ext4: call ext4_forget() from ext4_free_blocks()
[linux-2.6/libata-dev.git] / fs / ext4 / inode.c
blob3b28e1fbfc90ba75ec3b5c36bfba6c12684f912e
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * Work out how many blocks we need to proceed with the next chunk of a
75 * truncate transaction.
77 static unsigned long blocks_for_truncate(struct inode *inode)
79 ext4_lblk_t needed;
81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
83 /* Give ourselves just enough room to cope with inodes in which
84 * i_blocks is corrupt: we've seen disk corruptions in the past
85 * which resulted in random data in an inode which looked enough
86 * like a regular file for ext4 to try to delete it. Things
87 * will go a bit crazy if that happens, but at least we should
88 * try not to panic the whole kernel. */
89 if (needed < 2)
90 needed = 2;
92 /* But we need to bound the transaction so we don't overflow the
93 * journal. */
94 if (needed > EXT4_MAX_TRANS_DATA)
95 needed = EXT4_MAX_TRANS_DATA;
97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
101 * Truncate transactions can be complex and absolutely huge. So we need to
102 * be able to restart the transaction at a conventient checkpoint to make
103 * sure we don't overflow the journal.
105 * start_transaction gets us a new handle for a truncate transaction,
106 * and extend_transaction tries to extend the existing one a bit. If
107 * extend fails, we need to propagate the failure up and restart the
108 * transaction in the top-level truncate loop. --sct
110 static handle_t *start_transaction(struct inode *inode)
112 handle_t *result;
114 result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 if (!IS_ERR(result))
116 return result;
118 ext4_std_error(inode->i_sb, PTR_ERR(result));
119 return result;
123 * Try to extend this transaction for the purposes of truncation.
125 * Returns 0 if we managed to create more room. If we can't create more
126 * room, and the transaction must be restarted we return 1.
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
130 if (!ext4_handle_valid(handle))
131 return 0;
132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133 return 0;
134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 return 0;
136 return 1;
140 * Restart the transaction associated with *handle. This does a commit,
141 * so before we call here everything must be consistently dirtied against
142 * this transaction.
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145 int nblocks)
147 int ret;
150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 * moment, get_block can be called only for blocks inside i_size since
152 * page cache has been already dropped and writes are blocked by
153 * i_mutex. So we can safely drop the i_data_sem here.
155 BUG_ON(EXT4_JOURNAL(inode) == NULL);
156 jbd_debug(2, "restarting handle %p\n", handle);
157 up_write(&EXT4_I(inode)->i_data_sem);
158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 down_write(&EXT4_I(inode)->i_data_sem);
160 ext4_discard_preallocations(inode);
162 return ret;
166 * Called at the last iput() if i_nlink is zero.
168 void ext4_delete_inode(struct inode *inode)
170 handle_t *handle;
171 int err;
173 if (ext4_should_order_data(inode))
174 ext4_begin_ordered_truncate(inode, 0);
175 truncate_inode_pages(&inode->i_data, 0);
177 if (is_bad_inode(inode))
178 goto no_delete;
180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181 if (IS_ERR(handle)) {
182 ext4_std_error(inode->i_sb, PTR_ERR(handle));
184 * If we're going to skip the normal cleanup, we still need to
185 * make sure that the in-core orphan linked list is properly
186 * cleaned up.
188 ext4_orphan_del(NULL, inode);
189 goto no_delete;
192 if (IS_SYNC(inode))
193 ext4_handle_sync(handle);
194 inode->i_size = 0;
195 err = ext4_mark_inode_dirty(handle, inode);
196 if (err) {
197 ext4_warning(inode->i_sb, __func__,
198 "couldn't mark inode dirty (err %d)", err);
199 goto stop_handle;
201 if (inode->i_blocks)
202 ext4_truncate(inode);
205 * ext4_ext_truncate() doesn't reserve any slop when it
206 * restarts journal transactions; therefore there may not be
207 * enough credits left in the handle to remove the inode from
208 * the orphan list and set the dtime field.
210 if (!ext4_handle_has_enough_credits(handle, 3)) {
211 err = ext4_journal_extend(handle, 3);
212 if (err > 0)
213 err = ext4_journal_restart(handle, 3);
214 if (err != 0) {
215 ext4_warning(inode->i_sb, __func__,
216 "couldn't extend journal (err %d)", err);
217 stop_handle:
218 ext4_journal_stop(handle);
219 goto no_delete;
224 * Kill off the orphan record which ext4_truncate created.
225 * AKPM: I think this can be inside the above `if'.
226 * Note that ext4_orphan_del() has to be able to cope with the
227 * deletion of a non-existent orphan - this is because we don't
228 * know if ext4_truncate() actually created an orphan record.
229 * (Well, we could do this if we need to, but heck - it works)
231 ext4_orphan_del(handle, inode);
232 EXT4_I(inode)->i_dtime = get_seconds();
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
241 if (ext4_mark_inode_dirty(handle, inode))
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
245 ext4_free_inode(handle, inode);
246 ext4_journal_stop(handle);
247 return;
248 no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
252 typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256 } Indirect;
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
260 p->key = *(p->p = v);
261 p->bh = bh;
265 * ext4_block_to_path - parse the block number into array of offsets
266 * @inode: inode in question (we are only interested in its superblock)
267 * @i_block: block number to be parsed
268 * @offsets: array to store the offsets in
269 * @boundary: set this non-zero if the referred-to block is likely to be
270 * followed (on disk) by an indirect block.
272 * To store the locations of file's data ext4 uses a data structure common
273 * for UNIX filesystems - tree of pointers anchored in the inode, with
274 * data blocks at leaves and indirect blocks in intermediate nodes.
275 * This function translates the block number into path in that tree -
276 * return value is the path length and @offsets[n] is the offset of
277 * pointer to (n+1)th node in the nth one. If @block is out of range
278 * (negative or too large) warning is printed and zero returned.
280 * Note: function doesn't find node addresses, so no IO is needed. All
281 * we need to know is the capacity of indirect blocks (taken from the
282 * inode->i_sb).
286 * Portability note: the last comparison (check that we fit into triple
287 * indirect block) is spelled differently, because otherwise on an
288 * architecture with 32-bit longs and 8Kb pages we might get into trouble
289 * if our filesystem had 8Kb blocks. We might use long long, but that would
290 * kill us on x86. Oh, well, at least the sign propagation does not matter -
291 * i_block would have to be negative in the very beginning, so we would not
292 * get there at all.
295 static int ext4_block_to_path(struct inode *inode,
296 ext4_lblk_t i_block,
297 ext4_lblk_t offsets[4], int *boundary)
299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT4_NDIR_BLOCKS,
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
307 if (i_block < direct_blocks) {
308 offsets[n++] = i_block;
309 final = direct_blocks;
310 } else if ((i_block -= direct_blocks) < indirect_blocks) {
311 offsets[n++] = EXT4_IND_BLOCK;
312 offsets[n++] = i_block;
313 final = ptrs;
314 } else if ((i_block -= indirect_blocks) < double_blocks) {
315 offsets[n++] = EXT4_DIND_BLOCK;
316 offsets[n++] = i_block >> ptrs_bits;
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320 offsets[n++] = EXT4_TIND_BLOCK;
321 offsets[n++] = i_block >> (ptrs_bits * 2);
322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else {
326 ext4_warning(inode->i_sb, "ext4_block_to_path",
327 "block %lu > max in inode %lu",
328 i_block + direct_blocks +
329 indirect_blocks + double_blocks, inode->i_ino);
331 if (boundary)
332 *boundary = final - 1 - (i_block & (ptrs - 1));
333 return n;
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 __le32 *p, unsigned int max)
339 __le32 *bref = p;
340 unsigned int blk;
342 while (bref < p+max) {
343 blk = le32_to_cpu(*bref++);
344 if (blk &&
345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 blk, 1))) {
347 ext4_error(inode->i_sb, function,
348 "invalid block reference %u "
349 "in inode #%lu", blk, inode->i_ino);
350 return -EIO;
353 return 0;
357 #define ext4_check_indirect_blockref(inode, bh) \
358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
359 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
361 #define ext4_check_inode_blockref(inode) \
362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
363 EXT4_NDIR_BLOCKS)
366 * ext4_get_branch - read the chain of indirect blocks leading to data
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
392 * Need to be called with
393 * down_read(&EXT4_I(inode)->i_data_sem)
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
397 Indirect chain[4], int *err)
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
403 *err = 0;
404 /* i_data is not going away, no lock needed */
405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
409 bh = sb_getblk(sb, le32_to_cpu(p->key));
410 if (unlikely(!bh))
411 goto failure;
413 if (!bh_uptodate_or_lock(bh)) {
414 if (bh_submit_read(bh) < 0) {
415 put_bh(bh);
416 goto failure;
418 /* validate block references */
419 if (ext4_check_indirect_blockref(inode, bh)) {
420 put_bh(bh);
421 goto failure;
425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 /* Reader: end */
427 if (!p->key)
428 goto no_block;
430 return NULL;
432 failure:
433 *err = -EIO;
434 no_block:
435 return p;
439 * ext4_find_near - find a place for allocation with sufficient locality
440 * @inode: owner
441 * @ind: descriptor of indirect block.
443 * This function returns the preferred place for block allocation.
444 * It is used when heuristic for sequential allocation fails.
445 * Rules are:
446 * + if there is a block to the left of our position - allocate near it.
447 * + if pointer will live in indirect block - allocate near that block.
448 * + if pointer will live in inode - allocate in the same
449 * cylinder group.
451 * In the latter case we colour the starting block by the callers PID to
452 * prevent it from clashing with concurrent allocations for a different inode
453 * in the same block group. The PID is used here so that functionally related
454 * files will be close-by on-disk.
456 * Caller must make sure that @ind is valid and will stay that way.
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
460 struct ext4_inode_info *ei = EXT4_I(inode);
461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 __le32 *p;
463 ext4_fsblk_t bg_start;
464 ext4_fsblk_t last_block;
465 ext4_grpblk_t colour;
466 ext4_group_t block_group;
467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
469 /* Try to find previous block */
470 for (p = ind->p - 1; p >= start; p--) {
471 if (*p)
472 return le32_to_cpu(*p);
475 /* No such thing, so let's try location of indirect block */
476 if (ind->bh)
477 return ind->bh->b_blocknr;
480 * It is going to be referred to from the inode itself? OK, just put it
481 * into the same cylinder group then.
483 block_group = ei->i_block_group;
484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 block_group &= ~(flex_size-1);
486 if (S_ISREG(inode->i_mode))
487 block_group++;
489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
493 * If we are doing delayed allocation, we don't need take
494 * colour into account.
496 if (test_opt(inode->i_sb, DELALLOC))
497 return bg_start;
499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 colour = (current->pid % 16) *
501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 else
503 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 return bg_start + colour;
508 * ext4_find_goal - find a preferred place for allocation.
509 * @inode: owner
510 * @block: block we want
511 * @partial: pointer to the last triple within a chain
513 * Normally this function find the preferred place for block allocation,
514 * returns it.
515 * Because this is only used for non-extent files, we limit the block nr
516 * to 32 bits.
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 Indirect *partial)
521 ext4_fsblk_t goal;
524 * XXX need to get goal block from mballoc's data structures
527 goal = ext4_find_near(inode, partial);
528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 return goal;
533 * ext4_blks_to_allocate: Look up the block map and count the number
534 * of direct blocks need to be allocated for the given branch.
536 * @branch: chain of indirect blocks
537 * @k: number of blocks need for indirect blocks
538 * @blks: number of data blocks to be mapped.
539 * @blocks_to_boundary: the offset in the indirect block
541 * return the total number of blocks to be allocate, including the
542 * direct and indirect blocks.
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 int blocks_to_boundary)
547 unsigned int count = 0;
550 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 * then it's clear blocks on that path have not allocated
553 if (k > 0) {
554 /* right now we don't handle cross boundary allocation */
555 if (blks < blocks_to_boundary + 1)
556 count += blks;
557 else
558 count += blocks_to_boundary + 1;
559 return count;
562 count++;
563 while (count < blks && count <= blocks_to_boundary &&
564 le32_to_cpu(*(branch[0].p + count)) == 0) {
565 count++;
567 return count;
571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 * @indirect_blks: the number of blocks need to allocate for indirect
573 * blocks
575 * @new_blocks: on return it will store the new block numbers for
576 * the indirect blocks(if needed) and the first direct block,
577 * @blks: on return it will store the total number of allocated
578 * direct blocks
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 ext4_lblk_t iblock, ext4_fsblk_t goal,
582 int indirect_blks, int blks,
583 ext4_fsblk_t new_blocks[4], int *err)
585 struct ext4_allocation_request ar;
586 int target, i;
587 unsigned long count = 0, blk_allocated = 0;
588 int index = 0;
589 ext4_fsblk_t current_block = 0;
590 int ret = 0;
593 * Here we try to allocate the requested multiple blocks at once,
594 * on a best-effort basis.
595 * To build a branch, we should allocate blocks for
596 * the indirect blocks(if not allocated yet), and at least
597 * the first direct block of this branch. That's the
598 * minimum number of blocks need to allocate(required)
600 /* first we try to allocate the indirect blocks */
601 target = indirect_blks;
602 while (target > 0) {
603 count = target;
604 /* allocating blocks for indirect blocks and direct blocks */
605 current_block = ext4_new_meta_blocks(handle, inode,
606 goal, &count, err);
607 if (*err)
608 goto failed_out;
610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
612 target -= count;
613 /* allocate blocks for indirect blocks */
614 while (index < indirect_blks && count) {
615 new_blocks[index++] = current_block++;
616 count--;
618 if (count > 0) {
620 * save the new block number
621 * for the first direct block
623 new_blocks[index] = current_block;
624 printk(KERN_INFO "%s returned more blocks than "
625 "requested\n", __func__);
626 WARN_ON(1);
627 break;
631 target = blks - count ;
632 blk_allocated = count;
633 if (!target)
634 goto allocated;
635 /* Now allocate data blocks */
636 memset(&ar, 0, sizeof(ar));
637 ar.inode = inode;
638 ar.goal = goal;
639 ar.len = target;
640 ar.logical = iblock;
641 if (S_ISREG(inode->i_mode))
642 /* enable in-core preallocation only for regular files */
643 ar.flags = EXT4_MB_HINT_DATA;
645 current_block = ext4_mb_new_blocks(handle, &ar, err);
646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
648 if (*err && (target == blks)) {
650 * if the allocation failed and we didn't allocate
651 * any blocks before
653 goto failed_out;
655 if (!*err) {
656 if (target == blks) {
658 * save the new block number
659 * for the first direct block
661 new_blocks[index] = current_block;
663 blk_allocated += ar.len;
665 allocated:
666 /* total number of blocks allocated for direct blocks */
667 ret = blk_allocated;
668 *err = 0;
669 return ret;
670 failed_out:
671 for (i = 0; i < index; i++)
672 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 return ret;
677 * ext4_alloc_branch - allocate and set up a chain of blocks.
678 * @inode: owner
679 * @indirect_blks: number of allocated indirect blocks
680 * @blks: number of allocated direct blocks
681 * @offsets: offsets (in the blocks) to store the pointers to next.
682 * @branch: place to store the chain in.
684 * This function allocates blocks, zeroes out all but the last one,
685 * links them into chain and (if we are synchronous) writes them to disk.
686 * In other words, it prepares a branch that can be spliced onto the
687 * inode. It stores the information about that chain in the branch[], in
688 * the same format as ext4_get_branch() would do. We are calling it after
689 * we had read the existing part of chain and partial points to the last
690 * triple of that (one with zero ->key). Upon the exit we have the same
691 * picture as after the successful ext4_get_block(), except that in one
692 * place chain is disconnected - *branch->p is still zero (we did not
693 * set the last link), but branch->key contains the number that should
694 * be placed into *branch->p to fill that gap.
696 * If allocation fails we free all blocks we've allocated (and forget
697 * their buffer_heads) and return the error value the from failed
698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699 * as described above and return 0.
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 ext4_lblk_t iblock, int indirect_blks,
703 int *blks, ext4_fsblk_t goal,
704 ext4_lblk_t *offsets, Indirect *branch)
706 int blocksize = inode->i_sb->s_blocksize;
707 int i, n = 0;
708 int err = 0;
709 struct buffer_head *bh;
710 int num;
711 ext4_fsblk_t new_blocks[4];
712 ext4_fsblk_t current_block;
714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 *blks, new_blocks, &err);
716 if (err)
717 return err;
719 branch[0].key = cpu_to_le32(new_blocks[0]);
721 * metadata blocks and data blocks are allocated.
723 for (n = 1; n <= indirect_blks; n++) {
725 * Get buffer_head for parent block, zero it out
726 * and set the pointer to new one, then send
727 * parent to disk.
729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 branch[n].bh = bh;
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 err = ext4_journal_get_create_access(handle, bh);
734 if (err) {
735 /* Don't brelse(bh) here; it's done in
736 * ext4_journal_forget() below */
737 unlock_buffer(bh);
738 goto failed;
741 memset(bh->b_data, 0, blocksize);
742 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 branch[n].key = cpu_to_le32(new_blocks[n]);
744 *branch[n].p = branch[n].key;
745 if (n == indirect_blks) {
746 current_block = new_blocks[n];
748 * End of chain, update the last new metablock of
749 * the chain to point to the new allocated
750 * data blocks numbers
752 for (i = 1; i < num; i++)
753 *(branch[n].p + i) = cpu_to_le32(++current_block);
755 BUFFER_TRACE(bh, "marking uptodate");
756 set_buffer_uptodate(bh);
757 unlock_buffer(bh);
759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 err = ext4_handle_dirty_metadata(handle, inode, bh);
761 if (err)
762 goto failed;
764 *blks = num;
765 return err;
766 failed:
767 /* Allocation failed, free what we already allocated */
768 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769 for (i = 1; i <= n ; i++) {
771 * branch[i].bh is newly allocated, so there is no
772 * need to revoke the block, which is why we don't
773 * need to set EXT4_FREE_BLOCKS_METADATA.
775 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 EXT4_FREE_BLOCKS_FORGET);
778 for (i = n+1; i < indirect_blks; i++)
779 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
781 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
783 return err;
787 * ext4_splice_branch - splice the allocated branch onto inode.
788 * @inode: owner
789 * @block: (logical) number of block we are adding
790 * @chain: chain of indirect blocks (with a missing link - see
791 * ext4_alloc_branch)
792 * @where: location of missing link
793 * @num: number of indirect blocks we are adding
794 * @blks: number of direct blocks we are adding
796 * This function fills the missing link and does all housekeeping needed in
797 * inode (->i_blocks, etc.). In case of success we end up with the full
798 * chain to new block and return 0.
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 ext4_lblk_t block, Indirect *where, int num,
802 int blks)
804 int i;
805 int err = 0;
806 ext4_fsblk_t current_block;
809 * If we're splicing into a [td]indirect block (as opposed to the
810 * inode) then we need to get write access to the [td]indirect block
811 * before the splice.
813 if (where->bh) {
814 BUFFER_TRACE(where->bh, "get_write_access");
815 err = ext4_journal_get_write_access(handle, where->bh);
816 if (err)
817 goto err_out;
819 /* That's it */
821 *where->p = where->key;
824 * Update the host buffer_head or inode to point to more just allocated
825 * direct blocks blocks
827 if (num == 0 && blks > 1) {
828 current_block = le32_to_cpu(where->key) + 1;
829 for (i = 1; i < blks; i++)
830 *(where->p + i) = cpu_to_le32(current_block++);
833 /* We are done with atomic stuff, now do the rest of housekeeping */
834 /* had we spliced it onto indirect block? */
835 if (where->bh) {
837 * If we spliced it onto an indirect block, we haven't
838 * altered the inode. Note however that if it is being spliced
839 * onto an indirect block at the very end of the file (the
840 * file is growing) then we *will* alter the inode to reflect
841 * the new i_size. But that is not done here - it is done in
842 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
844 jbd_debug(5, "splicing indirect only\n");
845 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 if (err)
848 goto err_out;
849 } else {
851 * OK, we spliced it into the inode itself on a direct block.
853 ext4_mark_inode_dirty(handle, inode);
854 jbd_debug(5, "splicing direct\n");
856 return err;
858 err_out:
859 for (i = 1; i <= num; i++) {
861 * branch[i].bh is newly allocated, so there is no
862 * need to revoke the block, which is why we don't
863 * need to set EXT4_FREE_BLOCKS_METADATA.
865 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 EXT4_FREE_BLOCKS_FORGET);
868 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 blks, 0);
871 return err;
875 * The ext4_ind_get_blocks() function handles non-extents inodes
876 * (i.e., using the traditional indirect/double-indirect i_blocks
877 * scheme) for ext4_get_blocks().
879 * Allocation strategy is simple: if we have to allocate something, we will
880 * have to go the whole way to leaf. So let's do it before attaching anything
881 * to tree, set linkage between the newborn blocks, write them if sync is
882 * required, recheck the path, free and repeat if check fails, otherwise
883 * set the last missing link (that will protect us from any truncate-generated
884 * removals - all blocks on the path are immune now) and possibly force the
885 * write on the parent block.
886 * That has a nice additional property: no special recovery from the failed
887 * allocations is needed - we simply release blocks and do not touch anything
888 * reachable from inode.
890 * `handle' can be NULL if create == 0.
892 * return > 0, # of blocks mapped or allocated.
893 * return = 0, if plain lookup failed.
894 * return < 0, error case.
896 * The ext4_ind_get_blocks() function should be called with
897 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900 * blocks.
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 ext4_lblk_t iblock, unsigned int maxblocks,
904 struct buffer_head *bh_result,
905 int flags)
907 int err = -EIO;
908 ext4_lblk_t offsets[4];
909 Indirect chain[4];
910 Indirect *partial;
911 ext4_fsblk_t goal;
912 int indirect_blks;
913 int blocks_to_boundary = 0;
914 int depth;
915 int count = 0;
916 ext4_fsblk_t first_block = 0;
918 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920 depth = ext4_block_to_path(inode, iblock, offsets,
921 &blocks_to_boundary);
923 if (depth == 0)
924 goto out;
926 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
928 /* Simplest case - block found, no allocation needed */
929 if (!partial) {
930 first_block = le32_to_cpu(chain[depth - 1].key);
931 clear_buffer_new(bh_result);
932 count++;
933 /*map more blocks*/
934 while (count < maxblocks && count <= blocks_to_boundary) {
935 ext4_fsblk_t blk;
937 blk = le32_to_cpu(*(chain[depth-1].p + count));
939 if (blk == first_block + count)
940 count++;
941 else
942 break;
944 goto got_it;
947 /* Next simple case - plain lookup or failed read of indirect block */
948 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 goto cleanup;
952 * Okay, we need to do block allocation.
954 goal = ext4_find_goal(inode, iblock, partial);
956 /* the number of blocks need to allocate for [d,t]indirect blocks */
957 indirect_blks = (chain + depth) - partial - 1;
960 * Next look up the indirect map to count the totoal number of
961 * direct blocks to allocate for this branch.
963 count = ext4_blks_to_allocate(partial, indirect_blks,
964 maxblocks, blocks_to_boundary);
966 * Block out ext4_truncate while we alter the tree
968 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 &count, goal,
970 offsets + (partial - chain), partial);
973 * The ext4_splice_branch call will free and forget any buffers
974 * on the new chain if there is a failure, but that risks using
975 * up transaction credits, especially for bitmaps where the
976 * credits cannot be returned. Can we handle this somehow? We
977 * may need to return -EAGAIN upwards in the worst case. --sct
979 if (!err)
980 err = ext4_splice_branch(handle, inode, iblock,
981 partial, indirect_blks, count);
982 if (err)
983 goto cleanup;
985 set_buffer_new(bh_result);
986 got_it:
987 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
988 if (count > blocks_to_boundary)
989 set_buffer_boundary(bh_result);
990 err = count;
991 /* Clean up and exit */
992 partial = chain + depth - 1; /* the whole chain */
993 cleanup:
994 while (partial > chain) {
995 BUFFER_TRACE(partial->bh, "call brelse");
996 brelse(partial->bh);
997 partial--;
999 BUFFER_TRACE(bh_result, "returned");
1000 out:
1001 return err;
1004 qsize_t ext4_get_reserved_space(struct inode *inode)
1006 unsigned long long total;
1008 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1009 total = EXT4_I(inode)->i_reserved_data_blocks +
1010 EXT4_I(inode)->i_reserved_meta_blocks;
1011 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1013 return total;
1016 * Calculate the number of metadata blocks need to reserve
1017 * to allocate @blocks for non extent file based file
1019 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1021 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1022 int ind_blks, dind_blks, tind_blks;
1024 /* number of new indirect blocks needed */
1025 ind_blks = (blocks + icap - 1) / icap;
1027 dind_blks = (ind_blks + icap - 1) / icap;
1029 tind_blks = 1;
1031 return ind_blks + dind_blks + tind_blks;
1035 * Calculate the number of metadata blocks need to reserve
1036 * to allocate given number of blocks
1038 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1040 if (!blocks)
1041 return 0;
1043 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1044 return ext4_ext_calc_metadata_amount(inode, blocks);
1046 return ext4_indirect_calc_metadata_amount(inode, blocks);
1049 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1051 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1052 int total, mdb, mdb_free;
1054 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1055 /* recalculate the number of metablocks still need to be reserved */
1056 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1057 mdb = ext4_calc_metadata_amount(inode, total);
1059 /* figure out how many metablocks to release */
1060 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1061 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1063 if (mdb_free) {
1064 /* Account for allocated meta_blocks */
1065 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1067 /* update fs dirty blocks counter */
1068 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1069 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1070 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1073 /* update per-inode reservations */
1074 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1075 EXT4_I(inode)->i_reserved_data_blocks -= used;
1076 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1079 * free those over-booking quota for metadata blocks
1081 if (mdb_free)
1082 vfs_dq_release_reservation_block(inode, mdb_free);
1085 * If we have done all the pending block allocations and if
1086 * there aren't any writers on the inode, we can discard the
1087 * inode's preallocations.
1089 if (!total && (atomic_read(&inode->i_writecount) == 0))
1090 ext4_discard_preallocations(inode);
1093 static int check_block_validity(struct inode *inode, const char *msg,
1094 sector_t logical, sector_t phys, int len)
1096 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1097 ext4_error(inode->i_sb, msg,
1098 "inode #%lu logical block %llu mapped to %llu "
1099 "(size %d)", inode->i_ino,
1100 (unsigned long long) logical,
1101 (unsigned long long) phys, len);
1102 return -EIO;
1104 return 0;
1108 * Return the number of contiguous dirty pages in a given inode
1109 * starting at page frame idx.
1111 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1112 unsigned int max_pages)
1114 struct address_space *mapping = inode->i_mapping;
1115 pgoff_t index;
1116 struct pagevec pvec;
1117 pgoff_t num = 0;
1118 int i, nr_pages, done = 0;
1120 if (max_pages == 0)
1121 return 0;
1122 pagevec_init(&pvec, 0);
1123 while (!done) {
1124 index = idx;
1125 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1126 PAGECACHE_TAG_DIRTY,
1127 (pgoff_t)PAGEVEC_SIZE);
1128 if (nr_pages == 0)
1129 break;
1130 for (i = 0; i < nr_pages; i++) {
1131 struct page *page = pvec.pages[i];
1132 struct buffer_head *bh, *head;
1134 lock_page(page);
1135 if (unlikely(page->mapping != mapping) ||
1136 !PageDirty(page) ||
1137 PageWriteback(page) ||
1138 page->index != idx) {
1139 done = 1;
1140 unlock_page(page);
1141 break;
1143 if (page_has_buffers(page)) {
1144 bh = head = page_buffers(page);
1145 do {
1146 if (!buffer_delay(bh) &&
1147 !buffer_unwritten(bh))
1148 done = 1;
1149 bh = bh->b_this_page;
1150 } while (!done && (bh != head));
1152 unlock_page(page);
1153 if (done)
1154 break;
1155 idx++;
1156 num++;
1157 if (num >= max_pages)
1158 break;
1160 pagevec_release(&pvec);
1162 return num;
1166 * The ext4_get_blocks() function tries to look up the requested blocks,
1167 * and returns if the blocks are already mapped.
1169 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1170 * and store the allocated blocks in the result buffer head and mark it
1171 * mapped.
1173 * If file type is extents based, it will call ext4_ext_get_blocks(),
1174 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1175 * based files
1177 * On success, it returns the number of blocks being mapped or allocate.
1178 * if create==0 and the blocks are pre-allocated and uninitialized block,
1179 * the result buffer head is unmapped. If the create ==1, it will make sure
1180 * the buffer head is mapped.
1182 * It returns 0 if plain look up failed (blocks have not been allocated), in
1183 * that casem, buffer head is unmapped
1185 * It returns the error in case of allocation failure.
1187 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1188 unsigned int max_blocks, struct buffer_head *bh,
1189 int flags)
1191 int retval;
1193 clear_buffer_mapped(bh);
1194 clear_buffer_unwritten(bh);
1196 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1197 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1198 (unsigned long)block);
1200 * Try to see if we can get the block without requesting a new
1201 * file system block.
1203 down_read((&EXT4_I(inode)->i_data_sem));
1204 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1205 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1206 bh, 0);
1207 } else {
1208 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1209 bh, 0);
1211 up_read((&EXT4_I(inode)->i_data_sem));
1213 if (retval > 0 && buffer_mapped(bh)) {
1214 int ret = check_block_validity(inode, "file system corruption",
1215 block, bh->b_blocknr, retval);
1216 if (ret != 0)
1217 return ret;
1220 /* If it is only a block(s) look up */
1221 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1222 return retval;
1225 * Returns if the blocks have already allocated
1227 * Note that if blocks have been preallocated
1228 * ext4_ext_get_block() returns th create = 0
1229 * with buffer head unmapped.
1231 if (retval > 0 && buffer_mapped(bh))
1232 return retval;
1235 * When we call get_blocks without the create flag, the
1236 * BH_Unwritten flag could have gotten set if the blocks
1237 * requested were part of a uninitialized extent. We need to
1238 * clear this flag now that we are committed to convert all or
1239 * part of the uninitialized extent to be an initialized
1240 * extent. This is because we need to avoid the combination
1241 * of BH_Unwritten and BH_Mapped flags being simultaneously
1242 * set on the buffer_head.
1244 clear_buffer_unwritten(bh);
1247 * New blocks allocate and/or writing to uninitialized extent
1248 * will possibly result in updating i_data, so we take
1249 * the write lock of i_data_sem, and call get_blocks()
1250 * with create == 1 flag.
1252 down_write((&EXT4_I(inode)->i_data_sem));
1255 * if the caller is from delayed allocation writeout path
1256 * we have already reserved fs blocks for allocation
1257 * let the underlying get_block() function know to
1258 * avoid double accounting
1260 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1261 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1263 * We need to check for EXT4 here because migrate
1264 * could have changed the inode type in between
1266 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1267 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1268 bh, flags);
1269 } else {
1270 retval = ext4_ind_get_blocks(handle, inode, block,
1271 max_blocks, bh, flags);
1273 if (retval > 0 && buffer_new(bh)) {
1275 * We allocated new blocks which will result in
1276 * i_data's format changing. Force the migrate
1277 * to fail by clearing migrate flags
1279 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1283 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1284 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1287 * Update reserved blocks/metadata blocks after successful
1288 * block allocation which had been deferred till now.
1290 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1291 ext4_da_update_reserve_space(inode, retval);
1293 up_write((&EXT4_I(inode)->i_data_sem));
1294 if (retval > 0 && buffer_mapped(bh)) {
1295 int ret = check_block_validity(inode, "file system "
1296 "corruption after allocation",
1297 block, bh->b_blocknr, retval);
1298 if (ret != 0)
1299 return ret;
1301 return retval;
1304 /* Maximum number of blocks we map for direct IO at once. */
1305 #define DIO_MAX_BLOCKS 4096
1307 int ext4_get_block(struct inode *inode, sector_t iblock,
1308 struct buffer_head *bh_result, int create)
1310 handle_t *handle = ext4_journal_current_handle();
1311 int ret = 0, started = 0;
1312 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1313 int dio_credits;
1315 if (create && !handle) {
1316 /* Direct IO write... */
1317 if (max_blocks > DIO_MAX_BLOCKS)
1318 max_blocks = DIO_MAX_BLOCKS;
1319 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1320 handle = ext4_journal_start(inode, dio_credits);
1321 if (IS_ERR(handle)) {
1322 ret = PTR_ERR(handle);
1323 goto out;
1325 started = 1;
1328 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1329 create ? EXT4_GET_BLOCKS_CREATE : 0);
1330 if (ret > 0) {
1331 bh_result->b_size = (ret << inode->i_blkbits);
1332 ret = 0;
1334 if (started)
1335 ext4_journal_stop(handle);
1336 out:
1337 return ret;
1341 * `handle' can be NULL if create is zero
1343 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1344 ext4_lblk_t block, int create, int *errp)
1346 struct buffer_head dummy;
1347 int fatal = 0, err;
1348 int flags = 0;
1350 J_ASSERT(handle != NULL || create == 0);
1352 dummy.b_state = 0;
1353 dummy.b_blocknr = -1000;
1354 buffer_trace_init(&dummy.b_history);
1355 if (create)
1356 flags |= EXT4_GET_BLOCKS_CREATE;
1357 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1359 * ext4_get_blocks() returns number of blocks mapped. 0 in
1360 * case of a HOLE.
1362 if (err > 0) {
1363 if (err > 1)
1364 WARN_ON(1);
1365 err = 0;
1367 *errp = err;
1368 if (!err && buffer_mapped(&dummy)) {
1369 struct buffer_head *bh;
1370 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1371 if (!bh) {
1372 *errp = -EIO;
1373 goto err;
1375 if (buffer_new(&dummy)) {
1376 J_ASSERT(create != 0);
1377 J_ASSERT(handle != NULL);
1380 * Now that we do not always journal data, we should
1381 * keep in mind whether this should always journal the
1382 * new buffer as metadata. For now, regular file
1383 * writes use ext4_get_block instead, so it's not a
1384 * problem.
1386 lock_buffer(bh);
1387 BUFFER_TRACE(bh, "call get_create_access");
1388 fatal = ext4_journal_get_create_access(handle, bh);
1389 if (!fatal && !buffer_uptodate(bh)) {
1390 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1391 set_buffer_uptodate(bh);
1393 unlock_buffer(bh);
1394 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1395 err = ext4_handle_dirty_metadata(handle, inode, bh);
1396 if (!fatal)
1397 fatal = err;
1398 } else {
1399 BUFFER_TRACE(bh, "not a new buffer");
1401 if (fatal) {
1402 *errp = fatal;
1403 brelse(bh);
1404 bh = NULL;
1406 return bh;
1408 err:
1409 return NULL;
1412 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1413 ext4_lblk_t block, int create, int *err)
1415 struct buffer_head *bh;
1417 bh = ext4_getblk(handle, inode, block, create, err);
1418 if (!bh)
1419 return bh;
1420 if (buffer_uptodate(bh))
1421 return bh;
1422 ll_rw_block(READ_META, 1, &bh);
1423 wait_on_buffer(bh);
1424 if (buffer_uptodate(bh))
1425 return bh;
1426 put_bh(bh);
1427 *err = -EIO;
1428 return NULL;
1431 static int walk_page_buffers(handle_t *handle,
1432 struct buffer_head *head,
1433 unsigned from,
1434 unsigned to,
1435 int *partial,
1436 int (*fn)(handle_t *handle,
1437 struct buffer_head *bh))
1439 struct buffer_head *bh;
1440 unsigned block_start, block_end;
1441 unsigned blocksize = head->b_size;
1442 int err, ret = 0;
1443 struct buffer_head *next;
1445 for (bh = head, block_start = 0;
1446 ret == 0 && (bh != head || !block_start);
1447 block_start = block_end, bh = next) {
1448 next = bh->b_this_page;
1449 block_end = block_start + blocksize;
1450 if (block_end <= from || block_start >= to) {
1451 if (partial && !buffer_uptodate(bh))
1452 *partial = 1;
1453 continue;
1455 err = (*fn)(handle, bh);
1456 if (!ret)
1457 ret = err;
1459 return ret;
1463 * To preserve ordering, it is essential that the hole instantiation and
1464 * the data write be encapsulated in a single transaction. We cannot
1465 * close off a transaction and start a new one between the ext4_get_block()
1466 * and the commit_write(). So doing the jbd2_journal_start at the start of
1467 * prepare_write() is the right place.
1469 * Also, this function can nest inside ext4_writepage() ->
1470 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1471 * has generated enough buffer credits to do the whole page. So we won't
1472 * block on the journal in that case, which is good, because the caller may
1473 * be PF_MEMALLOC.
1475 * By accident, ext4 can be reentered when a transaction is open via
1476 * quota file writes. If we were to commit the transaction while thus
1477 * reentered, there can be a deadlock - we would be holding a quota
1478 * lock, and the commit would never complete if another thread had a
1479 * transaction open and was blocking on the quota lock - a ranking
1480 * violation.
1482 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1483 * will _not_ run commit under these circumstances because handle->h_ref
1484 * is elevated. We'll still have enough credits for the tiny quotafile
1485 * write.
1487 static int do_journal_get_write_access(handle_t *handle,
1488 struct buffer_head *bh)
1490 if (!buffer_mapped(bh) || buffer_freed(bh))
1491 return 0;
1492 return ext4_journal_get_write_access(handle, bh);
1495 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1496 loff_t pos, unsigned len, unsigned flags,
1497 struct page **pagep, void **fsdata)
1499 struct inode *inode = mapping->host;
1500 int ret, needed_blocks;
1501 handle_t *handle;
1502 int retries = 0;
1503 struct page *page;
1504 pgoff_t index;
1505 unsigned from, to;
1507 trace_ext4_write_begin(inode, pos, len, flags);
1509 * Reserve one block more for addition to orphan list in case
1510 * we allocate blocks but write fails for some reason
1512 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1513 index = pos >> PAGE_CACHE_SHIFT;
1514 from = pos & (PAGE_CACHE_SIZE - 1);
1515 to = from + len;
1517 retry:
1518 handle = ext4_journal_start(inode, needed_blocks);
1519 if (IS_ERR(handle)) {
1520 ret = PTR_ERR(handle);
1521 goto out;
1524 /* We cannot recurse into the filesystem as the transaction is already
1525 * started */
1526 flags |= AOP_FLAG_NOFS;
1528 page = grab_cache_page_write_begin(mapping, index, flags);
1529 if (!page) {
1530 ext4_journal_stop(handle);
1531 ret = -ENOMEM;
1532 goto out;
1534 *pagep = page;
1536 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1537 ext4_get_block);
1539 if (!ret && ext4_should_journal_data(inode)) {
1540 ret = walk_page_buffers(handle, page_buffers(page),
1541 from, to, NULL, do_journal_get_write_access);
1544 if (ret) {
1545 unlock_page(page);
1546 page_cache_release(page);
1548 * block_write_begin may have instantiated a few blocks
1549 * outside i_size. Trim these off again. Don't need
1550 * i_size_read because we hold i_mutex.
1552 * Add inode to orphan list in case we crash before
1553 * truncate finishes
1555 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1556 ext4_orphan_add(handle, inode);
1558 ext4_journal_stop(handle);
1559 if (pos + len > inode->i_size) {
1560 ext4_truncate(inode);
1562 * If truncate failed early the inode might
1563 * still be on the orphan list; we need to
1564 * make sure the inode is removed from the
1565 * orphan list in that case.
1567 if (inode->i_nlink)
1568 ext4_orphan_del(NULL, inode);
1572 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1573 goto retry;
1574 out:
1575 return ret;
1578 /* For write_end() in data=journal mode */
1579 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1581 if (!buffer_mapped(bh) || buffer_freed(bh))
1582 return 0;
1583 set_buffer_uptodate(bh);
1584 return ext4_handle_dirty_metadata(handle, NULL, bh);
1587 static int ext4_generic_write_end(struct file *file,
1588 struct address_space *mapping,
1589 loff_t pos, unsigned len, unsigned copied,
1590 struct page *page, void *fsdata)
1592 int i_size_changed = 0;
1593 struct inode *inode = mapping->host;
1594 handle_t *handle = ext4_journal_current_handle();
1596 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1599 * No need to use i_size_read() here, the i_size
1600 * cannot change under us because we hold i_mutex.
1602 * But it's important to update i_size while still holding page lock:
1603 * page writeout could otherwise come in and zero beyond i_size.
1605 if (pos + copied > inode->i_size) {
1606 i_size_write(inode, pos + copied);
1607 i_size_changed = 1;
1610 if (pos + copied > EXT4_I(inode)->i_disksize) {
1611 /* We need to mark inode dirty even if
1612 * new_i_size is less that inode->i_size
1613 * bu greater than i_disksize.(hint delalloc)
1615 ext4_update_i_disksize(inode, (pos + copied));
1616 i_size_changed = 1;
1618 unlock_page(page);
1619 page_cache_release(page);
1622 * Don't mark the inode dirty under page lock. First, it unnecessarily
1623 * makes the holding time of page lock longer. Second, it forces lock
1624 * ordering of page lock and transaction start for journaling
1625 * filesystems.
1627 if (i_size_changed)
1628 ext4_mark_inode_dirty(handle, inode);
1630 return copied;
1634 * We need to pick up the new inode size which generic_commit_write gave us
1635 * `file' can be NULL - eg, when called from page_symlink().
1637 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1638 * buffers are managed internally.
1640 static int ext4_ordered_write_end(struct file *file,
1641 struct address_space *mapping,
1642 loff_t pos, unsigned len, unsigned copied,
1643 struct page *page, void *fsdata)
1645 handle_t *handle = ext4_journal_current_handle();
1646 struct inode *inode = mapping->host;
1647 int ret = 0, ret2;
1649 trace_ext4_ordered_write_end(inode, pos, len, copied);
1650 ret = ext4_jbd2_file_inode(handle, inode);
1652 if (ret == 0) {
1653 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1654 page, fsdata);
1655 copied = ret2;
1656 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1657 /* if we have allocated more blocks and copied
1658 * less. We will have blocks allocated outside
1659 * inode->i_size. So truncate them
1661 ext4_orphan_add(handle, inode);
1662 if (ret2 < 0)
1663 ret = ret2;
1665 ret2 = ext4_journal_stop(handle);
1666 if (!ret)
1667 ret = ret2;
1669 if (pos + len > inode->i_size) {
1670 ext4_truncate(inode);
1672 * If truncate failed early the inode might still be
1673 * on the orphan list; we need to make sure the inode
1674 * is removed from the orphan list in that case.
1676 if (inode->i_nlink)
1677 ext4_orphan_del(NULL, inode);
1681 return ret ? ret : copied;
1684 static int ext4_writeback_write_end(struct file *file,
1685 struct address_space *mapping,
1686 loff_t pos, unsigned len, unsigned copied,
1687 struct page *page, void *fsdata)
1689 handle_t *handle = ext4_journal_current_handle();
1690 struct inode *inode = mapping->host;
1691 int ret = 0, ret2;
1693 trace_ext4_writeback_write_end(inode, pos, len, copied);
1694 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1695 page, fsdata);
1696 copied = ret2;
1697 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1698 /* if we have allocated more blocks and copied
1699 * less. We will have blocks allocated outside
1700 * inode->i_size. So truncate them
1702 ext4_orphan_add(handle, inode);
1704 if (ret2 < 0)
1705 ret = ret2;
1707 ret2 = ext4_journal_stop(handle);
1708 if (!ret)
1709 ret = ret2;
1711 if (pos + len > inode->i_size) {
1712 ext4_truncate(inode);
1714 * If truncate failed early the inode might still be
1715 * on the orphan list; we need to make sure the inode
1716 * is removed from the orphan list in that case.
1718 if (inode->i_nlink)
1719 ext4_orphan_del(NULL, inode);
1722 return ret ? ret : copied;
1725 static int ext4_journalled_write_end(struct file *file,
1726 struct address_space *mapping,
1727 loff_t pos, unsigned len, unsigned copied,
1728 struct page *page, void *fsdata)
1730 handle_t *handle = ext4_journal_current_handle();
1731 struct inode *inode = mapping->host;
1732 int ret = 0, ret2;
1733 int partial = 0;
1734 unsigned from, to;
1735 loff_t new_i_size;
1737 trace_ext4_journalled_write_end(inode, pos, len, copied);
1738 from = pos & (PAGE_CACHE_SIZE - 1);
1739 to = from + len;
1741 if (copied < len) {
1742 if (!PageUptodate(page))
1743 copied = 0;
1744 page_zero_new_buffers(page, from+copied, to);
1747 ret = walk_page_buffers(handle, page_buffers(page), from,
1748 to, &partial, write_end_fn);
1749 if (!partial)
1750 SetPageUptodate(page);
1751 new_i_size = pos + copied;
1752 if (new_i_size > inode->i_size)
1753 i_size_write(inode, pos+copied);
1754 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1755 if (new_i_size > EXT4_I(inode)->i_disksize) {
1756 ext4_update_i_disksize(inode, new_i_size);
1757 ret2 = ext4_mark_inode_dirty(handle, inode);
1758 if (!ret)
1759 ret = ret2;
1762 unlock_page(page);
1763 page_cache_release(page);
1764 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 /* if we have allocated more blocks and copied
1766 * less. We will have blocks allocated outside
1767 * inode->i_size. So truncate them
1769 ext4_orphan_add(handle, inode);
1771 ret2 = ext4_journal_stop(handle);
1772 if (!ret)
1773 ret = ret2;
1774 if (pos + len > inode->i_size) {
1775 ext4_truncate(inode);
1777 * If truncate failed early the inode might still be
1778 * on the orphan list; we need to make sure the inode
1779 * is removed from the orphan list in that case.
1781 if (inode->i_nlink)
1782 ext4_orphan_del(NULL, inode);
1785 return ret ? ret : copied;
1788 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1790 int retries = 0;
1791 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1792 unsigned long md_needed, mdblocks, total = 0;
1795 * recalculate the amount of metadata blocks to reserve
1796 * in order to allocate nrblocks
1797 * worse case is one extent per block
1799 repeat:
1800 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1801 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1802 mdblocks = ext4_calc_metadata_amount(inode, total);
1803 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1805 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1806 total = md_needed + nrblocks;
1809 * Make quota reservation here to prevent quota overflow
1810 * later. Real quota accounting is done at pages writeout
1811 * time.
1813 if (vfs_dq_reserve_block(inode, total)) {
1814 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1815 return -EDQUOT;
1818 if (ext4_claim_free_blocks(sbi, total)) {
1819 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1820 vfs_dq_release_reservation_block(inode, total);
1821 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1822 yield();
1823 goto repeat;
1825 return -ENOSPC;
1827 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1828 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1830 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1831 return 0; /* success */
1834 static void ext4_da_release_space(struct inode *inode, int to_free)
1836 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1837 int total, mdb, mdb_free, release;
1839 if (!to_free)
1840 return; /* Nothing to release, exit */
1842 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1844 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1846 * if there is no reserved blocks, but we try to free some
1847 * then the counter is messed up somewhere.
1848 * but since this function is called from invalidate
1849 * page, it's harmless to return without any action
1851 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1852 "blocks for inode %lu, but there is no reserved "
1853 "data blocks\n", to_free, inode->i_ino);
1854 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1855 return;
1858 /* recalculate the number of metablocks still need to be reserved */
1859 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1860 mdb = ext4_calc_metadata_amount(inode, total);
1862 /* figure out how many metablocks to release */
1863 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1864 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1866 release = to_free + mdb_free;
1868 /* update fs dirty blocks counter for truncate case */
1869 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1871 /* update per-inode reservations */
1872 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1873 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1875 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1876 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1877 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1879 vfs_dq_release_reservation_block(inode, release);
1882 static void ext4_da_page_release_reservation(struct page *page,
1883 unsigned long offset)
1885 int to_release = 0;
1886 struct buffer_head *head, *bh;
1887 unsigned int curr_off = 0;
1889 head = page_buffers(page);
1890 bh = head;
1891 do {
1892 unsigned int next_off = curr_off + bh->b_size;
1894 if ((offset <= curr_off) && (buffer_delay(bh))) {
1895 to_release++;
1896 clear_buffer_delay(bh);
1898 curr_off = next_off;
1899 } while ((bh = bh->b_this_page) != head);
1900 ext4_da_release_space(page->mapping->host, to_release);
1904 * Delayed allocation stuff
1908 * mpage_da_submit_io - walks through extent of pages and try to write
1909 * them with writepage() call back
1911 * @mpd->inode: inode
1912 * @mpd->first_page: first page of the extent
1913 * @mpd->next_page: page after the last page of the extent
1915 * By the time mpage_da_submit_io() is called we expect all blocks
1916 * to be allocated. this may be wrong if allocation failed.
1918 * As pages are already locked by write_cache_pages(), we can't use it
1920 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1922 long pages_skipped;
1923 struct pagevec pvec;
1924 unsigned long index, end;
1925 int ret = 0, err, nr_pages, i;
1926 struct inode *inode = mpd->inode;
1927 struct address_space *mapping = inode->i_mapping;
1929 BUG_ON(mpd->next_page <= mpd->first_page);
1931 * We need to start from the first_page to the next_page - 1
1932 * to make sure we also write the mapped dirty buffer_heads.
1933 * If we look at mpd->b_blocknr we would only be looking
1934 * at the currently mapped buffer_heads.
1936 index = mpd->first_page;
1937 end = mpd->next_page - 1;
1939 pagevec_init(&pvec, 0);
1940 while (index <= end) {
1941 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1942 if (nr_pages == 0)
1943 break;
1944 for (i = 0; i < nr_pages; i++) {
1945 struct page *page = pvec.pages[i];
1947 index = page->index;
1948 if (index > end)
1949 break;
1950 index++;
1952 BUG_ON(!PageLocked(page));
1953 BUG_ON(PageWriteback(page));
1955 pages_skipped = mpd->wbc->pages_skipped;
1956 err = mapping->a_ops->writepage(page, mpd->wbc);
1957 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1959 * have successfully written the page
1960 * without skipping the same
1962 mpd->pages_written++;
1964 * In error case, we have to continue because
1965 * remaining pages are still locked
1966 * XXX: unlock and re-dirty them?
1968 if (ret == 0)
1969 ret = err;
1971 pagevec_release(&pvec);
1973 return ret;
1977 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1979 * @mpd->inode - inode to walk through
1980 * @exbh->b_blocknr - first block on a disk
1981 * @exbh->b_size - amount of space in bytes
1982 * @logical - first logical block to start assignment with
1984 * the function goes through all passed space and put actual disk
1985 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1987 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1988 struct buffer_head *exbh)
1990 struct inode *inode = mpd->inode;
1991 struct address_space *mapping = inode->i_mapping;
1992 int blocks = exbh->b_size >> inode->i_blkbits;
1993 sector_t pblock = exbh->b_blocknr, cur_logical;
1994 struct buffer_head *head, *bh;
1995 pgoff_t index, end;
1996 struct pagevec pvec;
1997 int nr_pages, i;
1999 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2000 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2001 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2003 pagevec_init(&pvec, 0);
2005 while (index <= end) {
2006 /* XXX: optimize tail */
2007 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2008 if (nr_pages == 0)
2009 break;
2010 for (i = 0; i < nr_pages; i++) {
2011 struct page *page = pvec.pages[i];
2013 index = page->index;
2014 if (index > end)
2015 break;
2016 index++;
2018 BUG_ON(!PageLocked(page));
2019 BUG_ON(PageWriteback(page));
2020 BUG_ON(!page_has_buffers(page));
2022 bh = page_buffers(page);
2023 head = bh;
2025 /* skip blocks out of the range */
2026 do {
2027 if (cur_logical >= logical)
2028 break;
2029 cur_logical++;
2030 } while ((bh = bh->b_this_page) != head);
2032 do {
2033 if (cur_logical >= logical + blocks)
2034 break;
2036 if (buffer_delay(bh) ||
2037 buffer_unwritten(bh)) {
2039 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2041 if (buffer_delay(bh)) {
2042 clear_buffer_delay(bh);
2043 bh->b_blocknr = pblock;
2044 } else {
2046 * unwritten already should have
2047 * blocknr assigned. Verify that
2049 clear_buffer_unwritten(bh);
2050 BUG_ON(bh->b_blocknr != pblock);
2053 } else if (buffer_mapped(bh))
2054 BUG_ON(bh->b_blocknr != pblock);
2056 cur_logical++;
2057 pblock++;
2058 } while ((bh = bh->b_this_page) != head);
2060 pagevec_release(&pvec);
2066 * __unmap_underlying_blocks - just a helper function to unmap
2067 * set of blocks described by @bh
2069 static inline void __unmap_underlying_blocks(struct inode *inode,
2070 struct buffer_head *bh)
2072 struct block_device *bdev = inode->i_sb->s_bdev;
2073 int blocks, i;
2075 blocks = bh->b_size >> inode->i_blkbits;
2076 for (i = 0; i < blocks; i++)
2077 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2080 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2081 sector_t logical, long blk_cnt)
2083 int nr_pages, i;
2084 pgoff_t index, end;
2085 struct pagevec pvec;
2086 struct inode *inode = mpd->inode;
2087 struct address_space *mapping = inode->i_mapping;
2089 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2090 end = (logical + blk_cnt - 1) >>
2091 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2092 while (index <= end) {
2093 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2094 if (nr_pages == 0)
2095 break;
2096 for (i = 0; i < nr_pages; i++) {
2097 struct page *page = pvec.pages[i];
2098 index = page->index;
2099 if (index > end)
2100 break;
2101 index++;
2103 BUG_ON(!PageLocked(page));
2104 BUG_ON(PageWriteback(page));
2105 block_invalidatepage(page, 0);
2106 ClearPageUptodate(page);
2107 unlock_page(page);
2110 return;
2113 static void ext4_print_free_blocks(struct inode *inode)
2115 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2116 printk(KERN_CRIT "Total free blocks count %lld\n",
2117 ext4_count_free_blocks(inode->i_sb));
2118 printk(KERN_CRIT "Free/Dirty block details\n");
2119 printk(KERN_CRIT "free_blocks=%lld\n",
2120 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2121 printk(KERN_CRIT "dirty_blocks=%lld\n",
2122 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2123 printk(KERN_CRIT "Block reservation details\n");
2124 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2125 EXT4_I(inode)->i_reserved_data_blocks);
2126 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2127 EXT4_I(inode)->i_reserved_meta_blocks);
2128 return;
2132 * mpage_da_map_blocks - go through given space
2134 * @mpd - bh describing space
2136 * The function skips space we know is already mapped to disk blocks.
2139 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2141 int err, blks, get_blocks_flags;
2142 struct buffer_head new;
2143 sector_t next = mpd->b_blocknr;
2144 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2145 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2146 handle_t *handle = NULL;
2149 * We consider only non-mapped and non-allocated blocks
2151 if ((mpd->b_state & (1 << BH_Mapped)) &&
2152 !(mpd->b_state & (1 << BH_Delay)) &&
2153 !(mpd->b_state & (1 << BH_Unwritten)))
2154 return 0;
2157 * If we didn't accumulate anything to write simply return
2159 if (!mpd->b_size)
2160 return 0;
2162 handle = ext4_journal_current_handle();
2163 BUG_ON(!handle);
2166 * Call ext4_get_blocks() to allocate any delayed allocation
2167 * blocks, or to convert an uninitialized extent to be
2168 * initialized (in the case where we have written into
2169 * one or more preallocated blocks).
2171 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2172 * indicate that we are on the delayed allocation path. This
2173 * affects functions in many different parts of the allocation
2174 * call path. This flag exists primarily because we don't
2175 * want to change *many* call functions, so ext4_get_blocks()
2176 * will set the magic i_delalloc_reserved_flag once the
2177 * inode's allocation semaphore is taken.
2179 * If the blocks in questions were delalloc blocks, set
2180 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2181 * variables are updated after the blocks have been allocated.
2183 new.b_state = 0;
2184 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2185 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2186 if (mpd->b_state & (1 << BH_Delay))
2187 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2188 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2189 &new, get_blocks_flags);
2190 if (blks < 0) {
2191 err = blks;
2193 * If get block returns with error we simply
2194 * return. Later writepage will redirty the page and
2195 * writepages will find the dirty page again
2197 if (err == -EAGAIN)
2198 return 0;
2200 if (err == -ENOSPC &&
2201 ext4_count_free_blocks(mpd->inode->i_sb)) {
2202 mpd->retval = err;
2203 return 0;
2207 * get block failure will cause us to loop in
2208 * writepages, because a_ops->writepage won't be able
2209 * to make progress. The page will be redirtied by
2210 * writepage and writepages will again try to write
2211 * the same.
2213 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2214 "delayed block allocation failed for inode %lu at "
2215 "logical offset %llu with max blocks %zd with "
2216 "error %d\n", mpd->inode->i_ino,
2217 (unsigned long long) next,
2218 mpd->b_size >> mpd->inode->i_blkbits, err);
2219 printk(KERN_CRIT "This should not happen!! "
2220 "Data will be lost\n");
2221 if (err == -ENOSPC) {
2222 ext4_print_free_blocks(mpd->inode);
2224 /* invalidate all the pages */
2225 ext4_da_block_invalidatepages(mpd, next,
2226 mpd->b_size >> mpd->inode->i_blkbits);
2227 return err;
2229 BUG_ON(blks == 0);
2231 new.b_size = (blks << mpd->inode->i_blkbits);
2233 if (buffer_new(&new))
2234 __unmap_underlying_blocks(mpd->inode, &new);
2237 * If blocks are delayed marked, we need to
2238 * put actual blocknr and drop delayed bit
2240 if ((mpd->b_state & (1 << BH_Delay)) ||
2241 (mpd->b_state & (1 << BH_Unwritten)))
2242 mpage_put_bnr_to_bhs(mpd, next, &new);
2244 if (ext4_should_order_data(mpd->inode)) {
2245 err = ext4_jbd2_file_inode(handle, mpd->inode);
2246 if (err)
2247 return err;
2251 * Update on-disk size along with block allocation.
2253 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2254 if (disksize > i_size_read(mpd->inode))
2255 disksize = i_size_read(mpd->inode);
2256 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2257 ext4_update_i_disksize(mpd->inode, disksize);
2258 return ext4_mark_inode_dirty(handle, mpd->inode);
2261 return 0;
2264 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2265 (1 << BH_Delay) | (1 << BH_Unwritten))
2268 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2270 * @mpd->lbh - extent of blocks
2271 * @logical - logical number of the block in the file
2272 * @bh - bh of the block (used to access block's state)
2274 * the function is used to collect contig. blocks in same state
2276 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2277 sector_t logical, size_t b_size,
2278 unsigned long b_state)
2280 sector_t next;
2281 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2283 /* check if thereserved journal credits might overflow */
2284 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2285 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2287 * With non-extent format we are limited by the journal
2288 * credit available. Total credit needed to insert
2289 * nrblocks contiguous blocks is dependent on the
2290 * nrblocks. So limit nrblocks.
2292 goto flush_it;
2293 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2294 EXT4_MAX_TRANS_DATA) {
2296 * Adding the new buffer_head would make it cross the
2297 * allowed limit for which we have journal credit
2298 * reserved. So limit the new bh->b_size
2300 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2301 mpd->inode->i_blkbits;
2302 /* we will do mpage_da_submit_io in the next loop */
2306 * First block in the extent
2308 if (mpd->b_size == 0) {
2309 mpd->b_blocknr = logical;
2310 mpd->b_size = b_size;
2311 mpd->b_state = b_state & BH_FLAGS;
2312 return;
2315 next = mpd->b_blocknr + nrblocks;
2317 * Can we merge the block to our big extent?
2319 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2320 mpd->b_size += b_size;
2321 return;
2324 flush_it:
2326 * We couldn't merge the block to our extent, so we
2327 * need to flush current extent and start new one
2329 if (mpage_da_map_blocks(mpd) == 0)
2330 mpage_da_submit_io(mpd);
2331 mpd->io_done = 1;
2332 return;
2335 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2337 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2341 * __mpage_da_writepage - finds extent of pages and blocks
2343 * @page: page to consider
2344 * @wbc: not used, we just follow rules
2345 * @data: context
2347 * The function finds extents of pages and scan them for all blocks.
2349 static int __mpage_da_writepage(struct page *page,
2350 struct writeback_control *wbc, void *data)
2352 struct mpage_da_data *mpd = data;
2353 struct inode *inode = mpd->inode;
2354 struct buffer_head *bh, *head;
2355 sector_t logical;
2357 if (mpd->io_done) {
2359 * Rest of the page in the page_vec
2360 * redirty then and skip then. We will
2361 * try to write them again after
2362 * starting a new transaction
2364 redirty_page_for_writepage(wbc, page);
2365 unlock_page(page);
2366 return MPAGE_DA_EXTENT_TAIL;
2369 * Can we merge this page to current extent?
2371 if (mpd->next_page != page->index) {
2373 * Nope, we can't. So, we map non-allocated blocks
2374 * and start IO on them using writepage()
2376 if (mpd->next_page != mpd->first_page) {
2377 if (mpage_da_map_blocks(mpd) == 0)
2378 mpage_da_submit_io(mpd);
2380 * skip rest of the page in the page_vec
2382 mpd->io_done = 1;
2383 redirty_page_for_writepage(wbc, page);
2384 unlock_page(page);
2385 return MPAGE_DA_EXTENT_TAIL;
2389 * Start next extent of pages ...
2391 mpd->first_page = page->index;
2394 * ... and blocks
2396 mpd->b_size = 0;
2397 mpd->b_state = 0;
2398 mpd->b_blocknr = 0;
2401 mpd->next_page = page->index + 1;
2402 logical = (sector_t) page->index <<
2403 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2405 if (!page_has_buffers(page)) {
2406 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2407 (1 << BH_Dirty) | (1 << BH_Uptodate));
2408 if (mpd->io_done)
2409 return MPAGE_DA_EXTENT_TAIL;
2410 } else {
2412 * Page with regular buffer heads, just add all dirty ones
2414 head = page_buffers(page);
2415 bh = head;
2416 do {
2417 BUG_ON(buffer_locked(bh));
2419 * We need to try to allocate
2420 * unmapped blocks in the same page.
2421 * Otherwise we won't make progress
2422 * with the page in ext4_writepage
2424 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2425 mpage_add_bh_to_extent(mpd, logical,
2426 bh->b_size,
2427 bh->b_state);
2428 if (mpd->io_done)
2429 return MPAGE_DA_EXTENT_TAIL;
2430 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2432 * mapped dirty buffer. We need to update
2433 * the b_state because we look at
2434 * b_state in mpage_da_map_blocks. We don't
2435 * update b_size because if we find an
2436 * unmapped buffer_head later we need to
2437 * use the b_state flag of that buffer_head.
2439 if (mpd->b_size == 0)
2440 mpd->b_state = bh->b_state & BH_FLAGS;
2442 logical++;
2443 } while ((bh = bh->b_this_page) != head);
2446 return 0;
2450 * This is a special get_blocks_t callback which is used by
2451 * ext4_da_write_begin(). It will either return mapped block or
2452 * reserve space for a single block.
2454 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2455 * We also have b_blocknr = -1 and b_bdev initialized properly
2457 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2458 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2459 * initialized properly.
2461 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2462 struct buffer_head *bh_result, int create)
2464 int ret = 0;
2465 sector_t invalid_block = ~((sector_t) 0xffff);
2467 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2468 invalid_block = ~0;
2470 BUG_ON(create == 0);
2471 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2474 * first, we need to know whether the block is allocated already
2475 * preallocated blocks are unmapped but should treated
2476 * the same as allocated blocks.
2478 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2479 if ((ret == 0) && !buffer_delay(bh_result)) {
2480 /* the block isn't (pre)allocated yet, let's reserve space */
2482 * XXX: __block_prepare_write() unmaps passed block,
2483 * is it OK?
2485 ret = ext4_da_reserve_space(inode, 1);
2486 if (ret)
2487 /* not enough space to reserve */
2488 return ret;
2490 map_bh(bh_result, inode->i_sb, invalid_block);
2491 set_buffer_new(bh_result);
2492 set_buffer_delay(bh_result);
2493 } else if (ret > 0) {
2494 bh_result->b_size = (ret << inode->i_blkbits);
2495 if (buffer_unwritten(bh_result)) {
2496 /* A delayed write to unwritten bh should
2497 * be marked new and mapped. Mapped ensures
2498 * that we don't do get_block multiple times
2499 * when we write to the same offset and new
2500 * ensures that we do proper zero out for
2501 * partial write.
2503 set_buffer_new(bh_result);
2504 set_buffer_mapped(bh_result);
2506 ret = 0;
2509 return ret;
2513 * This function is used as a standard get_block_t calback function
2514 * when there is no desire to allocate any blocks. It is used as a
2515 * callback function for block_prepare_write(), nobh_writepage(), and
2516 * block_write_full_page(). These functions should only try to map a
2517 * single block at a time.
2519 * Since this function doesn't do block allocations even if the caller
2520 * requests it by passing in create=1, it is critically important that
2521 * any caller checks to make sure that any buffer heads are returned
2522 * by this function are either all already mapped or marked for
2523 * delayed allocation before calling nobh_writepage() or
2524 * block_write_full_page(). Otherwise, b_blocknr could be left
2525 * unitialized, and the page write functions will be taken by
2526 * surprise.
2528 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2529 struct buffer_head *bh_result, int create)
2531 int ret = 0;
2532 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2534 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2537 * we don't want to do block allocation in writepage
2538 * so call get_block_wrap with create = 0
2540 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2541 if (ret > 0) {
2542 bh_result->b_size = (ret << inode->i_blkbits);
2543 ret = 0;
2545 return ret;
2548 static int bget_one(handle_t *handle, struct buffer_head *bh)
2550 get_bh(bh);
2551 return 0;
2554 static int bput_one(handle_t *handle, struct buffer_head *bh)
2556 put_bh(bh);
2557 return 0;
2560 static int __ext4_journalled_writepage(struct page *page,
2561 struct writeback_control *wbc,
2562 unsigned int len)
2564 struct address_space *mapping = page->mapping;
2565 struct inode *inode = mapping->host;
2566 struct buffer_head *page_bufs;
2567 handle_t *handle = NULL;
2568 int ret = 0;
2569 int err;
2571 page_bufs = page_buffers(page);
2572 BUG_ON(!page_bufs);
2573 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2574 /* As soon as we unlock the page, it can go away, but we have
2575 * references to buffers so we are safe */
2576 unlock_page(page);
2578 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2579 if (IS_ERR(handle)) {
2580 ret = PTR_ERR(handle);
2581 goto out;
2584 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2585 do_journal_get_write_access);
2587 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2588 write_end_fn);
2589 if (ret == 0)
2590 ret = err;
2591 err = ext4_journal_stop(handle);
2592 if (!ret)
2593 ret = err;
2595 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2596 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2597 out:
2598 return ret;
2602 * Note that we don't need to start a transaction unless we're journaling data
2603 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2604 * need to file the inode to the transaction's list in ordered mode because if
2605 * we are writing back data added by write(), the inode is already there and if
2606 * we are writing back data modified via mmap(), noone guarantees in which
2607 * transaction the data will hit the disk. In case we are journaling data, we
2608 * cannot start transaction directly because transaction start ranks above page
2609 * lock so we have to do some magic.
2611 * This function can get called via...
2612 * - ext4_da_writepages after taking page lock (have journal handle)
2613 * - journal_submit_inode_data_buffers (no journal handle)
2614 * - shrink_page_list via pdflush (no journal handle)
2615 * - grab_page_cache when doing write_begin (have journal handle)
2617 * We don't do any block allocation in this function. If we have page with
2618 * multiple blocks we need to write those buffer_heads that are mapped. This
2619 * is important for mmaped based write. So if we do with blocksize 1K
2620 * truncate(f, 1024);
2621 * a = mmap(f, 0, 4096);
2622 * a[0] = 'a';
2623 * truncate(f, 4096);
2624 * we have in the page first buffer_head mapped via page_mkwrite call back
2625 * but other bufer_heads would be unmapped but dirty(dirty done via the
2626 * do_wp_page). So writepage should write the first block. If we modify
2627 * the mmap area beyond 1024 we will again get a page_fault and the
2628 * page_mkwrite callback will do the block allocation and mark the
2629 * buffer_heads mapped.
2631 * We redirty the page if we have any buffer_heads that is either delay or
2632 * unwritten in the page.
2634 * We can get recursively called as show below.
2636 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2637 * ext4_writepage()
2639 * But since we don't do any block allocation we should not deadlock.
2640 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2642 static int ext4_writepage(struct page *page,
2643 struct writeback_control *wbc)
2645 int ret = 0;
2646 loff_t size;
2647 unsigned int len;
2648 struct buffer_head *page_bufs;
2649 struct inode *inode = page->mapping->host;
2651 trace_ext4_writepage(inode, page);
2652 size = i_size_read(inode);
2653 if (page->index == size >> PAGE_CACHE_SHIFT)
2654 len = size & ~PAGE_CACHE_MASK;
2655 else
2656 len = PAGE_CACHE_SIZE;
2658 if (page_has_buffers(page)) {
2659 page_bufs = page_buffers(page);
2660 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2661 ext4_bh_delay_or_unwritten)) {
2663 * We don't want to do block allocation
2664 * So redirty the page and return
2665 * We may reach here when we do a journal commit
2666 * via journal_submit_inode_data_buffers.
2667 * If we don't have mapping block we just ignore
2668 * them. We can also reach here via shrink_page_list
2670 redirty_page_for_writepage(wbc, page);
2671 unlock_page(page);
2672 return 0;
2674 } else {
2676 * The test for page_has_buffers() is subtle:
2677 * We know the page is dirty but it lost buffers. That means
2678 * that at some moment in time after write_begin()/write_end()
2679 * has been called all buffers have been clean and thus they
2680 * must have been written at least once. So they are all
2681 * mapped and we can happily proceed with mapping them
2682 * and writing the page.
2684 * Try to initialize the buffer_heads and check whether
2685 * all are mapped and non delay. We don't want to
2686 * do block allocation here.
2688 ret = block_prepare_write(page, 0, len,
2689 noalloc_get_block_write);
2690 if (!ret) {
2691 page_bufs = page_buffers(page);
2692 /* check whether all are mapped and non delay */
2693 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2694 ext4_bh_delay_or_unwritten)) {
2695 redirty_page_for_writepage(wbc, page);
2696 unlock_page(page);
2697 return 0;
2699 } else {
2701 * We can't do block allocation here
2702 * so just redity the page and unlock
2703 * and return
2705 redirty_page_for_writepage(wbc, page);
2706 unlock_page(page);
2707 return 0;
2709 /* now mark the buffer_heads as dirty and uptodate */
2710 block_commit_write(page, 0, len);
2713 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2715 * It's mmapped pagecache. Add buffers and journal it. There
2716 * doesn't seem much point in redirtying the page here.
2718 ClearPageChecked(page);
2719 return __ext4_journalled_writepage(page, wbc, len);
2722 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2723 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2724 else
2725 ret = block_write_full_page(page, noalloc_get_block_write,
2726 wbc);
2728 return ret;
2732 * This is called via ext4_da_writepages() to
2733 * calulate the total number of credits to reserve to fit
2734 * a single extent allocation into a single transaction,
2735 * ext4_da_writpeages() will loop calling this before
2736 * the block allocation.
2739 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2741 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2744 * With non-extent format the journal credit needed to
2745 * insert nrblocks contiguous block is dependent on
2746 * number of contiguous block. So we will limit
2747 * number of contiguous block to a sane value
2749 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2750 (max_blocks > EXT4_MAX_TRANS_DATA))
2751 max_blocks = EXT4_MAX_TRANS_DATA;
2753 return ext4_chunk_trans_blocks(inode, max_blocks);
2756 static int ext4_da_writepages(struct address_space *mapping,
2757 struct writeback_control *wbc)
2759 pgoff_t index;
2760 int range_whole = 0;
2761 handle_t *handle = NULL;
2762 struct mpage_da_data mpd;
2763 struct inode *inode = mapping->host;
2764 int no_nrwrite_index_update;
2765 int pages_written = 0;
2766 long pages_skipped;
2767 unsigned int max_pages;
2768 int range_cyclic, cycled = 1, io_done = 0;
2769 int needed_blocks, ret = 0;
2770 long desired_nr_to_write, nr_to_writebump = 0;
2771 loff_t range_start = wbc->range_start;
2772 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2774 trace_ext4_da_writepages(inode, wbc);
2777 * No pages to write? This is mainly a kludge to avoid starting
2778 * a transaction for special inodes like journal inode on last iput()
2779 * because that could violate lock ordering on umount
2781 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2782 return 0;
2785 * If the filesystem has aborted, it is read-only, so return
2786 * right away instead of dumping stack traces later on that
2787 * will obscure the real source of the problem. We test
2788 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2789 * the latter could be true if the filesystem is mounted
2790 * read-only, and in that case, ext4_da_writepages should
2791 * *never* be called, so if that ever happens, we would want
2792 * the stack trace.
2794 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2795 return -EROFS;
2797 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2798 range_whole = 1;
2800 range_cyclic = wbc->range_cyclic;
2801 if (wbc->range_cyclic) {
2802 index = mapping->writeback_index;
2803 if (index)
2804 cycled = 0;
2805 wbc->range_start = index << PAGE_CACHE_SHIFT;
2806 wbc->range_end = LLONG_MAX;
2807 wbc->range_cyclic = 0;
2808 } else
2809 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2812 * This works around two forms of stupidity. The first is in
2813 * the writeback code, which caps the maximum number of pages
2814 * written to be 1024 pages. This is wrong on multiple
2815 * levels; different architectues have a different page size,
2816 * which changes the maximum amount of data which gets
2817 * written. Secondly, 4 megabytes is way too small. XFS
2818 * forces this value to be 16 megabytes by multiplying
2819 * nr_to_write parameter by four, and then relies on its
2820 * allocator to allocate larger extents to make them
2821 * contiguous. Unfortunately this brings us to the second
2822 * stupidity, which is that ext4's mballoc code only allocates
2823 * at most 2048 blocks. So we force contiguous writes up to
2824 * the number of dirty blocks in the inode, or
2825 * sbi->max_writeback_mb_bump whichever is smaller.
2827 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2828 if (!range_cyclic && range_whole)
2829 desired_nr_to_write = wbc->nr_to_write * 8;
2830 else
2831 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2832 max_pages);
2833 if (desired_nr_to_write > max_pages)
2834 desired_nr_to_write = max_pages;
2836 if (wbc->nr_to_write < desired_nr_to_write) {
2837 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2838 wbc->nr_to_write = desired_nr_to_write;
2841 mpd.wbc = wbc;
2842 mpd.inode = mapping->host;
2845 * we don't want write_cache_pages to update
2846 * nr_to_write and writeback_index
2848 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2849 wbc->no_nrwrite_index_update = 1;
2850 pages_skipped = wbc->pages_skipped;
2852 retry:
2853 while (!ret && wbc->nr_to_write > 0) {
2856 * we insert one extent at a time. So we need
2857 * credit needed for single extent allocation.
2858 * journalled mode is currently not supported
2859 * by delalloc
2861 BUG_ON(ext4_should_journal_data(inode));
2862 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2864 /* start a new transaction*/
2865 handle = ext4_journal_start(inode, needed_blocks);
2866 if (IS_ERR(handle)) {
2867 ret = PTR_ERR(handle);
2868 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2869 "%ld pages, ino %lu; err %d\n", __func__,
2870 wbc->nr_to_write, inode->i_ino, ret);
2871 goto out_writepages;
2875 * Now call __mpage_da_writepage to find the next
2876 * contiguous region of logical blocks that need
2877 * blocks to be allocated by ext4. We don't actually
2878 * submit the blocks for I/O here, even though
2879 * write_cache_pages thinks it will, and will set the
2880 * pages as clean for write before calling
2881 * __mpage_da_writepage().
2883 mpd.b_size = 0;
2884 mpd.b_state = 0;
2885 mpd.b_blocknr = 0;
2886 mpd.first_page = 0;
2887 mpd.next_page = 0;
2888 mpd.io_done = 0;
2889 mpd.pages_written = 0;
2890 mpd.retval = 0;
2891 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2892 &mpd);
2894 * If we have a contigous extent of pages and we
2895 * haven't done the I/O yet, map the blocks and submit
2896 * them for I/O.
2898 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2899 if (mpage_da_map_blocks(&mpd) == 0)
2900 mpage_da_submit_io(&mpd);
2901 mpd.io_done = 1;
2902 ret = MPAGE_DA_EXTENT_TAIL;
2904 trace_ext4_da_write_pages(inode, &mpd);
2905 wbc->nr_to_write -= mpd.pages_written;
2907 ext4_journal_stop(handle);
2909 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2910 /* commit the transaction which would
2911 * free blocks released in the transaction
2912 * and try again
2914 jbd2_journal_force_commit_nested(sbi->s_journal);
2915 wbc->pages_skipped = pages_skipped;
2916 ret = 0;
2917 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2919 * got one extent now try with
2920 * rest of the pages
2922 pages_written += mpd.pages_written;
2923 wbc->pages_skipped = pages_skipped;
2924 ret = 0;
2925 io_done = 1;
2926 } else if (wbc->nr_to_write)
2928 * There is no more writeout needed
2929 * or we requested for a noblocking writeout
2930 * and we found the device congested
2932 break;
2934 if (!io_done && !cycled) {
2935 cycled = 1;
2936 index = 0;
2937 wbc->range_start = index << PAGE_CACHE_SHIFT;
2938 wbc->range_end = mapping->writeback_index - 1;
2939 goto retry;
2941 if (pages_skipped != wbc->pages_skipped)
2942 ext4_msg(inode->i_sb, KERN_CRIT,
2943 "This should not happen leaving %s "
2944 "with nr_to_write = %ld ret = %d\n",
2945 __func__, wbc->nr_to_write, ret);
2947 /* Update index */
2948 index += pages_written;
2949 wbc->range_cyclic = range_cyclic;
2950 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2952 * set the writeback_index so that range_cyclic
2953 * mode will write it back later
2955 mapping->writeback_index = index;
2957 out_writepages:
2958 if (!no_nrwrite_index_update)
2959 wbc->no_nrwrite_index_update = 0;
2960 if (wbc->nr_to_write > nr_to_writebump)
2961 wbc->nr_to_write -= nr_to_writebump;
2962 wbc->range_start = range_start;
2963 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2964 return ret;
2967 #define FALL_BACK_TO_NONDELALLOC 1
2968 static int ext4_nonda_switch(struct super_block *sb)
2970 s64 free_blocks, dirty_blocks;
2971 struct ext4_sb_info *sbi = EXT4_SB(sb);
2974 * switch to non delalloc mode if we are running low
2975 * on free block. The free block accounting via percpu
2976 * counters can get slightly wrong with percpu_counter_batch getting
2977 * accumulated on each CPU without updating global counters
2978 * Delalloc need an accurate free block accounting. So switch
2979 * to non delalloc when we are near to error range.
2981 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2982 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2983 if (2 * free_blocks < 3 * dirty_blocks ||
2984 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2986 * free block count is less that 150% of dirty blocks
2987 * or free blocks is less that watermark
2989 return 1;
2991 return 0;
2994 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2995 loff_t pos, unsigned len, unsigned flags,
2996 struct page **pagep, void **fsdata)
2998 int ret, retries = 0;
2999 struct page *page;
3000 pgoff_t index;
3001 unsigned from, to;
3002 struct inode *inode = mapping->host;
3003 handle_t *handle;
3005 index = pos >> PAGE_CACHE_SHIFT;
3006 from = pos & (PAGE_CACHE_SIZE - 1);
3007 to = from + len;
3009 if (ext4_nonda_switch(inode->i_sb)) {
3010 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3011 return ext4_write_begin(file, mapping, pos,
3012 len, flags, pagep, fsdata);
3014 *fsdata = (void *)0;
3015 trace_ext4_da_write_begin(inode, pos, len, flags);
3016 retry:
3018 * With delayed allocation, we don't log the i_disksize update
3019 * if there is delayed block allocation. But we still need
3020 * to journalling the i_disksize update if writes to the end
3021 * of file which has an already mapped buffer.
3023 handle = ext4_journal_start(inode, 1);
3024 if (IS_ERR(handle)) {
3025 ret = PTR_ERR(handle);
3026 goto out;
3028 /* We cannot recurse into the filesystem as the transaction is already
3029 * started */
3030 flags |= AOP_FLAG_NOFS;
3032 page = grab_cache_page_write_begin(mapping, index, flags);
3033 if (!page) {
3034 ext4_journal_stop(handle);
3035 ret = -ENOMEM;
3036 goto out;
3038 *pagep = page;
3040 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3041 ext4_da_get_block_prep);
3042 if (ret < 0) {
3043 unlock_page(page);
3044 ext4_journal_stop(handle);
3045 page_cache_release(page);
3047 * block_write_begin may have instantiated a few blocks
3048 * outside i_size. Trim these off again. Don't need
3049 * i_size_read because we hold i_mutex.
3051 if (pos + len > inode->i_size)
3052 ext4_truncate(inode);
3055 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3056 goto retry;
3057 out:
3058 return ret;
3062 * Check if we should update i_disksize
3063 * when write to the end of file but not require block allocation
3065 static int ext4_da_should_update_i_disksize(struct page *page,
3066 unsigned long offset)
3068 struct buffer_head *bh;
3069 struct inode *inode = page->mapping->host;
3070 unsigned int idx;
3071 int i;
3073 bh = page_buffers(page);
3074 idx = offset >> inode->i_blkbits;
3076 for (i = 0; i < idx; i++)
3077 bh = bh->b_this_page;
3079 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3080 return 0;
3081 return 1;
3084 static int ext4_da_write_end(struct file *file,
3085 struct address_space *mapping,
3086 loff_t pos, unsigned len, unsigned copied,
3087 struct page *page, void *fsdata)
3089 struct inode *inode = mapping->host;
3090 int ret = 0, ret2;
3091 handle_t *handle = ext4_journal_current_handle();
3092 loff_t new_i_size;
3093 unsigned long start, end;
3094 int write_mode = (int)(unsigned long)fsdata;
3096 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3097 if (ext4_should_order_data(inode)) {
3098 return ext4_ordered_write_end(file, mapping, pos,
3099 len, copied, page, fsdata);
3100 } else if (ext4_should_writeback_data(inode)) {
3101 return ext4_writeback_write_end(file, mapping, pos,
3102 len, copied, page, fsdata);
3103 } else {
3104 BUG();
3108 trace_ext4_da_write_end(inode, pos, len, copied);
3109 start = pos & (PAGE_CACHE_SIZE - 1);
3110 end = start + copied - 1;
3113 * generic_write_end() will run mark_inode_dirty() if i_size
3114 * changes. So let's piggyback the i_disksize mark_inode_dirty
3115 * into that.
3118 new_i_size = pos + copied;
3119 if (new_i_size > EXT4_I(inode)->i_disksize) {
3120 if (ext4_da_should_update_i_disksize(page, end)) {
3121 down_write(&EXT4_I(inode)->i_data_sem);
3122 if (new_i_size > EXT4_I(inode)->i_disksize) {
3124 * Updating i_disksize when extending file
3125 * without needing block allocation
3127 if (ext4_should_order_data(inode))
3128 ret = ext4_jbd2_file_inode(handle,
3129 inode);
3131 EXT4_I(inode)->i_disksize = new_i_size;
3133 up_write(&EXT4_I(inode)->i_data_sem);
3134 /* We need to mark inode dirty even if
3135 * new_i_size is less that inode->i_size
3136 * bu greater than i_disksize.(hint delalloc)
3138 ext4_mark_inode_dirty(handle, inode);
3141 ret2 = generic_write_end(file, mapping, pos, len, copied,
3142 page, fsdata);
3143 copied = ret2;
3144 if (ret2 < 0)
3145 ret = ret2;
3146 ret2 = ext4_journal_stop(handle);
3147 if (!ret)
3148 ret = ret2;
3150 return ret ? ret : copied;
3153 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3156 * Drop reserved blocks
3158 BUG_ON(!PageLocked(page));
3159 if (!page_has_buffers(page))
3160 goto out;
3162 ext4_da_page_release_reservation(page, offset);
3164 out:
3165 ext4_invalidatepage(page, offset);
3167 return;
3171 * Force all delayed allocation blocks to be allocated for a given inode.
3173 int ext4_alloc_da_blocks(struct inode *inode)
3175 trace_ext4_alloc_da_blocks(inode);
3177 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3178 !EXT4_I(inode)->i_reserved_meta_blocks)
3179 return 0;
3182 * We do something simple for now. The filemap_flush() will
3183 * also start triggering a write of the data blocks, which is
3184 * not strictly speaking necessary (and for users of
3185 * laptop_mode, not even desirable). However, to do otherwise
3186 * would require replicating code paths in:
3188 * ext4_da_writepages() ->
3189 * write_cache_pages() ---> (via passed in callback function)
3190 * __mpage_da_writepage() -->
3191 * mpage_add_bh_to_extent()
3192 * mpage_da_map_blocks()
3194 * The problem is that write_cache_pages(), located in
3195 * mm/page-writeback.c, marks pages clean in preparation for
3196 * doing I/O, which is not desirable if we're not planning on
3197 * doing I/O at all.
3199 * We could call write_cache_pages(), and then redirty all of
3200 * the pages by calling redirty_page_for_writeback() but that
3201 * would be ugly in the extreme. So instead we would need to
3202 * replicate parts of the code in the above functions,
3203 * simplifying them becuase we wouldn't actually intend to
3204 * write out the pages, but rather only collect contiguous
3205 * logical block extents, call the multi-block allocator, and
3206 * then update the buffer heads with the block allocations.
3208 * For now, though, we'll cheat by calling filemap_flush(),
3209 * which will map the blocks, and start the I/O, but not
3210 * actually wait for the I/O to complete.
3212 return filemap_flush(inode->i_mapping);
3216 * bmap() is special. It gets used by applications such as lilo and by
3217 * the swapper to find the on-disk block of a specific piece of data.
3219 * Naturally, this is dangerous if the block concerned is still in the
3220 * journal. If somebody makes a swapfile on an ext4 data-journaling
3221 * filesystem and enables swap, then they may get a nasty shock when the
3222 * data getting swapped to that swapfile suddenly gets overwritten by
3223 * the original zero's written out previously to the journal and
3224 * awaiting writeback in the kernel's buffer cache.
3226 * So, if we see any bmap calls here on a modified, data-journaled file,
3227 * take extra steps to flush any blocks which might be in the cache.
3229 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3231 struct inode *inode = mapping->host;
3232 journal_t *journal;
3233 int err;
3235 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3236 test_opt(inode->i_sb, DELALLOC)) {
3238 * With delalloc we want to sync the file
3239 * so that we can make sure we allocate
3240 * blocks for file
3242 filemap_write_and_wait(mapping);
3245 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3247 * This is a REALLY heavyweight approach, but the use of
3248 * bmap on dirty files is expected to be extremely rare:
3249 * only if we run lilo or swapon on a freshly made file
3250 * do we expect this to happen.
3252 * (bmap requires CAP_SYS_RAWIO so this does not
3253 * represent an unprivileged user DOS attack --- we'd be
3254 * in trouble if mortal users could trigger this path at
3255 * will.)
3257 * NB. EXT4_STATE_JDATA is not set on files other than
3258 * regular files. If somebody wants to bmap a directory
3259 * or symlink and gets confused because the buffer
3260 * hasn't yet been flushed to disk, they deserve
3261 * everything they get.
3264 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3265 journal = EXT4_JOURNAL(inode);
3266 jbd2_journal_lock_updates(journal);
3267 err = jbd2_journal_flush(journal);
3268 jbd2_journal_unlock_updates(journal);
3270 if (err)
3271 return 0;
3274 return generic_block_bmap(mapping, block, ext4_get_block);
3277 static int ext4_readpage(struct file *file, struct page *page)
3279 return mpage_readpage(page, ext4_get_block);
3282 static int
3283 ext4_readpages(struct file *file, struct address_space *mapping,
3284 struct list_head *pages, unsigned nr_pages)
3286 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3289 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3291 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3294 * If it's a full truncate we just forget about the pending dirtying
3296 if (offset == 0)
3297 ClearPageChecked(page);
3299 if (journal)
3300 jbd2_journal_invalidatepage(journal, page, offset);
3301 else
3302 block_invalidatepage(page, offset);
3305 static int ext4_releasepage(struct page *page, gfp_t wait)
3307 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3309 WARN_ON(PageChecked(page));
3310 if (!page_has_buffers(page))
3311 return 0;
3312 if (journal)
3313 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3314 else
3315 return try_to_free_buffers(page);
3319 * O_DIRECT for ext3 (or indirect map) based files
3321 * If the O_DIRECT write will extend the file then add this inode to the
3322 * orphan list. So recovery will truncate it back to the original size
3323 * if the machine crashes during the write.
3325 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3326 * crashes then stale disk data _may_ be exposed inside the file. But current
3327 * VFS code falls back into buffered path in that case so we are safe.
3329 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3330 const struct iovec *iov, loff_t offset,
3331 unsigned long nr_segs)
3333 struct file *file = iocb->ki_filp;
3334 struct inode *inode = file->f_mapping->host;
3335 struct ext4_inode_info *ei = EXT4_I(inode);
3336 handle_t *handle;
3337 ssize_t ret;
3338 int orphan = 0;
3339 size_t count = iov_length(iov, nr_segs);
3340 int retries = 0;
3342 if (rw == WRITE) {
3343 loff_t final_size = offset + count;
3345 if (final_size > inode->i_size) {
3346 /* Credits for sb + inode write */
3347 handle = ext4_journal_start(inode, 2);
3348 if (IS_ERR(handle)) {
3349 ret = PTR_ERR(handle);
3350 goto out;
3352 ret = ext4_orphan_add(handle, inode);
3353 if (ret) {
3354 ext4_journal_stop(handle);
3355 goto out;
3357 orphan = 1;
3358 ei->i_disksize = inode->i_size;
3359 ext4_journal_stop(handle);
3363 retry:
3364 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3365 offset, nr_segs,
3366 ext4_get_block, NULL);
3367 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3368 goto retry;
3370 if (orphan) {
3371 int err;
3373 /* Credits for sb + inode write */
3374 handle = ext4_journal_start(inode, 2);
3375 if (IS_ERR(handle)) {
3376 /* This is really bad luck. We've written the data
3377 * but cannot extend i_size. Bail out and pretend
3378 * the write failed... */
3379 ret = PTR_ERR(handle);
3380 goto out;
3382 if (inode->i_nlink)
3383 ext4_orphan_del(handle, inode);
3384 if (ret > 0) {
3385 loff_t end = offset + ret;
3386 if (end > inode->i_size) {
3387 ei->i_disksize = end;
3388 i_size_write(inode, end);
3390 * We're going to return a positive `ret'
3391 * here due to non-zero-length I/O, so there's
3392 * no way of reporting error returns from
3393 * ext4_mark_inode_dirty() to userspace. So
3394 * ignore it.
3396 ext4_mark_inode_dirty(handle, inode);
3399 err = ext4_journal_stop(handle);
3400 if (ret == 0)
3401 ret = err;
3403 out:
3404 return ret;
3407 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3408 struct buffer_head *bh_result, int create)
3410 handle_t *handle = NULL;
3411 int ret = 0;
3412 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3413 int dio_credits;
3415 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3416 inode->i_ino, create);
3418 * DIO VFS code passes create = 0 flag for write to
3419 * the middle of file. It does this to avoid block
3420 * allocation for holes, to prevent expose stale data
3421 * out when there is parallel buffered read (which does
3422 * not hold the i_mutex lock) while direct IO write has
3423 * not completed. DIO request on holes finally falls back
3424 * to buffered IO for this reason.
3426 * For ext4 extent based file, since we support fallocate,
3427 * new allocated extent as uninitialized, for holes, we
3428 * could fallocate blocks for holes, thus parallel
3429 * buffered IO read will zero out the page when read on
3430 * a hole while parallel DIO write to the hole has not completed.
3432 * when we come here, we know it's a direct IO write to
3433 * to the middle of file (<i_size)
3434 * so it's safe to override the create flag from VFS.
3436 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3438 if (max_blocks > DIO_MAX_BLOCKS)
3439 max_blocks = DIO_MAX_BLOCKS;
3440 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3441 handle = ext4_journal_start(inode, dio_credits);
3442 if (IS_ERR(handle)) {
3443 ret = PTR_ERR(handle);
3444 goto out;
3446 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3447 create);
3448 if (ret > 0) {
3449 bh_result->b_size = (ret << inode->i_blkbits);
3450 ret = 0;
3452 ext4_journal_stop(handle);
3453 out:
3454 return ret;
3457 static void ext4_free_io_end(ext4_io_end_t *io)
3459 BUG_ON(!io);
3460 iput(io->inode);
3461 kfree(io);
3463 static void dump_aio_dio_list(struct inode * inode)
3465 #ifdef EXT4_DEBUG
3466 struct list_head *cur, *before, *after;
3467 ext4_io_end_t *io, *io0, *io1;
3469 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3470 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3471 return;
3474 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3475 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3476 cur = &io->list;
3477 before = cur->prev;
3478 io0 = container_of(before, ext4_io_end_t, list);
3479 after = cur->next;
3480 io1 = container_of(after, ext4_io_end_t, list);
3482 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3483 io, inode->i_ino, io0, io1);
3485 #endif
3489 * check a range of space and convert unwritten extents to written.
3491 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3493 struct inode *inode = io->inode;
3494 loff_t offset = io->offset;
3495 size_t size = io->size;
3496 int ret = 0;
3498 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3499 "list->prev 0x%p\n",
3500 io, inode->i_ino, io->list.next, io->list.prev);
3502 if (list_empty(&io->list))
3503 return ret;
3505 if (io->flag != DIO_AIO_UNWRITTEN)
3506 return ret;
3508 if (offset + size <= i_size_read(inode))
3509 ret = ext4_convert_unwritten_extents(inode, offset, size);
3511 if (ret < 0) {
3512 printk(KERN_EMERG "%s: failed to convert unwritten"
3513 "extents to written extents, error is %d"
3514 " io is still on inode %lu aio dio list\n",
3515 __func__, ret, inode->i_ino);
3516 return ret;
3519 /* clear the DIO AIO unwritten flag */
3520 io->flag = 0;
3521 return ret;
3524 * work on completed aio dio IO, to convert unwritten extents to extents
3526 static void ext4_end_aio_dio_work(struct work_struct *work)
3528 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3529 struct inode *inode = io->inode;
3530 int ret = 0;
3532 mutex_lock(&inode->i_mutex);
3533 ret = ext4_end_aio_dio_nolock(io);
3534 if (ret >= 0) {
3535 if (!list_empty(&io->list))
3536 list_del_init(&io->list);
3537 ext4_free_io_end(io);
3539 mutex_unlock(&inode->i_mutex);
3542 * This function is called from ext4_sync_file().
3544 * When AIO DIO IO is completed, the work to convert unwritten
3545 * extents to written is queued on workqueue but may not get immediately
3546 * scheduled. When fsync is called, we need to ensure the
3547 * conversion is complete before fsync returns.
3548 * The inode keeps track of a list of completed AIO from DIO path
3549 * that might needs to do the conversion. This function walks through
3550 * the list and convert the related unwritten extents to written.
3552 int flush_aio_dio_completed_IO(struct inode *inode)
3554 ext4_io_end_t *io;
3555 int ret = 0;
3556 int ret2 = 0;
3558 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3559 return ret;
3561 dump_aio_dio_list(inode);
3562 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3563 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3564 ext4_io_end_t, list);
3566 * Calling ext4_end_aio_dio_nolock() to convert completed
3567 * IO to written.
3569 * When ext4_sync_file() is called, run_queue() may already
3570 * about to flush the work corresponding to this io structure.
3571 * It will be upset if it founds the io structure related
3572 * to the work-to-be schedule is freed.
3574 * Thus we need to keep the io structure still valid here after
3575 * convertion finished. The io structure has a flag to
3576 * avoid double converting from both fsync and background work
3577 * queue work.
3579 ret = ext4_end_aio_dio_nolock(io);
3580 if (ret < 0)
3581 ret2 = ret;
3582 else
3583 list_del_init(&io->list);
3585 return (ret2 < 0) ? ret2 : 0;
3588 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3590 ext4_io_end_t *io = NULL;
3592 io = kmalloc(sizeof(*io), GFP_NOFS);
3594 if (io) {
3595 igrab(inode);
3596 io->inode = inode;
3597 io->flag = 0;
3598 io->offset = 0;
3599 io->size = 0;
3600 io->error = 0;
3601 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3602 INIT_LIST_HEAD(&io->list);
3605 return io;
3608 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3609 ssize_t size, void *private)
3611 ext4_io_end_t *io_end = iocb->private;
3612 struct workqueue_struct *wq;
3614 /* if not async direct IO or dio with 0 bytes write, just return */
3615 if (!io_end || !size)
3616 return;
3618 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3619 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3620 iocb->private, io_end->inode->i_ino, iocb, offset,
3621 size);
3623 /* if not aio dio with unwritten extents, just free io and return */
3624 if (io_end->flag != DIO_AIO_UNWRITTEN){
3625 ext4_free_io_end(io_end);
3626 iocb->private = NULL;
3627 return;
3630 io_end->offset = offset;
3631 io_end->size = size;
3632 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3634 /* queue the work to convert unwritten extents to written */
3635 queue_work(wq, &io_end->work);
3637 /* Add the io_end to per-inode completed aio dio list*/
3638 list_add_tail(&io_end->list,
3639 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3640 iocb->private = NULL;
3643 * For ext4 extent files, ext4 will do direct-io write to holes,
3644 * preallocated extents, and those write extend the file, no need to
3645 * fall back to buffered IO.
3647 * For holes, we fallocate those blocks, mark them as unintialized
3648 * If those blocks were preallocated, we mark sure they are splited, but
3649 * still keep the range to write as unintialized.
3651 * The unwrritten extents will be converted to written when DIO is completed.
3652 * For async direct IO, since the IO may still pending when return, we
3653 * set up an end_io call back function, which will do the convertion
3654 * when async direct IO completed.
3656 * If the O_DIRECT write will extend the file then add this inode to the
3657 * orphan list. So recovery will truncate it back to the original size
3658 * if the machine crashes during the write.
3661 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3662 const struct iovec *iov, loff_t offset,
3663 unsigned long nr_segs)
3665 struct file *file = iocb->ki_filp;
3666 struct inode *inode = file->f_mapping->host;
3667 ssize_t ret;
3668 size_t count = iov_length(iov, nr_segs);
3670 loff_t final_size = offset + count;
3671 if (rw == WRITE && final_size <= inode->i_size) {
3673 * We could direct write to holes and fallocate.
3675 * Allocated blocks to fill the hole are marked as uninitialized
3676 * to prevent paralel buffered read to expose the stale data
3677 * before DIO complete the data IO.
3679 * As to previously fallocated extents, ext4 get_block
3680 * will just simply mark the buffer mapped but still
3681 * keep the extents uninitialized.
3683 * for non AIO case, we will convert those unwritten extents
3684 * to written after return back from blockdev_direct_IO.
3686 * for async DIO, the conversion needs to be defered when
3687 * the IO is completed. The ext4 end_io callback function
3688 * will be called to take care of the conversion work.
3689 * Here for async case, we allocate an io_end structure to
3690 * hook to the iocb.
3692 iocb->private = NULL;
3693 EXT4_I(inode)->cur_aio_dio = NULL;
3694 if (!is_sync_kiocb(iocb)) {
3695 iocb->private = ext4_init_io_end(inode);
3696 if (!iocb->private)
3697 return -ENOMEM;
3699 * we save the io structure for current async
3700 * direct IO, so that later ext4_get_blocks()
3701 * could flag the io structure whether there
3702 * is a unwritten extents needs to be converted
3703 * when IO is completed.
3705 EXT4_I(inode)->cur_aio_dio = iocb->private;
3708 ret = blockdev_direct_IO(rw, iocb, inode,
3709 inode->i_sb->s_bdev, iov,
3710 offset, nr_segs,
3711 ext4_get_block_dio_write,
3712 ext4_end_io_dio);
3713 if (iocb->private)
3714 EXT4_I(inode)->cur_aio_dio = NULL;
3716 * The io_end structure takes a reference to the inode,
3717 * that structure needs to be destroyed and the
3718 * reference to the inode need to be dropped, when IO is
3719 * complete, even with 0 byte write, or failed.
3721 * In the successful AIO DIO case, the io_end structure will be
3722 * desctroyed and the reference to the inode will be dropped
3723 * after the end_io call back function is called.
3725 * In the case there is 0 byte write, or error case, since
3726 * VFS direct IO won't invoke the end_io call back function,
3727 * we need to free the end_io structure here.
3729 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3730 ext4_free_io_end(iocb->private);
3731 iocb->private = NULL;
3732 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3733 EXT4_STATE_DIO_UNWRITTEN)) {
3734 int err;
3736 * for non AIO case, since the IO is already
3737 * completed, we could do the convertion right here
3739 err = ext4_convert_unwritten_extents(inode,
3740 offset, ret);
3741 if (err < 0)
3742 ret = err;
3743 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3745 return ret;
3748 /* for write the the end of file case, we fall back to old way */
3749 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3752 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3753 const struct iovec *iov, loff_t offset,
3754 unsigned long nr_segs)
3756 struct file *file = iocb->ki_filp;
3757 struct inode *inode = file->f_mapping->host;
3759 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3760 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3762 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3766 * Pages can be marked dirty completely asynchronously from ext4's journalling
3767 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3768 * much here because ->set_page_dirty is called under VFS locks. The page is
3769 * not necessarily locked.
3771 * We cannot just dirty the page and leave attached buffers clean, because the
3772 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3773 * or jbddirty because all the journalling code will explode.
3775 * So what we do is to mark the page "pending dirty" and next time writepage
3776 * is called, propagate that into the buffers appropriately.
3778 static int ext4_journalled_set_page_dirty(struct page *page)
3780 SetPageChecked(page);
3781 return __set_page_dirty_nobuffers(page);
3784 static const struct address_space_operations ext4_ordered_aops = {
3785 .readpage = ext4_readpage,
3786 .readpages = ext4_readpages,
3787 .writepage = ext4_writepage,
3788 .sync_page = block_sync_page,
3789 .write_begin = ext4_write_begin,
3790 .write_end = ext4_ordered_write_end,
3791 .bmap = ext4_bmap,
3792 .invalidatepage = ext4_invalidatepage,
3793 .releasepage = ext4_releasepage,
3794 .direct_IO = ext4_direct_IO,
3795 .migratepage = buffer_migrate_page,
3796 .is_partially_uptodate = block_is_partially_uptodate,
3797 .error_remove_page = generic_error_remove_page,
3800 static const struct address_space_operations ext4_writeback_aops = {
3801 .readpage = ext4_readpage,
3802 .readpages = ext4_readpages,
3803 .writepage = ext4_writepage,
3804 .sync_page = block_sync_page,
3805 .write_begin = ext4_write_begin,
3806 .write_end = ext4_writeback_write_end,
3807 .bmap = ext4_bmap,
3808 .invalidatepage = ext4_invalidatepage,
3809 .releasepage = ext4_releasepage,
3810 .direct_IO = ext4_direct_IO,
3811 .migratepage = buffer_migrate_page,
3812 .is_partially_uptodate = block_is_partially_uptodate,
3813 .error_remove_page = generic_error_remove_page,
3816 static const struct address_space_operations ext4_journalled_aops = {
3817 .readpage = ext4_readpage,
3818 .readpages = ext4_readpages,
3819 .writepage = ext4_writepage,
3820 .sync_page = block_sync_page,
3821 .write_begin = ext4_write_begin,
3822 .write_end = ext4_journalled_write_end,
3823 .set_page_dirty = ext4_journalled_set_page_dirty,
3824 .bmap = ext4_bmap,
3825 .invalidatepage = ext4_invalidatepage,
3826 .releasepage = ext4_releasepage,
3827 .is_partially_uptodate = block_is_partially_uptodate,
3828 .error_remove_page = generic_error_remove_page,
3831 static const struct address_space_operations ext4_da_aops = {
3832 .readpage = ext4_readpage,
3833 .readpages = ext4_readpages,
3834 .writepage = ext4_writepage,
3835 .writepages = ext4_da_writepages,
3836 .sync_page = block_sync_page,
3837 .write_begin = ext4_da_write_begin,
3838 .write_end = ext4_da_write_end,
3839 .bmap = ext4_bmap,
3840 .invalidatepage = ext4_da_invalidatepage,
3841 .releasepage = ext4_releasepage,
3842 .direct_IO = ext4_direct_IO,
3843 .migratepage = buffer_migrate_page,
3844 .is_partially_uptodate = block_is_partially_uptodate,
3845 .error_remove_page = generic_error_remove_page,
3848 void ext4_set_aops(struct inode *inode)
3850 if (ext4_should_order_data(inode) &&
3851 test_opt(inode->i_sb, DELALLOC))
3852 inode->i_mapping->a_ops = &ext4_da_aops;
3853 else if (ext4_should_order_data(inode))
3854 inode->i_mapping->a_ops = &ext4_ordered_aops;
3855 else if (ext4_should_writeback_data(inode) &&
3856 test_opt(inode->i_sb, DELALLOC))
3857 inode->i_mapping->a_ops = &ext4_da_aops;
3858 else if (ext4_should_writeback_data(inode))
3859 inode->i_mapping->a_ops = &ext4_writeback_aops;
3860 else
3861 inode->i_mapping->a_ops = &ext4_journalled_aops;
3865 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3866 * up to the end of the block which corresponds to `from'.
3867 * This required during truncate. We need to physically zero the tail end
3868 * of that block so it doesn't yield old data if the file is later grown.
3870 int ext4_block_truncate_page(handle_t *handle,
3871 struct address_space *mapping, loff_t from)
3873 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3874 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3875 unsigned blocksize, length, pos;
3876 ext4_lblk_t iblock;
3877 struct inode *inode = mapping->host;
3878 struct buffer_head *bh;
3879 struct page *page;
3880 int err = 0;
3882 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3883 mapping_gfp_mask(mapping) & ~__GFP_FS);
3884 if (!page)
3885 return -EINVAL;
3887 blocksize = inode->i_sb->s_blocksize;
3888 length = blocksize - (offset & (blocksize - 1));
3889 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3892 * For "nobh" option, we can only work if we don't need to
3893 * read-in the page - otherwise we create buffers to do the IO.
3895 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3896 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3897 zero_user(page, offset, length);
3898 set_page_dirty(page);
3899 goto unlock;
3902 if (!page_has_buffers(page))
3903 create_empty_buffers(page, blocksize, 0);
3905 /* Find the buffer that contains "offset" */
3906 bh = page_buffers(page);
3907 pos = blocksize;
3908 while (offset >= pos) {
3909 bh = bh->b_this_page;
3910 iblock++;
3911 pos += blocksize;
3914 err = 0;
3915 if (buffer_freed(bh)) {
3916 BUFFER_TRACE(bh, "freed: skip");
3917 goto unlock;
3920 if (!buffer_mapped(bh)) {
3921 BUFFER_TRACE(bh, "unmapped");
3922 ext4_get_block(inode, iblock, bh, 0);
3923 /* unmapped? It's a hole - nothing to do */
3924 if (!buffer_mapped(bh)) {
3925 BUFFER_TRACE(bh, "still unmapped");
3926 goto unlock;
3930 /* Ok, it's mapped. Make sure it's up-to-date */
3931 if (PageUptodate(page))
3932 set_buffer_uptodate(bh);
3934 if (!buffer_uptodate(bh)) {
3935 err = -EIO;
3936 ll_rw_block(READ, 1, &bh);
3937 wait_on_buffer(bh);
3938 /* Uhhuh. Read error. Complain and punt. */
3939 if (!buffer_uptodate(bh))
3940 goto unlock;
3943 if (ext4_should_journal_data(inode)) {
3944 BUFFER_TRACE(bh, "get write access");
3945 err = ext4_journal_get_write_access(handle, bh);
3946 if (err)
3947 goto unlock;
3950 zero_user(page, offset, length);
3952 BUFFER_TRACE(bh, "zeroed end of block");
3954 err = 0;
3955 if (ext4_should_journal_data(inode)) {
3956 err = ext4_handle_dirty_metadata(handle, inode, bh);
3957 } else {
3958 if (ext4_should_order_data(inode))
3959 err = ext4_jbd2_file_inode(handle, inode);
3960 mark_buffer_dirty(bh);
3963 unlock:
3964 unlock_page(page);
3965 page_cache_release(page);
3966 return err;
3970 * Probably it should be a library function... search for first non-zero word
3971 * or memcmp with zero_page, whatever is better for particular architecture.
3972 * Linus?
3974 static inline int all_zeroes(__le32 *p, __le32 *q)
3976 while (p < q)
3977 if (*p++)
3978 return 0;
3979 return 1;
3983 * ext4_find_shared - find the indirect blocks for partial truncation.
3984 * @inode: inode in question
3985 * @depth: depth of the affected branch
3986 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3987 * @chain: place to store the pointers to partial indirect blocks
3988 * @top: place to the (detached) top of branch
3990 * This is a helper function used by ext4_truncate().
3992 * When we do truncate() we may have to clean the ends of several
3993 * indirect blocks but leave the blocks themselves alive. Block is
3994 * partially truncated if some data below the new i_size is refered
3995 * from it (and it is on the path to the first completely truncated
3996 * data block, indeed). We have to free the top of that path along
3997 * with everything to the right of the path. Since no allocation
3998 * past the truncation point is possible until ext4_truncate()
3999 * finishes, we may safely do the latter, but top of branch may
4000 * require special attention - pageout below the truncation point
4001 * might try to populate it.
4003 * We atomically detach the top of branch from the tree, store the
4004 * block number of its root in *@top, pointers to buffer_heads of
4005 * partially truncated blocks - in @chain[].bh and pointers to
4006 * their last elements that should not be removed - in
4007 * @chain[].p. Return value is the pointer to last filled element
4008 * of @chain.
4010 * The work left to caller to do the actual freeing of subtrees:
4011 * a) free the subtree starting from *@top
4012 * b) free the subtrees whose roots are stored in
4013 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4014 * c) free the subtrees growing from the inode past the @chain[0].
4015 * (no partially truncated stuff there). */
4017 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4018 ext4_lblk_t offsets[4], Indirect chain[4],
4019 __le32 *top)
4021 Indirect *partial, *p;
4022 int k, err;
4024 *top = 0;
4025 /* Make k index the deepest non-null offest + 1 */
4026 for (k = depth; k > 1 && !offsets[k-1]; k--)
4028 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4029 /* Writer: pointers */
4030 if (!partial)
4031 partial = chain + k-1;
4033 * If the branch acquired continuation since we've looked at it -
4034 * fine, it should all survive and (new) top doesn't belong to us.
4036 if (!partial->key && *partial->p)
4037 /* Writer: end */
4038 goto no_top;
4039 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4042 * OK, we've found the last block that must survive. The rest of our
4043 * branch should be detached before unlocking. However, if that rest
4044 * of branch is all ours and does not grow immediately from the inode
4045 * it's easier to cheat and just decrement partial->p.
4047 if (p == chain + k - 1 && p > chain) {
4048 p->p--;
4049 } else {
4050 *top = *p->p;
4051 /* Nope, don't do this in ext4. Must leave the tree intact */
4052 #if 0
4053 *p->p = 0;
4054 #endif
4056 /* Writer: end */
4058 while (partial > p) {
4059 brelse(partial->bh);
4060 partial--;
4062 no_top:
4063 return partial;
4067 * Zero a number of block pointers in either an inode or an indirect block.
4068 * If we restart the transaction we must again get write access to the
4069 * indirect block for further modification.
4071 * We release `count' blocks on disk, but (last - first) may be greater
4072 * than `count' because there can be holes in there.
4074 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4075 struct buffer_head *bh,
4076 ext4_fsblk_t block_to_free,
4077 unsigned long count, __le32 *first,
4078 __le32 *last)
4080 __le32 *p;
4081 int flags = EXT4_FREE_BLOCKS_FORGET;
4083 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4084 flags |= EXT4_FREE_BLOCKS_METADATA;
4086 if (try_to_extend_transaction(handle, inode)) {
4087 if (bh) {
4088 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4089 ext4_handle_dirty_metadata(handle, inode, bh);
4091 ext4_mark_inode_dirty(handle, inode);
4092 ext4_truncate_restart_trans(handle, inode,
4093 blocks_for_truncate(inode));
4094 if (bh) {
4095 BUFFER_TRACE(bh, "retaking write access");
4096 ext4_journal_get_write_access(handle, bh);
4100 for (p = first; p < last; p++)
4101 *p = 0;
4103 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4107 * ext4_free_data - free a list of data blocks
4108 * @handle: handle for this transaction
4109 * @inode: inode we are dealing with
4110 * @this_bh: indirect buffer_head which contains *@first and *@last
4111 * @first: array of block numbers
4112 * @last: points immediately past the end of array
4114 * We are freeing all blocks refered from that array (numbers are stored as
4115 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4117 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4118 * blocks are contiguous then releasing them at one time will only affect one
4119 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4120 * actually use a lot of journal space.
4122 * @this_bh will be %NULL if @first and @last point into the inode's direct
4123 * block pointers.
4125 static void ext4_free_data(handle_t *handle, struct inode *inode,
4126 struct buffer_head *this_bh,
4127 __le32 *first, __le32 *last)
4129 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4130 unsigned long count = 0; /* Number of blocks in the run */
4131 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4132 corresponding to
4133 block_to_free */
4134 ext4_fsblk_t nr; /* Current block # */
4135 __le32 *p; /* Pointer into inode/ind
4136 for current block */
4137 int err;
4139 if (this_bh) { /* For indirect block */
4140 BUFFER_TRACE(this_bh, "get_write_access");
4141 err = ext4_journal_get_write_access(handle, this_bh);
4142 /* Important: if we can't update the indirect pointers
4143 * to the blocks, we can't free them. */
4144 if (err)
4145 return;
4148 for (p = first; p < last; p++) {
4149 nr = le32_to_cpu(*p);
4150 if (nr) {
4151 /* accumulate blocks to free if they're contiguous */
4152 if (count == 0) {
4153 block_to_free = nr;
4154 block_to_free_p = p;
4155 count = 1;
4156 } else if (nr == block_to_free + count) {
4157 count++;
4158 } else {
4159 ext4_clear_blocks(handle, inode, this_bh,
4160 block_to_free,
4161 count, block_to_free_p, p);
4162 block_to_free = nr;
4163 block_to_free_p = p;
4164 count = 1;
4169 if (count > 0)
4170 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4171 count, block_to_free_p, p);
4173 if (this_bh) {
4174 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4177 * The buffer head should have an attached journal head at this
4178 * point. However, if the data is corrupted and an indirect
4179 * block pointed to itself, it would have been detached when
4180 * the block was cleared. Check for this instead of OOPSing.
4182 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4183 ext4_handle_dirty_metadata(handle, inode, this_bh);
4184 else
4185 ext4_error(inode->i_sb, __func__,
4186 "circular indirect block detected, "
4187 "inode=%lu, block=%llu",
4188 inode->i_ino,
4189 (unsigned long long) this_bh->b_blocknr);
4194 * ext4_free_branches - free an array of branches
4195 * @handle: JBD handle for this transaction
4196 * @inode: inode we are dealing with
4197 * @parent_bh: the buffer_head which contains *@first and *@last
4198 * @first: array of block numbers
4199 * @last: pointer immediately past the end of array
4200 * @depth: depth of the branches to free
4202 * We are freeing all blocks refered from these branches (numbers are
4203 * stored as little-endian 32-bit) and updating @inode->i_blocks
4204 * appropriately.
4206 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4207 struct buffer_head *parent_bh,
4208 __le32 *first, __le32 *last, int depth)
4210 ext4_fsblk_t nr;
4211 __le32 *p;
4213 if (ext4_handle_is_aborted(handle))
4214 return;
4216 if (depth--) {
4217 struct buffer_head *bh;
4218 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4219 p = last;
4220 while (--p >= first) {
4221 nr = le32_to_cpu(*p);
4222 if (!nr)
4223 continue; /* A hole */
4225 /* Go read the buffer for the next level down */
4226 bh = sb_bread(inode->i_sb, nr);
4229 * A read failure? Report error and clear slot
4230 * (should be rare).
4232 if (!bh) {
4233 ext4_error(inode->i_sb, "ext4_free_branches",
4234 "Read failure, inode=%lu, block=%llu",
4235 inode->i_ino, nr);
4236 continue;
4239 /* This zaps the entire block. Bottom up. */
4240 BUFFER_TRACE(bh, "free child branches");
4241 ext4_free_branches(handle, inode, bh,
4242 (__le32 *) bh->b_data,
4243 (__le32 *) bh->b_data + addr_per_block,
4244 depth);
4247 * We've probably journalled the indirect block several
4248 * times during the truncate. But it's no longer
4249 * needed and we now drop it from the transaction via
4250 * jbd2_journal_revoke().
4252 * That's easy if it's exclusively part of this
4253 * transaction. But if it's part of the committing
4254 * transaction then jbd2_journal_forget() will simply
4255 * brelse() it. That means that if the underlying
4256 * block is reallocated in ext4_get_block(),
4257 * unmap_underlying_metadata() will find this block
4258 * and will try to get rid of it. damn, damn.
4260 * If this block has already been committed to the
4261 * journal, a revoke record will be written. And
4262 * revoke records must be emitted *before* clearing
4263 * this block's bit in the bitmaps.
4265 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4268 * Everything below this this pointer has been
4269 * released. Now let this top-of-subtree go.
4271 * We want the freeing of this indirect block to be
4272 * atomic in the journal with the updating of the
4273 * bitmap block which owns it. So make some room in
4274 * the journal.
4276 * We zero the parent pointer *after* freeing its
4277 * pointee in the bitmaps, so if extend_transaction()
4278 * for some reason fails to put the bitmap changes and
4279 * the release into the same transaction, recovery
4280 * will merely complain about releasing a free block,
4281 * rather than leaking blocks.
4283 if (ext4_handle_is_aborted(handle))
4284 return;
4285 if (try_to_extend_transaction(handle, inode)) {
4286 ext4_mark_inode_dirty(handle, inode);
4287 ext4_truncate_restart_trans(handle, inode,
4288 blocks_for_truncate(inode));
4291 ext4_free_blocks(handle, inode, 0, nr, 1,
4292 EXT4_FREE_BLOCKS_METADATA);
4294 if (parent_bh) {
4296 * The block which we have just freed is
4297 * pointed to by an indirect block: journal it
4299 BUFFER_TRACE(parent_bh, "get_write_access");
4300 if (!ext4_journal_get_write_access(handle,
4301 parent_bh)){
4302 *p = 0;
4303 BUFFER_TRACE(parent_bh,
4304 "call ext4_handle_dirty_metadata");
4305 ext4_handle_dirty_metadata(handle,
4306 inode,
4307 parent_bh);
4311 } else {
4312 /* We have reached the bottom of the tree. */
4313 BUFFER_TRACE(parent_bh, "free data blocks");
4314 ext4_free_data(handle, inode, parent_bh, first, last);
4318 int ext4_can_truncate(struct inode *inode)
4320 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4321 return 0;
4322 if (S_ISREG(inode->i_mode))
4323 return 1;
4324 if (S_ISDIR(inode->i_mode))
4325 return 1;
4326 if (S_ISLNK(inode->i_mode))
4327 return !ext4_inode_is_fast_symlink(inode);
4328 return 0;
4332 * ext4_truncate()
4334 * We block out ext4_get_block() block instantiations across the entire
4335 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4336 * simultaneously on behalf of the same inode.
4338 * As we work through the truncate and commmit bits of it to the journal there
4339 * is one core, guiding principle: the file's tree must always be consistent on
4340 * disk. We must be able to restart the truncate after a crash.
4342 * The file's tree may be transiently inconsistent in memory (although it
4343 * probably isn't), but whenever we close off and commit a journal transaction,
4344 * the contents of (the filesystem + the journal) must be consistent and
4345 * restartable. It's pretty simple, really: bottom up, right to left (although
4346 * left-to-right works OK too).
4348 * Note that at recovery time, journal replay occurs *before* the restart of
4349 * truncate against the orphan inode list.
4351 * The committed inode has the new, desired i_size (which is the same as
4352 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4353 * that this inode's truncate did not complete and it will again call
4354 * ext4_truncate() to have another go. So there will be instantiated blocks
4355 * to the right of the truncation point in a crashed ext4 filesystem. But
4356 * that's fine - as long as they are linked from the inode, the post-crash
4357 * ext4_truncate() run will find them and release them.
4359 void ext4_truncate(struct inode *inode)
4361 handle_t *handle;
4362 struct ext4_inode_info *ei = EXT4_I(inode);
4363 __le32 *i_data = ei->i_data;
4364 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4365 struct address_space *mapping = inode->i_mapping;
4366 ext4_lblk_t offsets[4];
4367 Indirect chain[4];
4368 Indirect *partial;
4369 __le32 nr = 0;
4370 int n;
4371 ext4_lblk_t last_block;
4372 unsigned blocksize = inode->i_sb->s_blocksize;
4374 if (!ext4_can_truncate(inode))
4375 return;
4377 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4378 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4380 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4381 ext4_ext_truncate(inode);
4382 return;
4385 handle = start_transaction(inode);
4386 if (IS_ERR(handle))
4387 return; /* AKPM: return what? */
4389 last_block = (inode->i_size + blocksize-1)
4390 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4392 if (inode->i_size & (blocksize - 1))
4393 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4394 goto out_stop;
4396 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4397 if (n == 0)
4398 goto out_stop; /* error */
4401 * OK. This truncate is going to happen. We add the inode to the
4402 * orphan list, so that if this truncate spans multiple transactions,
4403 * and we crash, we will resume the truncate when the filesystem
4404 * recovers. It also marks the inode dirty, to catch the new size.
4406 * Implication: the file must always be in a sane, consistent
4407 * truncatable state while each transaction commits.
4409 if (ext4_orphan_add(handle, inode))
4410 goto out_stop;
4413 * From here we block out all ext4_get_block() callers who want to
4414 * modify the block allocation tree.
4416 down_write(&ei->i_data_sem);
4418 ext4_discard_preallocations(inode);
4421 * The orphan list entry will now protect us from any crash which
4422 * occurs before the truncate completes, so it is now safe to propagate
4423 * the new, shorter inode size (held for now in i_size) into the
4424 * on-disk inode. We do this via i_disksize, which is the value which
4425 * ext4 *really* writes onto the disk inode.
4427 ei->i_disksize = inode->i_size;
4429 if (n == 1) { /* direct blocks */
4430 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4431 i_data + EXT4_NDIR_BLOCKS);
4432 goto do_indirects;
4435 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4436 /* Kill the top of shared branch (not detached) */
4437 if (nr) {
4438 if (partial == chain) {
4439 /* Shared branch grows from the inode */
4440 ext4_free_branches(handle, inode, NULL,
4441 &nr, &nr+1, (chain+n-1) - partial);
4442 *partial->p = 0;
4444 * We mark the inode dirty prior to restart,
4445 * and prior to stop. No need for it here.
4447 } else {
4448 /* Shared branch grows from an indirect block */
4449 BUFFER_TRACE(partial->bh, "get_write_access");
4450 ext4_free_branches(handle, inode, partial->bh,
4451 partial->p,
4452 partial->p+1, (chain+n-1) - partial);
4455 /* Clear the ends of indirect blocks on the shared branch */
4456 while (partial > chain) {
4457 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4458 (__le32*)partial->bh->b_data+addr_per_block,
4459 (chain+n-1) - partial);
4460 BUFFER_TRACE(partial->bh, "call brelse");
4461 brelse(partial->bh);
4462 partial--;
4464 do_indirects:
4465 /* Kill the remaining (whole) subtrees */
4466 switch (offsets[0]) {
4467 default:
4468 nr = i_data[EXT4_IND_BLOCK];
4469 if (nr) {
4470 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4471 i_data[EXT4_IND_BLOCK] = 0;
4473 case EXT4_IND_BLOCK:
4474 nr = i_data[EXT4_DIND_BLOCK];
4475 if (nr) {
4476 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4477 i_data[EXT4_DIND_BLOCK] = 0;
4479 case EXT4_DIND_BLOCK:
4480 nr = i_data[EXT4_TIND_BLOCK];
4481 if (nr) {
4482 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4483 i_data[EXT4_TIND_BLOCK] = 0;
4485 case EXT4_TIND_BLOCK:
4489 up_write(&ei->i_data_sem);
4490 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4491 ext4_mark_inode_dirty(handle, inode);
4494 * In a multi-transaction truncate, we only make the final transaction
4495 * synchronous
4497 if (IS_SYNC(inode))
4498 ext4_handle_sync(handle);
4499 out_stop:
4501 * If this was a simple ftruncate(), and the file will remain alive
4502 * then we need to clear up the orphan record which we created above.
4503 * However, if this was a real unlink then we were called by
4504 * ext4_delete_inode(), and we allow that function to clean up the
4505 * orphan info for us.
4507 if (inode->i_nlink)
4508 ext4_orphan_del(handle, inode);
4510 ext4_journal_stop(handle);
4514 * ext4_get_inode_loc returns with an extra refcount against the inode's
4515 * underlying buffer_head on success. If 'in_mem' is true, we have all
4516 * data in memory that is needed to recreate the on-disk version of this
4517 * inode.
4519 static int __ext4_get_inode_loc(struct inode *inode,
4520 struct ext4_iloc *iloc, int in_mem)
4522 struct ext4_group_desc *gdp;
4523 struct buffer_head *bh;
4524 struct super_block *sb = inode->i_sb;
4525 ext4_fsblk_t block;
4526 int inodes_per_block, inode_offset;
4528 iloc->bh = NULL;
4529 if (!ext4_valid_inum(sb, inode->i_ino))
4530 return -EIO;
4532 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4533 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4534 if (!gdp)
4535 return -EIO;
4538 * Figure out the offset within the block group inode table
4540 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4541 inode_offset = ((inode->i_ino - 1) %
4542 EXT4_INODES_PER_GROUP(sb));
4543 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4544 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4546 bh = sb_getblk(sb, block);
4547 if (!bh) {
4548 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4549 "inode block - inode=%lu, block=%llu",
4550 inode->i_ino, block);
4551 return -EIO;
4553 if (!buffer_uptodate(bh)) {
4554 lock_buffer(bh);
4557 * If the buffer has the write error flag, we have failed
4558 * to write out another inode in the same block. In this
4559 * case, we don't have to read the block because we may
4560 * read the old inode data successfully.
4562 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4563 set_buffer_uptodate(bh);
4565 if (buffer_uptodate(bh)) {
4566 /* someone brought it uptodate while we waited */
4567 unlock_buffer(bh);
4568 goto has_buffer;
4572 * If we have all information of the inode in memory and this
4573 * is the only valid inode in the block, we need not read the
4574 * block.
4576 if (in_mem) {
4577 struct buffer_head *bitmap_bh;
4578 int i, start;
4580 start = inode_offset & ~(inodes_per_block - 1);
4582 /* Is the inode bitmap in cache? */
4583 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4584 if (!bitmap_bh)
4585 goto make_io;
4588 * If the inode bitmap isn't in cache then the
4589 * optimisation may end up performing two reads instead
4590 * of one, so skip it.
4592 if (!buffer_uptodate(bitmap_bh)) {
4593 brelse(bitmap_bh);
4594 goto make_io;
4596 for (i = start; i < start + inodes_per_block; i++) {
4597 if (i == inode_offset)
4598 continue;
4599 if (ext4_test_bit(i, bitmap_bh->b_data))
4600 break;
4602 brelse(bitmap_bh);
4603 if (i == start + inodes_per_block) {
4604 /* all other inodes are free, so skip I/O */
4605 memset(bh->b_data, 0, bh->b_size);
4606 set_buffer_uptodate(bh);
4607 unlock_buffer(bh);
4608 goto has_buffer;
4612 make_io:
4614 * If we need to do any I/O, try to pre-readahead extra
4615 * blocks from the inode table.
4617 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4618 ext4_fsblk_t b, end, table;
4619 unsigned num;
4621 table = ext4_inode_table(sb, gdp);
4622 /* s_inode_readahead_blks is always a power of 2 */
4623 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4624 if (table > b)
4625 b = table;
4626 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4627 num = EXT4_INODES_PER_GROUP(sb);
4628 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4629 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4630 num -= ext4_itable_unused_count(sb, gdp);
4631 table += num / inodes_per_block;
4632 if (end > table)
4633 end = table;
4634 while (b <= end)
4635 sb_breadahead(sb, b++);
4639 * There are other valid inodes in the buffer, this inode
4640 * has in-inode xattrs, or we don't have this inode in memory.
4641 * Read the block from disk.
4643 get_bh(bh);
4644 bh->b_end_io = end_buffer_read_sync;
4645 submit_bh(READ_META, bh);
4646 wait_on_buffer(bh);
4647 if (!buffer_uptodate(bh)) {
4648 ext4_error(sb, __func__,
4649 "unable to read inode block - inode=%lu, "
4650 "block=%llu", inode->i_ino, block);
4651 brelse(bh);
4652 return -EIO;
4655 has_buffer:
4656 iloc->bh = bh;
4657 return 0;
4660 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4662 /* We have all inode data except xattrs in memory here. */
4663 return __ext4_get_inode_loc(inode, iloc,
4664 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4667 void ext4_set_inode_flags(struct inode *inode)
4669 unsigned int flags = EXT4_I(inode)->i_flags;
4671 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4672 if (flags & EXT4_SYNC_FL)
4673 inode->i_flags |= S_SYNC;
4674 if (flags & EXT4_APPEND_FL)
4675 inode->i_flags |= S_APPEND;
4676 if (flags & EXT4_IMMUTABLE_FL)
4677 inode->i_flags |= S_IMMUTABLE;
4678 if (flags & EXT4_NOATIME_FL)
4679 inode->i_flags |= S_NOATIME;
4680 if (flags & EXT4_DIRSYNC_FL)
4681 inode->i_flags |= S_DIRSYNC;
4684 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4685 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4687 unsigned int flags = ei->vfs_inode.i_flags;
4689 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4690 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4691 if (flags & S_SYNC)
4692 ei->i_flags |= EXT4_SYNC_FL;
4693 if (flags & S_APPEND)
4694 ei->i_flags |= EXT4_APPEND_FL;
4695 if (flags & S_IMMUTABLE)
4696 ei->i_flags |= EXT4_IMMUTABLE_FL;
4697 if (flags & S_NOATIME)
4698 ei->i_flags |= EXT4_NOATIME_FL;
4699 if (flags & S_DIRSYNC)
4700 ei->i_flags |= EXT4_DIRSYNC_FL;
4703 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4704 struct ext4_inode_info *ei)
4706 blkcnt_t i_blocks ;
4707 struct inode *inode = &(ei->vfs_inode);
4708 struct super_block *sb = inode->i_sb;
4710 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4711 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4712 /* we are using combined 48 bit field */
4713 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4714 le32_to_cpu(raw_inode->i_blocks_lo);
4715 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4716 /* i_blocks represent file system block size */
4717 return i_blocks << (inode->i_blkbits - 9);
4718 } else {
4719 return i_blocks;
4721 } else {
4722 return le32_to_cpu(raw_inode->i_blocks_lo);
4726 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4728 struct ext4_iloc iloc;
4729 struct ext4_inode *raw_inode;
4730 struct ext4_inode_info *ei;
4731 struct inode *inode;
4732 long ret;
4733 int block;
4735 inode = iget_locked(sb, ino);
4736 if (!inode)
4737 return ERR_PTR(-ENOMEM);
4738 if (!(inode->i_state & I_NEW))
4739 return inode;
4741 ei = EXT4_I(inode);
4742 iloc.bh = 0;
4744 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4745 if (ret < 0)
4746 goto bad_inode;
4747 raw_inode = ext4_raw_inode(&iloc);
4748 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4749 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4750 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4751 if (!(test_opt(inode->i_sb, NO_UID32))) {
4752 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4753 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4755 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4757 ei->i_state = 0;
4758 ei->i_dir_start_lookup = 0;
4759 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4760 /* We now have enough fields to check if the inode was active or not.
4761 * This is needed because nfsd might try to access dead inodes
4762 * the test is that same one that e2fsck uses
4763 * NeilBrown 1999oct15
4765 if (inode->i_nlink == 0) {
4766 if (inode->i_mode == 0 ||
4767 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4768 /* this inode is deleted */
4769 ret = -ESTALE;
4770 goto bad_inode;
4772 /* The only unlinked inodes we let through here have
4773 * valid i_mode and are being read by the orphan
4774 * recovery code: that's fine, we're about to complete
4775 * the process of deleting those. */
4777 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4778 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4779 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4780 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4781 ei->i_file_acl |=
4782 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4783 inode->i_size = ext4_isize(raw_inode);
4784 ei->i_disksize = inode->i_size;
4785 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4786 ei->i_block_group = iloc.block_group;
4787 ei->i_last_alloc_group = ~0;
4789 * NOTE! The in-memory inode i_data array is in little-endian order
4790 * even on big-endian machines: we do NOT byteswap the block numbers!
4792 for (block = 0; block < EXT4_N_BLOCKS; block++)
4793 ei->i_data[block] = raw_inode->i_block[block];
4794 INIT_LIST_HEAD(&ei->i_orphan);
4796 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4797 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4798 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4799 EXT4_INODE_SIZE(inode->i_sb)) {
4800 ret = -EIO;
4801 goto bad_inode;
4803 if (ei->i_extra_isize == 0) {
4804 /* The extra space is currently unused. Use it. */
4805 ei->i_extra_isize = sizeof(struct ext4_inode) -
4806 EXT4_GOOD_OLD_INODE_SIZE;
4807 } else {
4808 __le32 *magic = (void *)raw_inode +
4809 EXT4_GOOD_OLD_INODE_SIZE +
4810 ei->i_extra_isize;
4811 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4812 ei->i_state |= EXT4_STATE_XATTR;
4814 } else
4815 ei->i_extra_isize = 0;
4817 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4818 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4819 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4820 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4822 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4823 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4824 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4825 inode->i_version |=
4826 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4829 ret = 0;
4830 if (ei->i_file_acl &&
4831 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4832 ext4_error(sb, __func__,
4833 "bad extended attribute block %llu in inode #%lu",
4834 ei->i_file_acl, inode->i_ino);
4835 ret = -EIO;
4836 goto bad_inode;
4837 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4838 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4839 (S_ISLNK(inode->i_mode) &&
4840 !ext4_inode_is_fast_symlink(inode)))
4841 /* Validate extent which is part of inode */
4842 ret = ext4_ext_check_inode(inode);
4843 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4844 (S_ISLNK(inode->i_mode) &&
4845 !ext4_inode_is_fast_symlink(inode))) {
4846 /* Validate block references which are part of inode */
4847 ret = ext4_check_inode_blockref(inode);
4849 if (ret)
4850 goto bad_inode;
4852 if (S_ISREG(inode->i_mode)) {
4853 inode->i_op = &ext4_file_inode_operations;
4854 inode->i_fop = &ext4_file_operations;
4855 ext4_set_aops(inode);
4856 } else if (S_ISDIR(inode->i_mode)) {
4857 inode->i_op = &ext4_dir_inode_operations;
4858 inode->i_fop = &ext4_dir_operations;
4859 } else if (S_ISLNK(inode->i_mode)) {
4860 if (ext4_inode_is_fast_symlink(inode)) {
4861 inode->i_op = &ext4_fast_symlink_inode_operations;
4862 nd_terminate_link(ei->i_data, inode->i_size,
4863 sizeof(ei->i_data) - 1);
4864 } else {
4865 inode->i_op = &ext4_symlink_inode_operations;
4866 ext4_set_aops(inode);
4868 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4869 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4870 inode->i_op = &ext4_special_inode_operations;
4871 if (raw_inode->i_block[0])
4872 init_special_inode(inode, inode->i_mode,
4873 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4874 else
4875 init_special_inode(inode, inode->i_mode,
4876 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4877 } else {
4878 ret = -EIO;
4879 ext4_error(inode->i_sb, __func__,
4880 "bogus i_mode (%o) for inode=%lu",
4881 inode->i_mode, inode->i_ino);
4882 goto bad_inode;
4884 brelse(iloc.bh);
4885 ext4_set_inode_flags(inode);
4886 unlock_new_inode(inode);
4887 return inode;
4889 bad_inode:
4890 brelse(iloc.bh);
4891 iget_failed(inode);
4892 return ERR_PTR(ret);
4895 static int ext4_inode_blocks_set(handle_t *handle,
4896 struct ext4_inode *raw_inode,
4897 struct ext4_inode_info *ei)
4899 struct inode *inode = &(ei->vfs_inode);
4900 u64 i_blocks = inode->i_blocks;
4901 struct super_block *sb = inode->i_sb;
4903 if (i_blocks <= ~0U) {
4905 * i_blocks can be represnted in a 32 bit variable
4906 * as multiple of 512 bytes
4908 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4909 raw_inode->i_blocks_high = 0;
4910 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4911 return 0;
4913 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4914 return -EFBIG;
4916 if (i_blocks <= 0xffffffffffffULL) {
4918 * i_blocks can be represented in a 48 bit variable
4919 * as multiple of 512 bytes
4921 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4922 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4923 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4924 } else {
4925 ei->i_flags |= EXT4_HUGE_FILE_FL;
4926 /* i_block is stored in file system block size */
4927 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4928 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4929 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4931 return 0;
4935 * Post the struct inode info into an on-disk inode location in the
4936 * buffer-cache. This gobbles the caller's reference to the
4937 * buffer_head in the inode location struct.
4939 * The caller must have write access to iloc->bh.
4941 static int ext4_do_update_inode(handle_t *handle,
4942 struct inode *inode,
4943 struct ext4_iloc *iloc)
4945 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4946 struct ext4_inode_info *ei = EXT4_I(inode);
4947 struct buffer_head *bh = iloc->bh;
4948 int err = 0, rc, block;
4950 /* For fields not not tracking in the in-memory inode,
4951 * initialise them to zero for new inodes. */
4952 if (ei->i_state & EXT4_STATE_NEW)
4953 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4955 ext4_get_inode_flags(ei);
4956 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4957 if (!(test_opt(inode->i_sb, NO_UID32))) {
4958 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4959 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4961 * Fix up interoperability with old kernels. Otherwise, old inodes get
4962 * re-used with the upper 16 bits of the uid/gid intact
4964 if (!ei->i_dtime) {
4965 raw_inode->i_uid_high =
4966 cpu_to_le16(high_16_bits(inode->i_uid));
4967 raw_inode->i_gid_high =
4968 cpu_to_le16(high_16_bits(inode->i_gid));
4969 } else {
4970 raw_inode->i_uid_high = 0;
4971 raw_inode->i_gid_high = 0;
4973 } else {
4974 raw_inode->i_uid_low =
4975 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4976 raw_inode->i_gid_low =
4977 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4978 raw_inode->i_uid_high = 0;
4979 raw_inode->i_gid_high = 0;
4981 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4983 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4984 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4985 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4986 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4988 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4989 goto out_brelse;
4990 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4991 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
4992 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4993 cpu_to_le32(EXT4_OS_HURD))
4994 raw_inode->i_file_acl_high =
4995 cpu_to_le16(ei->i_file_acl >> 32);
4996 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4997 ext4_isize_set(raw_inode, ei->i_disksize);
4998 if (ei->i_disksize > 0x7fffffffULL) {
4999 struct super_block *sb = inode->i_sb;
5000 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5001 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5002 EXT4_SB(sb)->s_es->s_rev_level ==
5003 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5004 /* If this is the first large file
5005 * created, add a flag to the superblock.
5007 err = ext4_journal_get_write_access(handle,
5008 EXT4_SB(sb)->s_sbh);
5009 if (err)
5010 goto out_brelse;
5011 ext4_update_dynamic_rev(sb);
5012 EXT4_SET_RO_COMPAT_FEATURE(sb,
5013 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5014 sb->s_dirt = 1;
5015 ext4_handle_sync(handle);
5016 err = ext4_handle_dirty_metadata(handle, inode,
5017 EXT4_SB(sb)->s_sbh);
5020 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5021 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5022 if (old_valid_dev(inode->i_rdev)) {
5023 raw_inode->i_block[0] =
5024 cpu_to_le32(old_encode_dev(inode->i_rdev));
5025 raw_inode->i_block[1] = 0;
5026 } else {
5027 raw_inode->i_block[0] = 0;
5028 raw_inode->i_block[1] =
5029 cpu_to_le32(new_encode_dev(inode->i_rdev));
5030 raw_inode->i_block[2] = 0;
5032 } else
5033 for (block = 0; block < EXT4_N_BLOCKS; block++)
5034 raw_inode->i_block[block] = ei->i_data[block];
5036 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5037 if (ei->i_extra_isize) {
5038 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5039 raw_inode->i_version_hi =
5040 cpu_to_le32(inode->i_version >> 32);
5041 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5044 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5045 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5046 if (!err)
5047 err = rc;
5048 ei->i_state &= ~EXT4_STATE_NEW;
5050 out_brelse:
5051 brelse(bh);
5052 ext4_std_error(inode->i_sb, err);
5053 return err;
5057 * ext4_write_inode()
5059 * We are called from a few places:
5061 * - Within generic_file_write() for O_SYNC files.
5062 * Here, there will be no transaction running. We wait for any running
5063 * trasnaction to commit.
5065 * - Within sys_sync(), kupdate and such.
5066 * We wait on commit, if tol to.
5068 * - Within prune_icache() (PF_MEMALLOC == true)
5069 * Here we simply return. We can't afford to block kswapd on the
5070 * journal commit.
5072 * In all cases it is actually safe for us to return without doing anything,
5073 * because the inode has been copied into a raw inode buffer in
5074 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5075 * knfsd.
5077 * Note that we are absolutely dependent upon all inode dirtiers doing the
5078 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5079 * which we are interested.
5081 * It would be a bug for them to not do this. The code:
5083 * mark_inode_dirty(inode)
5084 * stuff();
5085 * inode->i_size = expr;
5087 * is in error because a kswapd-driven write_inode() could occur while
5088 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5089 * will no longer be on the superblock's dirty inode list.
5091 int ext4_write_inode(struct inode *inode, int wait)
5093 int err;
5095 if (current->flags & PF_MEMALLOC)
5096 return 0;
5098 if (EXT4_SB(inode->i_sb)->s_journal) {
5099 if (ext4_journal_current_handle()) {
5100 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5101 dump_stack();
5102 return -EIO;
5105 if (!wait)
5106 return 0;
5108 err = ext4_force_commit(inode->i_sb);
5109 } else {
5110 struct ext4_iloc iloc;
5112 err = ext4_get_inode_loc(inode, &iloc);
5113 if (err)
5114 return err;
5115 if (wait)
5116 sync_dirty_buffer(iloc.bh);
5117 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5118 ext4_error(inode->i_sb, __func__,
5119 "IO error syncing inode, "
5120 "inode=%lu, block=%llu",
5121 inode->i_ino,
5122 (unsigned long long)iloc.bh->b_blocknr);
5123 err = -EIO;
5126 return err;
5130 * ext4_setattr()
5132 * Called from notify_change.
5134 * We want to trap VFS attempts to truncate the file as soon as
5135 * possible. In particular, we want to make sure that when the VFS
5136 * shrinks i_size, we put the inode on the orphan list and modify
5137 * i_disksize immediately, so that during the subsequent flushing of
5138 * dirty pages and freeing of disk blocks, we can guarantee that any
5139 * commit will leave the blocks being flushed in an unused state on
5140 * disk. (On recovery, the inode will get truncated and the blocks will
5141 * be freed, so we have a strong guarantee that no future commit will
5142 * leave these blocks visible to the user.)
5144 * Another thing we have to assure is that if we are in ordered mode
5145 * and inode is still attached to the committing transaction, we must
5146 * we start writeout of all the dirty pages which are being truncated.
5147 * This way we are sure that all the data written in the previous
5148 * transaction are already on disk (truncate waits for pages under
5149 * writeback).
5151 * Called with inode->i_mutex down.
5153 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5155 struct inode *inode = dentry->d_inode;
5156 int error, rc = 0;
5157 const unsigned int ia_valid = attr->ia_valid;
5159 error = inode_change_ok(inode, attr);
5160 if (error)
5161 return error;
5163 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5164 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5165 handle_t *handle;
5167 /* (user+group)*(old+new) structure, inode write (sb,
5168 * inode block, ? - but truncate inode update has it) */
5169 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5170 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
5171 if (IS_ERR(handle)) {
5172 error = PTR_ERR(handle);
5173 goto err_out;
5175 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5176 if (error) {
5177 ext4_journal_stop(handle);
5178 return error;
5180 /* Update corresponding info in inode so that everything is in
5181 * one transaction */
5182 if (attr->ia_valid & ATTR_UID)
5183 inode->i_uid = attr->ia_uid;
5184 if (attr->ia_valid & ATTR_GID)
5185 inode->i_gid = attr->ia_gid;
5186 error = ext4_mark_inode_dirty(handle, inode);
5187 ext4_journal_stop(handle);
5190 if (attr->ia_valid & ATTR_SIZE) {
5191 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5192 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5194 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5195 error = -EFBIG;
5196 goto err_out;
5201 if (S_ISREG(inode->i_mode) &&
5202 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5203 handle_t *handle;
5205 handle = ext4_journal_start(inode, 3);
5206 if (IS_ERR(handle)) {
5207 error = PTR_ERR(handle);
5208 goto err_out;
5211 error = ext4_orphan_add(handle, inode);
5212 EXT4_I(inode)->i_disksize = attr->ia_size;
5213 rc = ext4_mark_inode_dirty(handle, inode);
5214 if (!error)
5215 error = rc;
5216 ext4_journal_stop(handle);
5218 if (ext4_should_order_data(inode)) {
5219 error = ext4_begin_ordered_truncate(inode,
5220 attr->ia_size);
5221 if (error) {
5222 /* Do as much error cleanup as possible */
5223 handle = ext4_journal_start(inode, 3);
5224 if (IS_ERR(handle)) {
5225 ext4_orphan_del(NULL, inode);
5226 goto err_out;
5228 ext4_orphan_del(handle, inode);
5229 ext4_journal_stop(handle);
5230 goto err_out;
5235 rc = inode_setattr(inode, attr);
5237 /* If inode_setattr's call to ext4_truncate failed to get a
5238 * transaction handle at all, we need to clean up the in-core
5239 * orphan list manually. */
5240 if (inode->i_nlink)
5241 ext4_orphan_del(NULL, inode);
5243 if (!rc && (ia_valid & ATTR_MODE))
5244 rc = ext4_acl_chmod(inode);
5246 err_out:
5247 ext4_std_error(inode->i_sb, error);
5248 if (!error)
5249 error = rc;
5250 return error;
5253 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5254 struct kstat *stat)
5256 struct inode *inode;
5257 unsigned long delalloc_blocks;
5259 inode = dentry->d_inode;
5260 generic_fillattr(inode, stat);
5263 * We can't update i_blocks if the block allocation is delayed
5264 * otherwise in the case of system crash before the real block
5265 * allocation is done, we will have i_blocks inconsistent with
5266 * on-disk file blocks.
5267 * We always keep i_blocks updated together with real
5268 * allocation. But to not confuse with user, stat
5269 * will return the blocks that include the delayed allocation
5270 * blocks for this file.
5272 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5273 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5274 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5276 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5277 return 0;
5280 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5281 int chunk)
5283 int indirects;
5285 /* if nrblocks are contiguous */
5286 if (chunk) {
5288 * With N contiguous data blocks, it need at most
5289 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5290 * 2 dindirect blocks
5291 * 1 tindirect block
5293 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5294 return indirects + 3;
5297 * if nrblocks are not contiguous, worse case, each block touch
5298 * a indirect block, and each indirect block touch a double indirect
5299 * block, plus a triple indirect block
5301 indirects = nrblocks * 2 + 1;
5302 return indirects;
5305 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5307 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5308 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5309 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5313 * Account for index blocks, block groups bitmaps and block group
5314 * descriptor blocks if modify datablocks and index blocks
5315 * worse case, the indexs blocks spread over different block groups
5317 * If datablocks are discontiguous, they are possible to spread over
5318 * different block groups too. If they are contiugous, with flexbg,
5319 * they could still across block group boundary.
5321 * Also account for superblock, inode, quota and xattr blocks
5323 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5325 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5326 int gdpblocks;
5327 int idxblocks;
5328 int ret = 0;
5331 * How many index blocks need to touch to modify nrblocks?
5332 * The "Chunk" flag indicating whether the nrblocks is
5333 * physically contiguous on disk
5335 * For Direct IO and fallocate, they calls get_block to allocate
5336 * one single extent at a time, so they could set the "Chunk" flag
5338 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5340 ret = idxblocks;
5343 * Now let's see how many group bitmaps and group descriptors need
5344 * to account
5346 groups = idxblocks;
5347 if (chunk)
5348 groups += 1;
5349 else
5350 groups += nrblocks;
5352 gdpblocks = groups;
5353 if (groups > ngroups)
5354 groups = ngroups;
5355 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5356 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5358 /* bitmaps and block group descriptor blocks */
5359 ret += groups + gdpblocks;
5361 /* Blocks for super block, inode, quota and xattr blocks */
5362 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5364 return ret;
5368 * Calulate the total number of credits to reserve to fit
5369 * the modification of a single pages into a single transaction,
5370 * which may include multiple chunks of block allocations.
5372 * This could be called via ext4_write_begin()
5374 * We need to consider the worse case, when
5375 * one new block per extent.
5377 int ext4_writepage_trans_blocks(struct inode *inode)
5379 int bpp = ext4_journal_blocks_per_page(inode);
5380 int ret;
5382 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5384 /* Account for data blocks for journalled mode */
5385 if (ext4_should_journal_data(inode))
5386 ret += bpp;
5387 return ret;
5391 * Calculate the journal credits for a chunk of data modification.
5393 * This is called from DIO, fallocate or whoever calling
5394 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5396 * journal buffers for data blocks are not included here, as DIO
5397 * and fallocate do no need to journal data buffers.
5399 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5401 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5405 * The caller must have previously called ext4_reserve_inode_write().
5406 * Give this, we know that the caller already has write access to iloc->bh.
5408 int ext4_mark_iloc_dirty(handle_t *handle,
5409 struct inode *inode, struct ext4_iloc *iloc)
5411 int err = 0;
5413 if (test_opt(inode->i_sb, I_VERSION))
5414 inode_inc_iversion(inode);
5416 /* the do_update_inode consumes one bh->b_count */
5417 get_bh(iloc->bh);
5419 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5420 err = ext4_do_update_inode(handle, inode, iloc);
5421 put_bh(iloc->bh);
5422 return err;
5426 * On success, We end up with an outstanding reference count against
5427 * iloc->bh. This _must_ be cleaned up later.
5431 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5432 struct ext4_iloc *iloc)
5434 int err;
5436 err = ext4_get_inode_loc(inode, iloc);
5437 if (!err) {
5438 BUFFER_TRACE(iloc->bh, "get_write_access");
5439 err = ext4_journal_get_write_access(handle, iloc->bh);
5440 if (err) {
5441 brelse(iloc->bh);
5442 iloc->bh = NULL;
5445 ext4_std_error(inode->i_sb, err);
5446 return err;
5450 * Expand an inode by new_extra_isize bytes.
5451 * Returns 0 on success or negative error number on failure.
5453 static int ext4_expand_extra_isize(struct inode *inode,
5454 unsigned int new_extra_isize,
5455 struct ext4_iloc iloc,
5456 handle_t *handle)
5458 struct ext4_inode *raw_inode;
5459 struct ext4_xattr_ibody_header *header;
5460 struct ext4_xattr_entry *entry;
5462 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5463 return 0;
5465 raw_inode = ext4_raw_inode(&iloc);
5467 header = IHDR(inode, raw_inode);
5468 entry = IFIRST(header);
5470 /* No extended attributes present */
5471 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5472 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5473 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5474 new_extra_isize);
5475 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5476 return 0;
5479 /* try to expand with EAs present */
5480 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5481 raw_inode, handle);
5485 * What we do here is to mark the in-core inode as clean with respect to inode
5486 * dirtiness (it may still be data-dirty).
5487 * This means that the in-core inode may be reaped by prune_icache
5488 * without having to perform any I/O. This is a very good thing,
5489 * because *any* task may call prune_icache - even ones which
5490 * have a transaction open against a different journal.
5492 * Is this cheating? Not really. Sure, we haven't written the
5493 * inode out, but prune_icache isn't a user-visible syncing function.
5494 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5495 * we start and wait on commits.
5497 * Is this efficient/effective? Well, we're being nice to the system
5498 * by cleaning up our inodes proactively so they can be reaped
5499 * without I/O. But we are potentially leaving up to five seconds'
5500 * worth of inodes floating about which prune_icache wants us to
5501 * write out. One way to fix that would be to get prune_icache()
5502 * to do a write_super() to free up some memory. It has the desired
5503 * effect.
5505 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5507 struct ext4_iloc iloc;
5508 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5509 static unsigned int mnt_count;
5510 int err, ret;
5512 might_sleep();
5513 err = ext4_reserve_inode_write(handle, inode, &iloc);
5514 if (ext4_handle_valid(handle) &&
5515 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5516 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5518 * We need extra buffer credits since we may write into EA block
5519 * with this same handle. If journal_extend fails, then it will
5520 * only result in a minor loss of functionality for that inode.
5521 * If this is felt to be critical, then e2fsck should be run to
5522 * force a large enough s_min_extra_isize.
5524 if ((jbd2_journal_extend(handle,
5525 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5526 ret = ext4_expand_extra_isize(inode,
5527 sbi->s_want_extra_isize,
5528 iloc, handle);
5529 if (ret) {
5530 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5531 if (mnt_count !=
5532 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5533 ext4_warning(inode->i_sb, __func__,
5534 "Unable to expand inode %lu. Delete"
5535 " some EAs or run e2fsck.",
5536 inode->i_ino);
5537 mnt_count =
5538 le16_to_cpu(sbi->s_es->s_mnt_count);
5543 if (!err)
5544 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5545 return err;
5549 * ext4_dirty_inode() is called from __mark_inode_dirty()
5551 * We're really interested in the case where a file is being extended.
5552 * i_size has been changed by generic_commit_write() and we thus need
5553 * to include the updated inode in the current transaction.
5555 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5556 * are allocated to the file.
5558 * If the inode is marked synchronous, we don't honour that here - doing
5559 * so would cause a commit on atime updates, which we don't bother doing.
5560 * We handle synchronous inodes at the highest possible level.
5562 void ext4_dirty_inode(struct inode *inode)
5564 handle_t *handle;
5566 handle = ext4_journal_start(inode, 2);
5567 if (IS_ERR(handle))
5568 goto out;
5570 ext4_mark_inode_dirty(handle, inode);
5572 ext4_journal_stop(handle);
5573 out:
5574 return;
5577 #if 0
5579 * Bind an inode's backing buffer_head into this transaction, to prevent
5580 * it from being flushed to disk early. Unlike
5581 * ext4_reserve_inode_write, this leaves behind no bh reference and
5582 * returns no iloc structure, so the caller needs to repeat the iloc
5583 * lookup to mark the inode dirty later.
5585 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5587 struct ext4_iloc iloc;
5589 int err = 0;
5590 if (handle) {
5591 err = ext4_get_inode_loc(inode, &iloc);
5592 if (!err) {
5593 BUFFER_TRACE(iloc.bh, "get_write_access");
5594 err = jbd2_journal_get_write_access(handle, iloc.bh);
5595 if (!err)
5596 err = ext4_handle_dirty_metadata(handle,
5597 inode,
5598 iloc.bh);
5599 brelse(iloc.bh);
5602 ext4_std_error(inode->i_sb, err);
5603 return err;
5605 #endif
5607 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5609 journal_t *journal;
5610 handle_t *handle;
5611 int err;
5614 * We have to be very careful here: changing a data block's
5615 * journaling status dynamically is dangerous. If we write a
5616 * data block to the journal, change the status and then delete
5617 * that block, we risk forgetting to revoke the old log record
5618 * from the journal and so a subsequent replay can corrupt data.
5619 * So, first we make sure that the journal is empty and that
5620 * nobody is changing anything.
5623 journal = EXT4_JOURNAL(inode);
5624 if (!journal)
5625 return 0;
5626 if (is_journal_aborted(journal))
5627 return -EROFS;
5629 jbd2_journal_lock_updates(journal);
5630 jbd2_journal_flush(journal);
5633 * OK, there are no updates running now, and all cached data is
5634 * synced to disk. We are now in a completely consistent state
5635 * which doesn't have anything in the journal, and we know that
5636 * no filesystem updates are running, so it is safe to modify
5637 * the inode's in-core data-journaling state flag now.
5640 if (val)
5641 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5642 else
5643 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5644 ext4_set_aops(inode);
5646 jbd2_journal_unlock_updates(journal);
5648 /* Finally we can mark the inode as dirty. */
5650 handle = ext4_journal_start(inode, 1);
5651 if (IS_ERR(handle))
5652 return PTR_ERR(handle);
5654 err = ext4_mark_inode_dirty(handle, inode);
5655 ext4_handle_sync(handle);
5656 ext4_journal_stop(handle);
5657 ext4_std_error(inode->i_sb, err);
5659 return err;
5662 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5664 return !buffer_mapped(bh);
5667 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5669 struct page *page = vmf->page;
5670 loff_t size;
5671 unsigned long len;
5672 int ret = -EINVAL;
5673 void *fsdata;
5674 struct file *file = vma->vm_file;
5675 struct inode *inode = file->f_path.dentry->d_inode;
5676 struct address_space *mapping = inode->i_mapping;
5679 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5680 * get i_mutex because we are already holding mmap_sem.
5682 down_read(&inode->i_alloc_sem);
5683 size = i_size_read(inode);
5684 if (page->mapping != mapping || size <= page_offset(page)
5685 || !PageUptodate(page)) {
5686 /* page got truncated from under us? */
5687 goto out_unlock;
5689 ret = 0;
5690 if (PageMappedToDisk(page))
5691 goto out_unlock;
5693 if (page->index == size >> PAGE_CACHE_SHIFT)
5694 len = size & ~PAGE_CACHE_MASK;
5695 else
5696 len = PAGE_CACHE_SIZE;
5698 lock_page(page);
5700 * return if we have all the buffers mapped. This avoid
5701 * the need to call write_begin/write_end which does a
5702 * journal_start/journal_stop which can block and take
5703 * long time
5705 if (page_has_buffers(page)) {
5706 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5707 ext4_bh_unmapped)) {
5708 unlock_page(page);
5709 goto out_unlock;
5712 unlock_page(page);
5714 * OK, we need to fill the hole... Do write_begin write_end
5715 * to do block allocation/reservation.We are not holding
5716 * inode.i__mutex here. That allow * parallel write_begin,
5717 * write_end call. lock_page prevent this from happening
5718 * on the same page though
5720 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5721 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5722 if (ret < 0)
5723 goto out_unlock;
5724 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5725 len, len, page, fsdata);
5726 if (ret < 0)
5727 goto out_unlock;
5728 ret = 0;
5729 out_unlock:
5730 if (ret)
5731 ret = VM_FAULT_SIGBUS;
5732 up_read(&inode->i_alloc_sem);
5733 return ret;