Staging: bcm: return -EFAULT on copy_to_user() errors
[linux-2.6/libata-dev.git] / fs / jbd2 / journal.c
blob0e8014ea6b94ad8985f1b0b842f2cea550578e67
1 /*
2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/jbd2.h>
49 #include <asm/uaccess.h>
50 #include <asm/page.h>
52 EXPORT_SYMBOL(jbd2_journal_extend);
53 EXPORT_SYMBOL(jbd2_journal_stop);
54 EXPORT_SYMBOL(jbd2_journal_lock_updates);
55 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
56 EXPORT_SYMBOL(jbd2_journal_get_write_access);
57 EXPORT_SYMBOL(jbd2_journal_get_create_access);
58 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
59 EXPORT_SYMBOL(jbd2_journal_set_triggers);
60 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
61 EXPORT_SYMBOL(jbd2_journal_release_buffer);
62 EXPORT_SYMBOL(jbd2_journal_forget);
63 #if 0
64 EXPORT_SYMBOL(journal_sync_buffer);
65 #endif
66 EXPORT_SYMBOL(jbd2_journal_flush);
67 EXPORT_SYMBOL(jbd2_journal_revoke);
69 EXPORT_SYMBOL(jbd2_journal_init_dev);
70 EXPORT_SYMBOL(jbd2_journal_init_inode);
71 EXPORT_SYMBOL(jbd2_journal_update_format);
72 EXPORT_SYMBOL(jbd2_journal_check_used_features);
73 EXPORT_SYMBOL(jbd2_journal_check_available_features);
74 EXPORT_SYMBOL(jbd2_journal_set_features);
75 EXPORT_SYMBOL(jbd2_journal_load);
76 EXPORT_SYMBOL(jbd2_journal_destroy);
77 EXPORT_SYMBOL(jbd2_journal_abort);
78 EXPORT_SYMBOL(jbd2_journal_errno);
79 EXPORT_SYMBOL(jbd2_journal_ack_err);
80 EXPORT_SYMBOL(jbd2_journal_clear_err);
81 EXPORT_SYMBOL(jbd2_log_wait_commit);
82 EXPORT_SYMBOL(jbd2_log_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_file_inode);
91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
96 static void __journal_abort_soft (journal_t *journal, int errno);
97 static int jbd2_journal_create_slab(size_t slab_size);
100 * Helper function used to manage commit timeouts
103 static void commit_timeout(unsigned long __data)
105 struct task_struct * p = (struct task_struct *) __data;
107 wake_up_process(p);
111 * kjournald2: The main thread function used to manage a logging device
112 * journal.
114 * This kernel thread is responsible for two things:
116 * 1) COMMIT: Every so often we need to commit the current state of the
117 * filesystem to disk. The journal thread is responsible for writing
118 * all of the metadata buffers to disk.
120 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
121 * of the data in that part of the log has been rewritten elsewhere on
122 * the disk. Flushing these old buffers to reclaim space in the log is
123 * known as checkpointing, and this thread is responsible for that job.
126 static int kjournald2(void *arg)
128 journal_t *journal = arg;
129 transaction_t *transaction;
132 * Set up an interval timer which can be used to trigger a commit wakeup
133 * after the commit interval expires
135 setup_timer(&journal->j_commit_timer, commit_timeout,
136 (unsigned long)current);
138 /* Record that the journal thread is running */
139 journal->j_task = current;
140 wake_up(&journal->j_wait_done_commit);
143 * And now, wait forever for commit wakeup events.
145 write_lock(&journal->j_state_lock);
147 loop:
148 if (journal->j_flags & JBD2_UNMOUNT)
149 goto end_loop;
151 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
152 journal->j_commit_sequence, journal->j_commit_request);
154 if (journal->j_commit_sequence != journal->j_commit_request) {
155 jbd_debug(1, "OK, requests differ\n");
156 write_unlock(&journal->j_state_lock);
157 del_timer_sync(&journal->j_commit_timer);
158 jbd2_journal_commit_transaction(journal);
159 write_lock(&journal->j_state_lock);
160 goto loop;
163 wake_up(&journal->j_wait_done_commit);
164 if (freezing(current)) {
166 * The simpler the better. Flushing journal isn't a
167 * good idea, because that depends on threads that may
168 * be already stopped.
170 jbd_debug(1, "Now suspending kjournald2\n");
171 write_unlock(&journal->j_state_lock);
172 refrigerator();
173 write_lock(&journal->j_state_lock);
174 } else {
176 * We assume on resume that commits are already there,
177 * so we don't sleep
179 DEFINE_WAIT(wait);
180 int should_sleep = 1;
182 prepare_to_wait(&journal->j_wait_commit, &wait,
183 TASK_INTERRUPTIBLE);
184 if (journal->j_commit_sequence != journal->j_commit_request)
185 should_sleep = 0;
186 transaction = journal->j_running_transaction;
187 if (transaction && time_after_eq(jiffies,
188 transaction->t_expires))
189 should_sleep = 0;
190 if (journal->j_flags & JBD2_UNMOUNT)
191 should_sleep = 0;
192 if (should_sleep) {
193 write_unlock(&journal->j_state_lock);
194 schedule();
195 write_lock(&journal->j_state_lock);
197 finish_wait(&journal->j_wait_commit, &wait);
200 jbd_debug(1, "kjournald2 wakes\n");
203 * Were we woken up by a commit wakeup event?
205 transaction = journal->j_running_transaction;
206 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
207 journal->j_commit_request = transaction->t_tid;
208 jbd_debug(1, "woke because of timeout\n");
210 goto loop;
212 end_loop:
213 write_unlock(&journal->j_state_lock);
214 del_timer_sync(&journal->j_commit_timer);
215 journal->j_task = NULL;
216 wake_up(&journal->j_wait_done_commit);
217 jbd_debug(1, "Journal thread exiting.\n");
218 return 0;
221 static int jbd2_journal_start_thread(journal_t *journal)
223 struct task_struct *t;
225 t = kthread_run(kjournald2, journal, "jbd2/%s",
226 journal->j_devname);
227 if (IS_ERR(t))
228 return PTR_ERR(t);
230 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
231 return 0;
234 static void journal_kill_thread(journal_t *journal)
236 write_lock(&journal->j_state_lock);
237 journal->j_flags |= JBD2_UNMOUNT;
239 while (journal->j_task) {
240 wake_up(&journal->j_wait_commit);
241 write_unlock(&journal->j_state_lock);
242 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
243 write_lock(&journal->j_state_lock);
245 write_unlock(&journal->j_state_lock);
249 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
251 * Writes a metadata buffer to a given disk block. The actual IO is not
252 * performed but a new buffer_head is constructed which labels the data
253 * to be written with the correct destination disk block.
255 * Any magic-number escaping which needs to be done will cause a
256 * copy-out here. If the buffer happens to start with the
257 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
258 * magic number is only written to the log for descripter blocks. In
259 * this case, we copy the data and replace the first word with 0, and we
260 * return a result code which indicates that this buffer needs to be
261 * marked as an escaped buffer in the corresponding log descriptor
262 * block. The missing word can then be restored when the block is read
263 * during recovery.
265 * If the source buffer has already been modified by a new transaction
266 * since we took the last commit snapshot, we use the frozen copy of
267 * that data for IO. If we end up using the existing buffer_head's data
268 * for the write, then we *have* to lock the buffer to prevent anyone
269 * else from using and possibly modifying it while the IO is in
270 * progress.
272 * The function returns a pointer to the buffer_heads to be used for IO.
274 * We assume that the journal has already been locked in this function.
276 * Return value:
277 * <0: Error
278 * >=0: Finished OK
280 * On success:
281 * Bit 0 set == escape performed on the data
282 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
285 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
286 struct journal_head *jh_in,
287 struct journal_head **jh_out,
288 unsigned long long blocknr)
290 int need_copy_out = 0;
291 int done_copy_out = 0;
292 int do_escape = 0;
293 char *mapped_data;
294 struct buffer_head *new_bh;
295 struct journal_head *new_jh;
296 struct page *new_page;
297 unsigned int new_offset;
298 struct buffer_head *bh_in = jh2bh(jh_in);
299 journal_t *journal = transaction->t_journal;
302 * The buffer really shouldn't be locked: only the current committing
303 * transaction is allowed to write it, so nobody else is allowed
304 * to do any IO.
306 * akpm: except if we're journalling data, and write() output is
307 * also part of a shared mapping, and another thread has
308 * decided to launch a writepage() against this buffer.
310 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
312 retry_alloc:
313 new_bh = alloc_buffer_head(GFP_NOFS);
314 if (!new_bh) {
316 * Failure is not an option, but __GFP_NOFAIL is going
317 * away; so we retry ourselves here.
319 congestion_wait(BLK_RW_ASYNC, HZ/50);
320 goto retry_alloc;
323 /* keep subsequent assertions sane */
324 new_bh->b_state = 0;
325 init_buffer(new_bh, NULL, NULL);
326 atomic_set(&new_bh->b_count, 1);
327 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
330 * If a new transaction has already done a buffer copy-out, then
331 * we use that version of the data for the commit.
333 jbd_lock_bh_state(bh_in);
334 repeat:
335 if (jh_in->b_frozen_data) {
336 done_copy_out = 1;
337 new_page = virt_to_page(jh_in->b_frozen_data);
338 new_offset = offset_in_page(jh_in->b_frozen_data);
339 } else {
340 new_page = jh2bh(jh_in)->b_page;
341 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
344 mapped_data = kmap_atomic(new_page, KM_USER0);
346 * Fire data frozen trigger if data already wasn't frozen. Do this
347 * before checking for escaping, as the trigger may modify the magic
348 * offset. If a copy-out happens afterwards, it will have the correct
349 * data in the buffer.
351 if (!done_copy_out)
352 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
353 jh_in->b_triggers);
356 * Check for escaping
358 if (*((__be32 *)(mapped_data + new_offset)) ==
359 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
360 need_copy_out = 1;
361 do_escape = 1;
363 kunmap_atomic(mapped_data, KM_USER0);
366 * Do we need to do a data copy?
368 if (need_copy_out && !done_copy_out) {
369 char *tmp;
371 jbd_unlock_bh_state(bh_in);
372 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
373 if (!tmp) {
374 jbd2_journal_put_journal_head(new_jh);
375 return -ENOMEM;
377 jbd_lock_bh_state(bh_in);
378 if (jh_in->b_frozen_data) {
379 jbd2_free(tmp, bh_in->b_size);
380 goto repeat;
383 jh_in->b_frozen_data = tmp;
384 mapped_data = kmap_atomic(new_page, KM_USER0);
385 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
386 kunmap_atomic(mapped_data, KM_USER0);
388 new_page = virt_to_page(tmp);
389 new_offset = offset_in_page(tmp);
390 done_copy_out = 1;
393 * This isn't strictly necessary, as we're using frozen
394 * data for the escaping, but it keeps consistency with
395 * b_frozen_data usage.
397 jh_in->b_frozen_triggers = jh_in->b_triggers;
401 * Did we need to do an escaping? Now we've done all the
402 * copying, we can finally do so.
404 if (do_escape) {
405 mapped_data = kmap_atomic(new_page, KM_USER0);
406 *((unsigned int *)(mapped_data + new_offset)) = 0;
407 kunmap_atomic(mapped_data, KM_USER0);
410 set_bh_page(new_bh, new_page, new_offset);
411 new_jh->b_transaction = NULL;
412 new_bh->b_size = jh2bh(jh_in)->b_size;
413 new_bh->b_bdev = transaction->t_journal->j_dev;
414 new_bh->b_blocknr = blocknr;
415 set_buffer_mapped(new_bh);
416 set_buffer_dirty(new_bh);
418 *jh_out = new_jh;
421 * The to-be-written buffer needs to get moved to the io queue,
422 * and the original buffer whose contents we are shadowing or
423 * copying is moved to the transaction's shadow queue.
425 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
426 spin_lock(&journal->j_list_lock);
427 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
428 spin_unlock(&journal->j_list_lock);
429 jbd_unlock_bh_state(bh_in);
431 JBUFFER_TRACE(new_jh, "file as BJ_IO");
432 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
434 return do_escape | (done_copy_out << 1);
438 * Allocation code for the journal file. Manage the space left in the
439 * journal, so that we can begin checkpointing when appropriate.
443 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
445 * Called with the journal already locked.
447 * Called under j_state_lock
450 int __jbd2_log_space_left(journal_t *journal)
452 int left = journal->j_free;
454 /* assert_spin_locked(&journal->j_state_lock); */
457 * Be pessimistic here about the number of those free blocks which
458 * might be required for log descriptor control blocks.
461 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
463 left -= MIN_LOG_RESERVED_BLOCKS;
465 if (left <= 0)
466 return 0;
467 left -= (left >> 3);
468 return left;
472 * Called under j_state_lock. Returns true if a transaction commit was started.
474 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
477 * Are we already doing a recent enough commit?
479 if (!tid_geq(journal->j_commit_request, target)) {
481 * We want a new commit: OK, mark the request and wakup the
482 * commit thread. We do _not_ do the commit ourselves.
485 journal->j_commit_request = target;
486 jbd_debug(1, "JBD: requesting commit %d/%d\n",
487 journal->j_commit_request,
488 journal->j_commit_sequence);
489 wake_up(&journal->j_wait_commit);
490 return 1;
492 return 0;
495 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
497 int ret;
499 write_lock(&journal->j_state_lock);
500 ret = __jbd2_log_start_commit(journal, tid);
501 write_unlock(&journal->j_state_lock);
502 return ret;
506 * Force and wait upon a commit if the calling process is not within
507 * transaction. This is used for forcing out undo-protected data which contains
508 * bitmaps, when the fs is running out of space.
510 * We can only force the running transaction if we don't have an active handle;
511 * otherwise, we will deadlock.
513 * Returns true if a transaction was started.
515 int jbd2_journal_force_commit_nested(journal_t *journal)
517 transaction_t *transaction = NULL;
518 tid_t tid;
520 read_lock(&journal->j_state_lock);
521 if (journal->j_running_transaction && !current->journal_info) {
522 transaction = journal->j_running_transaction;
523 __jbd2_log_start_commit(journal, transaction->t_tid);
524 } else if (journal->j_committing_transaction)
525 transaction = journal->j_committing_transaction;
527 if (!transaction) {
528 read_unlock(&journal->j_state_lock);
529 return 0; /* Nothing to retry */
532 tid = transaction->t_tid;
533 read_unlock(&journal->j_state_lock);
534 jbd2_log_wait_commit(journal, tid);
535 return 1;
539 * Start a commit of the current running transaction (if any). Returns true
540 * if a transaction is going to be committed (or is currently already
541 * committing), and fills its tid in at *ptid
543 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
545 int ret = 0;
547 write_lock(&journal->j_state_lock);
548 if (journal->j_running_transaction) {
549 tid_t tid = journal->j_running_transaction->t_tid;
551 __jbd2_log_start_commit(journal, tid);
552 /* There's a running transaction and we've just made sure
553 * it's commit has been scheduled. */
554 if (ptid)
555 *ptid = tid;
556 ret = 1;
557 } else if (journal->j_committing_transaction) {
559 * If ext3_write_super() recently started a commit, then we
560 * have to wait for completion of that transaction
562 if (ptid)
563 *ptid = journal->j_committing_transaction->t_tid;
564 ret = 1;
566 write_unlock(&journal->j_state_lock);
567 return ret;
571 * Wait for a specified commit to complete.
572 * The caller may not hold the journal lock.
574 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
576 int err = 0;
578 read_lock(&journal->j_state_lock);
579 #ifdef CONFIG_JBD2_DEBUG
580 if (!tid_geq(journal->j_commit_request, tid)) {
581 printk(KERN_EMERG
582 "%s: error: j_commit_request=%d, tid=%d\n",
583 __func__, journal->j_commit_request, tid);
585 #endif
586 while (tid_gt(tid, journal->j_commit_sequence)) {
587 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
588 tid, journal->j_commit_sequence);
589 wake_up(&journal->j_wait_commit);
590 read_unlock(&journal->j_state_lock);
591 wait_event(journal->j_wait_done_commit,
592 !tid_gt(tid, journal->j_commit_sequence));
593 read_lock(&journal->j_state_lock);
595 read_unlock(&journal->j_state_lock);
597 if (unlikely(is_journal_aborted(journal))) {
598 printk(KERN_EMERG "journal commit I/O error\n");
599 err = -EIO;
601 return err;
605 * Log buffer allocation routines:
608 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
610 unsigned long blocknr;
612 write_lock(&journal->j_state_lock);
613 J_ASSERT(journal->j_free > 1);
615 blocknr = journal->j_head;
616 journal->j_head++;
617 journal->j_free--;
618 if (journal->j_head == journal->j_last)
619 journal->j_head = journal->j_first;
620 write_unlock(&journal->j_state_lock);
621 return jbd2_journal_bmap(journal, blocknr, retp);
625 * Conversion of logical to physical block numbers for the journal
627 * On external journals the journal blocks are identity-mapped, so
628 * this is a no-op. If needed, we can use j_blk_offset - everything is
629 * ready.
631 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
632 unsigned long long *retp)
634 int err = 0;
635 unsigned long long ret;
637 if (journal->j_inode) {
638 ret = bmap(journal->j_inode, blocknr);
639 if (ret)
640 *retp = ret;
641 else {
642 printk(KERN_ALERT "%s: journal block not found "
643 "at offset %lu on %s\n",
644 __func__, blocknr, journal->j_devname);
645 err = -EIO;
646 __journal_abort_soft(journal, err);
648 } else {
649 *retp = blocknr; /* +journal->j_blk_offset */
651 return err;
655 * We play buffer_head aliasing tricks to write data/metadata blocks to
656 * the journal without copying their contents, but for journal
657 * descriptor blocks we do need to generate bona fide buffers.
659 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
660 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
661 * But we don't bother doing that, so there will be coherency problems with
662 * mmaps of blockdevs which hold live JBD-controlled filesystems.
664 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
666 struct buffer_head *bh;
667 unsigned long long blocknr;
668 int err;
670 err = jbd2_journal_next_log_block(journal, &blocknr);
672 if (err)
673 return NULL;
675 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
676 if (!bh)
677 return NULL;
678 lock_buffer(bh);
679 memset(bh->b_data, 0, journal->j_blocksize);
680 set_buffer_uptodate(bh);
681 unlock_buffer(bh);
682 BUFFER_TRACE(bh, "return this buffer");
683 return jbd2_journal_add_journal_head(bh);
686 struct jbd2_stats_proc_session {
687 journal_t *journal;
688 struct transaction_stats_s *stats;
689 int start;
690 int max;
693 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
695 return *pos ? NULL : SEQ_START_TOKEN;
698 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
700 return NULL;
703 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
705 struct jbd2_stats_proc_session *s = seq->private;
707 if (v != SEQ_START_TOKEN)
708 return 0;
709 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
710 s->stats->ts_tid,
711 s->journal->j_max_transaction_buffers);
712 if (s->stats->ts_tid == 0)
713 return 0;
714 seq_printf(seq, "average: \n %ums waiting for transaction\n",
715 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
716 seq_printf(seq, " %ums running transaction\n",
717 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
718 seq_printf(seq, " %ums transaction was being locked\n",
719 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
720 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
721 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
722 seq_printf(seq, " %ums logging transaction\n",
723 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
724 seq_printf(seq, " %lluus average transaction commit time\n",
725 div_u64(s->journal->j_average_commit_time, 1000));
726 seq_printf(seq, " %lu handles per transaction\n",
727 s->stats->run.rs_handle_count / s->stats->ts_tid);
728 seq_printf(seq, " %lu blocks per transaction\n",
729 s->stats->run.rs_blocks / s->stats->ts_tid);
730 seq_printf(seq, " %lu logged blocks per transaction\n",
731 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
732 return 0;
735 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
739 static const struct seq_operations jbd2_seq_info_ops = {
740 .start = jbd2_seq_info_start,
741 .next = jbd2_seq_info_next,
742 .stop = jbd2_seq_info_stop,
743 .show = jbd2_seq_info_show,
746 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
748 journal_t *journal = PDE(inode)->data;
749 struct jbd2_stats_proc_session *s;
750 int rc, size;
752 s = kmalloc(sizeof(*s), GFP_KERNEL);
753 if (s == NULL)
754 return -ENOMEM;
755 size = sizeof(struct transaction_stats_s);
756 s->stats = kmalloc(size, GFP_KERNEL);
757 if (s->stats == NULL) {
758 kfree(s);
759 return -ENOMEM;
761 spin_lock(&journal->j_history_lock);
762 memcpy(s->stats, &journal->j_stats, size);
763 s->journal = journal;
764 spin_unlock(&journal->j_history_lock);
766 rc = seq_open(file, &jbd2_seq_info_ops);
767 if (rc == 0) {
768 struct seq_file *m = file->private_data;
769 m->private = s;
770 } else {
771 kfree(s->stats);
772 kfree(s);
774 return rc;
778 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
780 struct seq_file *seq = file->private_data;
781 struct jbd2_stats_proc_session *s = seq->private;
782 kfree(s->stats);
783 kfree(s);
784 return seq_release(inode, file);
787 static const struct file_operations jbd2_seq_info_fops = {
788 .owner = THIS_MODULE,
789 .open = jbd2_seq_info_open,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = jbd2_seq_info_release,
795 static struct proc_dir_entry *proc_jbd2_stats;
797 static void jbd2_stats_proc_init(journal_t *journal)
799 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
800 if (journal->j_proc_entry) {
801 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
802 &jbd2_seq_info_fops, journal);
806 static void jbd2_stats_proc_exit(journal_t *journal)
808 remove_proc_entry("info", journal->j_proc_entry);
809 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
813 * Management for journal control blocks: functions to create and
814 * destroy journal_t structures, and to initialise and read existing
815 * journal blocks from disk. */
817 /* First: create and setup a journal_t object in memory. We initialise
818 * very few fields yet: that has to wait until we have created the
819 * journal structures from from scratch, or loaded them from disk. */
821 static journal_t * journal_init_common (void)
823 journal_t *journal;
824 int err;
826 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
827 if (!journal)
828 goto fail;
830 init_waitqueue_head(&journal->j_wait_transaction_locked);
831 init_waitqueue_head(&journal->j_wait_logspace);
832 init_waitqueue_head(&journal->j_wait_done_commit);
833 init_waitqueue_head(&journal->j_wait_checkpoint);
834 init_waitqueue_head(&journal->j_wait_commit);
835 init_waitqueue_head(&journal->j_wait_updates);
836 mutex_init(&journal->j_barrier);
837 mutex_init(&journal->j_checkpoint_mutex);
838 spin_lock_init(&journal->j_revoke_lock);
839 spin_lock_init(&journal->j_list_lock);
840 rwlock_init(&journal->j_state_lock);
842 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
843 journal->j_min_batch_time = 0;
844 journal->j_max_batch_time = 15000; /* 15ms */
846 /* The journal is marked for error until we succeed with recovery! */
847 journal->j_flags = JBD2_ABORT;
849 /* Set up a default-sized revoke table for the new mount. */
850 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
851 if (err) {
852 kfree(journal);
853 goto fail;
856 spin_lock_init(&journal->j_history_lock);
858 return journal;
859 fail:
860 return NULL;
863 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
865 * Create a journal structure assigned some fixed set of disk blocks to
866 * the journal. We don't actually touch those disk blocks yet, but we
867 * need to set up all of the mapping information to tell the journaling
868 * system where the journal blocks are.
873 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
874 * @bdev: Block device on which to create the journal
875 * @fs_dev: Device which hold journalled filesystem for this journal.
876 * @start: Block nr Start of journal.
877 * @len: Length of the journal in blocks.
878 * @blocksize: blocksize of journalling device
880 * Returns: a newly created journal_t *
882 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
883 * range of blocks on an arbitrary block device.
886 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
887 struct block_device *fs_dev,
888 unsigned long long start, int len, int blocksize)
890 journal_t *journal = journal_init_common();
891 struct buffer_head *bh;
892 char *p;
893 int n;
895 if (!journal)
896 return NULL;
898 /* journal descriptor can store up to n blocks -bzzz */
899 journal->j_blocksize = blocksize;
900 jbd2_stats_proc_init(journal);
901 n = journal->j_blocksize / sizeof(journal_block_tag_t);
902 journal->j_wbufsize = n;
903 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
904 if (!journal->j_wbuf) {
905 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
906 __func__);
907 goto out_err;
909 journal->j_dev = bdev;
910 journal->j_fs_dev = fs_dev;
911 journal->j_blk_offset = start;
912 journal->j_maxlen = len;
913 bdevname(journal->j_dev, journal->j_devname);
914 p = journal->j_devname;
915 while ((p = strchr(p, '/')))
916 *p = '!';
918 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
919 if (!bh) {
920 printk(KERN_ERR
921 "%s: Cannot get buffer for journal superblock\n",
922 __func__);
923 goto out_err;
925 journal->j_sb_buffer = bh;
926 journal->j_superblock = (journal_superblock_t *)bh->b_data;
928 return journal;
929 out_err:
930 kfree(journal->j_wbuf);
931 jbd2_stats_proc_exit(journal);
932 kfree(journal);
933 return NULL;
937 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
938 * @inode: An inode to create the journal in
940 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
941 * the journal. The inode must exist already, must support bmap() and
942 * must have all data blocks preallocated.
944 journal_t * jbd2_journal_init_inode (struct inode *inode)
946 struct buffer_head *bh;
947 journal_t *journal = journal_init_common();
948 char *p;
949 int err;
950 int n;
951 unsigned long long blocknr;
953 if (!journal)
954 return NULL;
956 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
957 journal->j_inode = inode;
958 bdevname(journal->j_dev, journal->j_devname);
959 p = journal->j_devname;
960 while ((p = strchr(p, '/')))
961 *p = '!';
962 p = journal->j_devname + strlen(journal->j_devname);
963 sprintf(p, "-%lu", journal->j_inode->i_ino);
964 jbd_debug(1,
965 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
966 journal, inode->i_sb->s_id, inode->i_ino,
967 (long long) inode->i_size,
968 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
970 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
971 journal->j_blocksize = inode->i_sb->s_blocksize;
972 jbd2_stats_proc_init(journal);
974 /* journal descriptor can store up to n blocks -bzzz */
975 n = journal->j_blocksize / sizeof(journal_block_tag_t);
976 journal->j_wbufsize = n;
977 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
978 if (!journal->j_wbuf) {
979 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
980 __func__);
981 goto out_err;
984 err = jbd2_journal_bmap(journal, 0, &blocknr);
985 /* If that failed, give up */
986 if (err) {
987 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
988 __func__);
989 goto out_err;
992 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
993 if (!bh) {
994 printk(KERN_ERR
995 "%s: Cannot get buffer for journal superblock\n",
996 __func__);
997 goto out_err;
999 journal->j_sb_buffer = bh;
1000 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1002 return journal;
1003 out_err:
1004 kfree(journal->j_wbuf);
1005 jbd2_stats_proc_exit(journal);
1006 kfree(journal);
1007 return NULL;
1011 * If the journal init or create aborts, we need to mark the journal
1012 * superblock as being NULL to prevent the journal destroy from writing
1013 * back a bogus superblock.
1015 static void journal_fail_superblock (journal_t *journal)
1017 struct buffer_head *bh = journal->j_sb_buffer;
1018 brelse(bh);
1019 journal->j_sb_buffer = NULL;
1023 * Given a journal_t structure, initialise the various fields for
1024 * startup of a new journaling session. We use this both when creating
1025 * a journal, and after recovering an old journal to reset it for
1026 * subsequent use.
1029 static int journal_reset(journal_t *journal)
1031 journal_superblock_t *sb = journal->j_superblock;
1032 unsigned long long first, last;
1034 first = be32_to_cpu(sb->s_first);
1035 last = be32_to_cpu(sb->s_maxlen);
1036 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1037 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1038 first, last);
1039 journal_fail_superblock(journal);
1040 return -EINVAL;
1043 journal->j_first = first;
1044 journal->j_last = last;
1046 journal->j_head = first;
1047 journal->j_tail = first;
1048 journal->j_free = last - first;
1050 journal->j_tail_sequence = journal->j_transaction_sequence;
1051 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1052 journal->j_commit_request = journal->j_commit_sequence;
1054 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1056 /* Add the dynamic fields and write it to disk. */
1057 jbd2_journal_update_superblock(journal, 1);
1058 return jbd2_journal_start_thread(journal);
1062 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1063 * @journal: The journal to update.
1064 * @wait: Set to '0' if you don't want to wait for IO completion.
1066 * Update a journal's dynamic superblock fields and write it to disk,
1067 * optionally waiting for the IO to complete.
1069 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1071 journal_superblock_t *sb = journal->j_superblock;
1072 struct buffer_head *bh = journal->j_sb_buffer;
1075 * As a special case, if the on-disk copy is already marked as needing
1076 * no recovery (s_start == 0) and there are no outstanding transactions
1077 * in the filesystem, then we can safely defer the superblock update
1078 * until the next commit by setting JBD2_FLUSHED. This avoids
1079 * attempting a write to a potential-readonly device.
1081 if (sb->s_start == 0 && journal->j_tail_sequence ==
1082 journal->j_transaction_sequence) {
1083 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1084 "(start %ld, seq %d, errno %d)\n",
1085 journal->j_tail, journal->j_tail_sequence,
1086 journal->j_errno);
1087 goto out;
1090 if (buffer_write_io_error(bh)) {
1092 * Oh, dear. A previous attempt to write the journal
1093 * superblock failed. This could happen because the
1094 * USB device was yanked out. Or it could happen to
1095 * be a transient write error and maybe the block will
1096 * be remapped. Nothing we can do but to retry the
1097 * write and hope for the best.
1099 printk(KERN_ERR "JBD2: previous I/O error detected "
1100 "for journal superblock update for %s.\n",
1101 journal->j_devname);
1102 clear_buffer_write_io_error(bh);
1103 set_buffer_uptodate(bh);
1106 read_lock(&journal->j_state_lock);
1107 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1108 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1110 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1111 sb->s_start = cpu_to_be32(journal->j_tail);
1112 sb->s_errno = cpu_to_be32(journal->j_errno);
1113 read_unlock(&journal->j_state_lock);
1115 BUFFER_TRACE(bh, "marking dirty");
1116 mark_buffer_dirty(bh);
1117 if (wait) {
1118 sync_dirty_buffer(bh);
1119 if (buffer_write_io_error(bh)) {
1120 printk(KERN_ERR "JBD2: I/O error detected "
1121 "when updating journal superblock for %s.\n",
1122 journal->j_devname);
1123 clear_buffer_write_io_error(bh);
1124 set_buffer_uptodate(bh);
1126 } else
1127 write_dirty_buffer(bh, WRITE);
1129 out:
1130 /* If we have just flushed the log (by marking s_start==0), then
1131 * any future commit will have to be careful to update the
1132 * superblock again to re-record the true start of the log. */
1134 write_lock(&journal->j_state_lock);
1135 if (sb->s_start)
1136 journal->j_flags &= ~JBD2_FLUSHED;
1137 else
1138 journal->j_flags |= JBD2_FLUSHED;
1139 write_unlock(&journal->j_state_lock);
1143 * Read the superblock for a given journal, performing initial
1144 * validation of the format.
1147 static int journal_get_superblock(journal_t *journal)
1149 struct buffer_head *bh;
1150 journal_superblock_t *sb;
1151 int err = -EIO;
1153 bh = journal->j_sb_buffer;
1155 J_ASSERT(bh != NULL);
1156 if (!buffer_uptodate(bh)) {
1157 ll_rw_block(READ, 1, &bh);
1158 wait_on_buffer(bh);
1159 if (!buffer_uptodate(bh)) {
1160 printk (KERN_ERR
1161 "JBD: IO error reading journal superblock\n");
1162 goto out;
1166 sb = journal->j_superblock;
1168 err = -EINVAL;
1170 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1171 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1172 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1173 goto out;
1176 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1177 case JBD2_SUPERBLOCK_V1:
1178 journal->j_format_version = 1;
1179 break;
1180 case JBD2_SUPERBLOCK_V2:
1181 journal->j_format_version = 2;
1182 break;
1183 default:
1184 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1185 goto out;
1188 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1189 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1190 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1191 printk (KERN_WARNING "JBD: journal file too short\n");
1192 goto out;
1195 return 0;
1197 out:
1198 journal_fail_superblock(journal);
1199 return err;
1203 * Load the on-disk journal superblock and read the key fields into the
1204 * journal_t.
1207 static int load_superblock(journal_t *journal)
1209 int err;
1210 journal_superblock_t *sb;
1212 err = journal_get_superblock(journal);
1213 if (err)
1214 return err;
1216 sb = journal->j_superblock;
1218 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1219 journal->j_tail = be32_to_cpu(sb->s_start);
1220 journal->j_first = be32_to_cpu(sb->s_first);
1221 journal->j_last = be32_to_cpu(sb->s_maxlen);
1222 journal->j_errno = be32_to_cpu(sb->s_errno);
1224 return 0;
1229 * int jbd2_journal_load() - Read journal from disk.
1230 * @journal: Journal to act on.
1232 * Given a journal_t structure which tells us which disk blocks contain
1233 * a journal, read the journal from disk to initialise the in-memory
1234 * structures.
1236 int jbd2_journal_load(journal_t *journal)
1238 int err;
1239 journal_superblock_t *sb;
1241 err = load_superblock(journal);
1242 if (err)
1243 return err;
1245 sb = journal->j_superblock;
1246 /* If this is a V2 superblock, then we have to check the
1247 * features flags on it. */
1249 if (journal->j_format_version >= 2) {
1250 if ((sb->s_feature_ro_compat &
1251 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1252 (sb->s_feature_incompat &
1253 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1254 printk (KERN_WARNING
1255 "JBD: Unrecognised features on journal\n");
1256 return -EINVAL;
1261 * Create a slab for this blocksize
1263 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1264 if (err)
1265 return err;
1267 /* Let the recovery code check whether it needs to recover any
1268 * data from the journal. */
1269 if (jbd2_journal_recover(journal))
1270 goto recovery_error;
1272 if (journal->j_failed_commit) {
1273 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1274 "is corrupt.\n", journal->j_failed_commit,
1275 journal->j_devname);
1276 return -EIO;
1279 /* OK, we've finished with the dynamic journal bits:
1280 * reinitialise the dynamic contents of the superblock in memory
1281 * and reset them on disk. */
1282 if (journal_reset(journal))
1283 goto recovery_error;
1285 journal->j_flags &= ~JBD2_ABORT;
1286 journal->j_flags |= JBD2_LOADED;
1287 return 0;
1289 recovery_error:
1290 printk (KERN_WARNING "JBD: recovery failed\n");
1291 return -EIO;
1295 * void jbd2_journal_destroy() - Release a journal_t structure.
1296 * @journal: Journal to act on.
1298 * Release a journal_t structure once it is no longer in use by the
1299 * journaled object.
1300 * Return <0 if we couldn't clean up the journal.
1302 int jbd2_journal_destroy(journal_t *journal)
1304 int err = 0;
1306 /* Wait for the commit thread to wake up and die. */
1307 journal_kill_thread(journal);
1309 /* Force a final log commit */
1310 if (journal->j_running_transaction)
1311 jbd2_journal_commit_transaction(journal);
1313 /* Force any old transactions to disk */
1315 /* Totally anal locking here... */
1316 spin_lock(&journal->j_list_lock);
1317 while (journal->j_checkpoint_transactions != NULL) {
1318 spin_unlock(&journal->j_list_lock);
1319 mutex_lock(&journal->j_checkpoint_mutex);
1320 jbd2_log_do_checkpoint(journal);
1321 mutex_unlock(&journal->j_checkpoint_mutex);
1322 spin_lock(&journal->j_list_lock);
1325 J_ASSERT(journal->j_running_transaction == NULL);
1326 J_ASSERT(journal->j_committing_transaction == NULL);
1327 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1328 spin_unlock(&journal->j_list_lock);
1330 if (journal->j_sb_buffer) {
1331 if (!is_journal_aborted(journal)) {
1332 /* We can now mark the journal as empty. */
1333 journal->j_tail = 0;
1334 journal->j_tail_sequence =
1335 ++journal->j_transaction_sequence;
1336 jbd2_journal_update_superblock(journal, 1);
1337 } else {
1338 err = -EIO;
1340 brelse(journal->j_sb_buffer);
1343 if (journal->j_proc_entry)
1344 jbd2_stats_proc_exit(journal);
1345 if (journal->j_inode)
1346 iput(journal->j_inode);
1347 if (journal->j_revoke)
1348 jbd2_journal_destroy_revoke(journal);
1349 kfree(journal->j_wbuf);
1350 kfree(journal);
1352 return err;
1357 *int jbd2_journal_check_used_features () - Check if features specified are used.
1358 * @journal: Journal to check.
1359 * @compat: bitmask of compatible features
1360 * @ro: bitmask of features that force read-only mount
1361 * @incompat: bitmask of incompatible features
1363 * Check whether the journal uses all of a given set of
1364 * features. Return true (non-zero) if it does.
1367 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1368 unsigned long ro, unsigned long incompat)
1370 journal_superblock_t *sb;
1372 if (!compat && !ro && !incompat)
1373 return 1;
1374 if (journal->j_format_version == 1)
1375 return 0;
1377 sb = journal->j_superblock;
1379 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1380 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1381 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1382 return 1;
1384 return 0;
1388 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1389 * @journal: Journal to check.
1390 * @compat: bitmask of compatible features
1391 * @ro: bitmask of features that force read-only mount
1392 * @incompat: bitmask of incompatible features
1394 * Check whether the journaling code supports the use of
1395 * all of a given set of features on this journal. Return true
1396 * (non-zero) if it can. */
1398 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1399 unsigned long ro, unsigned long incompat)
1401 if (!compat && !ro && !incompat)
1402 return 1;
1404 /* We can support any known requested features iff the
1405 * superblock is in version 2. Otherwise we fail to support any
1406 * extended sb features. */
1408 if (journal->j_format_version != 2)
1409 return 0;
1411 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1412 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1413 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1414 return 1;
1416 return 0;
1420 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1421 * @journal: Journal to act on.
1422 * @compat: bitmask of compatible features
1423 * @ro: bitmask of features that force read-only mount
1424 * @incompat: bitmask of incompatible features
1426 * Mark a given journal feature as present on the
1427 * superblock. Returns true if the requested features could be set.
1431 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1432 unsigned long ro, unsigned long incompat)
1434 journal_superblock_t *sb;
1436 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1437 return 1;
1439 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1440 return 0;
1442 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1443 compat, ro, incompat);
1445 sb = journal->j_superblock;
1447 sb->s_feature_compat |= cpu_to_be32(compat);
1448 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1449 sb->s_feature_incompat |= cpu_to_be32(incompat);
1451 return 1;
1455 * jbd2_journal_clear_features () - Clear a given journal feature in the
1456 * superblock
1457 * @journal: Journal to act on.
1458 * @compat: bitmask of compatible features
1459 * @ro: bitmask of features that force read-only mount
1460 * @incompat: bitmask of incompatible features
1462 * Clear a given journal feature as present on the
1463 * superblock.
1465 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1466 unsigned long ro, unsigned long incompat)
1468 journal_superblock_t *sb;
1470 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1471 compat, ro, incompat);
1473 sb = journal->j_superblock;
1475 sb->s_feature_compat &= ~cpu_to_be32(compat);
1476 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1477 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1479 EXPORT_SYMBOL(jbd2_journal_clear_features);
1482 * int jbd2_journal_update_format () - Update on-disk journal structure.
1483 * @journal: Journal to act on.
1485 * Given an initialised but unloaded journal struct, poke about in the
1486 * on-disk structure to update it to the most recent supported version.
1488 int jbd2_journal_update_format (journal_t *journal)
1490 journal_superblock_t *sb;
1491 int err;
1493 err = journal_get_superblock(journal);
1494 if (err)
1495 return err;
1497 sb = journal->j_superblock;
1499 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1500 case JBD2_SUPERBLOCK_V2:
1501 return 0;
1502 case JBD2_SUPERBLOCK_V1:
1503 return journal_convert_superblock_v1(journal, sb);
1504 default:
1505 break;
1507 return -EINVAL;
1510 static int journal_convert_superblock_v1(journal_t *journal,
1511 journal_superblock_t *sb)
1513 int offset, blocksize;
1514 struct buffer_head *bh;
1516 printk(KERN_WARNING
1517 "JBD: Converting superblock from version 1 to 2.\n");
1519 /* Pre-initialise new fields to zero */
1520 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1521 blocksize = be32_to_cpu(sb->s_blocksize);
1522 memset(&sb->s_feature_compat, 0, blocksize-offset);
1524 sb->s_nr_users = cpu_to_be32(1);
1525 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1526 journal->j_format_version = 2;
1528 bh = journal->j_sb_buffer;
1529 BUFFER_TRACE(bh, "marking dirty");
1530 mark_buffer_dirty(bh);
1531 sync_dirty_buffer(bh);
1532 return 0;
1537 * int jbd2_journal_flush () - Flush journal
1538 * @journal: Journal to act on.
1540 * Flush all data for a given journal to disk and empty the journal.
1541 * Filesystems can use this when remounting readonly to ensure that
1542 * recovery does not need to happen on remount.
1545 int jbd2_journal_flush(journal_t *journal)
1547 int err = 0;
1548 transaction_t *transaction = NULL;
1549 unsigned long old_tail;
1551 write_lock(&journal->j_state_lock);
1553 /* Force everything buffered to the log... */
1554 if (journal->j_running_transaction) {
1555 transaction = journal->j_running_transaction;
1556 __jbd2_log_start_commit(journal, transaction->t_tid);
1557 } else if (journal->j_committing_transaction)
1558 transaction = journal->j_committing_transaction;
1560 /* Wait for the log commit to complete... */
1561 if (transaction) {
1562 tid_t tid = transaction->t_tid;
1564 write_unlock(&journal->j_state_lock);
1565 jbd2_log_wait_commit(journal, tid);
1566 } else {
1567 write_unlock(&journal->j_state_lock);
1570 /* ...and flush everything in the log out to disk. */
1571 spin_lock(&journal->j_list_lock);
1572 while (!err && journal->j_checkpoint_transactions != NULL) {
1573 spin_unlock(&journal->j_list_lock);
1574 mutex_lock(&journal->j_checkpoint_mutex);
1575 err = jbd2_log_do_checkpoint(journal);
1576 mutex_unlock(&journal->j_checkpoint_mutex);
1577 spin_lock(&journal->j_list_lock);
1579 spin_unlock(&journal->j_list_lock);
1581 if (is_journal_aborted(journal))
1582 return -EIO;
1584 jbd2_cleanup_journal_tail(journal);
1586 /* Finally, mark the journal as really needing no recovery.
1587 * This sets s_start==0 in the underlying superblock, which is
1588 * the magic code for a fully-recovered superblock. Any future
1589 * commits of data to the journal will restore the current
1590 * s_start value. */
1591 write_lock(&journal->j_state_lock);
1592 old_tail = journal->j_tail;
1593 journal->j_tail = 0;
1594 write_unlock(&journal->j_state_lock);
1595 jbd2_journal_update_superblock(journal, 1);
1596 write_lock(&journal->j_state_lock);
1597 journal->j_tail = old_tail;
1599 J_ASSERT(!journal->j_running_transaction);
1600 J_ASSERT(!journal->j_committing_transaction);
1601 J_ASSERT(!journal->j_checkpoint_transactions);
1602 J_ASSERT(journal->j_head == journal->j_tail);
1603 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1604 write_unlock(&journal->j_state_lock);
1605 return 0;
1609 * int jbd2_journal_wipe() - Wipe journal contents
1610 * @journal: Journal to act on.
1611 * @write: flag (see below)
1613 * Wipe out all of the contents of a journal, safely. This will produce
1614 * a warning if the journal contains any valid recovery information.
1615 * Must be called between journal_init_*() and jbd2_journal_load().
1617 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1618 * we merely suppress recovery.
1621 int jbd2_journal_wipe(journal_t *journal, int write)
1623 int err = 0;
1625 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1627 err = load_superblock(journal);
1628 if (err)
1629 return err;
1631 if (!journal->j_tail)
1632 goto no_recovery;
1634 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1635 write ? "Clearing" : "Ignoring");
1637 err = jbd2_journal_skip_recovery(journal);
1638 if (write)
1639 jbd2_journal_update_superblock(journal, 1);
1641 no_recovery:
1642 return err;
1646 * Journal abort has very specific semantics, which we describe
1647 * for journal abort.
1649 * Two internal functions, which provide abort to the jbd layer
1650 * itself are here.
1654 * Quick version for internal journal use (doesn't lock the journal).
1655 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1656 * and don't attempt to make any other journal updates.
1658 void __jbd2_journal_abort_hard(journal_t *journal)
1660 transaction_t *transaction;
1662 if (journal->j_flags & JBD2_ABORT)
1663 return;
1665 printk(KERN_ERR "Aborting journal on device %s.\n",
1666 journal->j_devname);
1668 write_lock(&journal->j_state_lock);
1669 journal->j_flags |= JBD2_ABORT;
1670 transaction = journal->j_running_transaction;
1671 if (transaction)
1672 __jbd2_log_start_commit(journal, transaction->t_tid);
1673 write_unlock(&journal->j_state_lock);
1676 /* Soft abort: record the abort error status in the journal superblock,
1677 * but don't do any other IO. */
1678 static void __journal_abort_soft (journal_t *journal, int errno)
1680 if (journal->j_flags & JBD2_ABORT)
1681 return;
1683 if (!journal->j_errno)
1684 journal->j_errno = errno;
1686 __jbd2_journal_abort_hard(journal);
1688 if (errno)
1689 jbd2_journal_update_superblock(journal, 1);
1693 * void jbd2_journal_abort () - Shutdown the journal immediately.
1694 * @journal: the journal to shutdown.
1695 * @errno: an error number to record in the journal indicating
1696 * the reason for the shutdown.
1698 * Perform a complete, immediate shutdown of the ENTIRE
1699 * journal (not of a single transaction). This operation cannot be
1700 * undone without closing and reopening the journal.
1702 * The jbd2_journal_abort function is intended to support higher level error
1703 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1704 * mode.
1706 * Journal abort has very specific semantics. Any existing dirty,
1707 * unjournaled buffers in the main filesystem will still be written to
1708 * disk by bdflush, but the journaling mechanism will be suspended
1709 * immediately and no further transaction commits will be honoured.
1711 * Any dirty, journaled buffers will be written back to disk without
1712 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1713 * filesystem, but we _do_ attempt to leave as much data as possible
1714 * behind for fsck to use for cleanup.
1716 * Any attempt to get a new transaction handle on a journal which is in
1717 * ABORT state will just result in an -EROFS error return. A
1718 * jbd2_journal_stop on an existing handle will return -EIO if we have
1719 * entered abort state during the update.
1721 * Recursive transactions are not disturbed by journal abort until the
1722 * final jbd2_journal_stop, which will receive the -EIO error.
1724 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1725 * which will be recorded (if possible) in the journal superblock. This
1726 * allows a client to record failure conditions in the middle of a
1727 * transaction without having to complete the transaction to record the
1728 * failure to disk. ext3_error, for example, now uses this
1729 * functionality.
1731 * Errors which originate from within the journaling layer will NOT
1732 * supply an errno; a null errno implies that absolutely no further
1733 * writes are done to the journal (unless there are any already in
1734 * progress).
1738 void jbd2_journal_abort(journal_t *journal, int errno)
1740 __journal_abort_soft(journal, errno);
1744 * int jbd2_journal_errno () - returns the journal's error state.
1745 * @journal: journal to examine.
1747 * This is the errno number set with jbd2_journal_abort(), the last
1748 * time the journal was mounted - if the journal was stopped
1749 * without calling abort this will be 0.
1751 * If the journal has been aborted on this mount time -EROFS will
1752 * be returned.
1754 int jbd2_journal_errno(journal_t *journal)
1756 int err;
1758 read_lock(&journal->j_state_lock);
1759 if (journal->j_flags & JBD2_ABORT)
1760 err = -EROFS;
1761 else
1762 err = journal->j_errno;
1763 read_unlock(&journal->j_state_lock);
1764 return err;
1768 * int jbd2_journal_clear_err () - clears the journal's error state
1769 * @journal: journal to act on.
1771 * An error must be cleared or acked to take a FS out of readonly
1772 * mode.
1774 int jbd2_journal_clear_err(journal_t *journal)
1776 int err = 0;
1778 write_lock(&journal->j_state_lock);
1779 if (journal->j_flags & JBD2_ABORT)
1780 err = -EROFS;
1781 else
1782 journal->j_errno = 0;
1783 write_unlock(&journal->j_state_lock);
1784 return err;
1788 * void jbd2_journal_ack_err() - Ack journal err.
1789 * @journal: journal to act on.
1791 * An error must be cleared or acked to take a FS out of readonly
1792 * mode.
1794 void jbd2_journal_ack_err(journal_t *journal)
1796 write_lock(&journal->j_state_lock);
1797 if (journal->j_errno)
1798 journal->j_flags |= JBD2_ACK_ERR;
1799 write_unlock(&journal->j_state_lock);
1802 int jbd2_journal_blocks_per_page(struct inode *inode)
1804 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1808 * helper functions to deal with 32 or 64bit block numbers.
1810 size_t journal_tag_bytes(journal_t *journal)
1812 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1813 return JBD2_TAG_SIZE64;
1814 else
1815 return JBD2_TAG_SIZE32;
1819 * JBD memory management
1821 * These functions are used to allocate block-sized chunks of memory
1822 * used for making copies of buffer_head data. Very often it will be
1823 * page-sized chunks of data, but sometimes it will be in
1824 * sub-page-size chunks. (For example, 16k pages on Power systems
1825 * with a 4k block file system.) For blocks smaller than a page, we
1826 * use a SLAB allocator. There are slab caches for each block size,
1827 * which are allocated at mount time, if necessary, and we only free
1828 * (all of) the slab caches when/if the jbd2 module is unloaded. For
1829 * this reason we don't need to a mutex to protect access to
1830 * jbd2_slab[] allocating or releasing memory; only in
1831 * jbd2_journal_create_slab().
1833 #define JBD2_MAX_SLABS 8
1834 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1835 static DECLARE_MUTEX(jbd2_slab_create_sem);
1837 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1838 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1839 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1843 static void jbd2_journal_destroy_slabs(void)
1845 int i;
1847 for (i = 0; i < JBD2_MAX_SLABS; i++) {
1848 if (jbd2_slab[i])
1849 kmem_cache_destroy(jbd2_slab[i]);
1850 jbd2_slab[i] = NULL;
1854 static int jbd2_journal_create_slab(size_t size)
1856 int i = order_base_2(size) - 10;
1857 size_t slab_size;
1859 if (size == PAGE_SIZE)
1860 return 0;
1862 if (i >= JBD2_MAX_SLABS)
1863 return -EINVAL;
1865 if (unlikely(i < 0))
1866 i = 0;
1867 down(&jbd2_slab_create_sem);
1868 if (jbd2_slab[i]) {
1869 up(&jbd2_slab_create_sem);
1870 return 0; /* Already created */
1873 slab_size = 1 << (i+10);
1874 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1875 slab_size, 0, NULL);
1876 up(&jbd2_slab_create_sem);
1877 if (!jbd2_slab[i]) {
1878 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1879 return -ENOMEM;
1881 return 0;
1884 static struct kmem_cache *get_slab(size_t size)
1886 int i = order_base_2(size) - 10;
1888 BUG_ON(i >= JBD2_MAX_SLABS);
1889 if (unlikely(i < 0))
1890 i = 0;
1891 BUG_ON(jbd2_slab[i] == NULL);
1892 return jbd2_slab[i];
1895 void *jbd2_alloc(size_t size, gfp_t flags)
1897 void *ptr;
1899 BUG_ON(size & (size-1)); /* Must be a power of 2 */
1901 flags |= __GFP_REPEAT;
1902 if (size == PAGE_SIZE)
1903 ptr = (void *)__get_free_pages(flags, 0);
1904 else if (size > PAGE_SIZE) {
1905 int order = get_order(size);
1907 if (order < 3)
1908 ptr = (void *)__get_free_pages(flags, order);
1909 else
1910 ptr = vmalloc(size);
1911 } else
1912 ptr = kmem_cache_alloc(get_slab(size), flags);
1914 /* Check alignment; SLUB has gotten this wrong in the past,
1915 * and this can lead to user data corruption! */
1916 BUG_ON(((unsigned long) ptr) & (size-1));
1918 return ptr;
1921 void jbd2_free(void *ptr, size_t size)
1923 if (size == PAGE_SIZE) {
1924 free_pages((unsigned long)ptr, 0);
1925 return;
1927 if (size > PAGE_SIZE) {
1928 int order = get_order(size);
1930 if (order < 3)
1931 free_pages((unsigned long)ptr, order);
1932 else
1933 vfree(ptr);
1934 return;
1936 kmem_cache_free(get_slab(size), ptr);
1940 * Journal_head storage management
1942 static struct kmem_cache *jbd2_journal_head_cache;
1943 #ifdef CONFIG_JBD2_DEBUG
1944 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1945 #endif
1947 static int journal_init_jbd2_journal_head_cache(void)
1949 int retval;
1951 J_ASSERT(jbd2_journal_head_cache == NULL);
1952 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1953 sizeof(struct journal_head),
1954 0, /* offset */
1955 SLAB_TEMPORARY, /* flags */
1956 NULL); /* ctor */
1957 retval = 0;
1958 if (!jbd2_journal_head_cache) {
1959 retval = -ENOMEM;
1960 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1962 return retval;
1965 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1967 if (jbd2_journal_head_cache) {
1968 kmem_cache_destroy(jbd2_journal_head_cache);
1969 jbd2_journal_head_cache = NULL;
1974 * journal_head splicing and dicing
1976 static struct journal_head *journal_alloc_journal_head(void)
1978 struct journal_head *ret;
1979 static unsigned long last_warning;
1981 #ifdef CONFIG_JBD2_DEBUG
1982 atomic_inc(&nr_journal_heads);
1983 #endif
1984 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1985 if (!ret) {
1986 jbd_debug(1, "out of memory for journal_head\n");
1987 if (time_after(jiffies, last_warning + 5*HZ)) {
1988 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1989 __func__);
1990 last_warning = jiffies;
1992 while (!ret) {
1993 yield();
1994 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1997 return ret;
2000 static void journal_free_journal_head(struct journal_head *jh)
2002 #ifdef CONFIG_JBD2_DEBUG
2003 atomic_dec(&nr_journal_heads);
2004 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2005 #endif
2006 kmem_cache_free(jbd2_journal_head_cache, jh);
2010 * A journal_head is attached to a buffer_head whenever JBD has an
2011 * interest in the buffer.
2013 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2014 * is set. This bit is tested in core kernel code where we need to take
2015 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2016 * there.
2018 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2020 * When a buffer has its BH_JBD bit set it is immune from being released by
2021 * core kernel code, mainly via ->b_count.
2023 * A journal_head may be detached from its buffer_head when the journal_head's
2024 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2025 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2026 * journal_head can be dropped if needed.
2028 * Various places in the kernel want to attach a journal_head to a buffer_head
2029 * _before_ attaching the journal_head to a transaction. To protect the
2030 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2031 * journal_head's b_jcount refcount by one. The caller must call
2032 * jbd2_journal_put_journal_head() to undo this.
2034 * So the typical usage would be:
2036 * (Attach a journal_head if needed. Increments b_jcount)
2037 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2038 * ...
2039 * jh->b_transaction = xxx;
2040 * jbd2_journal_put_journal_head(jh);
2042 * Now, the journal_head's b_jcount is zero, but it is safe from being released
2043 * because it has a non-zero b_transaction.
2047 * Give a buffer_head a journal_head.
2049 * Doesn't need the journal lock.
2050 * May sleep.
2052 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2054 struct journal_head *jh;
2055 struct journal_head *new_jh = NULL;
2057 repeat:
2058 if (!buffer_jbd(bh)) {
2059 new_jh = journal_alloc_journal_head();
2060 memset(new_jh, 0, sizeof(*new_jh));
2063 jbd_lock_bh_journal_head(bh);
2064 if (buffer_jbd(bh)) {
2065 jh = bh2jh(bh);
2066 } else {
2067 J_ASSERT_BH(bh,
2068 (atomic_read(&bh->b_count) > 0) ||
2069 (bh->b_page && bh->b_page->mapping));
2071 if (!new_jh) {
2072 jbd_unlock_bh_journal_head(bh);
2073 goto repeat;
2076 jh = new_jh;
2077 new_jh = NULL; /* We consumed it */
2078 set_buffer_jbd(bh);
2079 bh->b_private = jh;
2080 jh->b_bh = bh;
2081 get_bh(bh);
2082 BUFFER_TRACE(bh, "added journal_head");
2084 jh->b_jcount++;
2085 jbd_unlock_bh_journal_head(bh);
2086 if (new_jh)
2087 journal_free_journal_head(new_jh);
2088 return bh->b_private;
2092 * Grab a ref against this buffer_head's journal_head. If it ended up not
2093 * having a journal_head, return NULL
2095 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2097 struct journal_head *jh = NULL;
2099 jbd_lock_bh_journal_head(bh);
2100 if (buffer_jbd(bh)) {
2101 jh = bh2jh(bh);
2102 jh->b_jcount++;
2104 jbd_unlock_bh_journal_head(bh);
2105 return jh;
2108 static void __journal_remove_journal_head(struct buffer_head *bh)
2110 struct journal_head *jh = bh2jh(bh);
2112 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2114 get_bh(bh);
2115 if (jh->b_jcount == 0) {
2116 if (jh->b_transaction == NULL &&
2117 jh->b_next_transaction == NULL &&
2118 jh->b_cp_transaction == NULL) {
2119 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2120 J_ASSERT_BH(bh, buffer_jbd(bh));
2121 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2122 BUFFER_TRACE(bh, "remove journal_head");
2123 if (jh->b_frozen_data) {
2124 printk(KERN_WARNING "%s: freeing "
2125 "b_frozen_data\n",
2126 __func__);
2127 jbd2_free(jh->b_frozen_data, bh->b_size);
2129 if (jh->b_committed_data) {
2130 printk(KERN_WARNING "%s: freeing "
2131 "b_committed_data\n",
2132 __func__);
2133 jbd2_free(jh->b_committed_data, bh->b_size);
2135 bh->b_private = NULL;
2136 jh->b_bh = NULL; /* debug, really */
2137 clear_buffer_jbd(bh);
2138 __brelse(bh);
2139 journal_free_journal_head(jh);
2140 } else {
2141 BUFFER_TRACE(bh, "journal_head was locked");
2147 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2148 * and has a zero b_jcount then remove and release its journal_head. If we did
2149 * see that the buffer is not used by any transaction we also "logically"
2150 * decrement ->b_count.
2152 * We in fact take an additional increment on ->b_count as a convenience,
2153 * because the caller usually wants to do additional things with the bh
2154 * after calling here.
2155 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2156 * time. Once the caller has run __brelse(), the buffer is eligible for
2157 * reaping by try_to_free_buffers().
2159 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2161 jbd_lock_bh_journal_head(bh);
2162 __journal_remove_journal_head(bh);
2163 jbd_unlock_bh_journal_head(bh);
2167 * Drop a reference on the passed journal_head. If it fell to zero then try to
2168 * release the journal_head from the buffer_head.
2170 void jbd2_journal_put_journal_head(struct journal_head *jh)
2172 struct buffer_head *bh = jh2bh(jh);
2174 jbd_lock_bh_journal_head(bh);
2175 J_ASSERT_JH(jh, jh->b_jcount > 0);
2176 --jh->b_jcount;
2177 if (!jh->b_jcount && !jh->b_transaction) {
2178 __journal_remove_journal_head(bh);
2179 __brelse(bh);
2181 jbd_unlock_bh_journal_head(bh);
2185 * Initialize jbd inode head
2187 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2189 jinode->i_transaction = NULL;
2190 jinode->i_next_transaction = NULL;
2191 jinode->i_vfs_inode = inode;
2192 jinode->i_flags = 0;
2193 INIT_LIST_HEAD(&jinode->i_list);
2197 * Function to be called before we start removing inode from memory (i.e.,
2198 * clear_inode() is a fine place to be called from). It removes inode from
2199 * transaction's lists.
2201 void jbd2_journal_release_jbd_inode(journal_t *journal,
2202 struct jbd2_inode *jinode)
2204 if (!journal)
2205 return;
2206 restart:
2207 spin_lock(&journal->j_list_lock);
2208 /* Is commit writing out inode - we have to wait */
2209 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2210 wait_queue_head_t *wq;
2211 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2212 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2213 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2214 spin_unlock(&journal->j_list_lock);
2215 schedule();
2216 finish_wait(wq, &wait.wait);
2217 goto restart;
2220 if (jinode->i_transaction) {
2221 list_del(&jinode->i_list);
2222 jinode->i_transaction = NULL;
2224 spin_unlock(&journal->j_list_lock);
2228 * debugfs tunables
2230 #ifdef CONFIG_JBD2_DEBUG
2231 u8 jbd2_journal_enable_debug __read_mostly;
2232 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2234 #define JBD2_DEBUG_NAME "jbd2-debug"
2236 static struct dentry *jbd2_debugfs_dir;
2237 static struct dentry *jbd2_debug;
2239 static void __init jbd2_create_debugfs_entry(void)
2241 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2242 if (jbd2_debugfs_dir)
2243 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2244 S_IRUGO | S_IWUSR,
2245 jbd2_debugfs_dir,
2246 &jbd2_journal_enable_debug);
2249 static void __exit jbd2_remove_debugfs_entry(void)
2251 debugfs_remove(jbd2_debug);
2252 debugfs_remove(jbd2_debugfs_dir);
2255 #else
2257 static void __init jbd2_create_debugfs_entry(void)
2261 static void __exit jbd2_remove_debugfs_entry(void)
2265 #endif
2267 #ifdef CONFIG_PROC_FS
2269 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2271 static void __init jbd2_create_jbd_stats_proc_entry(void)
2273 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2276 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2278 if (proc_jbd2_stats)
2279 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2282 #else
2284 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2285 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2287 #endif
2289 struct kmem_cache *jbd2_handle_cache;
2291 static int __init journal_init_handle_cache(void)
2293 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2294 sizeof(handle_t),
2295 0, /* offset */
2296 SLAB_TEMPORARY, /* flags */
2297 NULL); /* ctor */
2298 if (jbd2_handle_cache == NULL) {
2299 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2300 return -ENOMEM;
2302 return 0;
2305 static void jbd2_journal_destroy_handle_cache(void)
2307 if (jbd2_handle_cache)
2308 kmem_cache_destroy(jbd2_handle_cache);
2312 * Module startup and shutdown
2315 static int __init journal_init_caches(void)
2317 int ret;
2319 ret = jbd2_journal_init_revoke_caches();
2320 if (ret == 0)
2321 ret = journal_init_jbd2_journal_head_cache();
2322 if (ret == 0)
2323 ret = journal_init_handle_cache();
2324 return ret;
2327 static void jbd2_journal_destroy_caches(void)
2329 jbd2_journal_destroy_revoke_caches();
2330 jbd2_journal_destroy_jbd2_journal_head_cache();
2331 jbd2_journal_destroy_handle_cache();
2332 jbd2_journal_destroy_slabs();
2335 static int __init journal_init(void)
2337 int ret;
2339 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2341 ret = journal_init_caches();
2342 if (ret == 0) {
2343 jbd2_create_debugfs_entry();
2344 jbd2_create_jbd_stats_proc_entry();
2345 } else {
2346 jbd2_journal_destroy_caches();
2348 return ret;
2351 static void __exit journal_exit(void)
2353 #ifdef CONFIG_JBD2_DEBUG
2354 int n = atomic_read(&nr_journal_heads);
2355 if (n)
2356 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2357 #endif
2358 jbd2_remove_debugfs_entry();
2359 jbd2_remove_jbd_stats_proc_entry();
2360 jbd2_journal_destroy_caches();
2364 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2365 * tracing infrastructure to map a dev_t to a device name.
2367 * The caller should use rcu_read_lock() in order to make sure the
2368 * device name stays valid until its done with it. We use
2369 * rcu_read_lock() as well to make sure we're safe in case the caller
2370 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2371 * nested.
2373 struct devname_cache {
2374 struct rcu_head rcu;
2375 dev_t device;
2376 char devname[BDEVNAME_SIZE];
2378 #define CACHE_SIZE_BITS 6
2379 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2380 static DEFINE_SPINLOCK(devname_cache_lock);
2382 static void free_devcache(struct rcu_head *rcu)
2384 kfree(rcu);
2387 const char *jbd2_dev_to_name(dev_t device)
2389 int i = hash_32(device, CACHE_SIZE_BITS);
2390 char *ret;
2391 struct block_device *bd;
2392 static struct devname_cache *new_dev;
2394 rcu_read_lock();
2395 if (devcache[i] && devcache[i]->device == device) {
2396 ret = devcache[i]->devname;
2397 rcu_read_unlock();
2398 return ret;
2400 rcu_read_unlock();
2402 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2403 if (!new_dev)
2404 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2405 spin_lock(&devname_cache_lock);
2406 if (devcache[i]) {
2407 if (devcache[i]->device == device) {
2408 kfree(new_dev);
2409 ret = devcache[i]->devname;
2410 spin_unlock(&devname_cache_lock);
2411 return ret;
2413 call_rcu(&devcache[i]->rcu, free_devcache);
2415 devcache[i] = new_dev;
2416 devcache[i]->device = device;
2417 bd = bdget(device);
2418 if (bd) {
2419 bdevname(bd, devcache[i]->devname);
2420 bdput(bd);
2421 } else
2422 __bdevname(device, devcache[i]->devname);
2423 ret = devcache[i]->devname;
2424 spin_unlock(&devname_cache_lock);
2425 return ret;
2427 EXPORT_SYMBOL(jbd2_dev_to_name);
2429 MODULE_LICENSE("GPL");
2430 module_init(journal_init);
2431 module_exit(journal_exit);