4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
29 * The max size that a non-root user is allowed to grow the pipe. Can
30 * be set by root in /proc/sys/fs/pipe-max-size
32 unsigned int pipe_max_size
= 1048576;
35 * Minimum pipe size, as required by POSIX
37 unsigned int pipe_min_size
= PAGE_SIZE
;
40 * We use a start+len construction, which provides full use of the
42 * -- Florian Coosmann (FGC)
44 * Reads with count = 0 should always return 0.
45 * -- Julian Bradfield 1999-06-07.
47 * FIFOs and Pipes now generate SIGIO for both readers and writers.
48 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
50 * pipe_read & write cleanup
51 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
54 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
57 mutex_lock_nested(&pipe
->inode
->i_mutex
, subclass
);
60 void pipe_lock(struct pipe_inode_info
*pipe
)
63 * pipe_lock() nests non-pipe inode locks (for writing to a file)
65 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
67 EXPORT_SYMBOL(pipe_lock
);
69 void pipe_unlock(struct pipe_inode_info
*pipe
)
72 mutex_unlock(&pipe
->inode
->i_mutex
);
74 EXPORT_SYMBOL(pipe_unlock
);
76 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
77 struct pipe_inode_info
*pipe2
)
79 BUG_ON(pipe1
== pipe2
);
82 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
83 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
85 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
86 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
90 /* Drop the inode semaphore and wait for a pipe event, atomically */
91 void pipe_wait(struct pipe_inode_info
*pipe
)
96 * Pipes are system-local resources, so sleeping on them
97 * is considered a noninteractive wait:
99 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
102 finish_wait(&pipe
->wait
, &wait
);
107 pipe_iov_copy_from_user(void *to
, struct iovec
*iov
, unsigned long len
,
113 while (!iov
->iov_len
)
115 copy
= min_t(unsigned long, len
, iov
->iov_len
);
118 if (__copy_from_user_inatomic(to
, iov
->iov_base
, copy
))
121 if (copy_from_user(to
, iov
->iov_base
, copy
))
126 iov
->iov_base
+= copy
;
127 iov
->iov_len
-= copy
;
133 pipe_iov_copy_to_user(struct iovec
*iov
, const void *from
, unsigned long len
,
139 while (!iov
->iov_len
)
141 copy
= min_t(unsigned long, len
, iov
->iov_len
);
144 if (__copy_to_user_inatomic(iov
->iov_base
, from
, copy
))
147 if (copy_to_user(iov
->iov_base
, from
, copy
))
152 iov
->iov_base
+= copy
;
153 iov
->iov_len
-= copy
;
159 * Attempt to pre-fault in the user memory, so we can use atomic copies.
160 * Returns the number of bytes not faulted in.
162 static int iov_fault_in_pages_write(struct iovec
*iov
, unsigned long len
)
164 while (!iov
->iov_len
)
168 unsigned long this_len
;
170 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
171 if (fault_in_pages_writeable(iov
->iov_base
, this_len
))
182 * Pre-fault in the user memory, so we can use atomic copies.
184 static void iov_fault_in_pages_read(struct iovec
*iov
, unsigned long len
)
186 while (!iov
->iov_len
)
190 unsigned long this_len
;
192 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
193 fault_in_pages_readable(iov
->iov_base
, this_len
);
199 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
200 struct pipe_buffer
*buf
)
202 struct page
*page
= buf
->page
;
205 * If nobody else uses this page, and we don't already have a
206 * temporary page, let's keep track of it as a one-deep
207 * allocation cache. (Otherwise just release our reference to it)
209 if (page_count(page
) == 1 && !pipe
->tmp_page
)
210 pipe
->tmp_page
= page
;
212 page_cache_release(page
);
216 * generic_pipe_buf_map - virtually map a pipe buffer
217 * @pipe: the pipe that the buffer belongs to
218 * @buf: the buffer that should be mapped
219 * @atomic: whether to use an atomic map
222 * This function returns a kernel virtual address mapping for the
223 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
224 * and the caller has to be careful not to fault before calling
225 * the unmap function.
227 * Note that this function occupies KM_USER0 if @atomic != 0.
229 void *generic_pipe_buf_map(struct pipe_inode_info
*pipe
,
230 struct pipe_buffer
*buf
, int atomic
)
233 buf
->flags
|= PIPE_BUF_FLAG_ATOMIC
;
234 return kmap_atomic(buf
->page
);
237 return kmap(buf
->page
);
239 EXPORT_SYMBOL(generic_pipe_buf_map
);
242 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
243 * @pipe: the pipe that the buffer belongs to
244 * @buf: the buffer that should be unmapped
245 * @map_data: the data that the mapping function returned
248 * This function undoes the mapping that ->map() provided.
250 void generic_pipe_buf_unmap(struct pipe_inode_info
*pipe
,
251 struct pipe_buffer
*buf
, void *map_data
)
253 if (buf
->flags
& PIPE_BUF_FLAG_ATOMIC
) {
254 buf
->flags
&= ~PIPE_BUF_FLAG_ATOMIC
;
255 kunmap_atomic(map_data
);
259 EXPORT_SYMBOL(generic_pipe_buf_unmap
);
262 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
263 * @pipe: the pipe that the buffer belongs to
264 * @buf: the buffer to attempt to steal
267 * This function attempts to steal the &struct page attached to
268 * @buf. If successful, this function returns 0 and returns with
269 * the page locked. The caller may then reuse the page for whatever
270 * he wishes; the typical use is insertion into a different file
273 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
274 struct pipe_buffer
*buf
)
276 struct page
*page
= buf
->page
;
279 * A reference of one is golden, that means that the owner of this
280 * page is the only one holding a reference to it. lock the page
283 if (page_count(page
) == 1) {
290 EXPORT_SYMBOL(generic_pipe_buf_steal
);
293 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
294 * @pipe: the pipe that the buffer belongs to
295 * @buf: the buffer to get a reference to
298 * This function grabs an extra reference to @buf. It's used in
299 * in the tee() system call, when we duplicate the buffers in one
302 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
304 page_cache_get(buf
->page
);
306 EXPORT_SYMBOL(generic_pipe_buf_get
);
309 * generic_pipe_buf_confirm - verify contents of the pipe buffer
310 * @info: the pipe that the buffer belongs to
311 * @buf: the buffer to confirm
314 * This function does nothing, because the generic pipe code uses
315 * pages that are always good when inserted into the pipe.
317 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
318 struct pipe_buffer
*buf
)
322 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
325 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
326 * @pipe: the pipe that the buffer belongs to
327 * @buf: the buffer to put a reference to
330 * This function releases a reference to @buf.
332 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
333 struct pipe_buffer
*buf
)
335 page_cache_release(buf
->page
);
337 EXPORT_SYMBOL(generic_pipe_buf_release
);
339 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
341 .map
= generic_pipe_buf_map
,
342 .unmap
= generic_pipe_buf_unmap
,
343 .confirm
= generic_pipe_buf_confirm
,
344 .release
= anon_pipe_buf_release
,
345 .steal
= generic_pipe_buf_steal
,
346 .get
= generic_pipe_buf_get
,
349 static const struct pipe_buf_operations packet_pipe_buf_ops
= {
351 .map
= generic_pipe_buf_map
,
352 .unmap
= generic_pipe_buf_unmap
,
353 .confirm
= generic_pipe_buf_confirm
,
354 .release
= anon_pipe_buf_release
,
355 .steal
= generic_pipe_buf_steal
,
356 .get
= generic_pipe_buf_get
,
360 pipe_read(struct kiocb
*iocb
, const struct iovec
*_iov
,
361 unsigned long nr_segs
, loff_t pos
)
363 struct file
*filp
= iocb
->ki_filp
;
364 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
365 struct pipe_inode_info
*pipe
;
368 struct iovec
*iov
= (struct iovec
*)_iov
;
371 total_len
= iov_length(iov
, nr_segs
);
372 /* Null read succeeds. */
373 if (unlikely(total_len
== 0))
378 mutex_lock(&inode
->i_mutex
);
379 pipe
= inode
->i_pipe
;
381 int bufs
= pipe
->nrbufs
;
383 int curbuf
= pipe
->curbuf
;
384 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
385 const struct pipe_buf_operations
*ops
= buf
->ops
;
387 size_t chars
= buf
->len
;
390 if (chars
> total_len
)
393 error
= ops
->confirm(pipe
, buf
);
400 atomic
= !iov_fault_in_pages_write(iov
, chars
);
402 addr
= ops
->map(pipe
, buf
, atomic
);
403 error
= pipe_iov_copy_to_user(iov
, addr
+ buf
->offset
, chars
, atomic
);
404 ops
->unmap(pipe
, buf
, addr
);
405 if (unlikely(error
)) {
407 * Just retry with the slow path if we failed.
418 buf
->offset
+= chars
;
421 /* Was it a packet buffer? Clean up and exit */
422 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
429 ops
->release(pipe
, buf
);
430 curbuf
= (curbuf
+ 1) & (pipe
->buffers
- 1);
431 pipe
->curbuf
= curbuf
;
432 pipe
->nrbufs
= --bufs
;
437 break; /* common path: read succeeded */
439 if (bufs
) /* More to do? */
443 if (!pipe
->waiting_writers
) {
444 /* syscall merging: Usually we must not sleep
445 * if O_NONBLOCK is set, or if we got some data.
446 * But if a writer sleeps in kernel space, then
447 * we can wait for that data without violating POSIX.
451 if (filp
->f_flags
& O_NONBLOCK
) {
456 if (signal_pending(current
)) {
462 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
463 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
467 mutex_unlock(&inode
->i_mutex
);
469 /* Signal writers asynchronously that there is more room. */
471 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
472 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
479 static inline int is_packetized(struct file
*file
)
481 return (file
->f_flags
& O_DIRECT
) != 0;
485 pipe_write(struct kiocb
*iocb
, const struct iovec
*_iov
,
486 unsigned long nr_segs
, loff_t ppos
)
488 struct file
*filp
= iocb
->ki_filp
;
489 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
490 struct pipe_inode_info
*pipe
;
493 struct iovec
*iov
= (struct iovec
*)_iov
;
497 total_len
= iov_length(iov
, nr_segs
);
498 /* Null write succeeds. */
499 if (unlikely(total_len
== 0))
504 mutex_lock(&inode
->i_mutex
);
505 pipe
= inode
->i_pipe
;
507 if (!pipe
->readers
) {
508 send_sig(SIGPIPE
, current
, 0);
513 /* We try to merge small writes */
514 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
515 if (pipe
->nrbufs
&& chars
!= 0) {
516 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
518 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
519 const struct pipe_buf_operations
*ops
= buf
->ops
;
520 int offset
= buf
->offset
+ buf
->len
;
522 if (ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
523 int error
, atomic
= 1;
526 error
= ops
->confirm(pipe
, buf
);
530 iov_fault_in_pages_read(iov
, chars
);
532 addr
= ops
->map(pipe
, buf
, atomic
);
533 error
= pipe_iov_copy_from_user(offset
+ addr
, iov
,
535 ops
->unmap(pipe
, buf
, addr
);
556 if (!pipe
->readers
) {
557 send_sig(SIGPIPE
, current
, 0);
563 if (bufs
< pipe
->buffers
) {
564 int newbuf
= (pipe
->curbuf
+ bufs
) & (pipe
->buffers
-1);
565 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
566 struct page
*page
= pipe
->tmp_page
;
568 int error
, atomic
= 1;
571 page
= alloc_page(GFP_HIGHUSER
);
572 if (unlikely(!page
)) {
573 ret
= ret
? : -ENOMEM
;
576 pipe
->tmp_page
= page
;
578 /* Always wake up, even if the copy fails. Otherwise
579 * we lock up (O_NONBLOCK-)readers that sleep due to
581 * FIXME! Is this really true?
585 if (chars
> total_len
)
588 iov_fault_in_pages_read(iov
, chars
);
591 src
= kmap_atomic(page
);
595 error
= pipe_iov_copy_from_user(src
, iov
, chars
,
602 if (unlikely(error
)) {
613 /* Insert it into the buffer array */
615 buf
->ops
= &anon_pipe_buf_ops
;
619 if (is_packetized(filp
)) {
620 buf
->ops
= &packet_pipe_buf_ops
;
621 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
623 pipe
->nrbufs
= ++bufs
;
624 pipe
->tmp_page
= NULL
;
630 if (bufs
< pipe
->buffers
)
632 if (filp
->f_flags
& O_NONBLOCK
) {
637 if (signal_pending(current
)) {
643 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
644 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
647 pipe
->waiting_writers
++;
649 pipe
->waiting_writers
--;
652 mutex_unlock(&inode
->i_mutex
);
654 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
655 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
658 file_update_time(filp
);
663 bad_pipe_r(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
669 bad_pipe_w(struct file
*filp
, const char __user
*buf
, size_t count
,
675 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
677 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
678 struct pipe_inode_info
*pipe
;
679 int count
, buf
, nrbufs
;
683 mutex_lock(&inode
->i_mutex
);
684 pipe
= inode
->i_pipe
;
687 nrbufs
= pipe
->nrbufs
;
688 while (--nrbufs
>= 0) {
689 count
+= pipe
->bufs
[buf
].len
;
690 buf
= (buf
+1) & (pipe
->buffers
- 1);
692 mutex_unlock(&inode
->i_mutex
);
694 return put_user(count
, (int __user
*)arg
);
700 /* No kernel lock held - fine */
702 pipe_poll(struct file
*filp
, poll_table
*wait
)
705 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
706 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
709 poll_wait(filp
, &pipe
->wait
, wait
);
711 /* Reading only -- no need for acquiring the semaphore. */
712 nrbufs
= pipe
->nrbufs
;
714 if (filp
->f_mode
& FMODE_READ
) {
715 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
716 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
720 if (filp
->f_mode
& FMODE_WRITE
) {
721 mask
|= (nrbufs
< pipe
->buffers
) ? POLLOUT
| POLLWRNORM
: 0;
723 * Most Unices do not set POLLERR for FIFOs but on Linux they
724 * behave exactly like pipes for poll().
734 pipe_release(struct inode
*inode
, int decr
, int decw
)
736 struct pipe_inode_info
*pipe
;
738 mutex_lock(&inode
->i_mutex
);
739 pipe
= inode
->i_pipe
;
740 pipe
->readers
-= decr
;
741 pipe
->writers
-= decw
;
743 if (!pipe
->readers
&& !pipe
->writers
) {
744 free_pipe_info(inode
);
746 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLOUT
| POLLRDNORM
| POLLWRNORM
| POLLERR
| POLLHUP
);
747 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
748 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
750 mutex_unlock(&inode
->i_mutex
);
756 pipe_read_fasync(int fd
, struct file
*filp
, int on
)
758 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
761 mutex_lock(&inode
->i_mutex
);
762 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_readers
);
763 mutex_unlock(&inode
->i_mutex
);
770 pipe_write_fasync(int fd
, struct file
*filp
, int on
)
772 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
775 mutex_lock(&inode
->i_mutex
);
776 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_writers
);
777 mutex_unlock(&inode
->i_mutex
);
784 pipe_rdwr_fasync(int fd
, struct file
*filp
, int on
)
786 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
787 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
790 mutex_lock(&inode
->i_mutex
);
791 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
793 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
794 if (retval
< 0) /* this can happen only if on == T */
795 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
797 mutex_unlock(&inode
->i_mutex
);
803 pipe_read_release(struct inode
*inode
, struct file
*filp
)
805 return pipe_release(inode
, 1, 0);
809 pipe_write_release(struct inode
*inode
, struct file
*filp
)
811 return pipe_release(inode
, 0, 1);
815 pipe_rdwr_release(struct inode
*inode
, struct file
*filp
)
819 decr
= (filp
->f_mode
& FMODE_READ
) != 0;
820 decw
= (filp
->f_mode
& FMODE_WRITE
) != 0;
821 return pipe_release(inode
, decr
, decw
);
825 pipe_read_open(struct inode
*inode
, struct file
*filp
)
829 mutex_lock(&inode
->i_mutex
);
833 inode
->i_pipe
->readers
++;
836 mutex_unlock(&inode
->i_mutex
);
842 pipe_write_open(struct inode
*inode
, struct file
*filp
)
846 mutex_lock(&inode
->i_mutex
);
850 inode
->i_pipe
->writers
++;
853 mutex_unlock(&inode
->i_mutex
);
859 pipe_rdwr_open(struct inode
*inode
, struct file
*filp
)
863 mutex_lock(&inode
->i_mutex
);
867 if (filp
->f_mode
& FMODE_READ
)
868 inode
->i_pipe
->readers
++;
869 if (filp
->f_mode
& FMODE_WRITE
)
870 inode
->i_pipe
->writers
++;
873 mutex_unlock(&inode
->i_mutex
);
879 * The file_operations structs are not static because they
880 * are also used in linux/fs/fifo.c to do operations on FIFOs.
882 * Pipes reuse fifos' file_operations structs.
884 const struct file_operations read_pipefifo_fops
= {
886 .read
= do_sync_read
,
887 .aio_read
= pipe_read
,
890 .unlocked_ioctl
= pipe_ioctl
,
891 .open
= pipe_read_open
,
892 .release
= pipe_read_release
,
893 .fasync
= pipe_read_fasync
,
896 const struct file_operations write_pipefifo_fops
= {
899 .write
= do_sync_write
,
900 .aio_write
= pipe_write
,
902 .unlocked_ioctl
= pipe_ioctl
,
903 .open
= pipe_write_open
,
904 .release
= pipe_write_release
,
905 .fasync
= pipe_write_fasync
,
908 const struct file_operations rdwr_pipefifo_fops
= {
910 .read
= do_sync_read
,
911 .aio_read
= pipe_read
,
912 .write
= do_sync_write
,
913 .aio_write
= pipe_write
,
915 .unlocked_ioctl
= pipe_ioctl
,
916 .open
= pipe_rdwr_open
,
917 .release
= pipe_rdwr_release
,
918 .fasync
= pipe_rdwr_fasync
,
921 struct pipe_inode_info
* alloc_pipe_info(struct inode
*inode
)
923 struct pipe_inode_info
*pipe
;
925 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL
);
927 pipe
->bufs
= kzalloc(sizeof(struct pipe_buffer
) * PIPE_DEF_BUFFERS
, GFP_KERNEL
);
929 init_waitqueue_head(&pipe
->wait
);
930 pipe
->r_counter
= pipe
->w_counter
= 1;
932 pipe
->buffers
= PIPE_DEF_BUFFERS
;
941 void __free_pipe_info(struct pipe_inode_info
*pipe
)
945 for (i
= 0; i
< pipe
->buffers
; i
++) {
946 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
948 buf
->ops
->release(pipe
, buf
);
951 __free_page(pipe
->tmp_page
);
956 void free_pipe_info(struct inode
*inode
)
958 __free_pipe_info(inode
->i_pipe
);
959 inode
->i_pipe
= NULL
;
962 static struct vfsmount
*pipe_mnt __read_mostly
;
965 * pipefs_dname() is called from d_path().
967 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
969 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
970 dentry
->d_inode
->i_ino
);
973 static const struct dentry_operations pipefs_dentry_operations
= {
974 .d_dname
= pipefs_dname
,
977 static struct inode
* get_pipe_inode(void)
979 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
980 struct pipe_inode_info
*pipe
;
985 inode
->i_ino
= get_next_ino();
987 pipe
= alloc_pipe_info(inode
);
990 inode
->i_pipe
= pipe
;
992 pipe
->readers
= pipe
->writers
= 1;
993 inode
->i_fop
= &rdwr_pipefifo_fops
;
996 * Mark the inode dirty from the very beginning,
997 * that way it will never be moved to the dirty
998 * list because "mark_inode_dirty()" will think
999 * that it already _is_ on the dirty list.
1001 inode
->i_state
= I_DIRTY
;
1002 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
1003 inode
->i_uid
= current_fsuid();
1004 inode
->i_gid
= current_fsgid();
1005 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1016 struct file
*create_write_pipe(int flags
)
1019 struct inode
*inode
;
1022 struct qstr name
= { .name
= "" };
1025 inode
= get_pipe_inode();
1030 path
.dentry
= d_alloc_pseudo(pipe_mnt
->mnt_sb
, &name
);
1033 path
.mnt
= mntget(pipe_mnt
);
1035 d_instantiate(path
.dentry
, inode
);
1038 f
= alloc_file(&path
, FMODE_WRITE
, &write_pipefifo_fops
);
1041 f
->f_mapping
= inode
->i_mapping
;
1043 f
->f_flags
= O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
));
1049 free_pipe_info(inode
);
1051 return ERR_PTR(err
);
1054 free_pipe_info(inode
);
1057 return ERR_PTR(err
);
1060 void free_write_pipe(struct file
*f
)
1062 free_pipe_info(f
->f_dentry
->d_inode
);
1063 path_put(&f
->f_path
);
1067 struct file
*create_read_pipe(struct file
*wrf
, int flags
)
1069 /* Grab pipe from the writer */
1070 struct file
*f
= alloc_file(&wrf
->f_path
, FMODE_READ
,
1071 &read_pipefifo_fops
);
1073 return ERR_PTR(-ENFILE
);
1075 path_get(&wrf
->f_path
);
1076 f
->f_flags
= O_RDONLY
| (flags
& O_NONBLOCK
);
1081 int do_pipe_flags(int *fd
, int flags
)
1083 struct file
*fw
, *fr
;
1087 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
))
1090 fw
= create_write_pipe(flags
);
1093 fr
= create_read_pipe(fw
, flags
);
1094 error
= PTR_ERR(fr
);
1096 goto err_write_pipe
;
1098 error
= get_unused_fd_flags(flags
);
1103 error
= get_unused_fd_flags(flags
);
1108 audit_fd_pair(fdr
, fdw
);
1109 fd_install(fdr
, fr
);
1110 fd_install(fdw
, fw
);
1119 path_put(&fr
->f_path
);
1122 free_write_pipe(fw
);
1127 * sys_pipe() is the normal C calling standard for creating
1128 * a pipe. It's not the way Unix traditionally does this, though.
1130 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
1135 error
= do_pipe_flags(fd
, flags
);
1137 if (copy_to_user(fildes
, fd
, sizeof(fd
))) {
1146 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
1148 return sys_pipe2(fildes
, 0);
1152 * Allocate a new array of pipe buffers and copy the info over. Returns the
1153 * pipe size if successful, or return -ERROR on error.
1155 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long nr_pages
)
1157 struct pipe_buffer
*bufs
;
1160 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1161 * expect a lot of shrink+grow operations, just free and allocate
1162 * again like we would do for growing. If the pipe currently
1163 * contains more buffers than arg, then return busy.
1165 if (nr_pages
< pipe
->nrbufs
)
1168 bufs
= kcalloc(nr_pages
, sizeof(*bufs
), GFP_KERNEL
| __GFP_NOWARN
);
1169 if (unlikely(!bufs
))
1173 * The pipe array wraps around, so just start the new one at zero
1174 * and adjust the indexes.
1180 tail
= pipe
->curbuf
+ pipe
->nrbufs
;
1181 if (tail
< pipe
->buffers
)
1184 tail
&= (pipe
->buffers
- 1);
1186 head
= pipe
->nrbufs
- tail
;
1188 memcpy(bufs
, pipe
->bufs
+ pipe
->curbuf
, head
* sizeof(struct pipe_buffer
));
1190 memcpy(bufs
+ head
, pipe
->bufs
, tail
* sizeof(struct pipe_buffer
));
1196 pipe
->buffers
= nr_pages
;
1197 return nr_pages
* PAGE_SIZE
;
1201 * Currently we rely on the pipe array holding a power-of-2 number
1204 static inline unsigned int round_pipe_size(unsigned int size
)
1206 unsigned long nr_pages
;
1208 nr_pages
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1209 return roundup_pow_of_two(nr_pages
) << PAGE_SHIFT
;
1213 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1214 * will return an error.
1216 int pipe_proc_fn(struct ctl_table
*table
, int write
, void __user
*buf
,
1217 size_t *lenp
, loff_t
*ppos
)
1221 ret
= proc_dointvec_minmax(table
, write
, buf
, lenp
, ppos
);
1222 if (ret
< 0 || !write
)
1225 pipe_max_size
= round_pipe_size(pipe_max_size
);
1230 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1231 * location, so checking ->i_pipe is not enough to verify that this is a
1234 struct pipe_inode_info
*get_pipe_info(struct file
*file
)
1236 struct inode
*i
= file
->f_path
.dentry
->d_inode
;
1238 return S_ISFIFO(i
->i_mode
) ? i
->i_pipe
: NULL
;
1241 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1243 struct pipe_inode_info
*pipe
;
1246 pipe
= get_pipe_info(file
);
1250 mutex_lock(&pipe
->inode
->i_mutex
);
1253 case F_SETPIPE_SZ
: {
1254 unsigned int size
, nr_pages
;
1256 size
= round_pipe_size(arg
);
1257 nr_pages
= size
>> PAGE_SHIFT
;
1263 if (!capable(CAP_SYS_RESOURCE
) && size
> pipe_max_size
) {
1267 ret
= pipe_set_size(pipe
, nr_pages
);
1271 ret
= pipe
->buffers
* PAGE_SIZE
;
1279 mutex_unlock(&pipe
->inode
->i_mutex
);
1283 static const struct super_operations pipefs_ops
= {
1284 .destroy_inode
= free_inode_nonrcu
,
1285 .statfs
= simple_statfs
,
1289 * pipefs should _never_ be mounted by userland - too much of security hassle,
1290 * no real gain from having the whole whorehouse mounted. So we don't need
1291 * any operations on the root directory. However, we need a non-trivial
1292 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1294 static struct dentry
*pipefs_mount(struct file_system_type
*fs_type
,
1295 int flags
, const char *dev_name
, void *data
)
1297 return mount_pseudo(fs_type
, "pipe:", &pipefs_ops
,
1298 &pipefs_dentry_operations
, PIPEFS_MAGIC
);
1301 static struct file_system_type pipe_fs_type
= {
1303 .mount
= pipefs_mount
,
1304 .kill_sb
= kill_anon_super
,
1307 static int __init
init_pipe_fs(void)
1309 int err
= register_filesystem(&pipe_fs_type
);
1312 pipe_mnt
= kern_mount(&pipe_fs_type
);
1313 if (IS_ERR(pipe_mnt
)) {
1314 err
= PTR_ERR(pipe_mnt
);
1315 unregister_filesystem(&pipe_fs_type
);
1321 fs_initcall(init_pipe_fs
);