[XFS] Remove the xlog_ticket allocator
[linux-2.6/libata-dev.git] / fs / xfs / xfs_vfsops.c
blobea94593b5313b7e28e0e869a4baa77b0e2a13b20
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_quota.h"
43 #include "xfs_error.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_buf_item.h"
47 #include "xfs_log_priv.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_extfree_item.h"
50 #include "xfs_acl.h"
51 #include "xfs_attr.h"
52 #include "xfs_clnt.h"
53 #include "xfs_mru_cache.h"
54 #include "xfs_filestream.h"
55 #include "xfs_fsops.h"
56 #include "xfs_vnodeops.h"
57 #include "xfs_vfsops.h"
58 #include "xfs_utils.h"
61 int __init
62 xfs_init(void)
64 #ifdef XFS_DABUF_DEBUG
65 extern spinlock_t xfs_dabuf_global_lock;
66 spin_lock_init(&xfs_dabuf_global_lock);
67 #endif
70 * Initialize all of the zone allocators we use.
72 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
73 "xfs_log_ticket");
74 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
75 "xfs_bmap_free_item");
76 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
77 "xfs_btree_cur");
78 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
79 "xfs_da_state");
80 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
81 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
82 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
83 xfs_acl_zone_init(xfs_acl_zone, "xfs_acl");
84 xfs_mru_cache_init();
85 xfs_filestream_init();
88 * The size of the zone allocated buf log item is the maximum
89 * size possible under XFS. This wastes a little bit of memory,
90 * but it is much faster.
92 xfs_buf_item_zone =
93 kmem_zone_init((sizeof(xfs_buf_log_item_t) +
94 (((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) /
95 NBWORD) * sizeof(int))),
96 "xfs_buf_item");
97 xfs_efd_zone =
98 kmem_zone_init((sizeof(xfs_efd_log_item_t) +
99 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
100 sizeof(xfs_extent_t))),
101 "xfs_efd_item");
102 xfs_efi_zone =
103 kmem_zone_init((sizeof(xfs_efi_log_item_t) +
104 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
105 sizeof(xfs_extent_t))),
106 "xfs_efi_item");
109 * These zones warrant special memory allocator hints
111 xfs_inode_zone =
112 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
113 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
114 KM_ZONE_SPREAD, NULL);
115 xfs_ili_zone =
116 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
117 KM_ZONE_SPREAD, NULL);
120 * Allocate global trace buffers.
122 #ifdef XFS_ALLOC_TRACE
123 xfs_alloc_trace_buf = ktrace_alloc(XFS_ALLOC_TRACE_SIZE, KM_SLEEP);
124 #endif
125 #ifdef XFS_BMAP_TRACE
126 xfs_bmap_trace_buf = ktrace_alloc(XFS_BMAP_TRACE_SIZE, KM_SLEEP);
127 #endif
128 #ifdef XFS_BMBT_TRACE
129 xfs_bmbt_trace_buf = ktrace_alloc(XFS_BMBT_TRACE_SIZE, KM_SLEEP);
130 #endif
131 #ifdef XFS_ATTR_TRACE
132 xfs_attr_trace_buf = ktrace_alloc(XFS_ATTR_TRACE_SIZE, KM_SLEEP);
133 #endif
134 #ifdef XFS_DIR2_TRACE
135 xfs_dir2_trace_buf = ktrace_alloc(XFS_DIR2_GTRACE_SIZE, KM_SLEEP);
136 #endif
138 xfs_dir_startup();
140 #if (defined(DEBUG) || defined(INDUCE_IO_ERROR))
141 xfs_error_test_init();
142 #endif /* DEBUG || INDUCE_IO_ERROR */
144 xfs_init_procfs();
145 xfs_sysctl_register();
146 return 0;
149 void __exit
150 xfs_cleanup(void)
152 extern kmem_zone_t *xfs_inode_zone;
153 extern kmem_zone_t *xfs_efd_zone;
154 extern kmem_zone_t *xfs_efi_zone;
156 xfs_cleanup_procfs();
157 xfs_sysctl_unregister();
158 xfs_filestream_uninit();
159 xfs_mru_cache_uninit();
160 xfs_acl_zone_destroy(xfs_acl_zone);
162 #ifdef XFS_DIR2_TRACE
163 ktrace_free(xfs_dir2_trace_buf);
164 #endif
165 #ifdef XFS_ATTR_TRACE
166 ktrace_free(xfs_attr_trace_buf);
167 #endif
168 #ifdef XFS_BMBT_TRACE
169 ktrace_free(xfs_bmbt_trace_buf);
170 #endif
171 #ifdef XFS_BMAP_TRACE
172 ktrace_free(xfs_bmap_trace_buf);
173 #endif
174 #ifdef XFS_ALLOC_TRACE
175 ktrace_free(xfs_alloc_trace_buf);
176 #endif
178 kmem_zone_destroy(xfs_bmap_free_item_zone);
179 kmem_zone_destroy(xfs_btree_cur_zone);
180 kmem_zone_destroy(xfs_inode_zone);
181 kmem_zone_destroy(xfs_trans_zone);
182 kmem_zone_destroy(xfs_da_state_zone);
183 kmem_zone_destroy(xfs_dabuf_zone);
184 kmem_zone_destroy(xfs_buf_item_zone);
185 kmem_zone_destroy(xfs_efd_zone);
186 kmem_zone_destroy(xfs_efi_zone);
187 kmem_zone_destroy(xfs_ifork_zone);
188 kmem_zone_destroy(xfs_ili_zone);
192 * xfs_start_flags
194 * This function fills in xfs_mount_t fields based on mount args.
195 * Note: the superblock has _not_ yet been read in.
197 STATIC int
198 xfs_start_flags(
199 struct xfs_mount_args *ap,
200 struct xfs_mount *mp)
202 /* Values are in BBs */
203 if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
205 * At this point the superblock has not been read
206 * in, therefore we do not know the block size.
207 * Before the mount call ends we will convert
208 * these to FSBs.
210 mp->m_dalign = ap->sunit;
211 mp->m_swidth = ap->swidth;
214 if (ap->logbufs != -1 &&
215 ap->logbufs != 0 &&
216 (ap->logbufs < XLOG_MIN_ICLOGS ||
217 ap->logbufs > XLOG_MAX_ICLOGS)) {
218 cmn_err(CE_WARN,
219 "XFS: invalid logbufs value: %d [not %d-%d]",
220 ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
221 return XFS_ERROR(EINVAL);
223 mp->m_logbufs = ap->logbufs;
224 if (ap->logbufsize != -1 &&
225 ap->logbufsize != 0 &&
226 (ap->logbufsize < XLOG_MIN_RECORD_BSIZE ||
227 ap->logbufsize > XLOG_MAX_RECORD_BSIZE ||
228 !is_power_of_2(ap->logbufsize))) {
229 cmn_err(CE_WARN,
230 "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
231 ap->logbufsize);
232 return XFS_ERROR(EINVAL);
234 mp->m_logbsize = ap->logbufsize;
235 mp->m_fsname_len = strlen(ap->fsname) + 1;
236 mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP);
237 strcpy(mp->m_fsname, ap->fsname);
238 if (ap->rtname[0]) {
239 mp->m_rtname = kmem_alloc(strlen(ap->rtname) + 1, KM_SLEEP);
240 strcpy(mp->m_rtname, ap->rtname);
242 if (ap->logname[0]) {
243 mp->m_logname = kmem_alloc(strlen(ap->logname) + 1, KM_SLEEP);
244 strcpy(mp->m_logname, ap->logname);
247 if (ap->flags & XFSMNT_WSYNC)
248 mp->m_flags |= XFS_MOUNT_WSYNC;
249 #if XFS_BIG_INUMS
250 if (ap->flags & XFSMNT_INO64) {
251 mp->m_flags |= XFS_MOUNT_INO64;
252 mp->m_inoadd = XFS_INO64_OFFSET;
254 #endif
255 if (ap->flags & XFSMNT_RETERR)
256 mp->m_flags |= XFS_MOUNT_RETERR;
257 if (ap->flags & XFSMNT_NOALIGN)
258 mp->m_flags |= XFS_MOUNT_NOALIGN;
259 if (ap->flags & XFSMNT_SWALLOC)
260 mp->m_flags |= XFS_MOUNT_SWALLOC;
261 if (ap->flags & XFSMNT_OSYNCISOSYNC)
262 mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
263 if (ap->flags & XFSMNT_32BITINODES)
264 mp->m_flags |= XFS_MOUNT_32BITINODES;
266 if (ap->flags & XFSMNT_IOSIZE) {
267 if (ap->iosizelog > XFS_MAX_IO_LOG ||
268 ap->iosizelog < XFS_MIN_IO_LOG) {
269 cmn_err(CE_WARN,
270 "XFS: invalid log iosize: %d [not %d-%d]",
271 ap->iosizelog, XFS_MIN_IO_LOG,
272 XFS_MAX_IO_LOG);
273 return XFS_ERROR(EINVAL);
276 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
277 mp->m_readio_log = mp->m_writeio_log = ap->iosizelog;
280 if (ap->flags & XFSMNT_IKEEP)
281 mp->m_flags |= XFS_MOUNT_IKEEP;
282 if (ap->flags & XFSMNT_DIRSYNC)
283 mp->m_flags |= XFS_MOUNT_DIRSYNC;
284 if (ap->flags & XFSMNT_ATTR2)
285 mp->m_flags |= XFS_MOUNT_ATTR2;
287 if (ap->flags2 & XFSMNT2_COMPAT_IOSIZE)
288 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
291 * no recovery flag requires a read-only mount
293 if (ap->flags & XFSMNT_NORECOVERY) {
294 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
295 cmn_err(CE_WARN,
296 "XFS: tried to mount a FS read-write without recovery!");
297 return XFS_ERROR(EINVAL);
299 mp->m_flags |= XFS_MOUNT_NORECOVERY;
302 if (ap->flags & XFSMNT_NOUUID)
303 mp->m_flags |= XFS_MOUNT_NOUUID;
304 if (ap->flags & XFSMNT_BARRIER)
305 mp->m_flags |= XFS_MOUNT_BARRIER;
306 else
307 mp->m_flags &= ~XFS_MOUNT_BARRIER;
309 if (ap->flags2 & XFSMNT2_FILESTREAMS)
310 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
312 if (ap->flags & XFSMNT_DMAPI)
313 mp->m_flags |= XFS_MOUNT_DMAPI;
314 return 0;
318 * This function fills in xfs_mount_t fields based on mount args.
319 * Note: the superblock _has_ now been read in.
321 STATIC int
322 xfs_finish_flags(
323 struct xfs_mount_args *ap,
324 struct xfs_mount *mp)
326 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
328 /* Fail a mount where the logbuf is smaller then the log stripe */
329 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
330 if ((ap->logbufsize <= 0) &&
331 (mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) {
332 mp->m_logbsize = mp->m_sb.sb_logsunit;
333 } else if (ap->logbufsize > 0 &&
334 ap->logbufsize < mp->m_sb.sb_logsunit) {
335 cmn_err(CE_WARN,
336 "XFS: logbuf size must be greater than or equal to log stripe size");
337 return XFS_ERROR(EINVAL);
339 } else {
340 /* Fail a mount if the logbuf is larger than 32K */
341 if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) {
342 cmn_err(CE_WARN,
343 "XFS: logbuf size for version 1 logs must be 16K or 32K");
344 return XFS_ERROR(EINVAL);
348 if (xfs_sb_version_hasattr2(&mp->m_sb))
349 mp->m_flags |= XFS_MOUNT_ATTR2;
352 * prohibit r/w mounts of read-only filesystems
354 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
355 cmn_err(CE_WARN,
356 "XFS: cannot mount a read-only filesystem as read-write");
357 return XFS_ERROR(EROFS);
361 * check for shared mount.
363 if (ap->flags & XFSMNT_SHARED) {
364 if (!xfs_sb_version_hasshared(&mp->m_sb))
365 return XFS_ERROR(EINVAL);
368 * For IRIX 6.5, shared mounts must have the shared
369 * version bit set, have the persistent readonly
370 * field set, must be version 0 and can only be mounted
371 * read-only.
373 if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) ||
374 (mp->m_sb.sb_shared_vn != 0))
375 return XFS_ERROR(EINVAL);
377 mp->m_flags |= XFS_MOUNT_SHARED;
380 * Shared XFS V0 can't deal with DMI. Return EINVAL.
382 if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI))
383 return XFS_ERROR(EINVAL);
386 if (ap->flags & XFSMNT_UQUOTA) {
387 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
388 if (ap->flags & XFSMNT_UQUOTAENF)
389 mp->m_qflags |= XFS_UQUOTA_ENFD;
392 if (ap->flags & XFSMNT_GQUOTA) {
393 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
394 if (ap->flags & XFSMNT_GQUOTAENF)
395 mp->m_qflags |= XFS_OQUOTA_ENFD;
396 } else if (ap->flags & XFSMNT_PQUOTA) {
397 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
398 if (ap->flags & XFSMNT_PQUOTAENF)
399 mp->m_qflags |= XFS_OQUOTA_ENFD;
402 return 0;
406 * xfs_mount
408 * The file system configurations are:
409 * (1) device (partition) with data and internal log
410 * (2) logical volume with data and log subvolumes.
411 * (3) logical volume with data, log, and realtime subvolumes.
413 * We only have to handle opening the log and realtime volumes here if
414 * they are present. The data subvolume has already been opened by
415 * get_sb_bdev() and is stored in vfsp->vfs_super->s_bdev.
418 xfs_mount(
419 struct xfs_mount *mp,
420 struct xfs_mount_args *args,
421 cred_t *credp)
423 struct block_device *ddev, *logdev, *rtdev;
424 int flags = 0, error;
426 ddev = mp->m_super->s_bdev;
427 logdev = rtdev = NULL;
429 error = xfs_dmops_get(mp, args);
430 if (error)
431 return error;
432 error = xfs_qmops_get(mp, args);
433 if (error)
434 return error;
436 if (args->flags & XFSMNT_QUIET)
437 flags |= XFS_MFSI_QUIET;
440 * Open real time and log devices - order is important.
442 if (args->logname[0]) {
443 error = xfs_blkdev_get(mp, args->logname, &logdev);
444 if (error)
445 return error;
447 if (args->rtname[0]) {
448 error = xfs_blkdev_get(mp, args->rtname, &rtdev);
449 if (error) {
450 xfs_blkdev_put(logdev);
451 return error;
454 if (rtdev == ddev || rtdev == logdev) {
455 cmn_err(CE_WARN,
456 "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
457 xfs_blkdev_put(logdev);
458 xfs_blkdev_put(rtdev);
459 return EINVAL;
464 * Setup xfs_mount buffer target pointers
466 error = ENOMEM;
467 mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0);
468 if (!mp->m_ddev_targp) {
469 xfs_blkdev_put(logdev);
470 xfs_blkdev_put(rtdev);
471 return error;
473 if (rtdev) {
474 mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1);
475 if (!mp->m_rtdev_targp) {
476 xfs_blkdev_put(logdev);
477 xfs_blkdev_put(rtdev);
478 goto error0;
481 mp->m_logdev_targp = (logdev && logdev != ddev) ?
482 xfs_alloc_buftarg(logdev, 1) : mp->m_ddev_targp;
483 if (!mp->m_logdev_targp) {
484 xfs_blkdev_put(logdev);
485 xfs_blkdev_put(rtdev);
486 goto error0;
490 * Setup flags based on mount(2) options and then the superblock
492 error = xfs_start_flags(args, mp);
493 if (error)
494 goto error1;
495 error = xfs_readsb(mp, flags);
496 if (error)
497 goto error1;
498 error = xfs_finish_flags(args, mp);
499 if (error)
500 goto error2;
503 * Setup xfs_mount buffer target pointers based on superblock
505 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
506 mp->m_sb.sb_sectsize);
507 if (!error && logdev && logdev != ddev) {
508 unsigned int log_sector_size = BBSIZE;
510 if (xfs_sb_version_hassector(&mp->m_sb))
511 log_sector_size = mp->m_sb.sb_logsectsize;
512 error = xfs_setsize_buftarg(mp->m_logdev_targp,
513 mp->m_sb.sb_blocksize,
514 log_sector_size);
516 if (!error && rtdev)
517 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
518 mp->m_sb.sb_blocksize,
519 mp->m_sb.sb_sectsize);
520 if (error)
521 goto error2;
523 if (mp->m_flags & XFS_MOUNT_BARRIER)
524 xfs_mountfs_check_barriers(mp);
526 if ((error = xfs_filestream_mount(mp)))
527 goto error2;
529 error = xfs_mountfs(mp, flags);
530 if (error)
531 goto error2;
533 XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, args->mtpt, args->fsname);
535 return 0;
537 error2:
538 if (mp->m_sb_bp)
539 xfs_freesb(mp);
540 error1:
541 xfs_binval(mp->m_ddev_targp);
542 if (logdev && logdev != ddev)
543 xfs_binval(mp->m_logdev_targp);
544 if (rtdev)
545 xfs_binval(mp->m_rtdev_targp);
546 error0:
547 xfs_unmountfs_close(mp, credp);
548 xfs_qmops_put(mp);
549 xfs_dmops_put(mp);
550 return error;
554 xfs_unmount(
555 xfs_mount_t *mp,
556 int flags,
557 cred_t *credp)
559 xfs_inode_t *rip;
560 bhv_vnode_t *rvp;
561 int unmount_event_wanted = 0;
562 int unmount_event_flags = 0;
563 int xfs_unmountfs_needed = 0;
564 int error;
566 rip = mp->m_rootip;
567 rvp = XFS_ITOV(rip);
569 #ifdef HAVE_DMAPI
570 if (mp->m_flags & XFS_MOUNT_DMAPI) {
571 error = XFS_SEND_PREUNMOUNT(mp,
572 rip, DM_RIGHT_NULL, rip, DM_RIGHT_NULL,
573 NULL, NULL, 0, 0,
574 (mp->m_dmevmask & (1<<DM_EVENT_PREUNMOUNT))?
575 0:DM_FLAGS_UNWANTED);
576 if (error)
577 return XFS_ERROR(error);
578 unmount_event_wanted = 1;
579 unmount_event_flags = (mp->m_dmevmask & (1<<DM_EVENT_UNMOUNT))?
580 0 : DM_FLAGS_UNWANTED;
582 #endif
585 * Blow away any referenced inode in the filestreams cache.
586 * This can and will cause log traffic as inodes go inactive
587 * here.
589 xfs_filestream_unmount(mp);
591 XFS_bflush(mp->m_ddev_targp);
592 error = xfs_unmount_flush(mp, 0);
593 if (error)
594 goto out;
596 ASSERT(vn_count(rvp) == 1);
599 * Drop the reference count
601 IRELE(rip);
604 * If we're forcing a shutdown, typically because of a media error,
605 * we want to make sure we invalidate dirty pages that belong to
606 * referenced vnodes as well.
608 if (XFS_FORCED_SHUTDOWN(mp)) {
609 error = xfs_sync(mp, SYNC_WAIT | SYNC_CLOSE);
610 ASSERT(error != EFSCORRUPTED);
612 xfs_unmountfs_needed = 1;
614 out:
615 /* Send DMAPI event, if required.
616 * Then do xfs_unmountfs() if needed.
617 * Then return error (or zero).
619 if (unmount_event_wanted) {
620 /* Note: mp structure must still exist for
621 * XFS_SEND_UNMOUNT() call.
623 XFS_SEND_UNMOUNT(mp, error == 0 ? rip : NULL,
624 DM_RIGHT_NULL, 0, error, unmount_event_flags);
626 if (xfs_unmountfs_needed) {
628 * Call common unmount function to flush to disk
629 * and free the super block buffer & mount structures.
631 xfs_unmountfs(mp, credp);
632 xfs_qmops_put(mp);
633 xfs_dmops_put(mp);
634 kmem_free(mp, sizeof(xfs_mount_t));
637 return XFS_ERROR(error);
640 STATIC int
641 xfs_quiesce_fs(
642 xfs_mount_t *mp)
644 int count = 0, pincount;
646 xfs_flush_buftarg(mp->m_ddev_targp, 0);
647 xfs_finish_reclaim_all(mp, 0);
649 /* This loop must run at least twice.
650 * The first instance of the loop will flush
651 * most meta data but that will generate more
652 * meta data (typically directory updates).
653 * Which then must be flushed and logged before
654 * we can write the unmount record.
656 do {
657 xfs_syncsub(mp, SYNC_INODE_QUIESCE, NULL);
658 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
659 if (!pincount) {
660 delay(50);
661 count++;
663 } while (count < 2);
665 return 0;
669 * Second stage of a quiesce. The data is already synced, now we have to take
670 * care of the metadata. New transactions are already blocked, so we need to
671 * wait for any remaining transactions to drain out before proceding.
673 void
674 xfs_attr_quiesce(
675 xfs_mount_t *mp)
677 /* wait for all modifications to complete */
678 while (atomic_read(&mp->m_active_trans) > 0)
679 delay(100);
681 /* flush inodes and push all remaining buffers out to disk */
682 xfs_quiesce_fs(mp);
684 ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0);
686 /* Push the superblock and write an unmount record */
687 xfs_log_sbcount(mp, 1);
688 xfs_log_unmount_write(mp);
689 xfs_unmountfs_writesb(mp);
693 xfs_mntupdate(
694 struct xfs_mount *mp,
695 int *flags,
696 struct xfs_mount_args *args)
698 if (!(*flags & MS_RDONLY)) { /* rw/ro -> rw */
699 if (mp->m_flags & XFS_MOUNT_RDONLY)
700 mp->m_flags &= ~XFS_MOUNT_RDONLY;
701 if (args->flags & XFSMNT_BARRIER) {
702 mp->m_flags |= XFS_MOUNT_BARRIER;
703 xfs_mountfs_check_barriers(mp);
704 } else {
705 mp->m_flags &= ~XFS_MOUNT_BARRIER;
707 } else if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { /* rw -> ro */
708 xfs_filestream_flush(mp);
709 xfs_sync(mp, SYNC_DATA_QUIESCE);
710 xfs_attr_quiesce(mp);
711 mp->m_flags |= XFS_MOUNT_RDONLY;
713 return 0;
717 * xfs_unmount_flush implements a set of flush operation on special
718 * inodes, which are needed as a separate set of operations so that
719 * they can be called as part of relocation process.
722 xfs_unmount_flush(
723 xfs_mount_t *mp, /* Mount structure we are getting
724 rid of. */
725 int relocation) /* Called from vfs relocation. */
727 xfs_inode_t *rip = mp->m_rootip;
728 xfs_inode_t *rbmip;
729 xfs_inode_t *rsumip = NULL;
730 bhv_vnode_t *rvp = XFS_ITOV(rip);
731 int error;
733 xfs_ilock(rip, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
734 xfs_iflock(rip);
737 * Flush out the real time inodes.
739 if ((rbmip = mp->m_rbmip) != NULL) {
740 xfs_ilock(rbmip, XFS_ILOCK_EXCL);
741 xfs_iflock(rbmip);
742 error = xfs_iflush(rbmip, XFS_IFLUSH_SYNC);
743 xfs_iunlock(rbmip, XFS_ILOCK_EXCL);
745 if (error == EFSCORRUPTED)
746 goto fscorrupt_out;
748 ASSERT(vn_count(XFS_ITOV(rbmip)) == 1);
750 rsumip = mp->m_rsumip;
751 xfs_ilock(rsumip, XFS_ILOCK_EXCL);
752 xfs_iflock(rsumip);
753 error = xfs_iflush(rsumip, XFS_IFLUSH_SYNC);
754 xfs_iunlock(rsumip, XFS_ILOCK_EXCL);
756 if (error == EFSCORRUPTED)
757 goto fscorrupt_out;
759 ASSERT(vn_count(XFS_ITOV(rsumip)) == 1);
763 * Synchronously flush root inode to disk
765 error = xfs_iflush(rip, XFS_IFLUSH_SYNC);
766 if (error == EFSCORRUPTED)
767 goto fscorrupt_out2;
769 if (vn_count(rvp) != 1 && !relocation) {
770 xfs_iunlock(rip, XFS_ILOCK_EXCL);
771 return XFS_ERROR(EBUSY);
775 * Release dquot that rootinode, rbmino and rsumino might be holding,
776 * flush and purge the quota inodes.
778 error = XFS_QM_UNMOUNT(mp);
779 if (error == EFSCORRUPTED)
780 goto fscorrupt_out2;
782 if (rbmip) {
783 IRELE(rbmip);
784 IRELE(rsumip);
787 xfs_iunlock(rip, XFS_ILOCK_EXCL);
788 return 0;
790 fscorrupt_out:
791 xfs_ifunlock(rip);
793 fscorrupt_out2:
794 xfs_iunlock(rip, XFS_ILOCK_EXCL);
796 return XFS_ERROR(EFSCORRUPTED);
800 * xfs_sync flushes any pending I/O to file system vfsp.
802 * This routine is called by vfs_sync() to make sure that things make it
803 * out to disk eventually, on sync() system calls to flush out everything,
804 * and when the file system is unmounted. For the vfs_sync() case, all
805 * we really need to do is sync out the log to make all of our meta-data
806 * updates permanent (except for timestamps). For calls from pflushd(),
807 * dirty pages are kept moving by calling pdflush() on the inodes
808 * containing them. We also flush the inodes that we can lock without
809 * sleeping and the superblock if we can lock it without sleeping from
810 * vfs_sync() so that items at the tail of the log are always moving out.
812 * Flags:
813 * SYNC_BDFLUSH - We're being called from vfs_sync() so we don't want
814 * to sleep if we can help it. All we really need
815 * to do is ensure that the log is synced at least
816 * periodically. We also push the inodes and
817 * superblock if we can lock them without sleeping
818 * and they are not pinned.
819 * SYNC_ATTR - We need to flush the inodes. If SYNC_BDFLUSH is not
820 * set, then we really want to lock each inode and flush
821 * it.
822 * SYNC_WAIT - All the flushes that take place in this call should
823 * be synchronous.
824 * SYNC_DELWRI - This tells us to push dirty pages associated with
825 * inodes. SYNC_WAIT and SYNC_BDFLUSH are used to
826 * determine if they should be flushed sync, async, or
827 * delwri.
828 * SYNC_CLOSE - This flag is passed when the system is being
829 * unmounted. We should sync and invalidate everything.
830 * SYNC_FSDATA - This indicates that the caller would like to make
831 * sure the superblock is safe on disk. We can ensure
832 * this by simply making sure the log gets flushed
833 * if SYNC_BDFLUSH is set, and by actually writing it
834 * out otherwise.
835 * SYNC_IOWAIT - The caller wants us to wait for all data I/O to complete
836 * before we return (including direct I/O). Forms the drain
837 * side of the write barrier needed to safely quiesce the
838 * filesystem.
842 xfs_sync(
843 xfs_mount_t *mp,
844 int flags)
846 int error;
849 * Get the Quota Manager to flush the dquots.
851 * If XFS quota support is not enabled or this filesystem
852 * instance does not use quotas XFS_QM_DQSYNC will always
853 * return zero.
855 error = XFS_QM_DQSYNC(mp, flags);
856 if (error) {
858 * If we got an IO error, we will be shutting down.
859 * So, there's nothing more for us to do here.
861 ASSERT(error != EIO || XFS_FORCED_SHUTDOWN(mp));
862 if (XFS_FORCED_SHUTDOWN(mp))
863 return XFS_ERROR(error);
866 if (flags & SYNC_IOWAIT)
867 xfs_filestream_flush(mp);
869 return xfs_syncsub(mp, flags, NULL);
873 * xfs sync routine for internal use
875 * This routine supports all of the flags defined for the generic vfs_sync
876 * interface as explained above under xfs_sync.
880 xfs_sync_inodes(
881 xfs_mount_t *mp,
882 int flags,
883 int *bypassed)
885 xfs_inode_t *ip = NULL;
886 bhv_vnode_t *vp = NULL;
887 int error;
888 int last_error;
889 uint64_t fflag;
890 uint lock_flags;
891 uint base_lock_flags;
892 boolean_t mount_locked;
893 boolean_t vnode_refed;
894 int preempt;
895 xfs_iptr_t *ipointer;
896 #ifdef DEBUG
897 boolean_t ipointer_in = B_FALSE;
899 #define IPOINTER_SET ipointer_in = B_TRUE
900 #define IPOINTER_CLR ipointer_in = B_FALSE
901 #else
902 #define IPOINTER_SET
903 #define IPOINTER_CLR
904 #endif
907 /* Insert a marker record into the inode list after inode ip. The list
908 * must be locked when this is called. After the call the list will no
909 * longer be locked.
911 #define IPOINTER_INSERT(ip, mp) { \
912 ASSERT(ipointer_in == B_FALSE); \
913 ipointer->ip_mnext = ip->i_mnext; \
914 ipointer->ip_mprev = ip; \
915 ip->i_mnext = (xfs_inode_t *)ipointer; \
916 ipointer->ip_mnext->i_mprev = (xfs_inode_t *)ipointer; \
917 preempt = 0; \
918 XFS_MOUNT_IUNLOCK(mp); \
919 mount_locked = B_FALSE; \
920 IPOINTER_SET; \
923 /* Remove the marker from the inode list. If the marker was the only item
924 * in the list then there are no remaining inodes and we should zero out
925 * the whole list. If we are the current head of the list then move the head
926 * past us.
928 #define IPOINTER_REMOVE(ip, mp) { \
929 ASSERT(ipointer_in == B_TRUE); \
930 if (ipointer->ip_mnext != (xfs_inode_t *)ipointer) { \
931 ip = ipointer->ip_mnext; \
932 ip->i_mprev = ipointer->ip_mprev; \
933 ipointer->ip_mprev->i_mnext = ip; \
934 if (mp->m_inodes == (xfs_inode_t *)ipointer) { \
935 mp->m_inodes = ip; \
937 } else { \
938 ASSERT(mp->m_inodes == (xfs_inode_t *)ipointer); \
939 mp->m_inodes = NULL; \
940 ip = NULL; \
942 IPOINTER_CLR; \
945 #define XFS_PREEMPT_MASK 0x7f
947 ASSERT(!(flags & SYNC_BDFLUSH));
949 if (bypassed)
950 *bypassed = 0;
951 if (mp->m_flags & XFS_MOUNT_RDONLY)
952 return 0;
953 error = 0;
954 last_error = 0;
955 preempt = 0;
957 /* Allocate a reference marker */
958 ipointer = (xfs_iptr_t *)kmem_zalloc(sizeof(xfs_iptr_t), KM_SLEEP);
960 fflag = XFS_B_ASYNC; /* default is don't wait */
961 if (flags & SYNC_DELWRI)
962 fflag = XFS_B_DELWRI;
963 if (flags & SYNC_WAIT)
964 fflag = 0; /* synchronous overrides all */
966 base_lock_flags = XFS_ILOCK_SHARED;
967 if (flags & (SYNC_DELWRI | SYNC_CLOSE)) {
969 * We need the I/O lock if we're going to call any of
970 * the flush/inval routines.
972 base_lock_flags |= XFS_IOLOCK_SHARED;
975 XFS_MOUNT_ILOCK(mp);
977 ip = mp->m_inodes;
979 mount_locked = B_TRUE;
980 vnode_refed = B_FALSE;
982 IPOINTER_CLR;
984 do {
985 ASSERT(ipointer_in == B_FALSE);
986 ASSERT(vnode_refed == B_FALSE);
988 lock_flags = base_lock_flags;
991 * There were no inodes in the list, just break out
992 * of the loop.
994 if (ip == NULL) {
995 break;
999 * We found another sync thread marker - skip it
1001 if (ip->i_mount == NULL) {
1002 ip = ip->i_mnext;
1003 continue;
1006 vp = XFS_ITOV_NULL(ip);
1009 * If the vnode is gone then this is being torn down,
1010 * call reclaim if it is flushed, else let regular flush
1011 * code deal with it later in the loop.
1014 if (vp == NULL) {
1015 /* Skip ones already in reclaim */
1016 if (ip->i_flags & XFS_IRECLAIM) {
1017 ip = ip->i_mnext;
1018 continue;
1020 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL) == 0) {
1021 ip = ip->i_mnext;
1022 } else if ((xfs_ipincount(ip) == 0) &&
1023 xfs_iflock_nowait(ip)) {
1024 IPOINTER_INSERT(ip, mp);
1026 xfs_finish_reclaim(ip, 1,
1027 XFS_IFLUSH_DELWRI_ELSE_ASYNC);
1029 XFS_MOUNT_ILOCK(mp);
1030 mount_locked = B_TRUE;
1031 IPOINTER_REMOVE(ip, mp);
1032 } else {
1033 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1034 ip = ip->i_mnext;
1036 continue;
1039 if (VN_BAD(vp)) {
1040 ip = ip->i_mnext;
1041 continue;
1044 if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) {
1045 XFS_MOUNT_IUNLOCK(mp);
1046 kmem_free(ipointer, sizeof(xfs_iptr_t));
1047 return 0;
1051 * Try to lock without sleeping. We're out of order with
1052 * the inode list lock here, so if we fail we need to drop
1053 * the mount lock and try again. If we're called from
1054 * bdflush() here, then don't bother.
1056 * The inode lock here actually coordinates with the
1057 * almost spurious inode lock in xfs_ireclaim() to prevent
1058 * the vnode we handle here without a reference from
1059 * being freed while we reference it. If we lock the inode
1060 * while it's on the mount list here, then the spurious inode
1061 * lock in xfs_ireclaim() after the inode is pulled from
1062 * the mount list will sleep until we release it here.
1063 * This keeps the vnode from being freed while we reference
1064 * it.
1066 if (xfs_ilock_nowait(ip, lock_flags) == 0) {
1067 if (vp == NULL) {
1068 ip = ip->i_mnext;
1069 continue;
1072 vp = vn_grab(vp);
1073 if (vp == NULL) {
1074 ip = ip->i_mnext;
1075 continue;
1078 IPOINTER_INSERT(ip, mp);
1079 xfs_ilock(ip, lock_flags);
1081 ASSERT(vp == XFS_ITOV(ip));
1082 ASSERT(ip->i_mount == mp);
1084 vnode_refed = B_TRUE;
1087 /* From here on in the loop we may have a marker record
1088 * in the inode list.
1092 * If we have to flush data or wait for I/O completion
1093 * we need to drop the ilock that we currently hold.
1094 * If we need to drop the lock, insert a marker if we
1095 * have not already done so.
1097 if ((flags & (SYNC_CLOSE|SYNC_IOWAIT)) ||
1098 ((flags & SYNC_DELWRI) && VN_DIRTY(vp))) {
1099 if (mount_locked) {
1100 IPOINTER_INSERT(ip, mp);
1102 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1104 if (flags & SYNC_CLOSE) {
1105 /* Shutdown case. Flush and invalidate. */
1106 if (XFS_FORCED_SHUTDOWN(mp))
1107 xfs_tosspages(ip, 0, -1,
1108 FI_REMAPF);
1109 else
1110 error = xfs_flushinval_pages(ip,
1111 0, -1, FI_REMAPF);
1112 } else if ((flags & SYNC_DELWRI) && VN_DIRTY(vp)) {
1113 error = xfs_flush_pages(ip, 0,
1114 -1, fflag, FI_NONE);
1118 * When freezing, we need to wait ensure all I/O (including direct
1119 * I/O) is complete to ensure no further data modification can take
1120 * place after this point
1122 if (flags & SYNC_IOWAIT)
1123 vn_iowait(ip);
1125 xfs_ilock(ip, XFS_ILOCK_SHARED);
1128 if ((flags & SYNC_ATTR) &&
1129 (ip->i_update_core ||
1130 (ip->i_itemp && ip->i_itemp->ili_format.ilf_fields))) {
1131 if (mount_locked)
1132 IPOINTER_INSERT(ip, mp);
1134 if (flags & SYNC_WAIT) {
1135 xfs_iflock(ip);
1136 error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
1139 * If we can't acquire the flush lock, then the inode
1140 * is already being flushed so don't bother waiting.
1142 * If we can lock it then do a delwri flush so we can
1143 * combine multiple inode flushes in each disk write.
1145 } else if (xfs_iflock_nowait(ip)) {
1146 error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
1147 } else if (bypassed) {
1148 (*bypassed)++;
1152 if (lock_flags != 0) {
1153 xfs_iunlock(ip, lock_flags);
1156 if (vnode_refed) {
1158 * If we had to take a reference on the vnode
1159 * above, then wait until after we've unlocked
1160 * the inode to release the reference. This is
1161 * because we can be already holding the inode
1162 * lock when IRELE() calls xfs_inactive().
1164 * Make sure to drop the mount lock before calling
1165 * IRELE() so that we don't trip over ourselves if
1166 * we have to go for the mount lock again in the
1167 * inactive code.
1169 if (mount_locked) {
1170 IPOINTER_INSERT(ip, mp);
1173 IRELE(ip);
1175 vnode_refed = B_FALSE;
1178 if (error) {
1179 last_error = error;
1183 * bail out if the filesystem is corrupted.
1185 if (error == EFSCORRUPTED) {
1186 if (!mount_locked) {
1187 XFS_MOUNT_ILOCK(mp);
1188 IPOINTER_REMOVE(ip, mp);
1190 XFS_MOUNT_IUNLOCK(mp);
1191 ASSERT(ipointer_in == B_FALSE);
1192 kmem_free(ipointer, sizeof(xfs_iptr_t));
1193 return XFS_ERROR(error);
1196 /* Let other threads have a chance at the mount lock
1197 * if we have looped many times without dropping the
1198 * lock.
1200 if ((++preempt & XFS_PREEMPT_MASK) == 0) {
1201 if (mount_locked) {
1202 IPOINTER_INSERT(ip, mp);
1206 if (mount_locked == B_FALSE) {
1207 XFS_MOUNT_ILOCK(mp);
1208 mount_locked = B_TRUE;
1209 IPOINTER_REMOVE(ip, mp);
1210 continue;
1213 ASSERT(ipointer_in == B_FALSE);
1214 ip = ip->i_mnext;
1216 } while (ip != mp->m_inodes);
1218 XFS_MOUNT_IUNLOCK(mp);
1220 ASSERT(ipointer_in == B_FALSE);
1222 kmem_free(ipointer, sizeof(xfs_iptr_t));
1223 return XFS_ERROR(last_error);
1227 * xfs sync routine for internal use
1229 * This routine supports all of the flags defined for the generic vfs_sync
1230 * interface as explained above under xfs_sync.
1234 xfs_syncsub(
1235 xfs_mount_t *mp,
1236 int flags,
1237 int *bypassed)
1239 int error = 0;
1240 int last_error = 0;
1241 uint log_flags = XFS_LOG_FORCE;
1242 xfs_buf_t *bp;
1243 xfs_buf_log_item_t *bip;
1246 * Sync out the log. This ensures that the log is periodically
1247 * flushed even if there is not enough activity to fill it up.
1249 if (flags & SYNC_WAIT)
1250 log_flags |= XFS_LOG_SYNC;
1252 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1254 if (flags & (SYNC_ATTR|SYNC_DELWRI)) {
1255 if (flags & SYNC_BDFLUSH)
1256 xfs_finish_reclaim_all(mp, 1);
1257 else
1258 error = xfs_sync_inodes(mp, flags, bypassed);
1262 * Flushing out dirty data above probably generated more
1263 * log activity, so if this isn't vfs_sync() then flush
1264 * the log again.
1266 if (flags & SYNC_DELWRI) {
1267 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1270 if (flags & SYNC_FSDATA) {
1272 * If this is vfs_sync() then only sync the superblock
1273 * if we can lock it without sleeping and it is not pinned.
1275 if (flags & SYNC_BDFLUSH) {
1276 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
1277 if (bp != NULL) {
1278 bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
1279 if ((bip != NULL) &&
1280 xfs_buf_item_dirty(bip)) {
1281 if (!(XFS_BUF_ISPINNED(bp))) {
1282 XFS_BUF_ASYNC(bp);
1283 error = xfs_bwrite(mp, bp);
1284 } else {
1285 xfs_buf_relse(bp);
1287 } else {
1288 xfs_buf_relse(bp);
1291 } else {
1292 bp = xfs_getsb(mp, 0);
1294 * If the buffer is pinned then push on the log so
1295 * we won't get stuck waiting in the write for
1296 * someone, maybe ourselves, to flush the log.
1297 * Even though we just pushed the log above, we
1298 * did not have the superblock buffer locked at
1299 * that point so it can become pinned in between
1300 * there and here.
1302 if (XFS_BUF_ISPINNED(bp))
1303 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
1304 if (flags & SYNC_WAIT)
1305 XFS_BUF_UNASYNC(bp);
1306 else
1307 XFS_BUF_ASYNC(bp);
1308 error = xfs_bwrite(mp, bp);
1310 if (error) {
1311 last_error = error;
1316 * If asked, update the disk superblock with incore counter values if we
1317 * are using non-persistent counters so that they don't get too far out
1318 * of sync if we crash or get a forced shutdown. We don't want to force
1319 * this to disk, just get a transaction into the iclogs....
1321 if (flags & SYNC_SUPER)
1322 xfs_log_sbcount(mp, 0);
1325 * Now check to see if the log needs a "dummy" transaction.
1328 if (!(flags & SYNC_REMOUNT) && xfs_log_need_covered(mp)) {
1329 xfs_trans_t *tp;
1330 xfs_inode_t *ip;
1333 * Put a dummy transaction in the log to tell
1334 * recovery that all others are OK.
1336 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
1337 if ((error = xfs_trans_reserve(tp, 0,
1338 XFS_ICHANGE_LOG_RES(mp),
1339 0, 0, 0))) {
1340 xfs_trans_cancel(tp, 0);
1341 return error;
1344 ip = mp->m_rootip;
1345 xfs_ilock(ip, XFS_ILOCK_EXCL);
1347 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1348 xfs_trans_ihold(tp, ip);
1349 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1350 error = xfs_trans_commit(tp, 0);
1351 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1352 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1356 * When shutting down, we need to insure that the AIL is pushed
1357 * to disk or the filesystem can appear corrupt from the PROM.
1359 if ((flags & (SYNC_CLOSE|SYNC_WAIT)) == (SYNC_CLOSE|SYNC_WAIT)) {
1360 XFS_bflush(mp->m_ddev_targp);
1361 if (mp->m_rtdev_targp) {
1362 XFS_bflush(mp->m_rtdev_targp);
1366 return XFS_ERROR(last_error);