->flush(hdev);
732 if (hdev->sent_cmd) {
733 kfree_skb(hdev->sent_cmd);
734 hdev->sent_cmd = NULL;
737 hdev->close(hdev);
738 hdev->flags = 0;
741 done:
742 hci_req_unlock(hdev);
743 hci_dev_put(hdev);
744 return ret;
747 static int hci_dev_do_close(struct hci_dev *hdev)
749 BT_DBG("%s %p", hdev->name, hdev);
751 cancel_work_sync(&hdev->le_scan);
753 hci_req_cancel(hdev, ENODEV);
754 hci_req_lock(hdev);
756 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
757 del_timer_sync(&hdev->cmd_timer);
758 hci_req_unlock(hdev);
759 return 0;
762 /* Flush RX and TX works */
763 flush_work(&hdev->tx_work);
764 flush_work(&hdev->rx_work);
766 if (hdev->discov_timeout > 0) {
767 cancel_delayed_work(&hdev->discov_off);
768 hdev->discov_timeout = 0;
769 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
772 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
773 cancel_delayed_work(&hdev->service_cache);
775 cancel_delayed_work_sync(&hdev->le_scan_disable);
777 hci_dev_lock(hdev);
778 inquiry_cache_flush(hdev);
779 hci_conn_hash_flush(hdev);
780 hci_dev_unlock(hdev);
782 hci_notify(hdev, HCI_DEV_DOWN);
784 if (hdev->flush)
785 hdev->flush(hdev);
787 /* Reset device */
788 skb_queue_purge(&hdev->cmd_q);
789 atomic_set(&hdev->cmd_cnt, 1);
790 if (!test_bit(HCI_RAW, &hdev->flags) &&
791 test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
792 set_bit(HCI_INIT, &hdev->flags);
793 __hci_request(hdev, hci_reset_req, 0,
794 msecs_to_jiffies(250));
795 clear_bit(HCI_INIT, &hdev->flags);
798 /* flush cmd work */
799 flush_work(&hdev->cmd_work);
801 /* Drop queues */
802 skb_queue_purge(&hdev->rx_q);
803 skb_queue_purge(&hdev->cmd_q);
804 skb_queue_purge(&hdev->raw_q);
806 /* Drop last sent command */
807 if (hdev->sent_cmd) {
808 del_timer_sync(&hdev->cmd_timer);
809 kfree_skb(hdev->sent_cmd);
810 hdev->sent_cmd = NULL;
813 /* After this point our queues are empty
814 * and no tasks are scheduled. */
815 hdev->close(hdev);
817 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
818 hci_dev_lock(hdev);
819 mgmt_powered(hdev, 0);
820 hci_dev_unlock(hdev);
823 /* Clear flags */
824 hdev->flags = 0;
826 memset(hdev->eir, 0, sizeof(hdev->eir));
827 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
829 hci_req_unlock(hdev);
831 hci_dev_put(hdev);
832 return 0;
835 int hci_dev_close(__u16 dev)
837 struct hci_dev *hdev;
838 int err;
840 hdev = hci_dev_get(dev);
841 if (!hdev)
842 return -ENODEV;
844 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
845 cancel_delayed_work(&hdev->power_off);
847 err = hci_dev_do_close(hdev);
849 hci_dev_put(hdev);
850 return err;
853 int hci_dev_reset(__u16 dev)
855 struct hci_dev *hdev;
856 int ret = 0;
858 hdev = hci_dev_get(dev);
859 if (!hdev)
860 return -ENODEV;
862 hci_req_lock(hdev);
864 if (!test_bit(HCI_UP, &hdev->flags))
865 goto done;
867 /* Drop queues */
868 skb_queue_purge(&hdev->rx_q);
869 skb_queue_purge(&hdev->cmd_q);
871 hci_dev_lock(hdev);
872 inquiry_cache_flush(hdev);
873 hci_conn_hash_flush(hdev);
874 hci_dev_unlock(hdev);
876 if (hdev->flush)
877 hdev->flush(hdev);
879 atomic_set(&hdev->cmd_cnt, 1);
880 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
882 if (!test_bit(HCI_RAW, &hdev->flags))
883 ret = __hci_request(hdev, hci_reset_req, 0,
884 msecs_to_jiffies(HCI_INIT_TIMEOUT));
886 done:
887 hci_req_unlock(hdev);
888 hci_dev_put(hdev);
889 return ret;
892 int hci_dev_reset_stat(__u16 dev)
894 struct hci_dev *hdev;
895 int ret = 0;
897 hdev = hci_dev_get(dev);
898 if (!hdev)
899 return -ENODEV;
901 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
903 hci_dev_put(hdev);
905 return ret;
908 int hci_dev_cmd(unsigned int cmd, void __user *arg)
910 struct hci_dev *hdev;
911 struct hci_dev_req dr;
912 int err = 0;
914 if (copy_from_user(&dr, arg, sizeof(dr)))
915 return -EFAULT;
917 hdev = hci_dev_get(dr.dev_id);
918 if (!hdev)
919 return -ENODEV;
921 switch (cmd) {
922 case HCISETAUTH:
923 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
924 msecs_to_jiffies(HCI_INIT_TIMEOUT));
925 break;
927 case HCISETENCRYPT:
928 if (!lmp_encrypt_capable(hdev)) {
929 err = -EOPNOTSUPP;
930 break;
933 if (!test_bit(HCI_AUTH, &hdev->flags)) {
934 /* Auth must be enabled first */
935 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
936 msecs_to_jiffies(HCI_INIT_TIMEOUT));
937 if (err)
938 break;
941 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
942 msecs_to_jiffies(HCI_INIT_TIMEOUT));
943 break;
945 case HCISETSCAN:
946 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
947 msecs_to_jiffies(HCI_INIT_TIMEOUT));
948 break;
950 case HCISETLINKPOL:
951 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
952 msecs_to_jiffies(HCI_INIT_TIMEOUT));
953 break;
955 case HCISETLINKMODE:
956 hdev->link_mode = ((__u16) dr.dev_opt) &
957 (HCI_LM_MASTER | HCI_LM_ACCEPT);
958 break;
960 case HCISETPTYPE:
961 hdev->pkt_type = (__u16) dr.dev_opt;
962 break;
964 case HCISETACLMTU:
965 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
966 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
967 break;
969 case HCISETSCOMTU:
970 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
971 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
972 break;
974 default:
975 err = -EINVAL;
976 break;
979 hci_dev_put(hdev);
980 return err;
983 int hci_get_dev_list(void __user *arg)
985 struct hci_dev *hdev;
986 struct hci_dev_list_req *dl;
987 struct hci_dev_req *dr;
988 int n = 0, size, err;
989 __u16 dev_num;
991 if (get_user(dev_num, (__u16 __user *) arg))
992 return -EFAULT;
994 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
995 return -EINVAL;
997 size = sizeof(*dl) + dev_num * sizeof(*dr);
999 dl = kzalloc(size, GFP_KERNEL);
1000 if (!dl)
1001 return -ENOMEM;
1003 dr = dl->dev_req;
1005 read_lock(&hci_dev_list_lock);
1006 list_for_each_entry(hdev, &hci_dev_list, list) {
1007 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1008 cancel_delayed_work(&hdev->power_off);
1010 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1011 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1013 (dr + n)->dev_id = hdev->id;
1014 (dr + n)->dev_opt = hdev->flags;
1016 if (++n >= dev_num)
1017 break;
1019 read_unlock(&hci_dev_list_lock);
1021 dl->dev_num = n;
1022 size = sizeof(*dl) + n * sizeof(*dr);
1024 err = copy_to_user(arg, dl, size);
1025 kfree(dl);
1027 return err ? -EFAULT : 0;
1030 int hci_get_dev_info(void __user *arg)
1032 struct hci_dev *hdev;
1033 struct hci_dev_info di;
1034 int err = 0;
1036 if (copy_from_user(&di, arg, sizeof(di)))
1037 return -EFAULT;
1039 hdev = hci_dev_get(di.dev_id);
1040 if (!hdev)
1041 return -ENODEV;
1043 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1044 cancel_delayed_work_sync(&hdev->power_off);
1046 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1047 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1049 strcpy(di.name, hdev->name);
1050 di.bdaddr = hdev->bdaddr;
1051 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1052 di.flags = hdev->flags;
1053 di.pkt_type = hdev->pkt_type;
1054 di.acl_mtu = hdev->acl_mtu;
1055 di.acl_pkts = hdev->acl_pkts;
1056 di.sco_mtu = hdev->sco_mtu;
1057 di.sco_pkts = hdev->sco_pkts;
1058 di.link_policy = hdev->link_policy;
1059 di.link_mode = hdev->link_mode;
1061 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1062 memcpy(&di.features, &hdev->features, sizeof(di.features));
1064 if (copy_to_user(arg, &di, sizeof(di)))
1065 err = -EFAULT;
1067 hci_dev_put(hdev);
1069 return err;
1072 /* ---- Interface to HCI drivers ---- */
1074 static int hci_rfkill_set_block(void *data, bool blocked)
1076 struct hci_dev *hdev = data;
1078 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1080 if (!blocked)
1081 return 0;
1083 hci_dev_do_close(hdev);
1085 return 0;
1088 static const struct rfkill_ops hci_rfkill_ops = {
1089 .set_block = hci_rfkill_set_block,
1092 /* Alloc HCI device */
1093 struct hci_dev *hci_alloc_dev(void)
1095 struct hci_dev *hdev;
1097 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
1098 if (!hdev)
1099 return NULL;
1101 hci_init_sysfs(hdev);
1102 skb_queue_head_init(&hdev->driver_init);
1104 return hdev;
1106 EXPORT_SYMBOL(hci_alloc_dev);
1108 /* Free HCI device */
1109 void hci_free_dev(struct hci_dev *hdev)
1111 skb_queue_purge(&hdev->driver_init);
1113 /* will free via device release */
1114 put_device(&hdev->dev);
1116 EXPORT_SYMBOL(hci_free_dev);
1118 static void hci_power_on(struct work_struct *work)
1120 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
1122 BT_DBG("%s", hdev->name);
1124 if (hci_dev_open(hdev->id) < 0)
1125 return;
1127 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1128 schedule_delayed_work(&hdev->power_off,
1129 msecs_to_jiffies(AUTO_OFF_TIMEOUT));
1131 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
1132 mgmt_index_added(hdev);
1135 static void hci_power_off(struct work_struct *work)
1137 struct hci_dev *hdev = container_of(work, struct hci_dev,
1138 power_off.work);
1140 BT_DBG("%s", hdev->name);
1142 hci_dev_do_close(hdev);
1145 static void hci_discov_off(struct work_struct *work)
1147 struct hci_dev *hdev;
1148 u8 scan = SCAN_PAGE;
1150 hdev = container_of(work, struct hci_dev, discov_off.work);
1152 BT_DBG("%s", hdev->name);
1154 hci_dev_lock(hdev);
1156 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
1158 hdev->discov_timeout = 0;
1160 hci_dev_unlock(hdev);
1163 int hci_uuids_clear(struct hci_dev *hdev)
1165 struct list_head *p, *n;
1167 list_for_each_safe(p, n, &hdev->uuids) {
1168 struct bt_uuid *uuid;
1170 uuid = list_entry(p, struct bt_uuid, list);
1172 list_del(p);
1173 kfree(uuid);
1176 return 0;
1179 int hci_link_keys_clear(struct hci_dev *hdev)
1181 struct list_head *p, *n;
1183 list_for_each_safe(p, n, &hdev->link_keys) {
1184 struct link_key *key;
1186 key = list_entry(p, struct link_key, list);
1188 list_del(p);
1189 kfree(key);
1192 return 0;
1195 int hci_smp_ltks_clear(struct hci_dev *hdev)
1197 struct smp_ltk *k, *tmp;
1199 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1200 list_del(&k->list);
1201 kfree(k);
1204 return 0;
1207 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1209 struct link_key *k;
1211 list_for_each_entry(k, &hdev->link_keys, list)
1212 if (bacmp(bdaddr, &k->bdaddr) == 0)
1213 return k;
1215 return NULL;
1218 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1219 u8 key_type, u8 old_key_type)
1221 /* Legacy key */
1222 if (key_type < 0x03)
1223 return 1;
1225 /* Debug keys are insecure so don't store them persistently */
1226 if (key_type == HCI_LK_DEBUG_COMBINATION)
1227 return 0;
1229 /* Changed combination key and there's no previous one */
1230 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1231 return 0;
1233 /* Security mode 3 case */
1234 if (!conn)
1235 return 1;
1237 /* Neither local nor remote side had no-bonding as requirement */
1238 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1239 return 1;
1241 /* Local side had dedicated bonding as requirement */
1242 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1243 return 1;
1245 /* Remote side had dedicated bonding as requirement */
1246 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1247 return 1;
1249 /* If none of the above criteria match, then don't store the key
1250 * persistently */
1251 return 0;
1254 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1256 struct smp_ltk *k;
1258 list_for_each_entry(k, &hdev->long_term_keys, list) {
1259 if (k->ediv != ediv ||
1260 memcmp(rand, k->rand, sizeof(k->rand)))
1261 continue;
1263 return k;
1266 return NULL;
1268 EXPORT_SYMBOL(hci_find_ltk);
1270 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271 u8 addr_type)
1273 struct smp_ltk *k;
1275 list_for_each_entry(k, &hdev->long_term_keys, list)
1276 if (addr_type == k->bdaddr_type &&
1277 bacmp(bdaddr, &k->bdaddr) == 0)
1278 return k;
1280 return NULL;
1282 EXPORT_SYMBOL(hci_find_ltk_by_addr);
1284 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1285 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1287 struct link_key *key, *old_key;
1288 u8 old_key_type, persistent;
1290 old_key = hci_find_link_key(hdev, bdaddr);
1291 if (old_key) {
1292 old_key_type = old_key->type;
1293 key = old_key;
1294 } else {
1295 old_key_type = conn ? conn->key_type : 0xff;
1296 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1297 if (!key)
1298 return -ENOMEM;
1299 list_add(&key->list, &hdev->link_keys);
1302 BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1304 /* Some buggy controller combinations generate a changed
1305 * combination key for legacy pairing even when there's no
1306 * previous key */
1307 if (type == HCI_LK_CHANGED_COMBINATION &&
1308 (!conn || conn->remote_auth == 0xff) &&
1309 old_key_type == 0xff) {
1310 type = HCI_LK_COMBINATION;
1311 if (conn)
1312 conn->key_type = type;
1315 bacpy(&key->bdaddr, bdaddr);
1316 memcpy(key->val, val, 16);
1317 key->pin_len = pin_len;
1319 if (type == HCI_LK_CHANGED_COMBINATION)
1320 key->type = old_key_type;
1321 else
1322 key->type = type;
1324 if (!new_key)
1325 return 0;
1327 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1329 mgmt_new_link_key(hdev, key, persistent);
1331 if (!persistent) {
1332 list_del(&key->list);
1333 kfree(key);
1336 return 0;
1339 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
1340 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, u16
1341 ediv, u8 rand[8])
1343 struct smp_ltk *key, *old_key;
1345 if (!(type & HCI_SMP_STK) && !(type & HCI_SMP_LTK))
1346 return 0;
1348 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type);
1349 if (old_key)
1350 key = old_key;
1351 else {
1352 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1353 if (!key)
1354 return -ENOMEM;
1355 list_add(&key->list, &hdev->long_term_keys);
1358 bacpy(&key->bdaddr, bdaddr);
1359 key->bdaddr_type = addr_type;
1360 memcpy(key->val, tk, sizeof(key->val));
1361 key->authenticated = authenticated;
1362 key->ediv = ediv;
1363 key->enc_size = enc_size;
1364 key->type = type;
1365 memcpy(key->rand, rand, sizeof(key->rand));
1367 if (!new_key)
1368 return 0;
1370 if (type & HCI_SMP_LTK)
1371 mgmt_new_ltk(hdev, key, 1);
1373 return 0;
1376 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1378 struct link_key *key;
1380 key = hci_find_link_key(hdev, bdaddr);
1381 if (!key)
1382 return -ENOENT;
1384 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1386 list_del(&key->list);
1387 kfree(key);
1389 return 0;
1392 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1394 struct smp_ltk *k, *tmp;
1396 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1397 if (bacmp(bdaddr, &k->bdaddr))
1398 continue;
1400 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1402 list_del(&k->list);
1403 kfree(k);
1406 return 0;
1409 /* HCI command timer function */
1410 static void hci_cmd_timer(unsigned long arg)
1412 struct hci_dev *hdev = (void *) arg;
1414 BT_ERR("%s command tx timeout", hdev->name);
1415 atomic_set(&hdev->cmd_cnt, 1);
1416 queue_work(hdev->workqueue, &hdev->cmd_work);
1419 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1420 bdaddr_t *bdaddr)
1422 struct oob_data *data;
1424 list_for_each_entry(data, &hdev->remote_oob_data, list)
1425 if (bacmp(bdaddr, &data->bdaddr) == 0)
1426 return data;
1428 return NULL;
1431 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1433 struct oob_data *data;
1435 data = hci_find_remote_oob_data(hdev, bdaddr);
1436 if (!data)
1437 return -ENOENT;
1439 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1441 list_del(&data->list);
1442 kfree(data);
1444 return 0;
1447 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1449 struct oob_data *data, *n;
1451 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1452 list_del(&data->list);
1453 kfree(data);
1456 return 0;
1459 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1460 u8 *randomizer)
1462 struct oob_data *data;
1464 data = hci_find_remote_oob_data(hdev, bdaddr);
1466 if (!data) {
1467 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1468 if (!data)
1469 return -ENOMEM;
1471 bacpy(&data->bdaddr, bdaddr);
1472 list_add(&data->list, &hdev->remote_oob_data);
1475 memcpy(data->hash, hash, sizeof(data->hash));
1476 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1478 BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1480 return 0;
1483 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
1485 struct bdaddr_list *b;
1487 list_for_each_entry(b, &hdev->blacklist, list)
1488 if (bacmp(bdaddr, &b->bdaddr) == 0)
1489 return b;
1491 return NULL;
1494 int hci_blacklist_clear(struct hci_dev *hdev)
1496 struct list_head *p, *n;
1498 list_for_each_safe(p, n, &hdev->blacklist) {
1499 struct bdaddr_list *b;
1501 b = list_entry(p, struct bdaddr_list, list);
1503 list_del(p);
1504 kfree(b);
1507 return 0;
1510 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1512 struct bdaddr_list *entry;
1514 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1515 return -EBADF;
1517 if (hci_blacklist_lookup(hdev, bdaddr))
1518 return -EEXIST;
1520 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1521 if (!entry)
1522 return -ENOMEM;
1524 bacpy(&entry->bdaddr, bdaddr);
1526 list_add(&entry->list, &hdev->blacklist);
1528 return mgmt_device_blocked(hdev, bdaddr, type);
1531 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1533 struct bdaddr_list *entry;
1535 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1536 return hci_blacklist_clear(hdev);
1538 entry = hci_blacklist_lookup(hdev, bdaddr);
1539 if (!entry)
1540 return -ENOENT;
1542 list_del(&entry->list);
1543 kfree(entry);
1545 return mgmt_device_unblocked(hdev, bdaddr, type);
1548 static void hci_clear_adv_cache(struct work_struct *work)
1550 struct hci_dev *hdev = container_of(work, struct hci_dev,
1551 adv_work.work);
1553 hci_dev_lock(hdev);
1555 hci_adv_entries_clear(hdev);
1557 hci_dev_unlock(hdev);
1560 int hci_adv_entries_clear(struct hci_dev *hdev)
1562 struct adv_entry *entry, *tmp;
1564 list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1565 list_del(&entry->list);
1566 kfree(entry);
1569 BT_DBG("%s adv cache cleared", hdev->name);
1571 return 0;
1574 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1576 struct adv_entry *entry;
1578 list_for_each_entry(entry, &hdev->adv_entries, list)
1579 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1580 return entry;
1582 return NULL;
1585 static inline int is_connectable_adv(u8 evt_type)
1587 if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1588 return 1;
1590 return 0;
1593 int hci_add_adv_entry(struct hci_dev *hdev,
1594 struct hci_ev_le_advertising_info *ev) { struct adv_entry *entry; if (!is_connectable_adv(ev->evt_type))
1595 return -EINVAL;
1597 /* Only new entries should be added to adv_entries. So, if
1598 * bdaddr was found, don't add it. */
1599 if (hci_find_adv_entry(hdev, &ev->bdaddr))
1600 return 0;
1602 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1603 if (!entry)
1604 return -ENOMEM;
1606 bacpy(&entry->bdaddr, &ev->bdaddr);
1607 entry->bdaddr_type = ev->bdaddr_type;
1609 list_add(&entry->list, &hdev->adv_entries);
1611 BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1612 batostr(&entry->bdaddr), entry->bdaddr_type);
1614 return 0;
1617 static void le_scan_param_req(struct hci_dev *hdev, unsigned long opt)
1619 struct le_scan_params *param = (struct le_scan_params *) opt;
1620 struct hci_cp_le_set_scan_param cp;
1622 memset(&cp, 0, sizeof(cp));
1623 cp.type = param->type;
1624 cp.interval = cpu_to_le16(param->interval);
1625 cp.window = cpu_to_le16(param->window);
1627 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_PARAM, sizeof(cp), &cp);
1630 static void le_scan_enable_req(struct hci_dev *hdev, unsigned long opt)
1632 struct hci_cp_le_set_scan_enable cp;
1634 memset(&cp, 0, sizeof(cp));
1635 cp.enable = 1;
1637 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1640 static int hci_do_le_scan(struct hci_dev *hdev, u8 type, u16 interval,
1641 u16 window, int timeout)
1643 long timeo = msecs_to_jiffies(3000);
1644 struct le_scan_params param;
1645 int err;
1647 BT_DBG("%s", hdev->name);
1649 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
1650 return -EINPROGRESS;
1652 param.type = type;
1653 param.interval = interval;
1654 param.window = window;
1656 hci_req_lock(hdev);
1658 err = __hci_request(hdev, le_scan_param_req, (unsigned long) &param,
1659 timeo);
1660 if (!err)
1661 err = __hci_request(hdev, le_scan_enable_req, 0, timeo);
1663 hci_req_unlock(hdev);
1665 if (err < 0)
1666 return err;
1668 schedule_delayed_work(&hdev->le_scan_disable,
1669 msecs_to_jiffies(timeout));
1671 return 0;
1674 static void le_scan_disable_work(struct work_struct *work)
1676 struct hci_dev *hdev = container_of(work, struct hci_dev,
1677 le_scan_disable.work);
1678 struct hci_cp_le_set_scan_enable cp;
1680 BT_DBG("%s", hdev->name);
1682 memset(&cp, 0, sizeof(cp));
1684 hci_send_cmd(hdev, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1687 static void le_scan_work(struct work_struct *work)
1689 struct hci_dev *hdev = container_of(work, struct hci_dev, le_scan);
1690 struct le_scan_params *param = &hdev->le_scan_params;
1692 BT_DBG("%s", hdev->name);
1694 hci_do_le_scan(hdev, param->type, param->interval, param->window,
1695 param->timeout);
1698 int hci_le_scan(struct hci_dev *hdev, u8 type, u16 interval, u16 window,
1699 int timeout)
1701 struct le_scan_params *param = &hdev->le_scan_params;
1703 BT_DBG("%s", hdev->name);
1705 if (work_busy(&hdev->le_scan))
1706 return -EINPROGRESS;
1708 param->type = type;
1709 param->interval = interval;
1710 param->window = window;
1711 param->timeout = timeout;
1713 queue_work(system_long_wq, &hdev->le_scan);
1715 return 0;
1718 /* Register HCI device */
1719 int hci_register_dev(struct hci_dev *hdev)
1721 struct list_head *head = &hci_dev_list, *p;
1722 int i, id, error;
1724 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1726 if (!hdev->open || !hdev->close)
1727 return -EINVAL;
1729 /* Do not allow HCI_AMP devices to register at index 0,
1730 * so the index can be used as the AMP controller ID.
1732 id = (hdev->dev_type == HCI_BREDR) ? 0 : 1;
1734 write_lock(&hci_dev_list_lock);
1736 /* Find first available device id */
1737 list_for_each(p, &hci_dev_list) {
1738 if (list_entry(p, struct hci_dev, list)->id != id)
1739 break;
1740 head = p; id++;
1743 sprintf(hdev->name, "hci%d", id);
1744 hdev->id = id;
1745 list_add_tail(&hdev->list, head);
1747 mutex_init(&hdev->lock);
1749 hdev->flags = 0;
1750 hdev->dev_flags = 0;
1751 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1752 hdev->esco_type = (ESCO_HV1);
1753 hdev->link_mode = (HCI_LM_ACCEPT);
1754 hdev->io_capability = 0x03; /* No Input No Output */
1756 hdev->idle_timeout = 0;
1757 hdev->sniff_max_interval = 800;
1758 hdev->sniff_min_interval = 80;
1760 INIT_WORK(&hdev->rx_work, hci_rx_work);
1761 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
1762 INIT_WORK(&hdev->tx_work, hci_tx_work);
1765 skb_queue_head_init(&hdev->rx_q);
1766 skb_queue_head_init(&hdev->cmd_q);
1767 skb_queue_head_init(&hdev->raw_q);
1769 setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1771 for (i = 0; i < NUM_REASSEMBLY; i++)
1772 hdev->reassembly[i] = NULL;
1774 init_waitqueue_head(&hdev->req_wait_q);
1775 mutex_init(&hdev->req_lock);
1777 discovery_init(hdev);
1779 hci_conn_hash_init(hdev);
1781 INIT_LIST_HEAD(&hdev->mgmt_pending);
1783 INIT_LIST_HEAD(&hdev->blacklist);
1785 INIT_LIST_HEAD(&hdev->uuids);
1787 INIT_LIST_HEAD(&hdev->link_keys);
1788 INIT_LIST_HEAD(&hdev->long_term_keys);
1790 INIT_LIST_HEAD(&hdev->remote_oob_data);
1792 INIT_LIST_HEAD(&hdev->adv_entries);
1794 INIT_DELAYED_WORK(&hdev->adv_work, hci_clear_adv_cache);
1795 INIT_WORK(&hdev->power_on, hci_power_on);
1796 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
1798 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
1800 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1802 atomic_set(&hdev->promisc, 0);
1804 INIT_WORK(&hdev->le_scan, le_scan_work);
1806 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
1808 write_unlock(&hci_dev_list_lock);
1810 hdev->workqueue = alloc_workqueue(hdev->name, WQ_HIGHPRI | WQ_UNBOUND |
1811 WQ_MEM_RECLAIM, 1);
1812 if (!hdev->workqueue) {
1813 error = -ENOMEM;
1814 goto err;
1817 error = hci_add_sysfs(hdev);
1818 if (error < 0)
1819 goto err_wqueue;
1821 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1822 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1823 if (hdev->rfkill) {
1824 if (rfkill_register(hdev->rfkill) < 0) {
1825 rfkill_destroy(hdev->rfkill);
1826 hdev->rfkill = NULL;
1830 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
1831 set_bit(HCI_SETUP, &hdev->dev_flags);
1832 schedule_work(&hdev->power_on);
1834 hci_notify(hdev, HCI_DEV_REG);
1835 hci_dev_hold(hdev);
1837 return id;
1839 err_wqueue:
1840 destroy_workqueue(hdev->workqueue);
1841 err:
1842 write_lock(&hci_dev_list_lock);
1843 list_del(&hdev->list);
1844 write_unlock(&hci_dev_list_lock);
1846 return error;
1848 EXPORT_SYMBOL(hci_register_dev);
1850 /* Unregister HCI device */
1851 void hci_unregister_dev(struct hci_dev *hdev)
1853 int i;
1855 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1857 set_bit(HCI_UNREGISTER, &hdev->dev_flags);
1859 write_lock(&hci_dev_list_lock);
1860 list_del(&hdev->list);
1861 write_unlock(&hci_dev_list_lock);
1863 hci_dev_do_close(hdev);
1865 for (i = 0; i < NUM_REASSEMBLY; i++)
1866 kfree_skb(hdev->reassembly[i]);
1868 if (!test_bit(HCI_INIT, &hdev->flags) &&
1869 !test_bit(HCI_SETUP, &hdev->dev_flags)) {
1870 hci_dev_lock(hdev);
1871 mgmt_index_removed(hdev);
1872 hci_dev_unlock(hdev);
1875 /* mgmt_index_removed should take care of emptying the
1876 * pending list */
1877 BUG_ON(!list_empty(&hdev->mgmt_pending));
1879 hci_notify(hdev, HCI_DEV_UNREG);
1881 if (hdev->rfkill) {
1882 rfkill_unregister(hdev->rfkill);
1883 rfkill_destroy(hdev->rfkill);
1886 hci_del_sysfs(hdev);
1888 cancel_delayed_work_sync(&hdev->adv_work);
1890 destroy_workqueue(hdev->workqueue);
1892 hci_dev_lock(hdev);
1893 hci_blacklist_clear(hdev);
1894 hci_uuids_clear(hdev);
1895 hci_link_keys_clear(hdev);
1896 hci_smp_ltks_clear(hdev);
1897 hci_remote_oob_data_clear(hdev);
1898 hci_adv_entries_clear(hdev);
1899 hci_dev_unlock(hdev);
1901 hci_dev_put(hdev);
1903 EXPORT_SYMBOL(hci_unregister_dev);
1905 /* Suspend HCI device */
1906 int hci_suspend_dev(struct hci_dev *hdev)
1908 hci_notify(hdev, HCI_DEV_SUSPEND);
1909 return 0;
1911 EXPORT_SYMBOL(hci_suspend_dev);
1913 /* Resume HCI device */
1914 int hci_resume_dev(struct hci_dev *hdev)
1916 hci_notify(hdev, HCI_DEV_RESUME);
1917 return 0;
1919 EXPORT_SYMBOL(hci_resume_dev);
1921 /* Receive frame from HCI drivers */
1922 int hci_recv_frame(struct sk_buff *skb)
1924 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1925 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1926 && !test_bit(HCI_INIT, &hdev->flags))) {
1927 kfree_skb(skb);
1928 return -ENXIO;
1931 /* Incomming skb */
1932 bt_cb(skb)->incoming = 1;
1934 /* Time stamp */
1935 __net_timestamp(skb);
1937 skb_queue_tail(&hdev->rx_q, skb);
1938 queue_work(hdev->workqueue, &hdev->rx_work);
1940 return 0;
1942 EXPORT_SYMBOL(hci_recv_frame);
1944 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1945 int count, __u8 index)
1947 int len = 0;
1948 int hlen = 0;
1949 int remain = count;
1950 struct sk_buff *skb;
1951 struct bt_skb_cb *scb;
1953 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1954 index >= NUM_REASSEMBLY)
1955 return -EILSEQ;
1957 skb = hdev->reassembly[index];
1959 if (!skb) {
1960 switch (type) {
1961 case HCI_ACLDATA_PKT:
1962 len = HCI_MAX_FRAME_SIZE;
1963 hlen = HCI_ACL_HDR_SIZE;
1964 break;
1965 case HCI_EVENT_PKT:
1966 len = HCI_MAX_EVENT_SIZE;
1967 hlen = HCI_EVENT_HDR_SIZE;
1968 break;
1969 case HCI_SCODATA_PKT:
1970 len = HCI_MAX_SCO_SIZE;
1971 hlen = HCI_SCO_HDR_SIZE;
1972 break;
1975 skb = bt_skb_alloc(len, GFP_ATOMIC);
1976 if (!skb)
1977 return -ENOMEM;
1979 scb = (void *) skb->cb;
1980 scb->expect = hlen;
1981 scb->pkt_type = type;
1983 skb->dev = (void *) hdev;
1984 hdev->reassembly[index] = skb;
1987 while (count) {
1988 scb = (void *) skb->cb;
1989 len = min_t(uint, scb->expect, count);
1991 memcpy(skb_put(skb, len), data, len);
1993 count -= len;
1994 data += len;
1995 scb->expect -= len;
1996 remain = count;
1998 switch (type) {
1999 case HCI_EVENT_PKT:
2000 if (skb->len == HCI_EVENT_HDR_SIZE) {
2001 struct hci_event_hdr *h = hci_event_hdr(skb);
2002 scb->expect = h->plen;
2004 if (skb_tailroom(skb) < scb->expect) {
2005 kfree_skb(skb);
2006 hdev->reassembly[index] = NULL;
2007 return -ENOMEM;
2010 break;
2012 case HCI_ACLDATA_PKT:
2013 if (skb->len == HCI_ACL_HDR_SIZE) {
2014 struct hci_acl_hdr *h = hci_acl_hdr(skb);
2015 scb->expect = __le16_to_cpu(h->dlen);
2017 if (skb_tailroom(skb) < scb->expect) {
2018 kfree_skb(skb);
2019 hdev->reassembly[index] = NULL;
2020 return -ENOMEM;
2023 break;
2025 case HCI_SCODATA_PKT:
2026 if (skb->len == HCI_SCO_HDR_SIZE) {
2027 struct hci_sco_hdr *h = hci_sco_hdr(skb);
2028 scb->expect = h->dlen;
2030 if (skb_tailroom(skb) < scb->expect) {
2031 kfree_skb(skb);
2032 hdev->reassembly[index] = NULL;
2033 return -ENOMEM;
2036 break;
2039 if (scb->expect == 0) {
2040 /* Complete frame */
2042 bt_cb(skb)->pkt_type = type;
2043 hci_recv_frame(skb);
2045 hdev->reassembly[index] = NULL;
2046 return remain;
2050 return remain;
2053 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
2055 int rem = 0;
2057 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
2058 return -EILSEQ;
2060 while (count) {
2061 rem = hci_reassembly(hdev, type, data, count, type - 1);
2062 if (rem < 0)
2063 return rem;
2065 data += (count - rem);
2066 count = rem;
2069 return rem;
2071 EXPORT_SYMBOL(hci_recv_fragment);
2073 #define STREAM_REASSEMBLY 0
2075 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
2077 int type;
2078 int rem = 0;
2080 while (count) {
2081 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
2083 if (!skb) {
2084 struct { char type; } *pkt;
2086 /* Start of the frame */
2087 pkt = data;
2088 type = pkt->type;
2090 data++;
2091 count--;
2092 } else
2093 type = bt_cb(skb)->pkt_type;
2095 rem = hci_reassembly(hdev, type, data, count,
2096 STREAM_REASSEMBLY);
2097 if (rem < 0)
2098 return rem;
2100 data += (count - rem);
2101 count = rem;
2104 return rem;
2106 EXPORT_SYMBOL(hci_recv_stream_fragment);
2108 /* ---- Interface to upper protocols ---- */
2110 int hci_register_cb(struct hci_cb *cb)
2112 BT_DBG("%p name %s", cb, cb->name);
2114 write_lock(&hci_cb_list_lock);
2115 list_add(&cb->list, &hci_cb_list);
2116 write_unlock(&hci_cb_list_lock);
2118 return 0;
2120 EXPORT_SYMBOL(hci_register_cb);
2122 int hci_unregister_cb(struct hci_cb *cb)
2124 BT_DBG("%p name %s", cb, cb->name);
2126 write_lock(&hci_cb_list_lock);
2127 list_del(&cb->list);
2128 write_unlock(&hci_cb_list_lock);
2130 return 0;
2132 EXPORT_SYMBOL(hci_unregister_cb);
2134 static int hci_send_frame(struct sk_buff *skb)
2136 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2138 if (!hdev) {
2139 kfree_skb(skb);
2140 return -ENODEV;
2143 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
2145 /* Time stamp */
2146 __net_timestamp(skb);
2148 /* Send copy to monitor */
2149 hci_send_to_monitor(hdev, skb);
2151 if (atomic_read(&hdev->promisc)) {
2152 /* Send copy to the sockets */
2153 hci_send_to_sock(hdev, skb);
2156 /* Get rid of skb owner, prior to sending to the driver. */
2157 skb_orphan(skb);
2159 return hdev->send(skb);
2162 /* Send HCI command */
2163 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
2165 int len = HCI_COMMAND_HDR_SIZE + plen;
2166 struct hci_command_hdr *hdr;
2167 struct sk_buff *skb;
2169 BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
2171 skb = bt_skb_alloc(len, GFP_ATOMIC);
2172 if (!skb) {
2173 BT_ERR("%s no memory for command", hdev->name);
2174 return -ENOMEM;
2177 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2178 hdr->opcode = cpu_to_le16(opcode);
2179 hdr->plen = plen;
2181 if (plen)
2182 memcpy(skb_put(skb, plen), param, plen);
2184 BT_DBG("skb len %d", skb->len);
2186 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2187 skb->dev = (void *) hdev;
2189 if (test_bit(HCI_INIT, &hdev->flags))
2190 hdev->init_last_cmd = opcode;
2192 skb_queue_tail(&hdev->cmd_q, skb);
2193 queue_work(hdev->workqueue, &hdev->cmd_work);
2195 return 0;
2198 /* Get data from the previously sent command */
2199 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2201 struct hci_command_hdr *hdr;
2203 if (!hdev->sent_cmd)
2204 return NULL;
2206 hdr = (void *) hdev->sent_cmd->data;
2208 if (hdr->opcode != cpu_to_le16(opcode))
2209 return NULL;
2211 BT_DBG("%s opcode 0x%x", hdev->name, opcode);
2213 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2216 /* Send ACL data */
2217 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2219 struct hci_acl_hdr *hdr;
2220 int len = skb->len;
2222 skb_push(skb, HCI_ACL_HDR_SIZE);
2223 skb_reset_transport_header(skb);
2224 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2225 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2226 hdr->dlen = cpu_to_le16(len);
2229 static void hci_queue_acl(struct hci_conn *conn, struct sk_buff_head *queue,
2230 struct sk_buff *skb, __u16 flags)
2232 struct hci_dev *hdev = conn->hdev;
2233 struct sk_buff *list;
2235 list = skb_shinfo(skb)->frag_list;
2236 if (!list) {
2237 /* Non fragmented */
2238 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2240 skb_queue_tail(queue, skb);
2241 } else {
2242 /* Fragmented */
2243 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2245 skb_shinfo(skb)->frag_list = NULL;
2247 /* Queue all fragments atomically */
2248 spin_lock(&queue->lock);
2250 __skb_queue_tail(queue, skb);
2252 flags &= ~ACL_START;
2253 flags |= ACL_CONT;
2254 do {
2255 skb = list; list = list->next;
2257 skb->dev = (void *) hdev;
2258 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2259 hci_add_acl_hdr(skb, conn->handle, flags);
2261 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2263 __skb_queue_tail(queue, skb);
2264 } while (list);
2266 spin_unlock(&queue->lock);
2270 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2272 struct hci_conn *conn = chan->conn;
2273 struct hci_dev *hdev = conn->hdev;
2275 BT_DBG("%s chan %p flags 0x%x", hdev->name, chan, flags);
2277 skb->dev = (void *) hdev;
2278 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2279 hci_add_acl_hdr(skb, conn->handle, flags);
2281 hci_queue_acl(conn, &chan->data_q, skb, flags);
2283 queue_work(hdev->workqueue, &hdev->tx_work);
2285 EXPORT_SYMBOL(hci_send_acl);
2287 /* Send SCO data */
2288 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2290 struct hci_dev *hdev = conn->hdev;
2291 struct hci_sco_hdr hdr;
2293 BT_DBG("%s len %d", hdev->name, skb->len);
2295 hdr.handle = cpu_to_le16(conn->handle);
2296 hdr.dlen = skb->len;
2298 skb_push(skb, HCI_SCO_HDR_SIZE);
2299 skb_reset_transport_header(skb);
2300 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2302 skb->dev = (void *) hdev;
2303 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2305 skb_queue_tail(&conn->data_q, skb);
2306 queue_work(hdev->workqueue, &hdev->tx_work);
2308 EXPORT_SYMBOL(hci_send_sco);
2310 /* ---- HCI TX task (outgoing data) ---- */
2312 /* HCI Connection scheduler */
2313 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2315 struct hci_conn_hash *h = &hdev->conn_hash;
2316 struct hci_conn *conn = NULL, *c;
2317 int num = 0, min = ~0;
2319 /* We don't have to lock device here. Connections are always
2320 * added and removed with TX task disabled. */
2322 rcu_read_lock();
2324 list_for_each_entry_rcu(c, &h->list, list) {
2325 if (c->type != type || skb_queue_empty(&c->data_q))
2326 continue;
2328 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2329 continue;
2331 num++;
2333 if (c->sent < min) {
2334 min = c->sent;
2335 conn = c;
2338 if (hci_conn_num(hdev, type) == num)
2339 break;
2342 rcu_read_unlock();
2344 if (conn) {
2345 int cnt, q;
2347 switch (conn->type) {
2348 case ACL_LINK:
2349 cnt = hdev->acl_cnt;
2350 break;
2351 case SCO_LINK:
2352 case ESCO_LINK:
2353 cnt = hdev->sco_cnt;
2354 break;
2355 case LE_LINK:
2356 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2357 break;
2358 default:
2359 cnt = 0;
2360 BT_ERR("Unknown link type");
2363 q = cnt / num;
2364 *quote = q ? q : 1;
2365 } else
2366 *quote = 0;
2368 BT_DBG("conn %p quote %d", conn, *quote);
2369 return conn;
2372 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2374 struct hci_conn_hash *h = &hdev->conn_hash;
2375 struct hci_conn *c;
2377 BT_ERR("%s link tx timeout", hdev->name);
2379 rcu_read_lock();
2381 /* Kill stalled connections */
2382 list_for_each_entry_rcu(c, &h->list, list) {
2383 if (c->type == type && c->sent) {
2384 BT_ERR("%s killing stalled connection %s",
2385 hdev->name, batostr(&c->dst));
2386 hci_acl_disconn(c, 0x13);
2390 rcu_read_unlock();
2393 static inline struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2394 int *quote)
2396 struct hci_conn_hash *h = &hdev->conn_hash;
2397 struct hci_chan *chan = NULL;
2398 int num = 0, min = ~0, cur_prio = 0;
2399 struct hci_conn *conn;
2400 int cnt, q, conn_num = 0;
2402 BT_DBG("%s", hdev->name);
2404 rcu_read_lock();
2406 list_for_each_entry_rcu(conn, &h->list, list) {
2407 struct hci_chan *tmp;
2409 if (conn->type != type)
2410 continue;
2412 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2413 continue;
2415 conn_num++;
2417 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2418 struct sk_buff *skb;
2420 if (skb_queue_empty(&tmp->data_q))
2421 continue;
2423 skb = skb_peek(&tmp->data_q);
2424 if (skb->priority < cur_prio)
2425 continue;
2427 if (skb->priority > cur_prio) {
2428 num = 0;
2429 min = ~0;
2430 cur_prio = skb->priority;
2433 num++;
2435 if (conn->sent < min) {
2436 min = conn->sent;
2437 chan = tmp;
2441 if (hci_conn_num(hdev, type) == conn_num)
2442 break;
2445 rcu_read_unlock();
2447 if (!chan)
2448 return NULL;
2450 switch (chan->conn->type) {
2451 case ACL_LINK:
2452 cnt = hdev->acl_cnt;
2453 break;
2454 case SCO_LINK:
2455 case ESCO_LINK:
2456 cnt = hdev->sco_cnt;
2457 break;
2458 case LE_LINK:
2459 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2460 break;
2461 default:
2462 cnt = 0;
2463 BT_ERR("Unknown link type");
2466 q = cnt / num;
2467 *quote = q ? q : 1;
2468 BT_DBG("chan %p quote %d", chan, *quote);
2469 return chan;
2472 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2474 struct hci_conn_hash *h = &hdev->conn_hash;
2475 struct hci_conn *conn;
2476 int num = 0;
2478 BT_DBG("%s", hdev->name);
2480 rcu_read_lock();
2482 list_for_each_entry_rcu(conn, &h->list, list) {
2483 struct hci_chan *chan;
2485 if (conn->type != type)
2486 continue;
2488 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2489 continue;
2491 num++;
2493 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
2494 struct sk_buff *skb;
2496 if (chan->sent) {
2497 chan->sent = 0;
2498 continue;
2501 if (skb_queue_empty(&chan->data_q))
2502 continue;
2504 skb = skb_peek(&chan->data_q);
2505 if (skb->priority >= HCI_PRIO_MAX - 1)
2506 continue;
2508 skb->priority = HCI_PRIO_MAX - 1;
2510 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
2511 skb->priority);
2514 if (hci_conn_num(hdev, type) == num)
2515 break;
2518 rcu_read_unlock();
2522 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
2524 /* Calculate count of blocks used by this packet */
2525 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
2528 static inline void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
2530 if (!test_bit(HCI_RAW, &hdev->flags)) {
2531 /* ACL tx timeout must be longer than maximum
2532 * link supervision timeout (40.9 seconds) */
2533 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
2534 msecs_to_jiffies(HCI_ACL_TX_TIMEOUT)))
2535 hci_link_tx_to(hdev, ACL_LINK);
2539 static inline void hci_sched_acl_pkt(struct hci_dev *hdev)
2541 unsigned int cnt = hdev->acl_cnt;
2542 struct hci_chan *chan;
2543 struct sk_buff *skb;
2544 int quote;
2546 __check_timeout(hdev, cnt);
2548 while (hdev->acl_cnt &&
2549 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2550 u32 priority = (skb_peek(&chan->data_q))->priority;
2551 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2552 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2553 skb->len, skb->priority);
2555 /* Stop if priority has changed */
2556 if (skb->priority < priority)
2557 break;
2559 skb = skb_dequeue(&chan->data_q);
2561 hci_conn_enter_active_mode(chan->conn,
2562 bt_cb(skb)->force_active);
2564 hci_send_frame(skb);
2565 hdev->acl_last_tx = jiffies;
2567 hdev->acl_cnt--;
2568 chan->sent++;
2569 chan->conn->sent++;
2573 if (cnt != hdev->acl_cnt)
2574 hci_prio_recalculate(hdev, ACL_LINK);
2577 static inline void hci_sched_acl_blk(struct hci_dev *hdev)
2579 unsigned int cnt = hdev->block_cnt;
2580 struct hci_chan *chan;
2581 struct sk_buff *skb;
2582 int quote;
2584 __check_timeout(hdev, cnt);
2586 while (hdev->block_cnt > 0 &&
2587 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
2588 u32 priority = (skb_peek(&chan->data_q))->priority;
2589 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
2590 int blocks;
2592 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2593 skb->len, skb->priority);
2595 /* Stop if priority has changed */
2596 if (skb->priority < priority)
2597 break;
2599 skb = skb_dequeue(&chan->data_q);
2601 blocks = __get_blocks(hdev, skb);
2602 if (blocks > hdev->block_cnt)
2603 return;
2605 hci_conn_enter_active_mode(chan->conn,
2606 bt_cb(skb)->force_active);
2608 hci_send_frame(skb);
2609 hdev->acl_last_tx = jiffies;
2611 hdev->block_cnt -= blocks;
2612 quote -= blocks;
2614 chan->sent += blocks;
2615 chan->conn->sent += blocks;
2619 if (cnt != hdev->block_cnt)
2620 hci_prio_recalculate(hdev, ACL_LINK);
2623 static inline void hci_sched_acl(struct hci_dev *hdev)
2625 BT_DBG("%s", hdev->name);
2627 if (!hci_conn_num(hdev, ACL_LINK))
2628 return;
2630 switch (hdev->flow_ctl_mode) {
2631 case HCI_FLOW_CTL_MODE_PACKET_BASED:
2632 hci_sched_acl_pkt(hdev);
2633 break;
2635 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
2636 hci_sched_acl_blk(hdev);
2637 break;
2641 /* Schedule SCO */
2642 static inline void hci_sched_sco(struct hci_dev *hdev)
2644 struct hci_conn *conn;
2645 struct sk_buff *skb;
2646 int quote;
2648 BT_DBG("%s", hdev->name);
2650 if (!hci_conn_num(hdev, SCO_LINK))
2651 return;
2653 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2654 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2655 BT_DBG("skb %p len %d", skb, skb->len);
2656 hci_send_frame(skb);
2658 conn->sent++;
2659 if (conn->sent == ~0)
2660 conn->sent = 0;
2665 static inline void hci_sched_esco(struct hci_dev *hdev)
2667 struct hci_conn *conn;
2668 struct sk_buff *skb;
2669 int quote;
2671 BT_DBG("%s", hdev->name);
2673 if (!hci_conn_num(hdev, ESCO_LINK))
2674 return;
2676 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2677 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2678 BT_DBG("skb %p len %d", skb, skb->len);
2679 hci_send_frame(skb);
2681 conn->sent++;
2682 if (conn->sent == ~0)
2683 conn->sent = 0;
2688 static inline void hci_sched_le(struct hci_dev *hdev)
2690 struct hci_chan *chan;
2691 struct sk_buff *skb;
2692 int quote, cnt, tmp;
2694 BT_DBG("%s", hdev->name);
2696 if (!hci_conn_num(hdev, LE_LINK))
2697 return;
2699 if (!test_bit(HCI_RAW, &hdev->flags)) {
2700 /* LE tx timeout must be longer than maximum
2701 * link supervision timeout (40.9 seconds) */
2702 if (!hdev->le_cnt && hdev->le_pkts &&
2703 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2704 hci_link_tx_to(hdev, LE_LINK);
2707 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2708 tmp = cnt;
2709 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
2710 u32 priority = (skb_peek(&chan->data_q))->priority;
2711 while (quote-- && (skb = skb_peek(&chan->data_q))) {
2712 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
2713 skb->len, skb->priority);
2715 /* Stop if priority has changed */
2716 if (skb->priority < priority)
2717 break;
2719 skb = skb_dequeue(&chan->data_q);
2721 hci_send_frame(skb);
2722 hdev->le_last_tx = jiffies;
2724 cnt--;
2725 chan->sent++;
2726 chan->conn->sent++;
2730 if (hdev->le_pkts)
2731 hdev->le_cnt = cnt;
2732 else
2733 hdev->acl_cnt = cnt;
2735 if (cnt != tmp)
2736 hci_prio_recalculate(hdev, LE_LINK);
2739 static void hci_tx_work(struct work_struct *work)
2741 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
2742 struct sk_buff *skb;
2744 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2745 hdev->sco_cnt, hdev->le_cnt);
2747 /* Schedule queues and send stuff to HCI driver */
2749 hci_sched_acl(hdev);
2751 hci_sched_sco(hdev);
2753 hci_sched_esco(hdev);
2755 hci_sched_le(hdev);
2757 /* Send next queued raw (unknown type) packet */
2758 while ((skb = skb_dequeue(&hdev->raw_q)))
2759 hci_send_frame(skb);
2762 /* ----- HCI RX task (incoming data processing) ----- */
2764 /* ACL data packet */
2765 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2767 struct hci_acl_hdr *hdr = (void *) skb->data;
2768 struct hci_conn *conn;
2769 __u16 handle, flags;
2771 skb_pull(skb, HCI_ACL_HDR_SIZE);
2773 handle = __le16_to_cpu(hdr->handle);
2774 flags = hci_flags(handle);
2775 handle = hci_handle(handle);
2777 BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2779 hdev->stat.acl_rx++;
2781 hci_dev_lock(hdev);
2782 conn = hci_conn_hash_lookup_handle(hdev, handle);
2783 hci_dev_unlock(hdev);
2785 if (conn) {
2786 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
2788 /* Send to upper protocol */
2789 l2cap_recv_acldata(conn, skb, flags);
2790 return;
2791 } else {
2792 BT_ERR("%s ACL packet for unknown connection handle %d",
2793 hdev->name, handle);
2796 kfree_skb(skb);
2799 /* SCO data packet */
2800 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2802 struct hci_sco_hdr *hdr = (void *) skb->data;
2803 struct hci_conn *conn;
2804 __u16 handle;
2806 skb_pull(skb, HCI_SCO_HDR_SIZE);
2808 handle = __le16_to_cpu(hdr->handle);
2810 BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2812 hdev->stat.sco_rx++;
2814 hci_dev_lock(hdev);
2815 conn = hci_conn_hash_lookup_handle(hdev, handle);
2816 hci_dev_unlock(hdev);
2818 if (conn) {
2819 /* Send to upper protocol */
2820 sco_recv_scodata(conn, skb);
2821 return;
2822 } else {
2823 BT_ERR("%s SCO packet for unknown connection handle %d",
2824 hdev->name, handle);
2827 kfree_skb(skb);
2830 static void hci_rx_work(struct work_struct *work)
2832 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
2833 struct sk_buff *skb;
2835 BT_DBG("%s", hdev->name);
2837 while ((skb = skb_dequeue(&hdev->rx_q))) {
2838 /* Send copy to monitor */
2839 hci_send_to_monitor(hdev, skb);
2841 if (atomic_read(&hdev->promisc)) {
2842 /* Send copy to the sockets */
2843 hci_send_to_sock(hdev, skb);
2846 if (test_bit(HCI_RAW, &hdev->flags)) {
2847 kfree_skb(skb);
2848 continue;
2851 if (test_bit(HCI_INIT, &hdev->flags)) {
2852 /* Don't process data packets in this states. */
2853 switch (bt_cb(skb)->pkt_type) {
2854 case HCI_ACLDATA_PKT:
2855 case HCI_SCODATA_PKT:
2856 kfree_skb(skb);
2857 continue;
2861 /* Process frame */
2862 switch (bt_cb(skb)->pkt_type) {
2863 case HCI_EVENT_PKT:
2864 BT_DBG("%s Event packet", hdev->name);
2865 hci_event_packet(hdev, skb);
2866 break;
2868 case HCI_ACLDATA_PKT:
2869 BT_DBG("%s ACL data packet", hdev->name);
2870 hci_acldata_packet(hdev, skb);
2871 break;
2873 case HCI_SCODATA_PKT:
2874 BT_DBG("%s SCO data packet", hdev->name);
2875 hci_scodata_packet(hdev, skb);
2876 break;
2878 default:
2879 kfree_skb(skb);
2880 break;
2885 static void hci_cmd_work(struct work_struct *work)
2887 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
2888 struct sk_buff *skb;
2890 BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2892 /* Send queued commands */
2893 if (atomic_read(&hdev->cmd_cnt)) {
2894 skb = skb_dequeue(&hdev->cmd_q);
2895 if (!skb)
2896 return;
2898 kfree_skb(hdev->sent_cmd);
2900 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2901 if (hdev->sent_cmd) {
2902 atomic_dec(&hdev->cmd_cnt);
2903 hci_send_frame(skb);
2904 if (test_bit(HCI_RESET, &hdev->flags))
2905 del_timer(&hdev->cmd_timer);
2906 else
2907 mod_timer(&hdev->cmd_timer,
2908 jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2909 } else {
2910 skb_queue_head(&hdev->cmd_q, skb);
2911 queue_work(hdev->workqueue, &hdev->cmd_work);
2916 int hci_do_inquiry(struct hci_dev *hdev, u8 length)
2918 /* General inquiry access code (GIAC) */
2919 u8 lap[3] = { 0x33, 0x8b, 0x9e };
2920 struct hci_cp_inquiry cp;
2922 BT_DBG("%s", hdev->name);
2924 if (test_bit(HCI_INQUIRY, &hdev->flags))
2925 return -EINPROGRESS;
2927 inquiry_cache_flush(hdev);
2929 memset(&cp, 0, sizeof(cp));
2930 memcpy(&cp.lap, lap, sizeof(cp.lap));
2931 cp.length = length;
2933 return hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
2936 int hci_cancel_inquiry(struct hci_dev *hdev)
2938 BT_DBG("%s", hdev->name);
2940 if (!test_bit(HCI_INQUIRY, &hdev->flags))
2941 return -EPERM;
2943 return hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);