rt2x00: Fix memleak when RTS/CTS fails
[linux-2.6/libata-dev.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
blobaa6dfb811c7181bf861b04b7e35c062820581831
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
54 u32 reg;
55 unsigned int i;
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
64 return reg;
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
70 u32 reg;
73 * Wait until the BBP becomes ready.
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
82 * Write the data into the BBP.
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
96 u32 reg;
99 * Wait until the BBP becomes ready.
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
108 * Write the request into the BBP.
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
118 * Wait until the BBP becomes ready.
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
133 u32 reg;
134 unsigned int i;
136 if (!word)
137 return;
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
219 .bbp = {
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
237 u32 reg;
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
242 #else
243 #define rt2500pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
253 u32 reg;
255 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
257 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
258 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
259 else if (led->type == LED_TYPE_ACTIVITY)
260 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
262 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
265 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
266 unsigned long *delay_on,
267 unsigned long *delay_off)
269 struct rt2x00_led *led =
270 container_of(led_cdev, struct rt2x00_led, led_dev);
271 u32 reg;
273 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
274 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
275 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
276 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
278 return 0;
281 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
282 struct rt2x00_led *led,
283 enum led_type type)
285 led->rt2x00dev = rt2x00dev;
286 led->type = type;
287 led->led_dev.brightness_set = rt2500pci_brightness_set;
288 led->led_dev.blink_set = rt2500pci_blink_set;
289 led->flags = LED_INITIALIZED;
291 #endif /* CONFIG_RT2500PCI_LEDS */
294 * Configuration handlers.
296 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
297 const unsigned int filter_flags)
299 u32 reg;
302 * Start configuration steps.
303 * Note that the version error will always be dropped
304 * and broadcast frames will always be accepted since
305 * there is no filter for it at this time.
307 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
308 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
309 !(filter_flags & FIF_FCSFAIL));
310 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
311 !(filter_flags & FIF_PLCPFAIL));
312 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
313 !(filter_flags & FIF_CONTROL));
314 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
315 !(filter_flags & FIF_PROMISC_IN_BSS));
316 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
317 !(filter_flags & FIF_PROMISC_IN_BSS) &&
318 !rt2x00dev->intf_ap_count);
319 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
320 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
321 !(filter_flags & FIF_ALLMULTI));
322 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
323 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
326 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
327 struct rt2x00_intf *intf,
328 struct rt2x00intf_conf *conf,
329 const unsigned int flags)
331 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
332 unsigned int bcn_preload;
333 u32 reg;
335 if (flags & CONFIG_UPDATE_TYPE) {
337 * Enable beacon config
339 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
340 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
341 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
342 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
343 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
346 * Enable synchronisation.
348 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
349 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
350 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
351 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
352 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
355 if (flags & CONFIG_UPDATE_MAC)
356 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
357 conf->mac, sizeof(conf->mac));
359 if (flags & CONFIG_UPDATE_BSSID)
360 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
361 conf->bssid, sizeof(conf->bssid));
364 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
365 struct rt2x00lib_erp *erp)
367 int preamble_mask;
368 u32 reg;
371 * When short preamble is enabled, we should set bit 0x08
373 preamble_mask = erp->short_preamble << 3;
375 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
376 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
377 erp->ack_timeout);
378 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
379 erp->ack_consume_time);
380 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
382 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
383 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
384 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
385 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
386 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
388 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
389 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
390 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
391 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
392 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
394 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
395 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
396 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
397 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
398 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
400 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
401 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
402 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
403 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
404 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
407 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
408 const int basic_rate_mask)
410 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
413 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
414 struct rf_channel *rf, const int txpower)
416 u8 r70;
419 * Set TXpower.
421 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
424 * Switch on tuning bits.
425 * For RT2523 devices we do not need to update the R1 register.
427 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
428 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
429 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
432 * For RT2525 we should first set the channel to half band higher.
434 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
435 static const u32 vals[] = {
436 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
437 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
438 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
439 0x00080d2e, 0x00080d3a
442 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
443 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
444 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
445 if (rf->rf4)
446 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
449 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
450 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
451 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
452 if (rf->rf4)
453 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
456 * Channel 14 requires the Japan filter bit to be set.
458 r70 = 0x46;
459 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
460 rt2500pci_bbp_write(rt2x00dev, 70, r70);
462 msleep(1);
465 * Switch off tuning bits.
466 * For RT2523 devices we do not need to update the R1 register.
468 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
469 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
470 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
473 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
474 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
477 * Clear false CRC during channel switch.
479 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
482 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
483 const int txpower)
485 u32 rf3;
487 rt2x00_rf_read(rt2x00dev, 3, &rf3);
488 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
489 rt2500pci_rf_write(rt2x00dev, 3, rf3);
492 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
493 struct antenna_setup *ant)
495 u32 reg;
496 u8 r14;
497 u8 r2;
500 * We should never come here because rt2x00lib is supposed
501 * to catch this and send us the correct antenna explicitely.
503 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
504 ant->tx == ANTENNA_SW_DIVERSITY);
506 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
507 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
508 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
511 * Configure the TX antenna.
513 switch (ant->tx) {
514 case ANTENNA_A:
515 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
516 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
517 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
518 break;
519 case ANTENNA_B:
520 default:
521 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
522 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
523 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
524 break;
528 * Configure the RX antenna.
530 switch (ant->rx) {
531 case ANTENNA_A:
532 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
533 break;
534 case ANTENNA_B:
535 default:
536 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
537 break;
541 * RT2525E and RT5222 need to flip TX I/Q
543 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
544 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
545 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
546 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
547 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
550 * RT2525E does not need RX I/Q Flip.
552 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
553 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
554 } else {
555 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
556 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
559 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
560 rt2500pci_bbp_write(rt2x00dev, 14, r14);
561 rt2500pci_bbp_write(rt2x00dev, 2, r2);
564 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
565 struct rt2x00lib_conf *libconf)
567 u32 reg;
569 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
570 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
571 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
573 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
574 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
575 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
576 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
578 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
579 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
580 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
581 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
583 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
584 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
585 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
586 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
588 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
589 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
590 libconf->conf->beacon_int * 16);
591 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
592 libconf->conf->beacon_int * 16);
593 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
596 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
597 struct rt2x00lib_conf *libconf,
598 const unsigned int flags)
600 if (flags & CONFIG_UPDATE_PHYMODE)
601 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
602 if (flags & CONFIG_UPDATE_CHANNEL)
603 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
604 libconf->conf->power_level);
605 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
606 rt2500pci_config_txpower(rt2x00dev,
607 libconf->conf->power_level);
608 if (flags & CONFIG_UPDATE_ANTENNA)
609 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
610 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
611 rt2500pci_config_duration(rt2x00dev, libconf);
615 * Link tuning
617 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
618 struct link_qual *qual)
620 u32 reg;
623 * Update FCS error count from register.
625 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
626 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
629 * Update False CCA count from register.
631 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
632 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
635 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
637 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
638 rt2x00dev->link.vgc_level = 0x48;
641 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
643 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
644 u8 r17;
647 * To prevent collisions with MAC ASIC on chipsets
648 * up to version C the link tuning should halt after 20
649 * seconds while being associated.
651 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
652 rt2x00dev->intf_associated &&
653 rt2x00dev->link.count > 20)
654 return;
656 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
659 * Chipset versions C and lower should directly continue
660 * to the dynamic CCA tuning. Chipset version D and higher
661 * should go straight to dynamic CCA tuning when they
662 * are not associated.
664 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
665 !rt2x00dev->intf_associated)
666 goto dynamic_cca_tune;
669 * A too low RSSI will cause too much false CCA which will
670 * then corrupt the R17 tuning. To remidy this the tuning should
671 * be stopped (While making sure the R17 value will not exceed limits)
673 if (rssi < -80 && rt2x00dev->link.count > 20) {
674 if (r17 >= 0x41) {
675 r17 = rt2x00dev->link.vgc_level;
676 rt2500pci_bbp_write(rt2x00dev, 17, r17);
678 return;
682 * Special big-R17 for short distance
684 if (rssi >= -58) {
685 if (r17 != 0x50)
686 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
687 return;
691 * Special mid-R17 for middle distance
693 if (rssi >= -74) {
694 if (r17 != 0x41)
695 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
696 return;
700 * Leave short or middle distance condition, restore r17
701 * to the dynamic tuning range.
703 if (r17 >= 0x41) {
704 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
705 return;
708 dynamic_cca_tune:
711 * R17 is inside the dynamic tuning range,
712 * start tuning the link based on the false cca counter.
714 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
715 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
716 rt2x00dev->link.vgc_level = r17;
717 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
718 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
719 rt2x00dev->link.vgc_level = r17;
724 * Initialization functions.
726 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
727 struct queue_entry *entry)
729 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
730 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
731 u32 word;
733 rt2x00_desc_read(entry_priv->desc, 1, &word);
734 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
735 rt2x00_desc_write(entry_priv->desc, 1, word);
737 rt2x00_desc_read(entry_priv->desc, 0, &word);
738 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
739 rt2x00_desc_write(entry_priv->desc, 0, word);
742 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
743 struct queue_entry *entry)
745 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
746 u32 word;
748 rt2x00_desc_read(entry_priv->desc, 0, &word);
749 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
750 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
751 rt2x00_desc_write(entry_priv->desc, 0, word);
754 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
756 struct queue_entry_priv_pci *entry_priv;
757 u32 reg;
760 * Initialize registers.
762 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
763 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
764 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
765 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
766 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
767 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
769 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
770 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
771 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
772 entry_priv->desc_dma);
773 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
775 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
776 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
777 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
778 entry_priv->desc_dma);
779 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
781 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
782 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
783 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
784 entry_priv->desc_dma);
785 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
787 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
788 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
789 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
790 entry_priv->desc_dma);
791 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
793 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
794 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
795 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
796 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
798 entry_priv = rt2x00dev->rx->entries[0].priv_data;
799 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
800 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
801 entry_priv->desc_dma);
802 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
804 return 0;
807 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
809 u32 reg;
811 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
812 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
813 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
814 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
816 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
817 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
818 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
819 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
820 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
822 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
823 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
824 rt2x00dev->rx->data_size / 128);
825 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
828 * Always use CWmin and CWmax set in descriptor.
830 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
831 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
832 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
834 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
835 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
836 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
837 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
838 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
839 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
840 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
841 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
842 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
843 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
845 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
847 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
848 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
849 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
850 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
851 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
852 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
853 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
854 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
855 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
856 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
858 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
859 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
860 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
861 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
862 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
863 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
865 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
866 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
867 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
868 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
869 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
870 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
872 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
873 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
874 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
875 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
876 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
877 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
879 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
880 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
881 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
882 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
883 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
884 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
885 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
886 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
887 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
888 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
890 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
891 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
892 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
893 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
894 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
895 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
896 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
897 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
898 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
900 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
902 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
903 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
905 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
906 return -EBUSY;
908 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
909 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
911 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
912 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
913 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
915 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
916 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
917 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
918 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
919 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
920 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
921 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
922 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
924 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
926 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
928 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
929 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
930 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
931 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
932 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
934 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
935 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
936 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
937 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
940 * We must clear the FCS and FIFO error count.
941 * These registers are cleared on read,
942 * so we may pass a useless variable to store the value.
944 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
945 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
947 return 0;
950 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
952 unsigned int i;
953 u8 value;
955 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
956 rt2500pci_bbp_read(rt2x00dev, 0, &value);
957 if ((value != 0xff) && (value != 0x00))
958 return 0;
959 udelay(REGISTER_BUSY_DELAY);
962 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
963 return -EACCES;
966 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
968 unsigned int i;
969 u16 eeprom;
970 u8 reg_id;
971 u8 value;
973 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
974 return -EACCES;
976 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
977 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
978 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
979 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
980 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
981 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
982 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
983 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
984 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
985 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
986 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
987 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
988 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
989 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
990 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
991 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
992 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
993 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
994 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
995 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
996 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
997 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
998 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
999 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1000 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1001 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1002 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1003 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1004 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1005 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1007 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1008 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1010 if (eeprom != 0xffff && eeprom != 0x0000) {
1011 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1012 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1013 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1017 return 0;
1021 * Device state switch handlers.
1023 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1024 enum dev_state state)
1026 u32 reg;
1028 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1029 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1030 (state == STATE_RADIO_RX_OFF) ||
1031 (state == STATE_RADIO_RX_OFF_LINK));
1032 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1035 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1036 enum dev_state state)
1038 int mask = (state == STATE_RADIO_IRQ_OFF);
1039 u32 reg;
1042 * When interrupts are being enabled, the interrupt registers
1043 * should clear the register to assure a clean state.
1045 if (state == STATE_RADIO_IRQ_ON) {
1046 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1047 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1051 * Only toggle the interrupts bits we are going to use.
1052 * Non-checked interrupt bits are disabled by default.
1054 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1055 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1056 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1057 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1058 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1059 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1060 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1063 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1066 * Initialize all registers.
1068 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1069 rt2500pci_init_registers(rt2x00dev) ||
1070 rt2500pci_init_bbp(rt2x00dev)))
1071 return -EIO;
1073 return 0;
1076 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1078 u32 reg;
1080 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1083 * Disable synchronisation.
1085 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1088 * Cancel RX and TX.
1090 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1091 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1092 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1095 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1096 enum dev_state state)
1098 u32 reg;
1099 unsigned int i;
1100 char put_to_sleep;
1101 char bbp_state;
1102 char rf_state;
1104 put_to_sleep = (state != STATE_AWAKE);
1106 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1107 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1108 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1109 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1110 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1111 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1114 * Device is not guaranteed to be in the requested state yet.
1115 * We must wait until the register indicates that the
1116 * device has entered the correct state.
1118 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1119 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1120 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1121 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1122 if (bbp_state == state && rf_state == state)
1123 return 0;
1124 msleep(10);
1127 return -EBUSY;
1130 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1131 enum dev_state state)
1133 int retval = 0;
1135 switch (state) {
1136 case STATE_RADIO_ON:
1137 retval = rt2500pci_enable_radio(rt2x00dev);
1138 break;
1139 case STATE_RADIO_OFF:
1140 rt2500pci_disable_radio(rt2x00dev);
1141 break;
1142 case STATE_RADIO_RX_ON:
1143 case STATE_RADIO_RX_ON_LINK:
1144 case STATE_RADIO_RX_OFF:
1145 case STATE_RADIO_RX_OFF_LINK:
1146 rt2500pci_toggle_rx(rt2x00dev, state);
1147 break;
1148 case STATE_RADIO_IRQ_ON:
1149 case STATE_RADIO_IRQ_OFF:
1150 rt2500pci_toggle_irq(rt2x00dev, state);
1151 break;
1152 case STATE_DEEP_SLEEP:
1153 case STATE_SLEEP:
1154 case STATE_STANDBY:
1155 case STATE_AWAKE:
1156 retval = rt2500pci_set_state(rt2x00dev, state);
1157 break;
1158 default:
1159 retval = -ENOTSUPP;
1160 break;
1163 if (unlikely(retval))
1164 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1165 state, retval);
1167 return retval;
1171 * TX descriptor initialization
1173 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1174 struct sk_buff *skb,
1175 struct txentry_desc *txdesc)
1177 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1178 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1179 __le32 *txd = skbdesc->desc;
1180 u32 word;
1183 * Start writing the descriptor words.
1185 rt2x00_desc_read(entry_priv->desc, 1, &word);
1186 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1187 rt2x00_desc_write(entry_priv->desc, 1, word);
1189 rt2x00_desc_read(txd, 2, &word);
1190 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1191 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1192 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1193 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1194 rt2x00_desc_write(txd, 2, word);
1196 rt2x00_desc_read(txd, 3, &word);
1197 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1198 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1199 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1200 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1201 rt2x00_desc_write(txd, 3, word);
1203 rt2x00_desc_read(txd, 10, &word);
1204 rt2x00_set_field32(&word, TXD_W10_RTS,
1205 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1206 rt2x00_desc_write(txd, 10, word);
1208 rt2x00_desc_read(txd, 0, &word);
1209 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1210 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1211 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1212 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1213 rt2x00_set_field32(&word, TXD_W0_ACK,
1214 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1215 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1216 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1217 rt2x00_set_field32(&word, TXD_W0_OFDM,
1218 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1219 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1220 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1221 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1222 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1223 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1224 rt2x00_desc_write(txd, 0, word);
1228 * TX data initialization
1230 static void rt2500pci_write_beacon(struct queue_entry *entry)
1232 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1233 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1234 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1235 u32 word;
1236 u32 reg;
1239 * Disable beaconing while we are reloading the beacon data,
1240 * otherwise we might be sending out invalid data.
1242 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1243 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1244 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1245 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1246 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1249 * Replace rt2x00lib allocated descriptor with the
1250 * pointer to the _real_ hardware descriptor.
1251 * After that, map the beacon to DMA and update the
1252 * descriptor.
1254 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1255 skbdesc->desc = entry_priv->desc;
1257 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1259 rt2x00_desc_read(entry_priv->desc, 1, &word);
1260 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1261 rt2x00_desc_write(entry_priv->desc, 1, word);
1264 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1265 const enum data_queue_qid queue)
1267 u32 reg;
1269 if (queue == QID_BEACON) {
1270 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1271 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1272 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1273 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1274 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1275 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1277 return;
1280 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1281 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1282 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1283 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1284 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1288 * RX control handlers
1290 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1291 struct rxdone_entry_desc *rxdesc)
1293 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1294 u32 word0;
1295 u32 word2;
1297 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1298 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1300 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1301 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1302 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1303 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1306 * Obtain the status about this packet.
1307 * When frame was received with an OFDM bitrate,
1308 * the signal is the PLCP value. If it was received with
1309 * a CCK bitrate the signal is the rate in 100kbit/s.
1311 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1312 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1313 entry->queue->rt2x00dev->rssi_offset;
1314 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1316 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1317 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1318 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1319 rxdesc->dev_flags |= RXDONE_MY_BSS;
1323 * Interrupt functions.
1325 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1326 const enum data_queue_qid queue_idx)
1328 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1329 struct queue_entry_priv_pci *entry_priv;
1330 struct queue_entry *entry;
1331 struct txdone_entry_desc txdesc;
1332 u32 word;
1334 while (!rt2x00queue_empty(queue)) {
1335 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1336 entry_priv = entry->priv_data;
1337 rt2x00_desc_read(entry_priv->desc, 0, &word);
1339 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1340 !rt2x00_get_field32(word, TXD_W0_VALID))
1341 break;
1344 * Obtain the status about this packet.
1346 txdesc.flags = 0;
1347 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1348 case 0: /* Success */
1349 case 1: /* Success with retry */
1350 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1351 break;
1352 case 2: /* Failure, excessive retries */
1353 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1354 /* Don't break, this is a failed frame! */
1355 default: /* Failure */
1356 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1358 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1360 rt2x00lib_txdone(entry, &txdesc);
1364 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1366 struct rt2x00_dev *rt2x00dev = dev_instance;
1367 u32 reg;
1370 * Get the interrupt sources & saved to local variable.
1371 * Write register value back to clear pending interrupts.
1373 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1374 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1376 if (!reg)
1377 return IRQ_NONE;
1379 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1380 return IRQ_HANDLED;
1383 * Handle interrupts, walk through all bits
1384 * and run the tasks, the bits are checked in order of
1385 * priority.
1389 * 1 - Beacon timer expired interrupt.
1391 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1392 rt2x00lib_beacondone(rt2x00dev);
1395 * 2 - Rx ring done interrupt.
1397 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1398 rt2x00pci_rxdone(rt2x00dev);
1401 * 3 - Atim ring transmit done interrupt.
1403 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1404 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1407 * 4 - Priority ring transmit done interrupt.
1409 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1410 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1413 * 5 - Tx ring transmit done interrupt.
1415 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1416 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1418 return IRQ_HANDLED;
1422 * Device probe functions.
1424 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1426 struct eeprom_93cx6 eeprom;
1427 u32 reg;
1428 u16 word;
1429 u8 *mac;
1431 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1433 eeprom.data = rt2x00dev;
1434 eeprom.register_read = rt2500pci_eepromregister_read;
1435 eeprom.register_write = rt2500pci_eepromregister_write;
1436 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1437 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1438 eeprom.reg_data_in = 0;
1439 eeprom.reg_data_out = 0;
1440 eeprom.reg_data_clock = 0;
1441 eeprom.reg_chip_select = 0;
1443 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1444 EEPROM_SIZE / sizeof(u16));
1447 * Start validation of the data that has been read.
1449 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1450 if (!is_valid_ether_addr(mac)) {
1451 DECLARE_MAC_BUF(macbuf);
1453 random_ether_addr(mac);
1454 EEPROM(rt2x00dev, "MAC: %s\n",
1455 print_mac(macbuf, mac));
1458 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1459 if (word == 0xffff) {
1460 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1461 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1462 ANTENNA_SW_DIVERSITY);
1463 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1464 ANTENNA_SW_DIVERSITY);
1465 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1466 LED_MODE_DEFAULT);
1467 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1468 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1469 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1470 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1471 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1474 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1475 if (word == 0xffff) {
1476 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1477 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1478 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1479 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1480 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1483 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1484 if (word == 0xffff) {
1485 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1486 DEFAULT_RSSI_OFFSET);
1487 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1488 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1491 return 0;
1494 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1496 u32 reg;
1497 u16 value;
1498 u16 eeprom;
1501 * Read EEPROM word for configuration.
1503 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1506 * Identify RF chipset.
1508 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1509 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1510 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1512 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1513 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1514 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1515 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1516 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1517 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1518 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1519 return -ENODEV;
1523 * Identify default antenna configuration.
1525 rt2x00dev->default_ant.tx =
1526 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1527 rt2x00dev->default_ant.rx =
1528 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1531 * Store led mode, for correct led behaviour.
1533 #ifdef CONFIG_RT2500PCI_LEDS
1534 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1536 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1537 if (value == LED_MODE_TXRX_ACTIVITY)
1538 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1539 LED_TYPE_ACTIVITY);
1540 #endif /* CONFIG_RT2500PCI_LEDS */
1543 * Detect if this device has an hardware controlled radio.
1545 #ifdef CONFIG_RT2500PCI_RFKILL
1546 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1547 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1548 #endif /* CONFIG_RT2500PCI_RFKILL */
1551 * Check if the BBP tuning should be enabled.
1553 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1555 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1556 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1559 * Read the RSSI <-> dBm offset information.
1561 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1562 rt2x00dev->rssi_offset =
1563 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1565 return 0;
1569 * RF value list for RF2522
1570 * Supports: 2.4 GHz
1572 static const struct rf_channel rf_vals_bg_2522[] = {
1573 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1574 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1575 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1576 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1577 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1578 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1579 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1580 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1581 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1582 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1583 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1584 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1585 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1586 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1590 * RF value list for RF2523
1591 * Supports: 2.4 GHz
1593 static const struct rf_channel rf_vals_bg_2523[] = {
1594 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1595 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1596 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1597 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1598 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1599 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1600 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1601 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1602 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1603 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1604 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1605 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1606 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1607 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1611 * RF value list for RF2524
1612 * Supports: 2.4 GHz
1614 static const struct rf_channel rf_vals_bg_2524[] = {
1615 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1616 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1617 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1618 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1619 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1620 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1621 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1622 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1623 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1624 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1625 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1626 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1627 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1628 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1632 * RF value list for RF2525
1633 * Supports: 2.4 GHz
1635 static const struct rf_channel rf_vals_bg_2525[] = {
1636 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1637 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1638 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1639 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1640 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1641 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1642 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1643 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1644 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1645 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1646 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1647 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1648 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1649 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1653 * RF value list for RF2525e
1654 * Supports: 2.4 GHz
1656 static const struct rf_channel rf_vals_bg_2525e[] = {
1657 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1658 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1659 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1660 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1661 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1662 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1663 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1664 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1665 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1666 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1667 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1668 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1669 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1670 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1674 * RF value list for RF5222
1675 * Supports: 2.4 GHz & 5.2 GHz
1677 static const struct rf_channel rf_vals_5222[] = {
1678 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1679 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1680 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1681 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1682 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1683 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1684 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1685 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1686 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1687 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1688 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1689 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1690 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1691 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1693 /* 802.11 UNI / HyperLan 2 */
1694 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1695 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1696 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1697 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1698 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1699 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1700 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1701 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1703 /* 802.11 HyperLan 2 */
1704 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1705 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1706 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1707 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1708 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1709 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1710 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1711 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1712 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1713 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1715 /* 802.11 UNII */
1716 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1717 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1718 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1719 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1720 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1723 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1725 struct hw_mode_spec *spec = &rt2x00dev->spec;
1726 u8 *txpower;
1727 unsigned int i;
1730 * Initialize all hw fields.
1732 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1733 IEEE80211_HW_SIGNAL_DBM;
1735 rt2x00dev->hw->extra_tx_headroom = 0;
1737 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1738 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1739 rt2x00_eeprom_addr(rt2x00dev,
1740 EEPROM_MAC_ADDR_0));
1743 * Convert tx_power array in eeprom.
1745 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1746 for (i = 0; i < 14; i++)
1747 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1750 * Initialize hw_mode information.
1752 spec->supported_bands = SUPPORT_BAND_2GHZ;
1753 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1754 spec->tx_power_a = NULL;
1755 spec->tx_power_bg = txpower;
1756 spec->tx_power_default = DEFAULT_TXPOWER;
1758 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1759 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1760 spec->channels = rf_vals_bg_2522;
1761 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1762 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1763 spec->channels = rf_vals_bg_2523;
1764 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1765 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1766 spec->channels = rf_vals_bg_2524;
1767 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1768 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1769 spec->channels = rf_vals_bg_2525;
1770 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1771 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1772 spec->channels = rf_vals_bg_2525e;
1773 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1774 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1775 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1776 spec->channels = rf_vals_5222;
1780 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1782 int retval;
1785 * Allocate eeprom data.
1787 retval = rt2500pci_validate_eeprom(rt2x00dev);
1788 if (retval)
1789 return retval;
1791 retval = rt2500pci_init_eeprom(rt2x00dev);
1792 if (retval)
1793 return retval;
1796 * Initialize hw specifications.
1798 rt2500pci_probe_hw_mode(rt2x00dev);
1801 * This device requires the atim queue and DMA-mapped skbs.
1803 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1804 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1807 * Set the rssi offset.
1809 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1811 return 0;
1815 * IEEE80211 stack callback functions.
1817 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1818 u32 short_retry, u32 long_retry)
1820 struct rt2x00_dev *rt2x00dev = hw->priv;
1821 u32 reg;
1823 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1824 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1825 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1826 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1828 return 0;
1831 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1833 struct rt2x00_dev *rt2x00dev = hw->priv;
1834 u64 tsf;
1835 u32 reg;
1837 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1838 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1839 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1840 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1842 return tsf;
1845 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1847 struct rt2x00_dev *rt2x00dev = hw->priv;
1848 u32 reg;
1850 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1851 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1854 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1855 .tx = rt2x00mac_tx,
1856 .start = rt2x00mac_start,
1857 .stop = rt2x00mac_stop,
1858 .add_interface = rt2x00mac_add_interface,
1859 .remove_interface = rt2x00mac_remove_interface,
1860 .config = rt2x00mac_config,
1861 .config_interface = rt2x00mac_config_interface,
1862 .configure_filter = rt2x00mac_configure_filter,
1863 .get_stats = rt2x00mac_get_stats,
1864 .set_retry_limit = rt2500pci_set_retry_limit,
1865 .bss_info_changed = rt2x00mac_bss_info_changed,
1866 .conf_tx = rt2x00mac_conf_tx,
1867 .get_tx_stats = rt2x00mac_get_tx_stats,
1868 .get_tsf = rt2500pci_get_tsf,
1869 .tx_last_beacon = rt2500pci_tx_last_beacon,
1872 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1873 .irq_handler = rt2500pci_interrupt,
1874 .probe_hw = rt2500pci_probe_hw,
1875 .initialize = rt2x00pci_initialize,
1876 .uninitialize = rt2x00pci_uninitialize,
1877 .init_rxentry = rt2500pci_init_rxentry,
1878 .init_txentry = rt2500pci_init_txentry,
1879 .set_device_state = rt2500pci_set_device_state,
1880 .rfkill_poll = rt2500pci_rfkill_poll,
1881 .link_stats = rt2500pci_link_stats,
1882 .reset_tuner = rt2500pci_reset_tuner,
1883 .link_tuner = rt2500pci_link_tuner,
1884 .write_tx_desc = rt2500pci_write_tx_desc,
1885 .write_tx_data = rt2x00pci_write_tx_data,
1886 .write_beacon = rt2500pci_write_beacon,
1887 .kick_tx_queue = rt2500pci_kick_tx_queue,
1888 .fill_rxdone = rt2500pci_fill_rxdone,
1889 .config_filter = rt2500pci_config_filter,
1890 .config_intf = rt2500pci_config_intf,
1891 .config_erp = rt2500pci_config_erp,
1892 .config = rt2500pci_config,
1895 static const struct data_queue_desc rt2500pci_queue_rx = {
1896 .entry_num = RX_ENTRIES,
1897 .data_size = DATA_FRAME_SIZE,
1898 .desc_size = RXD_DESC_SIZE,
1899 .priv_size = sizeof(struct queue_entry_priv_pci),
1902 static const struct data_queue_desc rt2500pci_queue_tx = {
1903 .entry_num = TX_ENTRIES,
1904 .data_size = DATA_FRAME_SIZE,
1905 .desc_size = TXD_DESC_SIZE,
1906 .priv_size = sizeof(struct queue_entry_priv_pci),
1909 static const struct data_queue_desc rt2500pci_queue_bcn = {
1910 .entry_num = BEACON_ENTRIES,
1911 .data_size = MGMT_FRAME_SIZE,
1912 .desc_size = TXD_DESC_SIZE,
1913 .priv_size = sizeof(struct queue_entry_priv_pci),
1916 static const struct data_queue_desc rt2500pci_queue_atim = {
1917 .entry_num = ATIM_ENTRIES,
1918 .data_size = DATA_FRAME_SIZE,
1919 .desc_size = TXD_DESC_SIZE,
1920 .priv_size = sizeof(struct queue_entry_priv_pci),
1923 static const struct rt2x00_ops rt2500pci_ops = {
1924 .name = KBUILD_MODNAME,
1925 .max_sta_intf = 1,
1926 .max_ap_intf = 1,
1927 .eeprom_size = EEPROM_SIZE,
1928 .rf_size = RF_SIZE,
1929 .tx_queues = NUM_TX_QUEUES,
1930 .rx = &rt2500pci_queue_rx,
1931 .tx = &rt2500pci_queue_tx,
1932 .bcn = &rt2500pci_queue_bcn,
1933 .atim = &rt2500pci_queue_atim,
1934 .lib = &rt2500pci_rt2x00_ops,
1935 .hw = &rt2500pci_mac80211_ops,
1936 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1937 .debugfs = &rt2500pci_rt2x00debug,
1938 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1942 * RT2500pci module information.
1944 static struct pci_device_id rt2500pci_device_table[] = {
1945 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1946 { 0, }
1949 MODULE_AUTHOR(DRV_PROJECT);
1950 MODULE_VERSION(DRV_VERSION);
1951 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1952 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1953 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1954 MODULE_LICENSE("GPL");
1956 static struct pci_driver rt2500pci_driver = {
1957 .name = KBUILD_MODNAME,
1958 .id_table = rt2500pci_device_table,
1959 .probe = rt2x00pci_probe,
1960 .remove = __devexit_p(rt2x00pci_remove),
1961 .suspend = rt2x00pci_suspend,
1962 .resume = rt2x00pci_resume,
1965 static int __init rt2500pci_init(void)
1967 return pci_register_driver(&rt2500pci_driver);
1970 static void __exit rt2500pci_exit(void)
1972 pci_unregister_driver(&rt2500pci_driver);
1975 module_init(rt2500pci_init);
1976 module_exit(rt2500pci_exit);