2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/iocontext.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/mempool.h>
28 #include <linux/workqueue.h>
29 #include <linux/cgroup.h>
30 #include <scsi/sg.h> /* for struct sg_iovec */
32 #include <trace/events/block.h>
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
38 #define BIO_INLINE_VECS 4
40 static mempool_t
*bio_split_pool __read_mostly
;
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
47 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
48 static struct biovec_slab bvec_slabs
[BIOVEC_NR_POOLS
] __read_mostly
= {
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES
),
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
57 struct bio_set
*fs_bio_set
;
60 * Our slab pool management
63 struct kmem_cache
*slab
;
64 unsigned int slab_ref
;
65 unsigned int slab_size
;
68 static DEFINE_MUTEX(bio_slab_lock
);
69 static struct bio_slab
*bio_slabs
;
70 static unsigned int bio_slab_nr
, bio_slab_max
;
72 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
74 unsigned int sz
= sizeof(struct bio
) + extra_size
;
75 struct kmem_cache
*slab
= NULL
;
76 struct bio_slab
*bslab
, *new_bio_slabs
;
77 unsigned int i
, entry
= -1;
79 mutex_lock(&bio_slab_lock
);
82 while (i
< bio_slab_nr
) {
83 bslab
= &bio_slabs
[i
];
85 if (!bslab
->slab
&& entry
== -1)
87 else if (bslab
->slab_size
== sz
) {
98 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
100 new_bio_slabs
= krealloc(bio_slabs
,
101 bio_slab_max
* sizeof(struct bio_slab
),
105 bio_slabs
= new_bio_slabs
;
108 entry
= bio_slab_nr
++;
110 bslab
= &bio_slabs
[entry
];
112 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
113 slab
= kmem_cache_create(bslab
->name
, sz
, 0, SLAB_HWCACHE_ALIGN
, NULL
);
117 printk(KERN_INFO
"bio: create slab <%s> at %d\n", bslab
->name
, entry
);
120 bslab
->slab_size
= sz
;
122 mutex_unlock(&bio_slab_lock
);
126 static void bio_put_slab(struct bio_set
*bs
)
128 struct bio_slab
*bslab
= NULL
;
131 mutex_lock(&bio_slab_lock
);
133 for (i
= 0; i
< bio_slab_nr
; i
++) {
134 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
135 bslab
= &bio_slabs
[i
];
140 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
143 WARN_ON(!bslab
->slab_ref
);
145 if (--bslab
->slab_ref
)
148 kmem_cache_destroy(bslab
->slab
);
152 mutex_unlock(&bio_slab_lock
);
155 unsigned int bvec_nr_vecs(unsigned short idx
)
157 return bvec_slabs
[idx
].nr_vecs
;
160 void bvec_free_bs(struct bio_set
*bs
, struct bio_vec
*bv
, unsigned int idx
)
162 BIO_BUG_ON(idx
>= BIOVEC_NR_POOLS
);
164 if (idx
== BIOVEC_MAX_IDX
)
165 mempool_free(bv
, bs
->bvec_pool
);
167 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
169 kmem_cache_free(bvs
->slab
, bv
);
173 struct bio_vec
*bvec_alloc_bs(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
179 * see comment near bvec_array define!
197 case 129 ... BIO_MAX_PAGES
:
205 * idx now points to the pool we want to allocate from. only the
206 * 1-vec entry pool is mempool backed.
208 if (*idx
== BIOVEC_MAX_IDX
) {
210 bvl
= mempool_alloc(bs
->bvec_pool
, gfp_mask
);
212 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
213 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_WAIT
| __GFP_IO
);
216 * Make this allocation restricted and don't dump info on
217 * allocation failures, since we'll fallback to the mempool
218 * in case of failure.
220 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
223 * Try a slab allocation. If this fails and __GFP_WAIT
224 * is set, retry with the 1-entry mempool
226 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
227 if (unlikely(!bvl
&& (gfp_mask
& __GFP_WAIT
))) {
228 *idx
= BIOVEC_MAX_IDX
;
236 void bio_free(struct bio
*bio
, struct bio_set
*bs
)
240 if (bio_has_allocated_vec(bio
))
241 bvec_free_bs(bs
, bio
->bi_io_vec
, BIO_POOL_IDX(bio
));
243 if (bio_integrity(bio
))
244 bio_integrity_free(bio
, bs
);
247 * If we have front padding, adjust the bio pointer before freeing
253 mempool_free(p
, bs
->bio_pool
);
255 EXPORT_SYMBOL(bio_free
);
257 void bio_init(struct bio
*bio
)
259 memset(bio
, 0, sizeof(*bio
));
260 bio
->bi_flags
= 1 << BIO_UPTODATE
;
261 atomic_set(&bio
->bi_cnt
, 1);
263 EXPORT_SYMBOL(bio_init
);
266 * bio_alloc_bioset - allocate a bio for I/O
267 * @gfp_mask: the GFP_ mask given to the slab allocator
268 * @nr_iovecs: number of iovecs to pre-allocate
269 * @bs: the bio_set to allocate from.
272 * bio_alloc_bioset will try its own mempool to satisfy the allocation.
273 * If %__GFP_WAIT is set then we will block on the internal pool waiting
274 * for a &struct bio to become free.
276 * Note that the caller must set ->bi_destructor on successful return
277 * of a bio, to do the appropriate freeing of the bio once the reference
278 * count drops to zero.
280 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, int nr_iovecs
, struct bio_set
*bs
)
282 unsigned long idx
= BIO_POOL_NONE
;
283 struct bio_vec
*bvl
= NULL
;
287 p
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
290 bio
= p
+ bs
->front_pad
;
294 if (unlikely(!nr_iovecs
))
297 if (nr_iovecs
<= BIO_INLINE_VECS
) {
298 bvl
= bio
->bi_inline_vecs
;
299 nr_iovecs
= BIO_INLINE_VECS
;
301 bvl
= bvec_alloc_bs(gfp_mask
, nr_iovecs
, &idx
, bs
);
305 nr_iovecs
= bvec_nr_vecs(idx
);
308 bio
->bi_flags
|= idx
<< BIO_POOL_OFFSET
;
309 bio
->bi_max_vecs
= nr_iovecs
;
310 bio
->bi_io_vec
= bvl
;
314 mempool_free(p
, bs
->bio_pool
);
317 EXPORT_SYMBOL(bio_alloc_bioset
);
319 static void bio_fs_destructor(struct bio
*bio
)
321 bio_free(bio
, fs_bio_set
);
325 * bio_alloc - allocate a new bio, memory pool backed
326 * @gfp_mask: allocation mask to use
327 * @nr_iovecs: number of iovecs
329 * bio_alloc will allocate a bio and associated bio_vec array that can hold
330 * at least @nr_iovecs entries. Allocations will be done from the
331 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
333 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
334 * a bio. This is due to the mempool guarantees. To make this work, callers
335 * must never allocate more than 1 bio at a time from this pool. Callers
336 * that need to allocate more than 1 bio must always submit the previously
337 * allocated bio for IO before attempting to allocate a new one. Failure to
338 * do so can cause livelocks under memory pressure.
341 * Pointer to new bio on success, NULL on failure.
343 struct bio
*bio_alloc(gfp_t gfp_mask
, unsigned int nr_iovecs
)
345 struct bio
*bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, fs_bio_set
);
348 bio
->bi_destructor
= bio_fs_destructor
;
352 EXPORT_SYMBOL(bio_alloc
);
354 static void bio_kmalloc_destructor(struct bio
*bio
)
356 if (bio_integrity(bio
))
357 bio_integrity_free(bio
, fs_bio_set
);
362 * bio_kmalloc - allocate a bio for I/O using kmalloc()
363 * @gfp_mask: the GFP_ mask given to the slab allocator
364 * @nr_iovecs: number of iovecs to pre-allocate
367 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
368 * %__GFP_WAIT, the allocation is guaranteed to succeed.
371 struct bio
*bio_kmalloc(gfp_t gfp_mask
, unsigned int nr_iovecs
)
375 if (nr_iovecs
> UIO_MAXIOV
)
378 bio
= kmalloc(sizeof(struct bio
) + nr_iovecs
* sizeof(struct bio_vec
),
384 bio
->bi_flags
|= BIO_POOL_NONE
<< BIO_POOL_OFFSET
;
385 bio
->bi_max_vecs
= nr_iovecs
;
386 bio
->bi_io_vec
= bio
->bi_inline_vecs
;
387 bio
->bi_destructor
= bio_kmalloc_destructor
;
391 EXPORT_SYMBOL(bio_kmalloc
);
393 void zero_fill_bio(struct bio
*bio
)
399 bio_for_each_segment(bv
, bio
, i
) {
400 char *data
= bvec_kmap_irq(bv
, &flags
);
401 memset(data
, 0, bv
->bv_len
);
402 flush_dcache_page(bv
->bv_page
);
403 bvec_kunmap_irq(data
, &flags
);
406 EXPORT_SYMBOL(zero_fill_bio
);
409 * bio_put - release a reference to a bio
410 * @bio: bio to release reference to
413 * Put a reference to a &struct bio, either one you have gotten with
414 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
416 void bio_put(struct bio
*bio
)
418 BIO_BUG_ON(!atomic_read(&bio
->bi_cnt
));
423 if (atomic_dec_and_test(&bio
->bi_cnt
)) {
424 bio_disassociate_task(bio
);
426 bio
->bi_destructor(bio
);
429 EXPORT_SYMBOL(bio_put
);
431 inline int bio_phys_segments(struct request_queue
*q
, struct bio
*bio
)
433 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
434 blk_recount_segments(q
, bio
);
436 return bio
->bi_phys_segments
;
438 EXPORT_SYMBOL(bio_phys_segments
);
441 * __bio_clone - clone a bio
442 * @bio: destination bio
443 * @bio_src: bio to clone
445 * Clone a &bio. Caller will own the returned bio, but not
446 * the actual data it points to. Reference count of returned
449 void __bio_clone(struct bio
*bio
, struct bio
*bio_src
)
451 memcpy(bio
->bi_io_vec
, bio_src
->bi_io_vec
,
452 bio_src
->bi_max_vecs
* sizeof(struct bio_vec
));
455 * most users will be overriding ->bi_bdev with a new target,
456 * so we don't set nor calculate new physical/hw segment counts here
458 bio
->bi_sector
= bio_src
->bi_sector
;
459 bio
->bi_bdev
= bio_src
->bi_bdev
;
460 bio
->bi_flags
|= 1 << BIO_CLONED
;
461 bio
->bi_rw
= bio_src
->bi_rw
;
462 bio
->bi_vcnt
= bio_src
->bi_vcnt
;
463 bio
->bi_size
= bio_src
->bi_size
;
464 bio
->bi_idx
= bio_src
->bi_idx
;
466 EXPORT_SYMBOL(__bio_clone
);
469 * bio_clone - clone a bio
471 * @gfp_mask: allocation priority
473 * Like __bio_clone, only also allocates the returned bio
475 struct bio
*bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
477 struct bio
*b
= bio_alloc_bioset(gfp_mask
, bio
->bi_max_vecs
, fs_bio_set
);
482 b
->bi_destructor
= bio_fs_destructor
;
485 if (bio_integrity(bio
)) {
488 ret
= bio_integrity_clone(b
, bio
, gfp_mask
, fs_bio_set
);
498 EXPORT_SYMBOL(bio_clone
);
501 * bio_get_nr_vecs - return approx number of vecs
504 * Return the approximate number of pages we can send to this target.
505 * There's no guarantee that you will be able to fit this number of pages
506 * into a bio, it does not account for dynamic restrictions that vary
509 int bio_get_nr_vecs(struct block_device
*bdev
)
511 struct request_queue
*q
= bdev_get_queue(bdev
);
514 nr_pages
= min_t(unsigned,
515 queue_max_segments(q
),
516 queue_max_sectors(q
) / (PAGE_SIZE
>> 9) + 1);
518 return min_t(unsigned, nr_pages
, BIO_MAX_PAGES
);
521 EXPORT_SYMBOL(bio_get_nr_vecs
);
523 static int __bio_add_page(struct request_queue
*q
, struct bio
*bio
, struct page
524 *page
, unsigned int len
, unsigned int offset
,
525 unsigned short max_sectors
)
527 int retried_segments
= 0;
528 struct bio_vec
*bvec
;
531 * cloned bio must not modify vec list
533 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
536 if (((bio
->bi_size
+ len
) >> 9) > max_sectors
)
540 * For filesystems with a blocksize smaller than the pagesize
541 * we will often be called with the same page as last time and
542 * a consecutive offset. Optimize this special case.
544 if (bio
->bi_vcnt
> 0) {
545 struct bio_vec
*prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
547 if (page
== prev
->bv_page
&&
548 offset
== prev
->bv_offset
+ prev
->bv_len
) {
549 unsigned int prev_bv_len
= prev
->bv_len
;
552 if (q
->merge_bvec_fn
) {
553 struct bvec_merge_data bvm
= {
554 /* prev_bvec is already charged in
555 bi_size, discharge it in order to
556 simulate merging updated prev_bvec
558 .bi_bdev
= bio
->bi_bdev
,
559 .bi_sector
= bio
->bi_sector
,
560 .bi_size
= bio
->bi_size
- prev_bv_len
,
564 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < prev
->bv_len
) {
574 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
578 * we might lose a segment or two here, but rather that than
579 * make this too complex.
582 while (bio
->bi_phys_segments
>= queue_max_segments(q
)) {
584 if (retried_segments
)
587 retried_segments
= 1;
588 blk_recount_segments(q
, bio
);
592 * setup the new entry, we might clear it again later if we
593 * cannot add the page
595 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
596 bvec
->bv_page
= page
;
598 bvec
->bv_offset
= offset
;
601 * if queue has other restrictions (eg varying max sector size
602 * depending on offset), it can specify a merge_bvec_fn in the
603 * queue to get further control
605 if (q
->merge_bvec_fn
) {
606 struct bvec_merge_data bvm
= {
607 .bi_bdev
= bio
->bi_bdev
,
608 .bi_sector
= bio
->bi_sector
,
609 .bi_size
= bio
->bi_size
,
614 * merge_bvec_fn() returns number of bytes it can accept
617 if (q
->merge_bvec_fn(q
, &bvm
, bvec
) < bvec
->bv_len
) {
618 bvec
->bv_page
= NULL
;
625 /* If we may be able to merge these biovecs, force a recount */
626 if (bio
->bi_vcnt
&& (BIOVEC_PHYS_MERGEABLE(bvec
-1, bvec
)))
627 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
630 bio
->bi_phys_segments
++;
637 * bio_add_pc_page - attempt to add page to bio
638 * @q: the target queue
639 * @bio: destination bio
641 * @len: vec entry length
642 * @offset: vec entry offset
644 * Attempt to add a page to the bio_vec maplist. This can fail for a
645 * number of reasons, such as the bio being full or target block device
646 * limitations. The target block device must allow bio's up to PAGE_SIZE,
647 * so it is always possible to add a single page to an empty bio.
649 * This should only be used by REQ_PC bios.
651 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
, struct page
*page
,
652 unsigned int len
, unsigned int offset
)
654 return __bio_add_page(q
, bio
, page
, len
, offset
,
655 queue_max_hw_sectors(q
));
657 EXPORT_SYMBOL(bio_add_pc_page
);
660 * bio_add_page - attempt to add page to bio
661 * @bio: destination bio
663 * @len: vec entry length
664 * @offset: vec entry offset
666 * Attempt to add a page to the bio_vec maplist. This can fail for a
667 * number of reasons, such as the bio being full or target block device
668 * limitations. The target block device must allow bio's up to PAGE_SIZE,
669 * so it is always possible to add a single page to an empty bio.
671 int bio_add_page(struct bio
*bio
, struct page
*page
, unsigned int len
,
674 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
675 return __bio_add_page(q
, bio
, page
, len
, offset
, queue_max_sectors(q
));
677 EXPORT_SYMBOL(bio_add_page
);
679 struct bio_map_data
{
680 struct bio_vec
*iovecs
;
681 struct sg_iovec
*sgvecs
;
686 static void bio_set_map_data(struct bio_map_data
*bmd
, struct bio
*bio
,
687 struct sg_iovec
*iov
, int iov_count
,
690 memcpy(bmd
->iovecs
, bio
->bi_io_vec
, sizeof(struct bio_vec
) * bio
->bi_vcnt
);
691 memcpy(bmd
->sgvecs
, iov
, sizeof(struct sg_iovec
) * iov_count
);
692 bmd
->nr_sgvecs
= iov_count
;
693 bmd
->is_our_pages
= is_our_pages
;
694 bio
->bi_private
= bmd
;
697 static void bio_free_map_data(struct bio_map_data
*bmd
)
704 static struct bio_map_data
*bio_alloc_map_data(int nr_segs
,
705 unsigned int iov_count
,
708 struct bio_map_data
*bmd
;
710 if (iov_count
> UIO_MAXIOV
)
713 bmd
= kmalloc(sizeof(*bmd
), gfp_mask
);
717 bmd
->iovecs
= kmalloc(sizeof(struct bio_vec
) * nr_segs
, gfp_mask
);
723 bmd
->sgvecs
= kmalloc(sizeof(struct sg_iovec
) * iov_count
, gfp_mask
);
732 static int __bio_copy_iov(struct bio
*bio
, struct bio_vec
*iovecs
,
733 struct sg_iovec
*iov
, int iov_count
,
734 int to_user
, int from_user
, int do_free_page
)
737 struct bio_vec
*bvec
;
739 unsigned int iov_off
= 0;
741 __bio_for_each_segment(bvec
, bio
, i
, 0) {
742 char *bv_addr
= page_address(bvec
->bv_page
);
743 unsigned int bv_len
= iovecs
[i
].bv_len
;
745 while (bv_len
&& iov_idx
< iov_count
) {
747 char __user
*iov_addr
;
749 bytes
= min_t(unsigned int,
750 iov
[iov_idx
].iov_len
- iov_off
, bv_len
);
751 iov_addr
= iov
[iov_idx
].iov_base
+ iov_off
;
755 ret
= copy_to_user(iov_addr
, bv_addr
,
759 ret
= copy_from_user(bv_addr
, iov_addr
,
771 if (iov
[iov_idx
].iov_len
== iov_off
) {
778 __free_page(bvec
->bv_page
);
785 * bio_uncopy_user - finish previously mapped bio
786 * @bio: bio being terminated
788 * Free pages allocated from bio_copy_user() and write back data
789 * to user space in case of a read.
791 int bio_uncopy_user(struct bio
*bio
)
793 struct bio_map_data
*bmd
= bio
->bi_private
;
796 if (!bio_flagged(bio
, BIO_NULL_MAPPED
))
797 ret
= __bio_copy_iov(bio
, bmd
->iovecs
, bmd
->sgvecs
,
798 bmd
->nr_sgvecs
, bio_data_dir(bio
) == READ
,
799 0, bmd
->is_our_pages
);
800 bio_free_map_data(bmd
);
804 EXPORT_SYMBOL(bio_uncopy_user
);
807 * bio_copy_user_iov - copy user data to bio
808 * @q: destination block queue
809 * @map_data: pointer to the rq_map_data holding pages (if necessary)
811 * @iov_count: number of elements in the iovec
812 * @write_to_vm: bool indicating writing to pages or not
813 * @gfp_mask: memory allocation flags
815 * Prepares and returns a bio for indirect user io, bouncing data
816 * to/from kernel pages as necessary. Must be paired with
817 * call bio_uncopy_user() on io completion.
819 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
820 struct rq_map_data
*map_data
,
821 struct sg_iovec
*iov
, int iov_count
,
822 int write_to_vm
, gfp_t gfp_mask
)
824 struct bio_map_data
*bmd
;
825 struct bio_vec
*bvec
;
830 unsigned int len
= 0;
831 unsigned int offset
= map_data
? map_data
->offset
& ~PAGE_MASK
: 0;
833 for (i
= 0; i
< iov_count
; i
++) {
838 uaddr
= (unsigned long)iov
[i
].iov_base
;
839 end
= (uaddr
+ iov
[i
].iov_len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
840 start
= uaddr
>> PAGE_SHIFT
;
846 return ERR_PTR(-EINVAL
);
848 nr_pages
+= end
- start
;
849 len
+= iov
[i
].iov_len
;
855 bmd
= bio_alloc_map_data(nr_pages
, iov_count
, gfp_mask
);
857 return ERR_PTR(-ENOMEM
);
860 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
865 bio
->bi_rw
|= REQ_WRITE
;
870 nr_pages
= 1 << map_data
->page_order
;
871 i
= map_data
->offset
/ PAGE_SIZE
;
874 unsigned int bytes
= PAGE_SIZE
;
882 if (i
== map_data
->nr_entries
* nr_pages
) {
887 page
= map_data
->pages
[i
/ nr_pages
];
888 page
+= (i
% nr_pages
);
892 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
899 if (bio_add_pc_page(q
, bio
, page
, bytes
, offset
) < bytes
)
912 if ((!write_to_vm
&& (!map_data
|| !map_data
->null_mapped
)) ||
913 (map_data
&& map_data
->from_user
)) {
914 ret
= __bio_copy_iov(bio
, bio
->bi_io_vec
, iov
, iov_count
, 0, 1, 0);
919 bio_set_map_data(bmd
, bio
, iov
, iov_count
, map_data
? 0 : 1);
923 bio_for_each_segment(bvec
, bio
, i
)
924 __free_page(bvec
->bv_page
);
928 bio_free_map_data(bmd
);
933 * bio_copy_user - copy user data to bio
934 * @q: destination block queue
935 * @map_data: pointer to the rq_map_data holding pages (if necessary)
936 * @uaddr: start of user address
937 * @len: length in bytes
938 * @write_to_vm: bool indicating writing to pages or not
939 * @gfp_mask: memory allocation flags
941 * Prepares and returns a bio for indirect user io, bouncing data
942 * to/from kernel pages as necessary. Must be paired with
943 * call bio_uncopy_user() on io completion.
945 struct bio
*bio_copy_user(struct request_queue
*q
, struct rq_map_data
*map_data
,
946 unsigned long uaddr
, unsigned int len
,
947 int write_to_vm
, gfp_t gfp_mask
)
951 iov
.iov_base
= (void __user
*)uaddr
;
954 return bio_copy_user_iov(q
, map_data
, &iov
, 1, write_to_vm
, gfp_mask
);
956 EXPORT_SYMBOL(bio_copy_user
);
958 static struct bio
*__bio_map_user_iov(struct request_queue
*q
,
959 struct block_device
*bdev
,
960 struct sg_iovec
*iov
, int iov_count
,
961 int write_to_vm
, gfp_t gfp_mask
)
970 for (i
= 0; i
< iov_count
; i
++) {
971 unsigned long uaddr
= (unsigned long)iov
[i
].iov_base
;
972 unsigned long len
= iov
[i
].iov_len
;
973 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
974 unsigned long start
= uaddr
>> PAGE_SHIFT
;
980 return ERR_PTR(-EINVAL
);
982 nr_pages
+= end
- start
;
984 * buffer must be aligned to at least hardsector size for now
986 if (uaddr
& queue_dma_alignment(q
))
987 return ERR_PTR(-EINVAL
);
991 return ERR_PTR(-EINVAL
);
993 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
995 return ERR_PTR(-ENOMEM
);
998 pages
= kcalloc(nr_pages
, sizeof(struct page
*), gfp_mask
);
1002 for (i
= 0; i
< iov_count
; i
++) {
1003 unsigned long uaddr
= (unsigned long)iov
[i
].iov_base
;
1004 unsigned long len
= iov
[i
].iov_len
;
1005 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1006 unsigned long start
= uaddr
>> PAGE_SHIFT
;
1007 const int local_nr_pages
= end
- start
;
1008 const int page_limit
= cur_page
+ local_nr_pages
;
1010 ret
= get_user_pages_fast(uaddr
, local_nr_pages
,
1011 write_to_vm
, &pages
[cur_page
]);
1012 if (ret
< local_nr_pages
) {
1017 offset
= uaddr
& ~PAGE_MASK
;
1018 for (j
= cur_page
; j
< page_limit
; j
++) {
1019 unsigned int bytes
= PAGE_SIZE
- offset
;
1030 if (bio_add_pc_page(q
, bio
, pages
[j
], bytes
, offset
) <
1040 * release the pages we didn't map into the bio, if any
1042 while (j
< page_limit
)
1043 page_cache_release(pages
[j
++]);
1049 * set data direction, and check if mapped pages need bouncing
1052 bio
->bi_rw
|= REQ_WRITE
;
1054 bio
->bi_bdev
= bdev
;
1055 bio
->bi_flags
|= (1 << BIO_USER_MAPPED
);
1059 for (i
= 0; i
< nr_pages
; i
++) {
1062 page_cache_release(pages
[i
]);
1067 return ERR_PTR(ret
);
1071 * bio_map_user - map user address into bio
1072 * @q: the struct request_queue for the bio
1073 * @bdev: destination block device
1074 * @uaddr: start of user address
1075 * @len: length in bytes
1076 * @write_to_vm: bool indicating writing to pages or not
1077 * @gfp_mask: memory allocation flags
1079 * Map the user space address into a bio suitable for io to a block
1080 * device. Returns an error pointer in case of error.
1082 struct bio
*bio_map_user(struct request_queue
*q
, struct block_device
*bdev
,
1083 unsigned long uaddr
, unsigned int len
, int write_to_vm
,
1086 struct sg_iovec iov
;
1088 iov
.iov_base
= (void __user
*)uaddr
;
1091 return bio_map_user_iov(q
, bdev
, &iov
, 1, write_to_vm
, gfp_mask
);
1093 EXPORT_SYMBOL(bio_map_user
);
1096 * bio_map_user_iov - map user sg_iovec table into bio
1097 * @q: the struct request_queue for the bio
1098 * @bdev: destination block device
1100 * @iov_count: number of elements in the iovec
1101 * @write_to_vm: bool indicating writing to pages or not
1102 * @gfp_mask: memory allocation flags
1104 * Map the user space address into a bio suitable for io to a block
1105 * device. Returns an error pointer in case of error.
1107 struct bio
*bio_map_user_iov(struct request_queue
*q
, struct block_device
*bdev
,
1108 struct sg_iovec
*iov
, int iov_count
,
1109 int write_to_vm
, gfp_t gfp_mask
)
1113 bio
= __bio_map_user_iov(q
, bdev
, iov
, iov_count
, write_to_vm
,
1119 * subtle -- if __bio_map_user() ended up bouncing a bio,
1120 * it would normally disappear when its bi_end_io is run.
1121 * however, we need it for the unmap, so grab an extra
1129 static void __bio_unmap_user(struct bio
*bio
)
1131 struct bio_vec
*bvec
;
1135 * make sure we dirty pages we wrote to
1137 __bio_for_each_segment(bvec
, bio
, i
, 0) {
1138 if (bio_data_dir(bio
) == READ
)
1139 set_page_dirty_lock(bvec
->bv_page
);
1141 page_cache_release(bvec
->bv_page
);
1148 * bio_unmap_user - unmap a bio
1149 * @bio: the bio being unmapped
1151 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1152 * a process context.
1154 * bio_unmap_user() may sleep.
1156 void bio_unmap_user(struct bio
*bio
)
1158 __bio_unmap_user(bio
);
1161 EXPORT_SYMBOL(bio_unmap_user
);
1163 static void bio_map_kern_endio(struct bio
*bio
, int err
)
1168 static struct bio
*__bio_map_kern(struct request_queue
*q
, void *data
,
1169 unsigned int len
, gfp_t gfp_mask
)
1171 unsigned long kaddr
= (unsigned long)data
;
1172 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1173 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1174 const int nr_pages
= end
- start
;
1178 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1180 return ERR_PTR(-ENOMEM
);
1182 offset
= offset_in_page(kaddr
);
1183 for (i
= 0; i
< nr_pages
; i
++) {
1184 unsigned int bytes
= PAGE_SIZE
- offset
;
1192 if (bio_add_pc_page(q
, bio
, virt_to_page(data
), bytes
,
1201 bio
->bi_end_io
= bio_map_kern_endio
;
1206 * bio_map_kern - map kernel address into bio
1207 * @q: the struct request_queue for the bio
1208 * @data: pointer to buffer to map
1209 * @len: length in bytes
1210 * @gfp_mask: allocation flags for bio allocation
1212 * Map the kernel address into a bio suitable for io to a block
1213 * device. Returns an error pointer in case of error.
1215 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1220 bio
= __bio_map_kern(q
, data
, len
, gfp_mask
);
1224 if (bio
->bi_size
== len
)
1228 * Don't support partial mappings.
1231 return ERR_PTR(-EINVAL
);
1233 EXPORT_SYMBOL(bio_map_kern
);
1235 static void bio_copy_kern_endio(struct bio
*bio
, int err
)
1237 struct bio_vec
*bvec
;
1238 const int read
= bio_data_dir(bio
) == READ
;
1239 struct bio_map_data
*bmd
= bio
->bi_private
;
1241 char *p
= bmd
->sgvecs
[0].iov_base
;
1243 __bio_for_each_segment(bvec
, bio
, i
, 0) {
1244 char *addr
= page_address(bvec
->bv_page
);
1245 int len
= bmd
->iovecs
[i
].bv_len
;
1248 memcpy(p
, addr
, len
);
1250 __free_page(bvec
->bv_page
);
1254 bio_free_map_data(bmd
);
1259 * bio_copy_kern - copy kernel address into bio
1260 * @q: the struct request_queue for the bio
1261 * @data: pointer to buffer to copy
1262 * @len: length in bytes
1263 * @gfp_mask: allocation flags for bio and page allocation
1264 * @reading: data direction is READ
1266 * copy the kernel address into a bio suitable for io to a block
1267 * device. Returns an error pointer in case of error.
1269 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1270 gfp_t gfp_mask
, int reading
)
1273 struct bio_vec
*bvec
;
1276 bio
= bio_copy_user(q
, NULL
, (unsigned long)data
, len
, 1, gfp_mask
);
1283 bio_for_each_segment(bvec
, bio
, i
) {
1284 char *addr
= page_address(bvec
->bv_page
);
1286 memcpy(addr
, p
, bvec
->bv_len
);
1291 bio
->bi_end_io
= bio_copy_kern_endio
;
1295 EXPORT_SYMBOL(bio_copy_kern
);
1298 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1299 * for performing direct-IO in BIOs.
1301 * The problem is that we cannot run set_page_dirty() from interrupt context
1302 * because the required locks are not interrupt-safe. So what we can do is to
1303 * mark the pages dirty _before_ performing IO. And in interrupt context,
1304 * check that the pages are still dirty. If so, fine. If not, redirty them
1305 * in process context.
1307 * We special-case compound pages here: normally this means reads into hugetlb
1308 * pages. The logic in here doesn't really work right for compound pages
1309 * because the VM does not uniformly chase down the head page in all cases.
1310 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1311 * handle them at all. So we skip compound pages here at an early stage.
1313 * Note that this code is very hard to test under normal circumstances because
1314 * direct-io pins the pages with get_user_pages(). This makes
1315 * is_page_cache_freeable return false, and the VM will not clean the pages.
1316 * But other code (eg, flusher threads) could clean the pages if they are mapped
1319 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1320 * deferred bio dirtying paths.
1324 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1326 void bio_set_pages_dirty(struct bio
*bio
)
1328 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1331 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1332 struct page
*page
= bvec
[i
].bv_page
;
1334 if (page
&& !PageCompound(page
))
1335 set_page_dirty_lock(page
);
1339 static void bio_release_pages(struct bio
*bio
)
1341 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1344 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1345 struct page
*page
= bvec
[i
].bv_page
;
1353 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1354 * If they are, then fine. If, however, some pages are clean then they must
1355 * have been written out during the direct-IO read. So we take another ref on
1356 * the BIO and the offending pages and re-dirty the pages in process context.
1358 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1359 * here on. It will run one page_cache_release() against each page and will
1360 * run one bio_put() against the BIO.
1363 static void bio_dirty_fn(struct work_struct
*work
);
1365 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1366 static DEFINE_SPINLOCK(bio_dirty_lock
);
1367 static struct bio
*bio_dirty_list
;
1370 * This runs in process context
1372 static void bio_dirty_fn(struct work_struct
*work
)
1374 unsigned long flags
;
1377 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1378 bio
= bio_dirty_list
;
1379 bio_dirty_list
= NULL
;
1380 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1383 struct bio
*next
= bio
->bi_private
;
1385 bio_set_pages_dirty(bio
);
1386 bio_release_pages(bio
);
1392 void bio_check_pages_dirty(struct bio
*bio
)
1394 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1395 int nr_clean_pages
= 0;
1398 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1399 struct page
*page
= bvec
[i
].bv_page
;
1401 if (PageDirty(page
) || PageCompound(page
)) {
1402 page_cache_release(page
);
1403 bvec
[i
].bv_page
= NULL
;
1409 if (nr_clean_pages
) {
1410 unsigned long flags
;
1412 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1413 bio
->bi_private
= bio_dirty_list
;
1414 bio_dirty_list
= bio
;
1415 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1416 schedule_work(&bio_dirty_work
);
1422 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1423 void bio_flush_dcache_pages(struct bio
*bi
)
1426 struct bio_vec
*bvec
;
1428 bio_for_each_segment(bvec
, bi
, i
)
1429 flush_dcache_page(bvec
->bv_page
);
1431 EXPORT_SYMBOL(bio_flush_dcache_pages
);
1435 * bio_endio - end I/O on a bio
1437 * @error: error, if any
1440 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1441 * preferred way to end I/O on a bio, it takes care of clearing
1442 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1443 * established -Exxxx (-EIO, for instance) error values in case
1444 * something went wrong. No one should call bi_end_io() directly on a
1445 * bio unless they own it and thus know that it has an end_io
1448 void bio_endio(struct bio
*bio
, int error
)
1451 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1452 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1456 bio
->bi_end_io(bio
, error
);
1458 EXPORT_SYMBOL(bio_endio
);
1460 void bio_pair_release(struct bio_pair
*bp
)
1462 if (atomic_dec_and_test(&bp
->cnt
)) {
1463 struct bio
*master
= bp
->bio1
.bi_private
;
1465 bio_endio(master
, bp
->error
);
1466 mempool_free(bp
, bp
->bio2
.bi_private
);
1469 EXPORT_SYMBOL(bio_pair_release
);
1471 static void bio_pair_end_1(struct bio
*bi
, int err
)
1473 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio1
);
1478 bio_pair_release(bp
);
1481 static void bio_pair_end_2(struct bio
*bi
, int err
)
1483 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio2
);
1488 bio_pair_release(bp
);
1492 * split a bio - only worry about a bio with a single page in its iovec
1494 struct bio_pair
*bio_split(struct bio
*bi
, int first_sectors
)
1496 struct bio_pair
*bp
= mempool_alloc(bio_split_pool
, GFP_NOIO
);
1501 trace_block_split(bdev_get_queue(bi
->bi_bdev
), bi
,
1502 bi
->bi_sector
+ first_sectors
);
1504 BUG_ON(bi
->bi_vcnt
!= 1);
1505 BUG_ON(bi
->bi_idx
!= 0);
1506 atomic_set(&bp
->cnt
, 3);
1510 bp
->bio2
.bi_sector
+= first_sectors
;
1511 bp
->bio2
.bi_size
-= first_sectors
<< 9;
1512 bp
->bio1
.bi_size
= first_sectors
<< 9;
1514 bp
->bv1
= bi
->bi_io_vec
[0];
1515 bp
->bv2
= bi
->bi_io_vec
[0];
1516 bp
->bv2
.bv_offset
+= first_sectors
<< 9;
1517 bp
->bv2
.bv_len
-= first_sectors
<< 9;
1518 bp
->bv1
.bv_len
= first_sectors
<< 9;
1520 bp
->bio1
.bi_io_vec
= &bp
->bv1
;
1521 bp
->bio2
.bi_io_vec
= &bp
->bv2
;
1523 bp
->bio1
.bi_max_vecs
= 1;
1524 bp
->bio2
.bi_max_vecs
= 1;
1526 bp
->bio1
.bi_end_io
= bio_pair_end_1
;
1527 bp
->bio2
.bi_end_io
= bio_pair_end_2
;
1529 bp
->bio1
.bi_private
= bi
;
1530 bp
->bio2
.bi_private
= bio_split_pool
;
1532 if (bio_integrity(bi
))
1533 bio_integrity_split(bi
, bp
, first_sectors
);
1537 EXPORT_SYMBOL(bio_split
);
1540 * bio_sector_offset - Find hardware sector offset in bio
1541 * @bio: bio to inspect
1542 * @index: bio_vec index
1543 * @offset: offset in bv_page
1545 * Return the number of hardware sectors between beginning of bio
1546 * and an end point indicated by a bio_vec index and an offset
1547 * within that vector's page.
1549 sector_t
bio_sector_offset(struct bio
*bio
, unsigned short index
,
1550 unsigned int offset
)
1552 unsigned int sector_sz
;
1557 sector_sz
= queue_logical_block_size(bio
->bi_bdev
->bd_disk
->queue
);
1560 if (index
>= bio
->bi_idx
)
1561 index
= bio
->bi_vcnt
- 1;
1563 __bio_for_each_segment(bv
, bio
, i
, 0) {
1565 if (offset
> bv
->bv_offset
)
1566 sectors
+= (offset
- bv
->bv_offset
) / sector_sz
;
1570 sectors
+= bv
->bv_len
/ sector_sz
;
1575 EXPORT_SYMBOL(bio_sector_offset
);
1578 * create memory pools for biovec's in a bio_set.
1579 * use the global biovec slabs created for general use.
1581 static int biovec_create_pools(struct bio_set
*bs
, int pool_entries
)
1583 struct biovec_slab
*bp
= bvec_slabs
+ BIOVEC_MAX_IDX
;
1585 bs
->bvec_pool
= mempool_create_slab_pool(pool_entries
, bp
->slab
);
1592 static void biovec_free_pools(struct bio_set
*bs
)
1594 mempool_destroy(bs
->bvec_pool
);
1597 void bioset_free(struct bio_set
*bs
)
1600 mempool_destroy(bs
->bio_pool
);
1602 bioset_integrity_free(bs
);
1603 biovec_free_pools(bs
);
1608 EXPORT_SYMBOL(bioset_free
);
1611 * bioset_create - Create a bio_set
1612 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1613 * @front_pad: Number of bytes to allocate in front of the returned bio
1616 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1617 * to ask for a number of bytes to be allocated in front of the bio.
1618 * Front pad allocation is useful for embedding the bio inside
1619 * another structure, to avoid allocating extra data to go with the bio.
1620 * Note that the bio must be embedded at the END of that structure always,
1621 * or things will break badly.
1623 struct bio_set
*bioset_create(unsigned int pool_size
, unsigned int front_pad
)
1625 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1628 bs
= kzalloc(sizeof(*bs
), GFP_KERNEL
);
1632 bs
->front_pad
= front_pad
;
1634 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
1635 if (!bs
->bio_slab
) {
1640 bs
->bio_pool
= mempool_create_slab_pool(pool_size
, bs
->bio_slab
);
1644 if (!biovec_create_pools(bs
, pool_size
))
1651 EXPORT_SYMBOL(bioset_create
);
1653 #ifdef CONFIG_BLK_CGROUP
1655 * bio_associate_current - associate a bio with %current
1658 * Associate @bio with %current if it hasn't been associated yet. Block
1659 * layer will treat @bio as if it were issued by %current no matter which
1660 * task actually issues it.
1662 * This function takes an extra reference of @task's io_context and blkcg
1663 * which will be put when @bio is released. The caller must own @bio,
1664 * ensure %current->io_context exists, and is responsible for synchronizing
1665 * calls to this function.
1667 int bio_associate_current(struct bio
*bio
)
1669 struct io_context
*ioc
;
1670 struct cgroup_subsys_state
*css
;
1675 ioc
= current
->io_context
;
1679 /* acquire active ref on @ioc and associate */
1680 get_io_context_active(ioc
);
1683 /* associate blkcg if exists */
1685 css
= task_subsys_state(current
, blkio_subsys_id
);
1686 if (css
&& css_tryget(css
))
1694 * bio_disassociate_task - undo bio_associate_current()
1697 void bio_disassociate_task(struct bio
*bio
)
1700 put_io_context(bio
->bi_ioc
);
1704 css_put(bio
->bi_css
);
1709 #endif /* CONFIG_BLK_CGROUP */
1711 static void __init
biovec_init_slabs(void)
1715 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1717 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
1719 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
1724 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
1725 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
1726 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1730 static int __init
init_bio(void)
1734 bio_slabs
= kzalloc(bio_slab_max
* sizeof(struct bio_slab
), GFP_KERNEL
);
1736 panic("bio: can't allocate bios\n");
1738 bio_integrity_init();
1739 biovec_init_slabs();
1741 fs_bio_set
= bioset_create(BIO_POOL_SIZE
, 0);
1743 panic("bio: can't allocate bios\n");
1745 if (bioset_integrity_create(fs_bio_set
, BIO_POOL_SIZE
))
1746 panic("bio: can't create integrity pool\n");
1748 bio_split_pool
= mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES
,
1749 sizeof(struct bio_pair
));
1750 if (!bio_split_pool
)
1751 panic("bio: can't create split pool\n");
1755 subsys_initcall(init_bio
);