ipw2200 trivial annotations
[linux-2.6/libata-dev.git] / drivers / net / wireless / ipw2200.c
blob7ac57f1fc18b637564e52e657cb91e91e9df9001
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include "ipw2200.h"
34 #include <linux/version.h>
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99 'a', 'b', 'g', '?'
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
105 #endif
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 QOS_TX3_CW_MIN_CCK},
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 QOS_TX3_CW_MAX_CCK},
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 DEF_TX3_CW_MIN_CCK},
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 DEF_TX3_CW_MAX_CCK},
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 *qos_param);
172 #endif /* CONFIG_IPW2200_QOS */
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182 int len, int sync);
184 static void ipw_tx_queue_free(struct ipw_priv *);
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
202 int out, i, j, l;
203 char c;
205 out = snprintf(buf, count, "%08X", ofs);
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
211 data[(i * 8 + j)]);
212 for (; j < 8; j++)
213 out += snprintf(buf + out, count - out, " ");
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
222 c = '.';
224 out += snprintf(buf + out, count - out, "%c", c);
227 for (; j < 8; j++)
228 out += snprintf(buf + out, count - out, " ");
231 return out;
234 static void printk_buf(int level, const u8 * data, u32 len)
236 char line[81];
237 u32 ofs = 0;
238 if (!(ipw_debug_level & level))
239 return;
241 while (len) {
242 snprint_line(line, sizeof(line), &data[ofs],
243 min(len, 16U), ofs);
244 printk(KERN_DEBUG "%s\n", line);
245 ofs += 16;
246 len -= min(len, 16U);
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
252 size_t out = size;
253 u32 ofs = 0;
254 int total = 0;
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
260 ofs += 16;
261 output += out;
262 size -= out;
263 len -= min_t(size_t, len, 16U);
264 total += out;
266 return total;
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374 _ipw_read_indirect(a, b, c, d);
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
430 u32 value;
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
451 if (num <= 0) {
452 return;
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
488 if (num <= 0) {
489 return;
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
519 memcpy_toio((priv->hw_base + addr), buf, num);
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
552 unsigned long flags;
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
561 unsigned long flags;
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
568 static char *ipw_error_desc(u32 val)
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
609 u32 i;
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
635 static inline int ipw_is_init(struct ipw_priv *priv)
637 return (priv->status & STATUS_INIT) ? 1 : 0;
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 u32 addr, field_info, field_len, field_count, total_len;
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
660 * TABLE 0: Direct access to a table of 32 bit values
662 * This is a very simple table with the data directly
663 * read from the table
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
691 case IPW_ORD_TABLE_1_MASK:
693 * TABLE 1: Indirect access to a table of 32 bit values
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
721 case IPW_ORD_TABLE_2_MASK:
723 * TABLE 2: Indirect access to a table of variable sized values
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
763 *len = total_len;
764 if (!total_len)
765 return 0;
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
779 return 0;
782 static void ipw_init_ordinals(struct ipw_priv *priv)
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
805 static u32 ipw_register_toggle(u32 reg)
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830 static void ipw_led_link_on(struct ipw_priv *priv)
832 unsigned long flags;
833 u32 led;
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
840 spin_lock_irqsave(&priv->lock, flags);
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
848 led = ipw_register_toggle(led);
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853 priv->status |= STATUS_LED_LINK_ON;
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
862 spin_unlock_irqrestore(&priv->lock, flags);
865 static void ipw_bg_led_link_on(struct work_struct *work)
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
874 static void ipw_led_link_off(struct ipw_priv *priv)
876 unsigned long flags;
877 u32 led;
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
884 spin_lock_irqsave(&priv->lock, flags);
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894 IPW_DEBUG_LED("Link LED Off\n");
896 priv->status &= ~STATUS_LED_LINK_ON;
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
907 spin_unlock_irqrestore(&priv->lock, flags);
910 static void ipw_bg_led_link_off(struct work_struct *work)
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
921 u32 led;
923 if (priv->config & CFG_NO_LED)
924 return;
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
933 led = ipw_register_toggle(led);
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938 IPW_DEBUG_LED("Activity LED On\n");
940 priv->status |= STATUS_LED_ACT_ON;
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
961 #endif /* 0 */
963 static void ipw_led_activity_off(struct ipw_priv *priv)
965 unsigned long flags;
966 u32 led;
968 if (priv->config & CFG_NO_LED)
969 return;
971 spin_lock_irqsave(&priv->lock, flags);
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
977 led = ipw_register_toggle(led);
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982 IPW_DEBUG_LED("Activity LED Off\n");
984 priv->status &= ~STATUS_LED_ACT_ON;
987 spin_unlock_irqrestore(&priv->lock, flags);
990 static void ipw_bg_led_activity_off(struct work_struct *work)
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
999 static void ipw_led_band_on(struct ipw_priv *priv)
1001 unsigned long flags;
1002 u32 led;
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1009 spin_lock_irqsave(&priv->lock, flags);
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1026 led = ipw_register_toggle(led);
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031 spin_unlock_irqrestore(&priv->lock, flags);
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1036 unsigned long flags;
1037 u32 led;
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1043 spin_lock_irqsave(&priv->lock, flags);
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1049 led = ipw_register_toggle(led);
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054 spin_unlock_irqrestore(&priv->lock, flags);
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 ipw_led_link_on(priv);
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1083 static void ipw_led_init(struct ipw_priv *priv)
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1149 * See the level definitions in ipw for details.
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1159 char *p = (char *)buf;
1160 u32 val;
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1175 return strnlen(buf, count);
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1190 u32 base;
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1222 ipw_capture_event_log(priv, log_len, error->log);
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1228 return error;
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 u32 log_size;
1237 struct ipw_event *log;
1238 u32 len = 0, i;
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1244 if (!log) {
1245 IPW_ERROR("Unable to allocate memory for log\n");
1246 return 0;
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1254 "\n%08X%08X%08X",
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257 kfree(log);
1258 return len;
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1267 u32 len = 0, i;
1268 if (!priv->error)
1269 return 0;
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1290 "\n%08X%08X%08X",
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295 return len;
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1304 kfree(priv->error);
1305 priv->error = NULL;
1306 return count;
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1315 u32 len = 0, i;
1316 if (!priv->cmdlog)
1317 return 0;
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1321 len +=
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1326 len +=
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 return len;
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 int rc = 0;
1348 if (count < 1)
1349 return -EINVAL;
1351 switch (buf[0]) {
1352 case '0':
1353 if (!rtap_iface)
1354 return count;
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1358 return count;
1361 ipw_prom_free(priv);
1362 rtap_iface = 0;
1363 break;
1365 case '1':
1366 if (rtap_iface)
1367 return count;
1369 rc = ipw_prom_alloc(priv);
1370 if (!rc)
1371 rtap_iface = 1;
1372 break;
1374 default:
1375 return -EINVAL;
1378 if (rc) {
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1383 return count;
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1388 char *buf)
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1391 if (rtap_iface)
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393 else {
1394 buf[0] = '-';
1395 buf[1] = '1';
1396 buf[2] = '\0';
1397 return 3;
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402 store_rtap_iface);
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1413 return -EPERM;
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1421 return count;
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1426 char *buf)
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434 store_rtap_filter);
1435 #endif
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438 char *buf)
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1450 unsigned long len =
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452 unsigned long val;
1453 char *p = buffer;
1455 IPW_DEBUG_INFO("enter\n");
1457 strncpy(buffer, buf, len);
1458 buffer[len] = 0;
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461 p++;
1462 if (p[0] == 'x' || p[0] == 'X')
1463 p++;
1464 val = simple_strtoul(p, &p, 16);
1465 } else
1466 val = simple_strtoul(p, &p, 10);
1467 if (p == buffer) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1474 IPW_DEBUG_INFO("exit\n");
1475 return len;
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481 char *buf)
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1492 IPW_DEBUG_INFO("enter\n");
1494 if (count == 0)
1495 return 0;
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523 char *buf)
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1549 return sprintf(buf, "0x%08x\n", tmp);
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555 char *buf)
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1563 return sprintf(buf, "0x%08x\n", tmp);
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1593 u32 reg = 0;
1594 struct ipw_priv *p = d->driver_data;
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1603 u32 reg;
1604 struct ipw_priv *p = d->driver_data;
1606 sscanf(buf, "%x", &reg);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1617 u32 reg = 0;
1618 struct ipw_priv *p = d->driver_data;
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1627 u32 reg;
1628 struct ipw_priv *p = d->driver_data;
1630 sscanf(buf, "%x", &reg);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1641 u32 reg = 0;
1642 struct ipw_priv *priv = d->driver_data;
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646 else
1647 reg = 0;
1649 return sprintf(buf, "0x%08x\n", reg);
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1655 struct ipw_priv *priv = d->driver_data;
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1668 u8 reg = 0;
1669 struct ipw_priv *priv = d->driver_data;
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673 else
1674 reg = 0;
1676 return sprintf(buf, "0x%02x\n", reg);
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1682 struct ipw_priv *priv = d->driver_data;
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1695 u32 reg = 0;
1696 struct ipw_priv *priv = d->driver_data;
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1700 else
1701 reg = 0;
1703 return sprintf(buf, "0x%08x\n", reg);
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1709 struct ipw_priv *priv = d->driver_data;
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1719 static int rf_kill_active(struct ipw_priv *priv)
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1723 else
1724 priv->status &= ~STATUS_RF_KILL_HW;
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730 char *buf)
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746 return 0;
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->scan_event);
1758 queue_work(priv->workqueue, &priv->down);
1759 } else {
1760 priv->status &= ~STATUS_RF_KILL_SW;
1761 if (rf_kill_active(priv)) {
1762 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1763 "disabled by HW switch\n");
1764 /* Make sure the RF_KILL check timer is running */
1765 cancel_delayed_work(&priv->rf_kill);
1766 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1767 round_jiffies_relative(2 * HZ));
1768 } else
1769 queue_work(priv->workqueue, &priv->up);
1772 return 1;
1775 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1776 const char *buf, size_t count)
1778 struct ipw_priv *priv = d->driver_data;
1780 ipw_radio_kill_sw(priv, buf[0] == '1');
1782 return count;
1785 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1787 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1788 char *buf)
1790 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1791 int pos = 0, len = 0;
1792 if (priv->config & CFG_SPEED_SCAN) {
1793 while (priv->speed_scan[pos] != 0)
1794 len += sprintf(&buf[len], "%d ",
1795 priv->speed_scan[pos++]);
1796 return len + sprintf(&buf[len], "\n");
1799 return sprintf(buf, "0\n");
1802 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1803 const char *buf, size_t count)
1805 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1806 int channel, pos = 0;
1807 const char *p = buf;
1809 /* list of space separated channels to scan, optionally ending with 0 */
1810 while ((channel = simple_strtol(p, NULL, 0))) {
1811 if (pos == MAX_SPEED_SCAN - 1) {
1812 priv->speed_scan[pos] = 0;
1813 break;
1816 if (ieee80211_is_valid_channel(priv->ieee, channel))
1817 priv->speed_scan[pos++] = channel;
1818 else
1819 IPW_WARNING("Skipping invalid channel request: %d\n",
1820 channel);
1821 p = strchr(p, ' ');
1822 if (!p)
1823 break;
1824 while (*p == ' ' || *p == '\t')
1825 p++;
1828 if (pos == 0)
1829 priv->config &= ~CFG_SPEED_SCAN;
1830 else {
1831 priv->speed_scan_pos = 0;
1832 priv->config |= CFG_SPEED_SCAN;
1835 return count;
1838 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1839 store_speed_scan);
1841 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1842 char *buf)
1844 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1845 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1848 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1849 const char *buf, size_t count)
1851 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1852 if (buf[0] == '1')
1853 priv->config |= CFG_NET_STATS;
1854 else
1855 priv->config &= ~CFG_NET_STATS;
1857 return count;
1860 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1861 show_net_stats, store_net_stats);
1863 static ssize_t show_channels(struct device *d,
1864 struct device_attribute *attr,
1865 char *buf)
1867 struct ipw_priv *priv = dev_get_drvdata(d);
1868 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1869 int len = 0, i;
1871 len = sprintf(&buf[len],
1872 "Displaying %d channels in 2.4Ghz band "
1873 "(802.11bg):\n", geo->bg_channels);
1875 for (i = 0; i < geo->bg_channels; i++) {
1876 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1877 geo->bg[i].channel,
1878 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1879 " (radar spectrum)" : "",
1880 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1881 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1882 ? "" : ", IBSS",
1883 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1884 "passive only" : "active/passive",
1885 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1886 "B" : "B/G");
1889 len += sprintf(&buf[len],
1890 "Displaying %d channels in 5.2Ghz band "
1891 "(802.11a):\n", geo->a_channels);
1892 for (i = 0; i < geo->a_channels; i++) {
1893 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1894 geo->a[i].channel,
1895 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896 " (radar spectrum)" : "",
1897 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1898 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1899 ? "" : ", IBSS",
1900 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901 "passive only" : "active/passive");
1904 return len;
1907 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1909 static void notify_wx_assoc_event(struct ipw_priv *priv)
1911 union iwreq_data wrqu;
1912 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1913 if (priv->status & STATUS_ASSOCIATED)
1914 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1915 else
1916 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1917 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1920 static void ipw_irq_tasklet(struct ipw_priv *priv)
1922 u32 inta, inta_mask, handled = 0;
1923 unsigned long flags;
1924 int rc = 0;
1926 spin_lock_irqsave(&priv->irq_lock, flags);
1928 inta = ipw_read32(priv, IPW_INTA_RW);
1929 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1930 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1932 /* Add any cached INTA values that need to be handled */
1933 inta |= priv->isr_inta;
1935 spin_unlock_irqrestore(&priv->irq_lock, flags);
1937 spin_lock_irqsave(&priv->lock, flags);
1939 /* handle all the justifications for the interrupt */
1940 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1941 ipw_rx(priv);
1942 handled |= IPW_INTA_BIT_RX_TRANSFER;
1945 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1946 IPW_DEBUG_HC("Command completed.\n");
1947 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1948 priv->status &= ~STATUS_HCMD_ACTIVE;
1949 wake_up_interruptible(&priv->wait_command_queue);
1950 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1953 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1954 IPW_DEBUG_TX("TX_QUEUE_1\n");
1955 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1956 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1959 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1960 IPW_DEBUG_TX("TX_QUEUE_2\n");
1961 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1962 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1965 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1966 IPW_DEBUG_TX("TX_QUEUE_3\n");
1967 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1968 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1971 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1972 IPW_DEBUG_TX("TX_QUEUE_4\n");
1973 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1974 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1977 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1978 IPW_WARNING("STATUS_CHANGE\n");
1979 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1982 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1983 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1984 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1987 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1988 IPW_WARNING("HOST_CMD_DONE\n");
1989 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1992 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1993 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1994 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1997 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1998 IPW_WARNING("PHY_OFF_DONE\n");
1999 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2002 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2003 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2004 priv->status |= STATUS_RF_KILL_HW;
2005 wake_up_interruptible(&priv->wait_command_queue);
2006 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2007 cancel_delayed_work(&priv->request_scan);
2008 cancel_delayed_work(&priv->scan_event);
2009 schedule_work(&priv->link_down);
2010 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2011 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2014 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2015 IPW_WARNING("Firmware error detected. Restarting.\n");
2016 if (priv->error) {
2017 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2018 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2019 struct ipw_fw_error *error =
2020 ipw_alloc_error_log(priv);
2021 ipw_dump_error_log(priv, error);
2022 kfree(error);
2024 } else {
2025 priv->error = ipw_alloc_error_log(priv);
2026 if (priv->error)
2027 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2028 else
2029 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2030 "log.\n");
2031 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2032 ipw_dump_error_log(priv, priv->error);
2035 /* XXX: If hardware encryption is for WPA/WPA2,
2036 * we have to notify the supplicant. */
2037 if (priv->ieee->sec.encrypt) {
2038 priv->status &= ~STATUS_ASSOCIATED;
2039 notify_wx_assoc_event(priv);
2042 /* Keep the restart process from trying to send host
2043 * commands by clearing the INIT status bit */
2044 priv->status &= ~STATUS_INIT;
2046 /* Cancel currently queued command. */
2047 priv->status &= ~STATUS_HCMD_ACTIVE;
2048 wake_up_interruptible(&priv->wait_command_queue);
2050 queue_work(priv->workqueue, &priv->adapter_restart);
2051 handled |= IPW_INTA_BIT_FATAL_ERROR;
2054 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2055 IPW_ERROR("Parity error\n");
2056 handled |= IPW_INTA_BIT_PARITY_ERROR;
2059 if (handled != inta) {
2060 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2063 spin_unlock_irqrestore(&priv->lock, flags);
2065 /* enable all interrupts */
2066 ipw_enable_interrupts(priv);
2069 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2070 static char *get_cmd_string(u8 cmd)
2072 switch (cmd) {
2073 IPW_CMD(HOST_COMPLETE);
2074 IPW_CMD(POWER_DOWN);
2075 IPW_CMD(SYSTEM_CONFIG);
2076 IPW_CMD(MULTICAST_ADDRESS);
2077 IPW_CMD(SSID);
2078 IPW_CMD(ADAPTER_ADDRESS);
2079 IPW_CMD(PORT_TYPE);
2080 IPW_CMD(RTS_THRESHOLD);
2081 IPW_CMD(FRAG_THRESHOLD);
2082 IPW_CMD(POWER_MODE);
2083 IPW_CMD(WEP_KEY);
2084 IPW_CMD(TGI_TX_KEY);
2085 IPW_CMD(SCAN_REQUEST);
2086 IPW_CMD(SCAN_REQUEST_EXT);
2087 IPW_CMD(ASSOCIATE);
2088 IPW_CMD(SUPPORTED_RATES);
2089 IPW_CMD(SCAN_ABORT);
2090 IPW_CMD(TX_FLUSH);
2091 IPW_CMD(QOS_PARAMETERS);
2092 IPW_CMD(DINO_CONFIG);
2093 IPW_CMD(RSN_CAPABILITIES);
2094 IPW_CMD(RX_KEY);
2095 IPW_CMD(CARD_DISABLE);
2096 IPW_CMD(SEED_NUMBER);
2097 IPW_CMD(TX_POWER);
2098 IPW_CMD(COUNTRY_INFO);
2099 IPW_CMD(AIRONET_INFO);
2100 IPW_CMD(AP_TX_POWER);
2101 IPW_CMD(CCKM_INFO);
2102 IPW_CMD(CCX_VER_INFO);
2103 IPW_CMD(SET_CALIBRATION);
2104 IPW_CMD(SENSITIVITY_CALIB);
2105 IPW_CMD(RETRY_LIMIT);
2106 IPW_CMD(IPW_PRE_POWER_DOWN);
2107 IPW_CMD(VAP_BEACON_TEMPLATE);
2108 IPW_CMD(VAP_DTIM_PERIOD);
2109 IPW_CMD(EXT_SUPPORTED_RATES);
2110 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2111 IPW_CMD(VAP_QUIET_INTERVALS);
2112 IPW_CMD(VAP_CHANNEL_SWITCH);
2113 IPW_CMD(VAP_MANDATORY_CHANNELS);
2114 IPW_CMD(VAP_CELL_PWR_LIMIT);
2115 IPW_CMD(VAP_CF_PARAM_SET);
2116 IPW_CMD(VAP_SET_BEACONING_STATE);
2117 IPW_CMD(MEASUREMENT);
2118 IPW_CMD(POWER_CAPABILITY);
2119 IPW_CMD(SUPPORTED_CHANNELS);
2120 IPW_CMD(TPC_REPORT);
2121 IPW_CMD(WME_INFO);
2122 IPW_CMD(PRODUCTION_COMMAND);
2123 default:
2124 return "UNKNOWN";
2128 #define HOST_COMPLETE_TIMEOUT HZ
2130 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2132 int rc = 0;
2133 unsigned long flags;
2135 spin_lock_irqsave(&priv->lock, flags);
2136 if (priv->status & STATUS_HCMD_ACTIVE) {
2137 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2138 get_cmd_string(cmd->cmd));
2139 spin_unlock_irqrestore(&priv->lock, flags);
2140 return -EAGAIN;
2143 priv->status |= STATUS_HCMD_ACTIVE;
2145 if (priv->cmdlog) {
2146 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2147 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2148 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2149 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2150 cmd->len);
2151 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2154 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2155 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2156 priv->status);
2158 #ifndef DEBUG_CMD_WEP_KEY
2159 if (cmd->cmd == IPW_CMD_WEP_KEY)
2160 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2161 else
2162 #endif
2163 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2165 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2166 if (rc) {
2167 priv->status &= ~STATUS_HCMD_ACTIVE;
2168 IPW_ERROR("Failed to send %s: Reason %d\n",
2169 get_cmd_string(cmd->cmd), rc);
2170 spin_unlock_irqrestore(&priv->lock, flags);
2171 goto exit;
2173 spin_unlock_irqrestore(&priv->lock, flags);
2175 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2176 !(priv->
2177 status & STATUS_HCMD_ACTIVE),
2178 HOST_COMPLETE_TIMEOUT);
2179 if (rc == 0) {
2180 spin_lock_irqsave(&priv->lock, flags);
2181 if (priv->status & STATUS_HCMD_ACTIVE) {
2182 IPW_ERROR("Failed to send %s: Command timed out.\n",
2183 get_cmd_string(cmd->cmd));
2184 priv->status &= ~STATUS_HCMD_ACTIVE;
2185 spin_unlock_irqrestore(&priv->lock, flags);
2186 rc = -EIO;
2187 goto exit;
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 } else
2191 rc = 0;
2193 if (priv->status & STATUS_RF_KILL_HW) {
2194 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2195 get_cmd_string(cmd->cmd));
2196 rc = -EIO;
2197 goto exit;
2200 exit:
2201 if (priv->cmdlog) {
2202 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2203 priv->cmdlog_pos %= priv->cmdlog_len;
2205 return rc;
2208 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2210 struct host_cmd cmd = {
2211 .cmd = command,
2214 return __ipw_send_cmd(priv, &cmd);
2217 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2218 void *data)
2220 struct host_cmd cmd = {
2221 .cmd = command,
2222 .len = len,
2223 .param = data,
2226 return __ipw_send_cmd(priv, &cmd);
2229 static int ipw_send_host_complete(struct ipw_priv *priv)
2231 if (!priv) {
2232 IPW_ERROR("Invalid args\n");
2233 return -1;
2236 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2239 static int ipw_send_system_config(struct ipw_priv *priv)
2241 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2242 sizeof(priv->sys_config),
2243 &priv->sys_config);
2246 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2248 if (!priv || !ssid) {
2249 IPW_ERROR("Invalid args\n");
2250 return -1;
2253 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2254 ssid);
2257 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2259 if (!priv || !mac) {
2260 IPW_ERROR("Invalid args\n");
2261 return -1;
2264 IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2265 priv->net_dev->name, print_mac(mac, mac));
2267 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2271 * NOTE: This must be executed from our workqueue as it results in udelay
2272 * being called which may corrupt the keyboard if executed on default
2273 * workqueue
2275 static void ipw_adapter_restart(void *adapter)
2277 struct ipw_priv *priv = adapter;
2279 if (priv->status & STATUS_RF_KILL_MASK)
2280 return;
2282 ipw_down(priv);
2284 if (priv->assoc_network &&
2285 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2286 ipw_remove_current_network(priv);
2288 if (ipw_up(priv)) {
2289 IPW_ERROR("Failed to up device\n");
2290 return;
2294 static void ipw_bg_adapter_restart(struct work_struct *work)
2296 struct ipw_priv *priv =
2297 container_of(work, struct ipw_priv, adapter_restart);
2298 mutex_lock(&priv->mutex);
2299 ipw_adapter_restart(priv);
2300 mutex_unlock(&priv->mutex);
2303 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2305 static void ipw_scan_check(void *data)
2307 struct ipw_priv *priv = data;
2308 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2309 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2310 "adapter after (%dms).\n",
2311 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2312 queue_work(priv->workqueue, &priv->adapter_restart);
2316 static void ipw_bg_scan_check(struct work_struct *work)
2318 struct ipw_priv *priv =
2319 container_of(work, struct ipw_priv, scan_check.work);
2320 mutex_lock(&priv->mutex);
2321 ipw_scan_check(priv);
2322 mutex_unlock(&priv->mutex);
2325 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2326 struct ipw_scan_request_ext *request)
2328 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2329 sizeof(*request), request);
2332 static int ipw_send_scan_abort(struct ipw_priv *priv)
2334 if (!priv) {
2335 IPW_ERROR("Invalid args\n");
2336 return -1;
2339 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2342 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2344 struct ipw_sensitivity_calib calib = {
2345 .beacon_rssi_raw = cpu_to_le16(sens),
2348 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2349 &calib);
2352 static int ipw_send_associate(struct ipw_priv *priv,
2353 struct ipw_associate *associate)
2355 struct ipw_associate tmp_associate;
2357 if (!priv || !associate) {
2358 IPW_ERROR("Invalid args\n");
2359 return -1;
2362 memcpy(&tmp_associate, associate, sizeof(*associate));
2363 tmp_associate.policy_support =
2364 cpu_to_le16(tmp_associate.policy_support);
2365 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2366 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2367 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2368 tmp_associate.listen_interval =
2369 cpu_to_le16(tmp_associate.listen_interval);
2370 tmp_associate.beacon_interval =
2371 cpu_to_le16(tmp_associate.beacon_interval);
2372 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2374 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2375 &tmp_associate);
2378 static int ipw_send_supported_rates(struct ipw_priv *priv,
2379 struct ipw_supported_rates *rates)
2381 if (!priv || !rates) {
2382 IPW_ERROR("Invalid args\n");
2383 return -1;
2386 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2387 rates);
2390 static int ipw_set_random_seed(struct ipw_priv *priv)
2392 u32 val;
2394 if (!priv) {
2395 IPW_ERROR("Invalid args\n");
2396 return -1;
2399 get_random_bytes(&val, sizeof(val));
2401 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2404 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2406 __le32 v = cpu_to_le32(phy_off);
2407 if (!priv) {
2408 IPW_ERROR("Invalid args\n");
2409 return -1;
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2415 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2417 if (!priv || !power) {
2418 IPW_ERROR("Invalid args\n");
2419 return -1;
2422 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2425 static int ipw_set_tx_power(struct ipw_priv *priv)
2427 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2428 struct ipw_tx_power tx_power;
2429 s8 max_power;
2430 int i;
2432 memset(&tx_power, 0, sizeof(tx_power));
2434 /* configure device for 'G' band */
2435 tx_power.ieee_mode = IPW_G_MODE;
2436 tx_power.num_channels = geo->bg_channels;
2437 for (i = 0; i < geo->bg_channels; i++) {
2438 max_power = geo->bg[i].max_power;
2439 tx_power.channels_tx_power[i].channel_number =
2440 geo->bg[i].channel;
2441 tx_power.channels_tx_power[i].tx_power = max_power ?
2442 min(max_power, priv->tx_power) : priv->tx_power;
2444 if (ipw_send_tx_power(priv, &tx_power))
2445 return -EIO;
2447 /* configure device to also handle 'B' band */
2448 tx_power.ieee_mode = IPW_B_MODE;
2449 if (ipw_send_tx_power(priv, &tx_power))
2450 return -EIO;
2452 /* configure device to also handle 'A' band */
2453 if (priv->ieee->abg_true) {
2454 tx_power.ieee_mode = IPW_A_MODE;
2455 tx_power.num_channels = geo->a_channels;
2456 for (i = 0; i < tx_power.num_channels; i++) {
2457 max_power = geo->a[i].max_power;
2458 tx_power.channels_tx_power[i].channel_number =
2459 geo->a[i].channel;
2460 tx_power.channels_tx_power[i].tx_power = max_power ?
2461 min(max_power, priv->tx_power) : priv->tx_power;
2463 if (ipw_send_tx_power(priv, &tx_power))
2464 return -EIO;
2466 return 0;
2469 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2471 struct ipw_rts_threshold rts_threshold = {
2472 .rts_threshold = cpu_to_le16(rts),
2475 if (!priv) {
2476 IPW_ERROR("Invalid args\n");
2477 return -1;
2480 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2481 sizeof(rts_threshold), &rts_threshold);
2484 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2486 struct ipw_frag_threshold frag_threshold = {
2487 .frag_threshold = cpu_to_le16(frag),
2490 if (!priv) {
2491 IPW_ERROR("Invalid args\n");
2492 return -1;
2495 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2496 sizeof(frag_threshold), &frag_threshold);
2499 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2501 __le32 param;
2503 if (!priv) {
2504 IPW_ERROR("Invalid args\n");
2505 return -1;
2508 /* If on battery, set to 3, if AC set to CAM, else user
2509 * level */
2510 switch (mode) {
2511 case IPW_POWER_BATTERY:
2512 param = cpu_to_le32(IPW_POWER_INDEX_3);
2513 break;
2514 case IPW_POWER_AC:
2515 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2516 break;
2517 default:
2518 param = cpu_to_le32(mode);
2519 break;
2522 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2523 &param);
2526 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2528 struct ipw_retry_limit retry_limit = {
2529 .short_retry_limit = slimit,
2530 .long_retry_limit = llimit
2533 if (!priv) {
2534 IPW_ERROR("Invalid args\n");
2535 return -1;
2538 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2539 &retry_limit);
2543 * The IPW device contains a Microwire compatible EEPROM that stores
2544 * various data like the MAC address. Usually the firmware has exclusive
2545 * access to the eeprom, but during device initialization (before the
2546 * device driver has sent the HostComplete command to the firmware) the
2547 * device driver has read access to the EEPROM by way of indirect addressing
2548 * through a couple of memory mapped registers.
2550 * The following is a simplified implementation for pulling data out of the
2551 * the eeprom, along with some helper functions to find information in
2552 * the per device private data's copy of the eeprom.
2554 * NOTE: To better understand how these functions work (i.e what is a chip
2555 * select and why do have to keep driving the eeprom clock?), read
2556 * just about any data sheet for a Microwire compatible EEPROM.
2559 /* write a 32 bit value into the indirect accessor register */
2560 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2562 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2564 /* the eeprom requires some time to complete the operation */
2565 udelay(p->eeprom_delay);
2567 return;
2570 /* perform a chip select operation */
2571 static void eeprom_cs(struct ipw_priv *priv)
2573 eeprom_write_reg(priv, 0);
2574 eeprom_write_reg(priv, EEPROM_BIT_CS);
2575 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2576 eeprom_write_reg(priv, EEPROM_BIT_CS);
2579 /* perform a chip select operation */
2580 static void eeprom_disable_cs(struct ipw_priv *priv)
2582 eeprom_write_reg(priv, EEPROM_BIT_CS);
2583 eeprom_write_reg(priv, 0);
2584 eeprom_write_reg(priv, EEPROM_BIT_SK);
2587 /* push a single bit down to the eeprom */
2588 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2590 int d = (bit ? EEPROM_BIT_DI : 0);
2591 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2592 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2595 /* push an opcode followed by an address down to the eeprom */
2596 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2598 int i;
2600 eeprom_cs(priv);
2601 eeprom_write_bit(priv, 1);
2602 eeprom_write_bit(priv, op & 2);
2603 eeprom_write_bit(priv, op & 1);
2604 for (i = 7; i >= 0; i--) {
2605 eeprom_write_bit(priv, addr & (1 << i));
2609 /* pull 16 bits off the eeprom, one bit at a time */
2610 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2612 int i;
2613 u16 r = 0;
2615 /* Send READ Opcode */
2616 eeprom_op(priv, EEPROM_CMD_READ, addr);
2618 /* Send dummy bit */
2619 eeprom_write_reg(priv, EEPROM_BIT_CS);
2621 /* Read the byte off the eeprom one bit at a time */
2622 for (i = 0; i < 16; i++) {
2623 u32 data = 0;
2624 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2625 eeprom_write_reg(priv, EEPROM_BIT_CS);
2626 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2627 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2630 /* Send another dummy bit */
2631 eeprom_write_reg(priv, 0);
2632 eeprom_disable_cs(priv);
2634 return r;
2637 /* helper function for pulling the mac address out of the private */
2638 /* data's copy of the eeprom data */
2639 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2641 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2645 * Either the device driver (i.e. the host) or the firmware can
2646 * load eeprom data into the designated region in SRAM. If neither
2647 * happens then the FW will shutdown with a fatal error.
2649 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2650 * bit needs region of shared SRAM needs to be non-zero.
2652 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2654 int i;
2655 __le16 *eeprom = (__le16 *) priv->eeprom;
2657 IPW_DEBUG_TRACE(">>\n");
2659 /* read entire contents of eeprom into private buffer */
2660 for (i = 0; i < 128; i++)
2661 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2664 If the data looks correct, then copy it to our private
2665 copy. Otherwise let the firmware know to perform the operation
2666 on its own.
2668 if (priv->eeprom[EEPROM_VERSION] != 0) {
2669 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2671 /* write the eeprom data to sram */
2672 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2673 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2675 /* Do not load eeprom data on fatal error or suspend */
2676 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2677 } else {
2678 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2680 /* Load eeprom data on fatal error or suspend */
2681 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2684 IPW_DEBUG_TRACE("<<\n");
2687 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2689 count >>= 2;
2690 if (!count)
2691 return;
2692 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2693 while (count--)
2694 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2697 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2699 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2700 CB_NUMBER_OF_ELEMENTS_SMALL *
2701 sizeof(struct command_block));
2704 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2705 { /* start dma engine but no transfers yet */
2707 IPW_DEBUG_FW(">> : \n");
2709 /* Start the dma */
2710 ipw_fw_dma_reset_command_blocks(priv);
2712 /* Write CB base address */
2713 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2715 IPW_DEBUG_FW("<< : \n");
2716 return 0;
2719 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2721 u32 control = 0;
2723 IPW_DEBUG_FW(">> :\n");
2725 /* set the Stop and Abort bit */
2726 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2727 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2728 priv->sram_desc.last_cb_index = 0;
2730 IPW_DEBUG_FW("<< \n");
2733 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2734 struct command_block *cb)
2736 u32 address =
2737 IPW_SHARED_SRAM_DMA_CONTROL +
2738 (sizeof(struct command_block) * index);
2739 IPW_DEBUG_FW(">> :\n");
2741 ipw_write_indirect(priv, address, (u8 *) cb,
2742 (int)sizeof(struct command_block));
2744 IPW_DEBUG_FW("<< :\n");
2745 return 0;
2749 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2751 u32 control = 0;
2752 u32 index = 0;
2754 IPW_DEBUG_FW(">> :\n");
2756 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2757 ipw_fw_dma_write_command_block(priv, index,
2758 &priv->sram_desc.cb_list[index]);
2760 /* Enable the DMA in the CSR register */
2761 ipw_clear_bit(priv, IPW_RESET_REG,
2762 IPW_RESET_REG_MASTER_DISABLED |
2763 IPW_RESET_REG_STOP_MASTER);
2765 /* Set the Start bit. */
2766 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2767 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2769 IPW_DEBUG_FW("<< :\n");
2770 return 0;
2773 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2775 u32 address;
2776 u32 register_value = 0;
2777 u32 cb_fields_address = 0;
2779 IPW_DEBUG_FW(">> :\n");
2780 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2781 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2783 /* Read the DMA Controlor register */
2784 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2785 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2787 /* Print the CB values */
2788 cb_fields_address = address;
2789 register_value = ipw_read_reg32(priv, cb_fields_address);
2790 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2792 cb_fields_address += sizeof(u32);
2793 register_value = ipw_read_reg32(priv, cb_fields_address);
2794 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2796 cb_fields_address += sizeof(u32);
2797 register_value = ipw_read_reg32(priv, cb_fields_address);
2798 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2799 register_value);
2801 cb_fields_address += sizeof(u32);
2802 register_value = ipw_read_reg32(priv, cb_fields_address);
2803 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2805 IPW_DEBUG_FW(">> :\n");
2808 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2810 u32 current_cb_address = 0;
2811 u32 current_cb_index = 0;
2813 IPW_DEBUG_FW("<< :\n");
2814 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2816 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2817 sizeof(struct command_block);
2819 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2820 current_cb_index, current_cb_address);
2822 IPW_DEBUG_FW(">> :\n");
2823 return current_cb_index;
2827 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2828 u32 src_address,
2829 u32 dest_address,
2830 u32 length,
2831 int interrupt_enabled, int is_last)
2834 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2835 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2836 CB_DEST_SIZE_LONG;
2837 struct command_block *cb;
2838 u32 last_cb_element = 0;
2840 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2841 src_address, dest_address, length);
2843 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2844 return -1;
2846 last_cb_element = priv->sram_desc.last_cb_index;
2847 cb = &priv->sram_desc.cb_list[last_cb_element];
2848 priv->sram_desc.last_cb_index++;
2850 /* Calculate the new CB control word */
2851 if (interrupt_enabled)
2852 control |= CB_INT_ENABLED;
2854 if (is_last)
2855 control |= CB_LAST_VALID;
2857 control |= length;
2859 /* Calculate the CB Element's checksum value */
2860 cb->status = control ^ src_address ^ dest_address;
2862 /* Copy the Source and Destination addresses */
2863 cb->dest_addr = dest_address;
2864 cb->source_addr = src_address;
2866 /* Copy the Control Word last */
2867 cb->control = control;
2869 return 0;
2872 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2873 u32 src_phys, u32 dest_address, u32 length)
2875 u32 bytes_left = length;
2876 u32 src_offset = 0;
2877 u32 dest_offset = 0;
2878 int status = 0;
2879 IPW_DEBUG_FW(">> \n");
2880 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2881 src_phys, dest_address, length);
2882 while (bytes_left > CB_MAX_LENGTH) {
2883 status = ipw_fw_dma_add_command_block(priv,
2884 src_phys + src_offset,
2885 dest_address +
2886 dest_offset,
2887 CB_MAX_LENGTH, 0, 0);
2888 if (status) {
2889 IPW_DEBUG_FW_INFO(": Failed\n");
2890 return -1;
2891 } else
2892 IPW_DEBUG_FW_INFO(": Added new cb\n");
2894 src_offset += CB_MAX_LENGTH;
2895 dest_offset += CB_MAX_LENGTH;
2896 bytes_left -= CB_MAX_LENGTH;
2899 /* add the buffer tail */
2900 if (bytes_left > 0) {
2901 status =
2902 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2903 dest_address + dest_offset,
2904 bytes_left, 0, 0);
2905 if (status) {
2906 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2907 return -1;
2908 } else
2909 IPW_DEBUG_FW_INFO
2910 (": Adding new cb - the buffer tail\n");
2913 IPW_DEBUG_FW("<< \n");
2914 return 0;
2917 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2919 u32 current_index = 0, previous_index;
2920 u32 watchdog = 0;
2922 IPW_DEBUG_FW(">> : \n");
2924 current_index = ipw_fw_dma_command_block_index(priv);
2925 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2926 (int)priv->sram_desc.last_cb_index);
2928 while (current_index < priv->sram_desc.last_cb_index) {
2929 udelay(50);
2930 previous_index = current_index;
2931 current_index = ipw_fw_dma_command_block_index(priv);
2933 if (previous_index < current_index) {
2934 watchdog = 0;
2935 continue;
2937 if (++watchdog > 400) {
2938 IPW_DEBUG_FW_INFO("Timeout\n");
2939 ipw_fw_dma_dump_command_block(priv);
2940 ipw_fw_dma_abort(priv);
2941 return -1;
2945 ipw_fw_dma_abort(priv);
2947 /*Disable the DMA in the CSR register */
2948 ipw_set_bit(priv, IPW_RESET_REG,
2949 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2951 IPW_DEBUG_FW("<< dmaWaitSync \n");
2952 return 0;
2955 static void ipw_remove_current_network(struct ipw_priv *priv)
2957 struct list_head *element, *safe;
2958 struct ieee80211_network *network = NULL;
2959 unsigned long flags;
2961 spin_lock_irqsave(&priv->ieee->lock, flags);
2962 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2963 network = list_entry(element, struct ieee80211_network, list);
2964 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2965 list_del(element);
2966 list_add_tail(&network->list,
2967 &priv->ieee->network_free_list);
2970 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2974 * Check that card is still alive.
2975 * Reads debug register from domain0.
2976 * If card is present, pre-defined value should
2977 * be found there.
2979 * @param priv
2980 * @return 1 if card is present, 0 otherwise
2982 static inline int ipw_alive(struct ipw_priv *priv)
2984 return ipw_read32(priv, 0x90) == 0xd55555d5;
2987 /* timeout in msec, attempted in 10-msec quanta */
2988 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2989 int timeout)
2991 int i = 0;
2993 do {
2994 if ((ipw_read32(priv, addr) & mask) == mask)
2995 return i;
2996 mdelay(10);
2997 i += 10;
2998 } while (i < timeout);
3000 return -ETIME;
3003 /* These functions load the firmware and micro code for the operation of
3004 * the ipw hardware. It assumes the buffer has all the bits for the
3005 * image and the caller is handling the memory allocation and clean up.
3008 static int ipw_stop_master(struct ipw_priv *priv)
3010 int rc;
3012 IPW_DEBUG_TRACE(">> \n");
3013 /* stop master. typical delay - 0 */
3014 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3016 /* timeout is in msec, polled in 10-msec quanta */
3017 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3018 IPW_RESET_REG_MASTER_DISABLED, 100);
3019 if (rc < 0) {
3020 IPW_ERROR("wait for stop master failed after 100ms\n");
3021 return -1;
3024 IPW_DEBUG_INFO("stop master %dms\n", rc);
3026 return rc;
3029 static void ipw_arc_release(struct ipw_priv *priv)
3031 IPW_DEBUG_TRACE(">> \n");
3032 mdelay(5);
3034 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3036 /* no one knows timing, for safety add some delay */
3037 mdelay(5);
3040 struct fw_chunk {
3041 __le32 address;
3042 __le32 length;
3045 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3047 int rc = 0, i, addr;
3048 u8 cr = 0;
3049 __le16 *image;
3051 image = (__le16 *) data;
3053 IPW_DEBUG_TRACE(">> \n");
3055 rc = ipw_stop_master(priv);
3057 if (rc < 0)
3058 return rc;
3060 for (addr = IPW_SHARED_LOWER_BOUND;
3061 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3062 ipw_write32(priv, addr, 0);
3065 /* no ucode (yet) */
3066 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3067 /* destroy DMA queues */
3068 /* reset sequence */
3070 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3071 ipw_arc_release(priv);
3072 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3073 mdelay(1);
3075 /* reset PHY */
3076 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3077 mdelay(1);
3079 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3080 mdelay(1);
3082 /* enable ucode store */
3083 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3084 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3085 mdelay(1);
3087 /* write ucode */
3089 * @bug
3090 * Do NOT set indirect address register once and then
3091 * store data to indirect data register in the loop.
3092 * It seems very reasonable, but in this case DINO do not
3093 * accept ucode. It is essential to set address each time.
3095 /* load new ipw uCode */
3096 for (i = 0; i < len / 2; i++)
3097 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3098 le16_to_cpu(image[i]));
3100 /* enable DINO */
3101 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3102 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3104 /* this is where the igx / win driver deveates from the VAP driver. */
3106 /* wait for alive response */
3107 for (i = 0; i < 100; i++) {
3108 /* poll for incoming data */
3109 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3110 if (cr & DINO_RXFIFO_DATA)
3111 break;
3112 mdelay(1);
3115 if (cr & DINO_RXFIFO_DATA) {
3116 /* alive_command_responce size is NOT multiple of 4 */
3117 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3119 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3120 response_buffer[i] =
3121 cpu_to_le32(ipw_read_reg32(priv,
3122 IPW_BASEBAND_RX_FIFO_READ));
3123 memcpy(&priv->dino_alive, response_buffer,
3124 sizeof(priv->dino_alive));
3125 if (priv->dino_alive.alive_command == 1
3126 && priv->dino_alive.ucode_valid == 1) {
3127 rc = 0;
3128 IPW_DEBUG_INFO
3129 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3130 "of %02d/%02d/%02d %02d:%02d\n",
3131 priv->dino_alive.software_revision,
3132 priv->dino_alive.software_revision,
3133 priv->dino_alive.device_identifier,
3134 priv->dino_alive.device_identifier,
3135 priv->dino_alive.time_stamp[0],
3136 priv->dino_alive.time_stamp[1],
3137 priv->dino_alive.time_stamp[2],
3138 priv->dino_alive.time_stamp[3],
3139 priv->dino_alive.time_stamp[4]);
3140 } else {
3141 IPW_DEBUG_INFO("Microcode is not alive\n");
3142 rc = -EINVAL;
3144 } else {
3145 IPW_DEBUG_INFO("No alive response from DINO\n");
3146 rc = -ETIME;
3149 /* disable DINO, otherwise for some reason
3150 firmware have problem getting alive resp. */
3151 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3153 return rc;
3156 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3158 int rc = -1;
3159 int offset = 0;
3160 struct fw_chunk *chunk;
3161 dma_addr_t shared_phys;
3162 u8 *shared_virt;
3164 IPW_DEBUG_TRACE("<< : \n");
3165 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3167 if (!shared_virt)
3168 return -ENOMEM;
3170 memmove(shared_virt, data, len);
3172 /* Start the Dma */
3173 rc = ipw_fw_dma_enable(priv);
3175 if (priv->sram_desc.last_cb_index > 0) {
3176 /* the DMA is already ready this would be a bug. */
3177 BUG();
3178 goto out;
3181 do {
3182 chunk = (struct fw_chunk *)(data + offset);
3183 offset += sizeof(struct fw_chunk);
3184 /* build DMA packet and queue up for sending */
3185 /* dma to chunk->address, the chunk->length bytes from data +
3186 * offeset*/
3187 /* Dma loading */
3188 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3189 le32_to_cpu(chunk->address),
3190 le32_to_cpu(chunk->length));
3191 if (rc) {
3192 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3193 goto out;
3196 offset += le32_to_cpu(chunk->length);
3197 } while (offset < len);
3199 /* Run the DMA and wait for the answer */
3200 rc = ipw_fw_dma_kick(priv);
3201 if (rc) {
3202 IPW_ERROR("dmaKick Failed\n");
3203 goto out;
3206 rc = ipw_fw_dma_wait(priv);
3207 if (rc) {
3208 IPW_ERROR("dmaWaitSync Failed\n");
3209 goto out;
3211 out:
3212 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3213 return rc;
3216 /* stop nic */
3217 static int ipw_stop_nic(struct ipw_priv *priv)
3219 int rc = 0;
3221 /* stop */
3222 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3224 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3225 IPW_RESET_REG_MASTER_DISABLED, 500);
3226 if (rc < 0) {
3227 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3228 return rc;
3231 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3233 return rc;
3236 static void ipw_start_nic(struct ipw_priv *priv)
3238 IPW_DEBUG_TRACE(">>\n");
3240 /* prvHwStartNic release ARC */
3241 ipw_clear_bit(priv, IPW_RESET_REG,
3242 IPW_RESET_REG_MASTER_DISABLED |
3243 IPW_RESET_REG_STOP_MASTER |
3244 CBD_RESET_REG_PRINCETON_RESET);
3246 /* enable power management */
3247 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3248 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3250 IPW_DEBUG_TRACE("<<\n");
3253 static int ipw_init_nic(struct ipw_priv *priv)
3255 int rc;
3257 IPW_DEBUG_TRACE(">>\n");
3258 /* reset */
3259 /*prvHwInitNic */
3260 /* set "initialization complete" bit to move adapter to D0 state */
3261 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3263 /* low-level PLL activation */
3264 ipw_write32(priv, IPW_READ_INT_REGISTER,
3265 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3267 /* wait for clock stabilization */
3268 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3269 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3270 if (rc < 0)
3271 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3273 /* assert SW reset */
3274 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3276 udelay(10);
3278 /* set "initialization complete" bit to move adapter to D0 state */
3279 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3281 IPW_DEBUG_TRACE(">>\n");
3282 return 0;
3285 /* Call this function from process context, it will sleep in request_firmware.
3286 * Probe is an ok place to call this from.
3288 static int ipw_reset_nic(struct ipw_priv *priv)
3290 int rc = 0;
3291 unsigned long flags;
3293 IPW_DEBUG_TRACE(">>\n");
3295 rc = ipw_init_nic(priv);
3297 spin_lock_irqsave(&priv->lock, flags);
3298 /* Clear the 'host command active' bit... */
3299 priv->status &= ~STATUS_HCMD_ACTIVE;
3300 wake_up_interruptible(&priv->wait_command_queue);
3301 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3302 wake_up_interruptible(&priv->wait_state);
3303 spin_unlock_irqrestore(&priv->lock, flags);
3305 IPW_DEBUG_TRACE("<<\n");
3306 return rc;
3310 struct ipw_fw {
3311 __le32 ver;
3312 __le32 boot_size;
3313 __le32 ucode_size;
3314 __le32 fw_size;
3315 u8 data[0];
3318 static int ipw_get_fw(struct ipw_priv *priv,
3319 const struct firmware **raw, const char *name)
3321 struct ipw_fw *fw;
3322 int rc;
3324 /* ask firmware_class module to get the boot firmware off disk */
3325 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3326 if (rc < 0) {
3327 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3328 return rc;
3331 if ((*raw)->size < sizeof(*fw)) {
3332 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3333 return -EINVAL;
3336 fw = (void *)(*raw)->data;
3338 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3339 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3340 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3341 name, (*raw)->size);
3342 return -EINVAL;
3345 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3346 name,
3347 le32_to_cpu(fw->ver) >> 16,
3348 le32_to_cpu(fw->ver) & 0xff,
3349 (*raw)->size - sizeof(*fw));
3350 return 0;
3353 #define IPW_RX_BUF_SIZE (3000)
3355 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3356 struct ipw_rx_queue *rxq)
3358 unsigned long flags;
3359 int i;
3361 spin_lock_irqsave(&rxq->lock, flags);
3363 INIT_LIST_HEAD(&rxq->rx_free);
3364 INIT_LIST_HEAD(&rxq->rx_used);
3366 /* Fill the rx_used queue with _all_ of the Rx buffers */
3367 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3368 /* In the reset function, these buffers may have been allocated
3369 * to an SKB, so we need to unmap and free potential storage */
3370 if (rxq->pool[i].skb != NULL) {
3371 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3372 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3373 dev_kfree_skb(rxq->pool[i].skb);
3374 rxq->pool[i].skb = NULL;
3376 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3379 /* Set us so that we have processed and used all buffers, but have
3380 * not restocked the Rx queue with fresh buffers */
3381 rxq->read = rxq->write = 0;
3382 rxq->processed = RX_QUEUE_SIZE - 1;
3383 rxq->free_count = 0;
3384 spin_unlock_irqrestore(&rxq->lock, flags);
3387 #ifdef CONFIG_PM
3388 static int fw_loaded = 0;
3389 static const struct firmware *raw = NULL;
3391 static void free_firmware(void)
3393 if (fw_loaded) {
3394 release_firmware(raw);
3395 raw = NULL;
3396 fw_loaded = 0;
3399 #else
3400 #define free_firmware() do {} while (0)
3401 #endif
3403 static int ipw_load(struct ipw_priv *priv)
3405 #ifndef CONFIG_PM
3406 const struct firmware *raw = NULL;
3407 #endif
3408 struct ipw_fw *fw;
3409 u8 *boot_img, *ucode_img, *fw_img;
3410 u8 *name = NULL;
3411 int rc = 0, retries = 3;
3413 switch (priv->ieee->iw_mode) {
3414 case IW_MODE_ADHOC:
3415 name = "ipw2200-ibss.fw";
3416 break;
3417 #ifdef CONFIG_IPW2200_MONITOR
3418 case IW_MODE_MONITOR:
3419 name = "ipw2200-sniffer.fw";
3420 break;
3421 #endif
3422 case IW_MODE_INFRA:
3423 name = "ipw2200-bss.fw";
3424 break;
3427 if (!name) {
3428 rc = -EINVAL;
3429 goto error;
3432 #ifdef CONFIG_PM
3433 if (!fw_loaded) {
3434 #endif
3435 rc = ipw_get_fw(priv, &raw, name);
3436 if (rc < 0)
3437 goto error;
3438 #ifdef CONFIG_PM
3440 #endif
3442 fw = (void *)raw->data;
3443 boot_img = &fw->data[0];
3444 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3445 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3446 le32_to_cpu(fw->ucode_size)];
3448 if (rc < 0)
3449 goto error;
3451 if (!priv->rxq)
3452 priv->rxq = ipw_rx_queue_alloc(priv);
3453 else
3454 ipw_rx_queue_reset(priv, priv->rxq);
3455 if (!priv->rxq) {
3456 IPW_ERROR("Unable to initialize Rx queue\n");
3457 goto error;
3460 retry:
3461 /* Ensure interrupts are disabled */
3462 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3463 priv->status &= ~STATUS_INT_ENABLED;
3465 /* ack pending interrupts */
3466 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3468 ipw_stop_nic(priv);
3470 rc = ipw_reset_nic(priv);
3471 if (rc < 0) {
3472 IPW_ERROR("Unable to reset NIC\n");
3473 goto error;
3476 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3477 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3479 /* DMA the initial boot firmware into the device */
3480 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3481 if (rc < 0) {
3482 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3483 goto error;
3486 /* kick start the device */
3487 ipw_start_nic(priv);
3489 /* wait for the device to finish its initial startup sequence */
3490 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3491 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3492 if (rc < 0) {
3493 IPW_ERROR("device failed to boot initial fw image\n");
3494 goto error;
3496 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3498 /* ack fw init done interrupt */
3499 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3501 /* DMA the ucode into the device */
3502 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3503 if (rc < 0) {
3504 IPW_ERROR("Unable to load ucode: %d\n", rc);
3505 goto error;
3508 /* stop nic */
3509 ipw_stop_nic(priv);
3511 /* DMA bss firmware into the device */
3512 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3513 if (rc < 0) {
3514 IPW_ERROR("Unable to load firmware: %d\n", rc);
3515 goto error;
3517 #ifdef CONFIG_PM
3518 fw_loaded = 1;
3519 #endif
3521 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3523 rc = ipw_queue_reset(priv);
3524 if (rc < 0) {
3525 IPW_ERROR("Unable to initialize queues\n");
3526 goto error;
3529 /* Ensure interrupts are disabled */
3530 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3531 /* ack pending interrupts */
3532 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3534 /* kick start the device */
3535 ipw_start_nic(priv);
3537 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3538 if (retries > 0) {
3539 IPW_WARNING("Parity error. Retrying init.\n");
3540 retries--;
3541 goto retry;
3544 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3545 rc = -EIO;
3546 goto error;
3549 /* wait for the device */
3550 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3551 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3552 if (rc < 0) {
3553 IPW_ERROR("device failed to start within 500ms\n");
3554 goto error;
3556 IPW_DEBUG_INFO("device response after %dms\n", rc);
3558 /* ack fw init done interrupt */
3559 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3561 /* read eeprom data and initialize the eeprom region of sram */
3562 priv->eeprom_delay = 1;
3563 ipw_eeprom_init_sram(priv);
3565 /* enable interrupts */
3566 ipw_enable_interrupts(priv);
3568 /* Ensure our queue has valid packets */
3569 ipw_rx_queue_replenish(priv);
3571 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3573 /* ack pending interrupts */
3574 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3576 #ifndef CONFIG_PM
3577 release_firmware(raw);
3578 #endif
3579 return 0;
3581 error:
3582 if (priv->rxq) {
3583 ipw_rx_queue_free(priv, priv->rxq);
3584 priv->rxq = NULL;
3586 ipw_tx_queue_free(priv);
3587 if (raw)
3588 release_firmware(raw);
3589 #ifdef CONFIG_PM
3590 fw_loaded = 0;
3591 raw = NULL;
3592 #endif
3594 return rc;
3598 * DMA services
3600 * Theory of operation
3602 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3603 * 2 empty entries always kept in the buffer to protect from overflow.
3605 * For Tx queue, there are low mark and high mark limits. If, after queuing
3606 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3607 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3608 * Tx queue resumed.
3610 * The IPW operates with six queues, one receive queue in the device's
3611 * sram, one transmit queue for sending commands to the device firmware,
3612 * and four transmit queues for data.
3614 * The four transmit queues allow for performing quality of service (qos)
3615 * transmissions as per the 802.11 protocol. Currently Linux does not
3616 * provide a mechanism to the user for utilizing prioritized queues, so
3617 * we only utilize the first data transmit queue (queue1).
3621 * Driver allocates buffers of this size for Rx
3624 static inline int ipw_queue_space(const struct clx2_queue *q)
3626 int s = q->last_used - q->first_empty;
3627 if (s <= 0)
3628 s += q->n_bd;
3629 s -= 2; /* keep some reserve to not confuse empty and full situations */
3630 if (s < 0)
3631 s = 0;
3632 return s;
3635 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3637 return (++index == n_bd) ? 0 : index;
3641 * Initialize common DMA queue structure
3643 * @param q queue to init
3644 * @param count Number of BD's to allocate. Should be power of 2
3645 * @param read_register Address for 'read' register
3646 * (not offset within BAR, full address)
3647 * @param write_register Address for 'write' register
3648 * (not offset within BAR, full address)
3649 * @param base_register Address for 'base' register
3650 * (not offset within BAR, full address)
3651 * @param size Address for 'size' register
3652 * (not offset within BAR, full address)
3654 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3655 int count, u32 read, u32 write, u32 base, u32 size)
3657 q->n_bd = count;
3659 q->low_mark = q->n_bd / 4;
3660 if (q->low_mark < 4)
3661 q->low_mark = 4;
3663 q->high_mark = q->n_bd / 8;
3664 if (q->high_mark < 2)
3665 q->high_mark = 2;
3667 q->first_empty = q->last_used = 0;
3668 q->reg_r = read;
3669 q->reg_w = write;
3671 ipw_write32(priv, base, q->dma_addr);
3672 ipw_write32(priv, size, count);
3673 ipw_write32(priv, read, 0);
3674 ipw_write32(priv, write, 0);
3676 _ipw_read32(priv, 0x90);
3679 static int ipw_queue_tx_init(struct ipw_priv *priv,
3680 struct clx2_tx_queue *q,
3681 int count, u32 read, u32 write, u32 base, u32 size)
3683 struct pci_dev *dev = priv->pci_dev;
3685 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3686 if (!q->txb) {
3687 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3688 return -ENOMEM;
3691 q->bd =
3692 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3693 if (!q->bd) {
3694 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3695 sizeof(q->bd[0]) * count);
3696 kfree(q->txb);
3697 q->txb = NULL;
3698 return -ENOMEM;
3701 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3702 return 0;
3706 * Free one TFD, those at index [txq->q.last_used].
3707 * Do NOT advance any indexes
3709 * @param dev
3710 * @param txq
3712 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3713 struct clx2_tx_queue *txq)
3715 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3716 struct pci_dev *dev = priv->pci_dev;
3717 int i;
3719 /* classify bd */
3720 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3721 /* nothing to cleanup after for host commands */
3722 return;
3724 /* sanity check */
3725 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3726 IPW_ERROR("Too many chunks: %i\n",
3727 le32_to_cpu(bd->u.data.num_chunks));
3728 /** @todo issue fatal error, it is quite serious situation */
3729 return;
3732 /* unmap chunks if any */
3733 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3734 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3735 le16_to_cpu(bd->u.data.chunk_len[i]),
3736 PCI_DMA_TODEVICE);
3737 if (txq->txb[txq->q.last_used]) {
3738 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3739 txq->txb[txq->q.last_used] = NULL;
3745 * Deallocate DMA queue.
3747 * Empty queue by removing and destroying all BD's.
3748 * Free all buffers.
3750 * @param dev
3751 * @param q
3753 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3755 struct clx2_queue *q = &txq->q;
3756 struct pci_dev *dev = priv->pci_dev;
3758 if (q->n_bd == 0)
3759 return;
3761 /* first, empty all BD's */
3762 for (; q->first_empty != q->last_used;
3763 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3764 ipw_queue_tx_free_tfd(priv, txq);
3767 /* free buffers belonging to queue itself */
3768 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3769 q->dma_addr);
3770 kfree(txq->txb);
3772 /* 0 fill whole structure */
3773 memset(txq, 0, sizeof(*txq));
3777 * Destroy all DMA queues and structures
3779 * @param priv
3781 static void ipw_tx_queue_free(struct ipw_priv *priv)
3783 /* Tx CMD queue */
3784 ipw_queue_tx_free(priv, &priv->txq_cmd);
3786 /* Tx queues */
3787 ipw_queue_tx_free(priv, &priv->txq[0]);
3788 ipw_queue_tx_free(priv, &priv->txq[1]);
3789 ipw_queue_tx_free(priv, &priv->txq[2]);
3790 ipw_queue_tx_free(priv, &priv->txq[3]);
3793 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3795 /* First 3 bytes are manufacturer */
3796 bssid[0] = priv->mac_addr[0];
3797 bssid[1] = priv->mac_addr[1];
3798 bssid[2] = priv->mac_addr[2];
3800 /* Last bytes are random */
3801 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3803 bssid[0] &= 0xfe; /* clear multicast bit */
3804 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3807 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3809 struct ipw_station_entry entry;
3810 int i;
3811 DECLARE_MAC_BUF(mac);
3813 for (i = 0; i < priv->num_stations; i++) {
3814 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3815 /* Another node is active in network */
3816 priv->missed_adhoc_beacons = 0;
3817 if (!(priv->config & CFG_STATIC_CHANNEL))
3818 /* when other nodes drop out, we drop out */
3819 priv->config &= ~CFG_ADHOC_PERSIST;
3821 return i;
3825 if (i == MAX_STATIONS)
3826 return IPW_INVALID_STATION;
3828 IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3830 entry.reserved = 0;
3831 entry.support_mode = 0;
3832 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3833 memcpy(priv->stations[i], bssid, ETH_ALEN);
3834 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3835 &entry, sizeof(entry));
3836 priv->num_stations++;
3838 return i;
3841 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3843 int i;
3845 for (i = 0; i < priv->num_stations; i++)
3846 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3847 return i;
3849 return IPW_INVALID_STATION;
3852 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3854 int err;
3855 DECLARE_MAC_BUF(mac);
3857 if (priv->status & STATUS_ASSOCIATING) {
3858 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3859 queue_work(priv->workqueue, &priv->disassociate);
3860 return;
3863 if (!(priv->status & STATUS_ASSOCIATED)) {
3864 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3865 return;
3868 IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3869 "on channel %d.\n",
3870 print_mac(mac, priv->assoc_request.bssid),
3871 priv->assoc_request.channel);
3873 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3874 priv->status |= STATUS_DISASSOCIATING;
3876 if (quiet)
3877 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3878 else
3879 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3881 err = ipw_send_associate(priv, &priv->assoc_request);
3882 if (err) {
3883 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3884 "failed.\n");
3885 return;
3890 static int ipw_disassociate(void *data)
3892 struct ipw_priv *priv = data;
3893 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3894 return 0;
3895 ipw_send_disassociate(data, 0);
3896 return 1;
3899 static void ipw_bg_disassociate(struct work_struct *work)
3901 struct ipw_priv *priv =
3902 container_of(work, struct ipw_priv, disassociate);
3903 mutex_lock(&priv->mutex);
3904 ipw_disassociate(priv);
3905 mutex_unlock(&priv->mutex);
3908 static void ipw_system_config(struct work_struct *work)
3910 struct ipw_priv *priv =
3911 container_of(work, struct ipw_priv, system_config);
3913 #ifdef CONFIG_IPW2200_PROMISCUOUS
3914 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3915 priv->sys_config.accept_all_data_frames = 1;
3916 priv->sys_config.accept_non_directed_frames = 1;
3917 priv->sys_config.accept_all_mgmt_bcpr = 1;
3918 priv->sys_config.accept_all_mgmt_frames = 1;
3920 #endif
3922 ipw_send_system_config(priv);
3925 struct ipw_status_code {
3926 u16 status;
3927 const char *reason;
3930 static const struct ipw_status_code ipw_status_codes[] = {
3931 {0x00, "Successful"},
3932 {0x01, "Unspecified failure"},
3933 {0x0A, "Cannot support all requested capabilities in the "
3934 "Capability information field"},
3935 {0x0B, "Reassociation denied due to inability to confirm that "
3936 "association exists"},
3937 {0x0C, "Association denied due to reason outside the scope of this "
3938 "standard"},
3939 {0x0D,
3940 "Responding station does not support the specified authentication "
3941 "algorithm"},
3942 {0x0E,
3943 "Received an Authentication frame with authentication sequence "
3944 "transaction sequence number out of expected sequence"},
3945 {0x0F, "Authentication rejected because of challenge failure"},
3946 {0x10, "Authentication rejected due to timeout waiting for next "
3947 "frame in sequence"},
3948 {0x11, "Association denied because AP is unable to handle additional "
3949 "associated stations"},
3950 {0x12,
3951 "Association denied due to requesting station not supporting all "
3952 "of the datarates in the BSSBasicServiceSet Parameter"},
3953 {0x13,
3954 "Association denied due to requesting station not supporting "
3955 "short preamble operation"},
3956 {0x14,
3957 "Association denied due to requesting station not supporting "
3958 "PBCC encoding"},
3959 {0x15,
3960 "Association denied due to requesting station not supporting "
3961 "channel agility"},
3962 {0x19,
3963 "Association denied due to requesting station not supporting "
3964 "short slot operation"},
3965 {0x1A,
3966 "Association denied due to requesting station not supporting "
3967 "DSSS-OFDM operation"},
3968 {0x28, "Invalid Information Element"},
3969 {0x29, "Group Cipher is not valid"},
3970 {0x2A, "Pairwise Cipher is not valid"},
3971 {0x2B, "AKMP is not valid"},
3972 {0x2C, "Unsupported RSN IE version"},
3973 {0x2D, "Invalid RSN IE Capabilities"},
3974 {0x2E, "Cipher suite is rejected per security policy"},
3977 static const char *ipw_get_status_code(u16 status)
3979 int i;
3980 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3981 if (ipw_status_codes[i].status == (status & 0xff))
3982 return ipw_status_codes[i].reason;
3983 return "Unknown status value.";
3986 static void inline average_init(struct average *avg)
3988 memset(avg, 0, sizeof(*avg));
3991 #define DEPTH_RSSI 8
3992 #define DEPTH_NOISE 16
3993 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3995 return ((depth-1)*prev_avg + val)/depth;
3998 static void average_add(struct average *avg, s16 val)
4000 avg->sum -= avg->entries[avg->pos];
4001 avg->sum += val;
4002 avg->entries[avg->pos++] = val;
4003 if (unlikely(avg->pos == AVG_ENTRIES)) {
4004 avg->init = 1;
4005 avg->pos = 0;
4009 static s16 average_value(struct average *avg)
4011 if (!unlikely(avg->init)) {
4012 if (avg->pos)
4013 return avg->sum / avg->pos;
4014 return 0;
4017 return avg->sum / AVG_ENTRIES;
4020 static void ipw_reset_stats(struct ipw_priv *priv)
4022 u32 len = sizeof(u32);
4024 priv->quality = 0;
4026 average_init(&priv->average_missed_beacons);
4027 priv->exp_avg_rssi = -60;
4028 priv->exp_avg_noise = -85 + 0x100;
4030 priv->last_rate = 0;
4031 priv->last_missed_beacons = 0;
4032 priv->last_rx_packets = 0;
4033 priv->last_tx_packets = 0;
4034 priv->last_tx_failures = 0;
4036 /* Firmware managed, reset only when NIC is restarted, so we have to
4037 * normalize on the current value */
4038 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4039 &priv->last_rx_err, &len);
4040 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4041 &priv->last_tx_failures, &len);
4043 /* Driver managed, reset with each association */
4044 priv->missed_adhoc_beacons = 0;
4045 priv->missed_beacons = 0;
4046 priv->tx_packets = 0;
4047 priv->rx_packets = 0;
4051 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4053 u32 i = 0x80000000;
4054 u32 mask = priv->rates_mask;
4055 /* If currently associated in B mode, restrict the maximum
4056 * rate match to B rates */
4057 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4058 mask &= IEEE80211_CCK_RATES_MASK;
4060 /* TODO: Verify that the rate is supported by the current rates
4061 * list. */
4063 while (i && !(mask & i))
4064 i >>= 1;
4065 switch (i) {
4066 case IEEE80211_CCK_RATE_1MB_MASK:
4067 return 1000000;
4068 case IEEE80211_CCK_RATE_2MB_MASK:
4069 return 2000000;
4070 case IEEE80211_CCK_RATE_5MB_MASK:
4071 return 5500000;
4072 case IEEE80211_OFDM_RATE_6MB_MASK:
4073 return 6000000;
4074 case IEEE80211_OFDM_RATE_9MB_MASK:
4075 return 9000000;
4076 case IEEE80211_CCK_RATE_11MB_MASK:
4077 return 11000000;
4078 case IEEE80211_OFDM_RATE_12MB_MASK:
4079 return 12000000;
4080 case IEEE80211_OFDM_RATE_18MB_MASK:
4081 return 18000000;
4082 case IEEE80211_OFDM_RATE_24MB_MASK:
4083 return 24000000;
4084 case IEEE80211_OFDM_RATE_36MB_MASK:
4085 return 36000000;
4086 case IEEE80211_OFDM_RATE_48MB_MASK:
4087 return 48000000;
4088 case IEEE80211_OFDM_RATE_54MB_MASK:
4089 return 54000000;
4092 if (priv->ieee->mode == IEEE_B)
4093 return 11000000;
4094 else
4095 return 54000000;
4098 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4100 u32 rate, len = sizeof(rate);
4101 int err;
4103 if (!(priv->status & STATUS_ASSOCIATED))
4104 return 0;
4106 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4107 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4108 &len);
4109 if (err) {
4110 IPW_DEBUG_INFO("failed querying ordinals.\n");
4111 return 0;
4113 } else
4114 return ipw_get_max_rate(priv);
4116 switch (rate) {
4117 case IPW_TX_RATE_1MB:
4118 return 1000000;
4119 case IPW_TX_RATE_2MB:
4120 return 2000000;
4121 case IPW_TX_RATE_5MB:
4122 return 5500000;
4123 case IPW_TX_RATE_6MB:
4124 return 6000000;
4125 case IPW_TX_RATE_9MB:
4126 return 9000000;
4127 case IPW_TX_RATE_11MB:
4128 return 11000000;
4129 case IPW_TX_RATE_12MB:
4130 return 12000000;
4131 case IPW_TX_RATE_18MB:
4132 return 18000000;
4133 case IPW_TX_RATE_24MB:
4134 return 24000000;
4135 case IPW_TX_RATE_36MB:
4136 return 36000000;
4137 case IPW_TX_RATE_48MB:
4138 return 48000000;
4139 case IPW_TX_RATE_54MB:
4140 return 54000000;
4143 return 0;
4146 #define IPW_STATS_INTERVAL (2 * HZ)
4147 static void ipw_gather_stats(struct ipw_priv *priv)
4149 u32 rx_err, rx_err_delta, rx_packets_delta;
4150 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4151 u32 missed_beacons_percent, missed_beacons_delta;
4152 u32 quality = 0;
4153 u32 len = sizeof(u32);
4154 s16 rssi;
4155 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4156 rate_quality;
4157 u32 max_rate;
4159 if (!(priv->status & STATUS_ASSOCIATED)) {
4160 priv->quality = 0;
4161 return;
4164 /* Update the statistics */
4165 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4166 &priv->missed_beacons, &len);
4167 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4168 priv->last_missed_beacons = priv->missed_beacons;
4169 if (priv->assoc_request.beacon_interval) {
4170 missed_beacons_percent = missed_beacons_delta *
4171 (HZ * priv->assoc_request.beacon_interval) /
4172 (IPW_STATS_INTERVAL * 10);
4173 } else {
4174 missed_beacons_percent = 0;
4176 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4178 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4179 rx_err_delta = rx_err - priv->last_rx_err;
4180 priv->last_rx_err = rx_err;
4182 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4183 tx_failures_delta = tx_failures - priv->last_tx_failures;
4184 priv->last_tx_failures = tx_failures;
4186 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4187 priv->last_rx_packets = priv->rx_packets;
4189 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4190 priv->last_tx_packets = priv->tx_packets;
4192 /* Calculate quality based on the following:
4194 * Missed beacon: 100% = 0, 0% = 70% missed
4195 * Rate: 60% = 1Mbs, 100% = Max
4196 * Rx and Tx errors represent a straight % of total Rx/Tx
4197 * RSSI: 100% = > -50, 0% = < -80
4198 * Rx errors: 100% = 0, 0% = 50% missed
4200 * The lowest computed quality is used.
4203 #define BEACON_THRESHOLD 5
4204 beacon_quality = 100 - missed_beacons_percent;
4205 if (beacon_quality < BEACON_THRESHOLD)
4206 beacon_quality = 0;
4207 else
4208 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4209 (100 - BEACON_THRESHOLD);
4210 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4211 beacon_quality, missed_beacons_percent);
4213 priv->last_rate = ipw_get_current_rate(priv);
4214 max_rate = ipw_get_max_rate(priv);
4215 rate_quality = priv->last_rate * 40 / max_rate + 60;
4216 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4217 rate_quality, priv->last_rate / 1000000);
4219 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4220 rx_quality = 100 - (rx_err_delta * 100) /
4221 (rx_packets_delta + rx_err_delta);
4222 else
4223 rx_quality = 100;
4224 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4225 rx_quality, rx_err_delta, rx_packets_delta);
4227 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4228 tx_quality = 100 - (tx_failures_delta * 100) /
4229 (tx_packets_delta + tx_failures_delta);
4230 else
4231 tx_quality = 100;
4232 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4233 tx_quality, tx_failures_delta, tx_packets_delta);
4235 rssi = priv->exp_avg_rssi;
4236 signal_quality =
4237 (100 *
4238 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4239 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4240 (priv->ieee->perfect_rssi - rssi) *
4241 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4242 62 * (priv->ieee->perfect_rssi - rssi))) /
4243 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4244 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4245 if (signal_quality > 100)
4246 signal_quality = 100;
4247 else if (signal_quality < 1)
4248 signal_quality = 0;
4250 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4251 signal_quality, rssi);
4253 quality = min(beacon_quality,
4254 min(rate_quality,
4255 min(tx_quality, min(rx_quality, signal_quality))));
4256 if (quality == beacon_quality)
4257 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4258 quality);
4259 if (quality == rate_quality)
4260 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4261 quality);
4262 if (quality == tx_quality)
4263 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4264 quality);
4265 if (quality == rx_quality)
4266 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4267 quality);
4268 if (quality == signal_quality)
4269 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4270 quality);
4272 priv->quality = quality;
4274 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4275 IPW_STATS_INTERVAL);
4278 static void ipw_bg_gather_stats(struct work_struct *work)
4280 struct ipw_priv *priv =
4281 container_of(work, struct ipw_priv, gather_stats.work);
4282 mutex_lock(&priv->mutex);
4283 ipw_gather_stats(priv);
4284 mutex_unlock(&priv->mutex);
4287 /* Missed beacon behavior:
4288 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4289 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4290 * Above disassociate threshold, give up and stop scanning.
4291 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4292 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4293 int missed_count)
4295 priv->notif_missed_beacons = missed_count;
4297 if (missed_count > priv->disassociate_threshold &&
4298 priv->status & STATUS_ASSOCIATED) {
4299 /* If associated and we've hit the missed
4300 * beacon threshold, disassociate, turn
4301 * off roaming, and abort any active scans */
4302 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4303 IPW_DL_STATE | IPW_DL_ASSOC,
4304 "Missed beacon: %d - disassociate\n", missed_count);
4305 priv->status &= ~STATUS_ROAMING;
4306 if (priv->status & STATUS_SCANNING) {
4307 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4308 IPW_DL_STATE,
4309 "Aborting scan with missed beacon.\n");
4310 queue_work(priv->workqueue, &priv->abort_scan);
4313 queue_work(priv->workqueue, &priv->disassociate);
4314 return;
4317 if (priv->status & STATUS_ROAMING) {
4318 /* If we are currently roaming, then just
4319 * print a debug statement... */
4320 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4321 "Missed beacon: %d - roam in progress\n",
4322 missed_count);
4323 return;
4326 if (roaming &&
4327 (missed_count > priv->roaming_threshold &&
4328 missed_count <= priv->disassociate_threshold)) {
4329 /* If we are not already roaming, set the ROAM
4330 * bit in the status and kick off a scan.
4331 * This can happen several times before we reach
4332 * disassociate_threshold. */
4333 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4334 "Missed beacon: %d - initiate "
4335 "roaming\n", missed_count);
4336 if (!(priv->status & STATUS_ROAMING)) {
4337 priv->status |= STATUS_ROAMING;
4338 if (!(priv->status & STATUS_SCANNING))
4339 queue_delayed_work(priv->workqueue,
4340 &priv->request_scan, 0);
4342 return;
4345 if (priv->status & STATUS_SCANNING) {
4346 /* Stop scan to keep fw from getting
4347 * stuck (only if we aren't roaming --
4348 * otherwise we'll never scan more than 2 or 3
4349 * channels..) */
4350 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4351 "Aborting scan with missed beacon.\n");
4352 queue_work(priv->workqueue, &priv->abort_scan);
4355 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4358 static void ipw_scan_event(struct work_struct *work)
4360 union iwreq_data wrqu;
4362 struct ipw_priv *priv =
4363 container_of(work, struct ipw_priv, scan_event.work);
4365 wrqu.data.length = 0;
4366 wrqu.data.flags = 0;
4367 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4370 static void handle_scan_event(struct ipw_priv *priv)
4372 /* Only userspace-requested scan completion events go out immediately */
4373 if (!priv->user_requested_scan) {
4374 if (!delayed_work_pending(&priv->scan_event))
4375 queue_delayed_work(priv->workqueue, &priv->scan_event,
4376 round_jiffies_relative(msecs_to_jiffies(4000)));
4377 } else {
4378 union iwreq_data wrqu;
4380 priv->user_requested_scan = 0;
4381 cancel_delayed_work(&priv->scan_event);
4383 wrqu.data.length = 0;
4384 wrqu.data.flags = 0;
4385 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4390 * Handle host notification packet.
4391 * Called from interrupt routine
4393 static void ipw_rx_notification(struct ipw_priv *priv,
4394 struct ipw_rx_notification *notif)
4396 DECLARE_MAC_BUF(mac);
4397 u16 size = le16_to_cpu(notif->size);
4398 notif->size = le16_to_cpu(notif->size);
4400 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4402 switch (notif->subtype) {
4403 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4404 struct notif_association *assoc = &notif->u.assoc;
4406 switch (assoc->state) {
4407 case CMAS_ASSOCIATED:{
4408 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4409 IPW_DL_ASSOC,
4410 "associated: '%s' %s"
4411 " \n",
4412 escape_essid(priv->essid,
4413 priv->essid_len),
4414 print_mac(mac, priv->bssid));
4416 switch (priv->ieee->iw_mode) {
4417 case IW_MODE_INFRA:
4418 memcpy(priv->ieee->bssid,
4419 priv->bssid, ETH_ALEN);
4420 break;
4422 case IW_MODE_ADHOC:
4423 memcpy(priv->ieee->bssid,
4424 priv->bssid, ETH_ALEN);
4426 /* clear out the station table */
4427 priv->num_stations = 0;
4429 IPW_DEBUG_ASSOC
4430 ("queueing adhoc check\n");
4431 queue_delayed_work(priv->
4432 workqueue,
4433 &priv->
4434 adhoc_check,
4435 priv->
4436 assoc_request.
4437 beacon_interval);
4438 break;
4441 priv->status &= ~STATUS_ASSOCIATING;
4442 priv->status |= STATUS_ASSOCIATED;
4443 queue_work(priv->workqueue,
4444 &priv->system_config);
4446 #ifdef CONFIG_IPW2200_QOS
4447 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4448 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4449 if ((priv->status & STATUS_AUTH) &&
4450 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4451 == IEEE80211_STYPE_ASSOC_RESP)) {
4452 if ((sizeof
4453 (struct
4454 ieee80211_assoc_response)
4455 <= size)
4456 && (size <= 2314)) {
4457 struct
4458 ieee80211_rx_stats
4459 stats = {
4460 .len = size - 1,
4463 IPW_DEBUG_QOS
4464 ("QoS Associate "
4465 "size %d\n", size);
4466 ieee80211_rx_mgt(priv->
4467 ieee,
4468 (struct
4469 ieee80211_hdr_4addr
4471 &notif->u.raw, &stats);
4474 #endif
4476 schedule_work(&priv->link_up);
4478 break;
4481 case CMAS_AUTHENTICATED:{
4482 if (priv->
4483 status & (STATUS_ASSOCIATED |
4484 STATUS_AUTH)) {
4485 struct notif_authenticate *auth
4486 = &notif->u.auth;
4487 IPW_DEBUG(IPW_DL_NOTIF |
4488 IPW_DL_STATE |
4489 IPW_DL_ASSOC,
4490 "deauthenticated: '%s' "
4491 "%s"
4492 ": (0x%04X) - %s \n",
4493 escape_essid(priv->
4494 essid,
4495 priv->
4496 essid_len),
4497 print_mac(mac, priv->bssid),
4498 ntohs(auth->status),
4499 ipw_get_status_code
4500 (ntohs
4501 (auth->status)));
4503 priv->status &=
4504 ~(STATUS_ASSOCIATING |
4505 STATUS_AUTH |
4506 STATUS_ASSOCIATED);
4508 schedule_work(&priv->link_down);
4509 break;
4512 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4513 IPW_DL_ASSOC,
4514 "authenticated: '%s' %s"
4515 "\n",
4516 escape_essid(priv->essid,
4517 priv->essid_len),
4518 print_mac(mac, priv->bssid));
4519 break;
4522 case CMAS_INIT:{
4523 if (priv->status & STATUS_AUTH) {
4524 struct
4525 ieee80211_assoc_response
4526 *resp;
4527 resp =
4528 (struct
4529 ieee80211_assoc_response
4530 *)&notif->u.raw;
4531 IPW_DEBUG(IPW_DL_NOTIF |
4532 IPW_DL_STATE |
4533 IPW_DL_ASSOC,
4534 "association failed (0x%04X): %s\n",
4535 ntohs(resp->status),
4536 ipw_get_status_code
4537 (ntohs
4538 (resp->status)));
4541 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4542 IPW_DL_ASSOC,
4543 "disassociated: '%s' %s"
4544 " \n",
4545 escape_essid(priv->essid,
4546 priv->essid_len),
4547 print_mac(mac, priv->bssid));
4549 priv->status &=
4550 ~(STATUS_DISASSOCIATING |
4551 STATUS_ASSOCIATING |
4552 STATUS_ASSOCIATED | STATUS_AUTH);
4553 if (priv->assoc_network
4554 && (priv->assoc_network->
4555 capability &
4556 WLAN_CAPABILITY_IBSS))
4557 ipw_remove_current_network
4558 (priv);
4560 schedule_work(&priv->link_down);
4562 break;
4565 case CMAS_RX_ASSOC_RESP:
4566 break;
4568 default:
4569 IPW_ERROR("assoc: unknown (%d)\n",
4570 assoc->state);
4571 break;
4574 break;
4577 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4578 struct notif_authenticate *auth = &notif->u.auth;
4579 switch (auth->state) {
4580 case CMAS_AUTHENTICATED:
4581 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4582 "authenticated: '%s' %s \n",
4583 escape_essid(priv->essid,
4584 priv->essid_len),
4585 print_mac(mac, priv->bssid));
4586 priv->status |= STATUS_AUTH;
4587 break;
4589 case CMAS_INIT:
4590 if (priv->status & STATUS_AUTH) {
4591 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4592 IPW_DL_ASSOC,
4593 "authentication failed (0x%04X): %s\n",
4594 ntohs(auth->status),
4595 ipw_get_status_code(ntohs
4596 (auth->
4597 status)));
4599 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4600 IPW_DL_ASSOC,
4601 "deauthenticated: '%s' %s\n",
4602 escape_essid(priv->essid,
4603 priv->essid_len),
4604 print_mac(mac, priv->bssid));
4606 priv->status &= ~(STATUS_ASSOCIATING |
4607 STATUS_AUTH |
4608 STATUS_ASSOCIATED);
4610 schedule_work(&priv->link_down);
4611 break;
4613 case CMAS_TX_AUTH_SEQ_1:
4614 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4615 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4616 break;
4617 case CMAS_RX_AUTH_SEQ_2:
4618 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4620 break;
4621 case CMAS_AUTH_SEQ_1_PASS:
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4624 break;
4625 case CMAS_AUTH_SEQ_1_FAIL:
4626 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4628 break;
4629 case CMAS_TX_AUTH_SEQ_3:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4632 break;
4633 case CMAS_RX_AUTH_SEQ_4:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4636 break;
4637 case CMAS_AUTH_SEQ_2_PASS:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4640 break;
4641 case CMAS_AUTH_SEQ_2_FAIL:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4644 break;
4645 case CMAS_TX_ASSOC:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "TX_ASSOC\n");
4648 break;
4649 case CMAS_RX_ASSOC_RESP:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4653 break;
4654 case CMAS_ASSOCIATED:
4655 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656 IPW_DL_ASSOC, "ASSOCIATED\n");
4657 break;
4658 default:
4659 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4660 auth->state);
4661 break;
4663 break;
4666 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4667 struct notif_channel_result *x =
4668 &notif->u.channel_result;
4670 if (size == sizeof(*x)) {
4671 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4672 x->channel_num);
4673 } else {
4674 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4675 "(should be %zd)\n",
4676 size, sizeof(*x));
4678 break;
4681 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4682 struct notif_scan_complete *x = &notif->u.scan_complete;
4683 if (size == sizeof(*x)) {
4684 IPW_DEBUG_SCAN
4685 ("Scan completed: type %d, %d channels, "
4686 "%d status\n", x->scan_type,
4687 x->num_channels, x->status);
4688 } else {
4689 IPW_ERROR("Scan completed of wrong size %d "
4690 "(should be %zd)\n",
4691 size, sizeof(*x));
4694 priv->status &=
4695 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4697 wake_up_interruptible(&priv->wait_state);
4698 cancel_delayed_work(&priv->scan_check);
4700 if (priv->status & STATUS_EXIT_PENDING)
4701 break;
4703 priv->ieee->scans++;
4705 #ifdef CONFIG_IPW2200_MONITOR
4706 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4707 priv->status |= STATUS_SCAN_FORCED;
4708 queue_delayed_work(priv->workqueue,
4709 &priv->request_scan, 0);
4710 break;
4712 priv->status &= ~STATUS_SCAN_FORCED;
4713 #endif /* CONFIG_IPW2200_MONITOR */
4715 if (!(priv->status & (STATUS_ASSOCIATED |
4716 STATUS_ASSOCIATING |
4717 STATUS_ROAMING |
4718 STATUS_DISASSOCIATING)))
4719 queue_work(priv->workqueue, &priv->associate);
4720 else if (priv->status & STATUS_ROAMING) {
4721 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4722 /* If a scan completed and we are in roam mode, then
4723 * the scan that completed was the one requested as a
4724 * result of entering roam... so, schedule the
4725 * roam work */
4726 queue_work(priv->workqueue,
4727 &priv->roam);
4728 else
4729 /* Don't schedule if we aborted the scan */
4730 priv->status &= ~STATUS_ROAMING;
4731 } else if (priv->status & STATUS_SCAN_PENDING)
4732 queue_delayed_work(priv->workqueue,
4733 &priv->request_scan, 0);
4734 else if (priv->config & CFG_BACKGROUND_SCAN
4735 && priv->status & STATUS_ASSOCIATED)
4736 queue_delayed_work(priv->workqueue,
4737 &priv->request_scan,
4738 round_jiffies_relative(HZ));
4740 /* Send an empty event to user space.
4741 * We don't send the received data on the event because
4742 * it would require us to do complex transcoding, and
4743 * we want to minimise the work done in the irq handler
4744 * Use a request to extract the data.
4745 * Also, we generate this even for any scan, regardless
4746 * on how the scan was initiated. User space can just
4747 * sync on periodic scan to get fresh data...
4748 * Jean II */
4749 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4750 handle_scan_event(priv);
4751 break;
4754 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4755 struct notif_frag_length *x = &notif->u.frag_len;
4757 if (size == sizeof(*x))
4758 IPW_ERROR("Frag length: %d\n",
4759 le16_to_cpu(x->frag_length));
4760 else
4761 IPW_ERROR("Frag length of wrong size %d "
4762 "(should be %zd)\n",
4763 size, sizeof(*x));
4764 break;
4767 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4768 struct notif_link_deterioration *x =
4769 &notif->u.link_deterioration;
4771 if (size == sizeof(*x)) {
4772 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4773 "link deterioration: type %d, cnt %d\n",
4774 x->silence_notification_type,
4775 x->silence_count);
4776 memcpy(&priv->last_link_deterioration, x,
4777 sizeof(*x));
4778 } else {
4779 IPW_ERROR("Link Deterioration of wrong size %d "
4780 "(should be %zd)\n",
4781 size, sizeof(*x));
4783 break;
4786 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4787 IPW_ERROR("Dino config\n");
4788 if (priv->hcmd
4789 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4790 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4792 break;
4795 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4796 struct notif_beacon_state *x = &notif->u.beacon_state;
4797 if (size != sizeof(*x)) {
4798 IPW_ERROR
4799 ("Beacon state of wrong size %d (should "
4800 "be %zd)\n", size, sizeof(*x));
4801 break;
4804 if (le32_to_cpu(x->state) ==
4805 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4806 ipw_handle_missed_beacon(priv,
4807 le32_to_cpu(x->
4808 number));
4810 break;
4813 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4814 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4815 if (size == sizeof(*x)) {
4816 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4817 "0x%02x station %d\n",
4818 x->key_state, x->security_type,
4819 x->station_index);
4820 break;
4823 IPW_ERROR
4824 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4825 size, sizeof(*x));
4826 break;
4829 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4830 struct notif_calibration *x = &notif->u.calibration;
4832 if (size == sizeof(*x)) {
4833 memcpy(&priv->calib, x, sizeof(*x));
4834 IPW_DEBUG_INFO("TODO: Calibration\n");
4835 break;
4838 IPW_ERROR
4839 ("Calibration of wrong size %d (should be %zd)\n",
4840 size, sizeof(*x));
4841 break;
4844 case HOST_NOTIFICATION_NOISE_STATS:{
4845 if (size == sizeof(u32)) {
4846 priv->exp_avg_noise =
4847 exponential_average(priv->exp_avg_noise,
4848 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4849 DEPTH_NOISE);
4850 break;
4853 IPW_ERROR
4854 ("Noise stat is wrong size %d (should be %zd)\n",
4855 size, sizeof(u32));
4856 break;
4859 default:
4860 IPW_DEBUG_NOTIF("Unknown notification: "
4861 "subtype=%d,flags=0x%2x,size=%d\n",
4862 notif->subtype, notif->flags, size);
4867 * Destroys all DMA structures and initialise them again
4869 * @param priv
4870 * @return error code
4872 static int ipw_queue_reset(struct ipw_priv *priv)
4874 int rc = 0;
4875 /** @todo customize queue sizes */
4876 int nTx = 64, nTxCmd = 8;
4877 ipw_tx_queue_free(priv);
4878 /* Tx CMD queue */
4879 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4880 IPW_TX_CMD_QUEUE_READ_INDEX,
4881 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4882 IPW_TX_CMD_QUEUE_BD_BASE,
4883 IPW_TX_CMD_QUEUE_BD_SIZE);
4884 if (rc) {
4885 IPW_ERROR("Tx Cmd queue init failed\n");
4886 goto error;
4888 /* Tx queue(s) */
4889 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4890 IPW_TX_QUEUE_0_READ_INDEX,
4891 IPW_TX_QUEUE_0_WRITE_INDEX,
4892 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4893 if (rc) {
4894 IPW_ERROR("Tx 0 queue init failed\n");
4895 goto error;
4897 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4898 IPW_TX_QUEUE_1_READ_INDEX,
4899 IPW_TX_QUEUE_1_WRITE_INDEX,
4900 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4901 if (rc) {
4902 IPW_ERROR("Tx 1 queue init failed\n");
4903 goto error;
4905 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4906 IPW_TX_QUEUE_2_READ_INDEX,
4907 IPW_TX_QUEUE_2_WRITE_INDEX,
4908 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4909 if (rc) {
4910 IPW_ERROR("Tx 2 queue init failed\n");
4911 goto error;
4913 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4914 IPW_TX_QUEUE_3_READ_INDEX,
4915 IPW_TX_QUEUE_3_WRITE_INDEX,
4916 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4917 if (rc) {
4918 IPW_ERROR("Tx 3 queue init failed\n");
4919 goto error;
4921 /* statistics */
4922 priv->rx_bufs_min = 0;
4923 priv->rx_pend_max = 0;
4924 return rc;
4926 error:
4927 ipw_tx_queue_free(priv);
4928 return rc;
4932 * Reclaim Tx queue entries no more used by NIC.
4934 * When FW advances 'R' index, all entries between old and
4935 * new 'R' index need to be reclaimed. As result, some free space
4936 * forms. If there is enough free space (> low mark), wake Tx queue.
4938 * @note Need to protect against garbage in 'R' index
4939 * @param priv
4940 * @param txq
4941 * @param qindex
4942 * @return Number of used entries remains in the queue
4944 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4945 struct clx2_tx_queue *txq, int qindex)
4947 u32 hw_tail;
4948 int used;
4949 struct clx2_queue *q = &txq->q;
4951 hw_tail = ipw_read32(priv, q->reg_r);
4952 if (hw_tail >= q->n_bd) {
4953 IPW_ERROR
4954 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4955 hw_tail, q->n_bd);
4956 goto done;
4958 for (; q->last_used != hw_tail;
4959 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4960 ipw_queue_tx_free_tfd(priv, txq);
4961 priv->tx_packets++;
4963 done:
4964 if ((ipw_queue_space(q) > q->low_mark) &&
4965 (qindex >= 0) &&
4966 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4967 netif_wake_queue(priv->net_dev);
4968 used = q->first_empty - q->last_used;
4969 if (used < 0)
4970 used += q->n_bd;
4972 return used;
4975 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4976 int len, int sync)
4978 struct clx2_tx_queue *txq = &priv->txq_cmd;
4979 struct clx2_queue *q = &txq->q;
4980 struct tfd_frame *tfd;
4982 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4983 IPW_ERROR("No space for Tx\n");
4984 return -EBUSY;
4987 tfd = &txq->bd[q->first_empty];
4988 txq->txb[q->first_empty] = NULL;
4990 memset(tfd, 0, sizeof(*tfd));
4991 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4992 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4993 priv->hcmd_seq++;
4994 tfd->u.cmd.index = hcmd;
4995 tfd->u.cmd.length = len;
4996 memcpy(tfd->u.cmd.payload, buf, len);
4997 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4998 ipw_write32(priv, q->reg_w, q->first_empty);
4999 _ipw_read32(priv, 0x90);
5001 return 0;
5005 * Rx theory of operation
5007 * The host allocates 32 DMA target addresses and passes the host address
5008 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5009 * 0 to 31
5011 * Rx Queue Indexes
5012 * The host/firmware share two index registers for managing the Rx buffers.
5014 * The READ index maps to the first position that the firmware may be writing
5015 * to -- the driver can read up to (but not including) this position and get
5016 * good data.
5017 * The READ index is managed by the firmware once the card is enabled.
5019 * The WRITE index maps to the last position the driver has read from -- the
5020 * position preceding WRITE is the last slot the firmware can place a packet.
5022 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5023 * WRITE = READ.
5025 * During initialization the host sets up the READ queue position to the first
5026 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5028 * When the firmware places a packet in a buffer it will advance the READ index
5029 * and fire the RX interrupt. The driver can then query the READ index and
5030 * process as many packets as possible, moving the WRITE index forward as it
5031 * resets the Rx queue buffers with new memory.
5033 * The management in the driver is as follows:
5034 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5035 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5036 * to replensish the ipw->rxq->rx_free.
5037 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5038 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5039 * 'processed' and 'read' driver indexes as well)
5040 * + A received packet is processed and handed to the kernel network stack,
5041 * detached from the ipw->rxq. The driver 'processed' index is updated.
5042 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5043 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5044 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5045 * were enough free buffers and RX_STALLED is set it is cleared.
5048 * Driver sequence:
5050 * ipw_rx_queue_alloc() Allocates rx_free
5051 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5052 * ipw_rx_queue_restock
5053 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5054 * queue, updates firmware pointers, and updates
5055 * the WRITE index. If insufficient rx_free buffers
5056 * are available, schedules ipw_rx_queue_replenish
5058 * -- enable interrupts --
5059 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5060 * READ INDEX, detaching the SKB from the pool.
5061 * Moves the packet buffer from queue to rx_used.
5062 * Calls ipw_rx_queue_restock to refill any empty
5063 * slots.
5064 * ...
5069 * If there are slots in the RX queue that need to be restocked,
5070 * and we have free pre-allocated buffers, fill the ranks as much
5071 * as we can pulling from rx_free.
5073 * This moves the 'write' index forward to catch up with 'processed', and
5074 * also updates the memory address in the firmware to reference the new
5075 * target buffer.
5077 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5079 struct ipw_rx_queue *rxq = priv->rxq;
5080 struct list_head *element;
5081 struct ipw_rx_mem_buffer *rxb;
5082 unsigned long flags;
5083 int write;
5085 spin_lock_irqsave(&rxq->lock, flags);
5086 write = rxq->write;
5087 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5088 element = rxq->rx_free.next;
5089 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5090 list_del(element);
5092 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5093 rxb->dma_addr);
5094 rxq->queue[rxq->write] = rxb;
5095 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5096 rxq->free_count--;
5098 spin_unlock_irqrestore(&rxq->lock, flags);
5100 /* If the pre-allocated buffer pool is dropping low, schedule to
5101 * refill it */
5102 if (rxq->free_count <= RX_LOW_WATERMARK)
5103 queue_work(priv->workqueue, &priv->rx_replenish);
5105 /* If we've added more space for the firmware to place data, tell it */
5106 if (write != rxq->write)
5107 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5111 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5112 * Also restock the Rx queue via ipw_rx_queue_restock.
5114 * This is called as a scheduled work item (except for during intialization)
5116 static void ipw_rx_queue_replenish(void *data)
5118 struct ipw_priv *priv = data;
5119 struct ipw_rx_queue *rxq = priv->rxq;
5120 struct list_head *element;
5121 struct ipw_rx_mem_buffer *rxb;
5122 unsigned long flags;
5124 spin_lock_irqsave(&rxq->lock, flags);
5125 while (!list_empty(&rxq->rx_used)) {
5126 element = rxq->rx_used.next;
5127 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5128 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5129 if (!rxb->skb) {
5130 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5131 priv->net_dev->name);
5132 /* We don't reschedule replenish work here -- we will
5133 * call the restock method and if it still needs
5134 * more buffers it will schedule replenish */
5135 break;
5137 list_del(element);
5139 rxb->dma_addr =
5140 pci_map_single(priv->pci_dev, rxb->skb->data,
5141 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5143 list_add_tail(&rxb->list, &rxq->rx_free);
5144 rxq->free_count++;
5146 spin_unlock_irqrestore(&rxq->lock, flags);
5148 ipw_rx_queue_restock(priv);
5151 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5153 struct ipw_priv *priv =
5154 container_of(work, struct ipw_priv, rx_replenish);
5155 mutex_lock(&priv->mutex);
5156 ipw_rx_queue_replenish(priv);
5157 mutex_unlock(&priv->mutex);
5160 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5161 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5162 * This free routine walks the list of POOL entries and if SKB is set to
5163 * non NULL it is unmapped and freed
5165 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5167 int i;
5169 if (!rxq)
5170 return;
5172 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5173 if (rxq->pool[i].skb != NULL) {
5174 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5175 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5176 dev_kfree_skb(rxq->pool[i].skb);
5180 kfree(rxq);
5183 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5185 struct ipw_rx_queue *rxq;
5186 int i;
5188 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5189 if (unlikely(!rxq)) {
5190 IPW_ERROR("memory allocation failed\n");
5191 return NULL;
5193 spin_lock_init(&rxq->lock);
5194 INIT_LIST_HEAD(&rxq->rx_free);
5195 INIT_LIST_HEAD(&rxq->rx_used);
5197 /* Fill the rx_used queue with _all_ of the Rx buffers */
5198 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5199 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5201 /* Set us so that we have processed and used all buffers, but have
5202 * not restocked the Rx queue with fresh buffers */
5203 rxq->read = rxq->write = 0;
5204 rxq->processed = RX_QUEUE_SIZE - 1;
5205 rxq->free_count = 0;
5207 return rxq;
5210 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5212 rate &= ~IEEE80211_BASIC_RATE_MASK;
5213 if (ieee_mode == IEEE_A) {
5214 switch (rate) {
5215 case IEEE80211_OFDM_RATE_6MB:
5216 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5217 1 : 0;
5218 case IEEE80211_OFDM_RATE_9MB:
5219 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5220 1 : 0;
5221 case IEEE80211_OFDM_RATE_12MB:
5222 return priv->
5223 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5224 case IEEE80211_OFDM_RATE_18MB:
5225 return priv->
5226 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5227 case IEEE80211_OFDM_RATE_24MB:
5228 return priv->
5229 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5230 case IEEE80211_OFDM_RATE_36MB:
5231 return priv->
5232 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5233 case IEEE80211_OFDM_RATE_48MB:
5234 return priv->
5235 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5236 case IEEE80211_OFDM_RATE_54MB:
5237 return priv->
5238 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5239 default:
5240 return 0;
5244 /* B and G mixed */
5245 switch (rate) {
5246 case IEEE80211_CCK_RATE_1MB:
5247 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5248 case IEEE80211_CCK_RATE_2MB:
5249 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5250 case IEEE80211_CCK_RATE_5MB:
5251 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5252 case IEEE80211_CCK_RATE_11MB:
5253 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5256 /* If we are limited to B modulations, bail at this point */
5257 if (ieee_mode == IEEE_B)
5258 return 0;
5260 /* G */
5261 switch (rate) {
5262 case IEEE80211_OFDM_RATE_6MB:
5263 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5264 case IEEE80211_OFDM_RATE_9MB:
5265 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5266 case IEEE80211_OFDM_RATE_12MB:
5267 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5268 case IEEE80211_OFDM_RATE_18MB:
5269 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5270 case IEEE80211_OFDM_RATE_24MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_36MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_48MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_54MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5280 return 0;
5283 static int ipw_compatible_rates(struct ipw_priv *priv,
5284 const struct ieee80211_network *network,
5285 struct ipw_supported_rates *rates)
5287 int num_rates, i;
5289 memset(rates, 0, sizeof(*rates));
5290 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5291 rates->num_rates = 0;
5292 for (i = 0; i < num_rates; i++) {
5293 if (!ipw_is_rate_in_mask(priv, network->mode,
5294 network->rates[i])) {
5296 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5297 IPW_DEBUG_SCAN("Adding masked mandatory "
5298 "rate %02X\n",
5299 network->rates[i]);
5300 rates->supported_rates[rates->num_rates++] =
5301 network->rates[i];
5302 continue;
5305 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5306 network->rates[i], priv->rates_mask);
5307 continue;
5310 rates->supported_rates[rates->num_rates++] = network->rates[i];
5313 num_rates = min(network->rates_ex_len,
5314 (u8) (IPW_MAX_RATES - num_rates));
5315 for (i = 0; i < num_rates; i++) {
5316 if (!ipw_is_rate_in_mask(priv, network->mode,
5317 network->rates_ex[i])) {
5318 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5319 IPW_DEBUG_SCAN("Adding masked mandatory "
5320 "rate %02X\n",
5321 network->rates_ex[i]);
5322 rates->supported_rates[rates->num_rates++] =
5323 network->rates[i];
5324 continue;
5327 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5328 network->rates_ex[i], priv->rates_mask);
5329 continue;
5332 rates->supported_rates[rates->num_rates++] =
5333 network->rates_ex[i];
5336 return 1;
5339 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5340 const struct ipw_supported_rates *src)
5342 u8 i;
5343 for (i = 0; i < src->num_rates; i++)
5344 dest->supported_rates[i] = src->supported_rates[i];
5345 dest->num_rates = src->num_rates;
5348 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5349 * mask should ever be used -- right now all callers to add the scan rates are
5350 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5351 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5352 u8 modulation, u32 rate_mask)
5354 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5355 IEEE80211_BASIC_RATE_MASK : 0;
5357 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5358 rates->supported_rates[rates->num_rates++] =
5359 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5361 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5362 rates->supported_rates[rates->num_rates++] =
5363 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5365 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5366 rates->supported_rates[rates->num_rates++] = basic_mask |
5367 IEEE80211_CCK_RATE_5MB;
5369 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5370 rates->supported_rates[rates->num_rates++] = basic_mask |
5371 IEEE80211_CCK_RATE_11MB;
5374 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5375 u8 modulation, u32 rate_mask)
5377 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5378 IEEE80211_BASIC_RATE_MASK : 0;
5380 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5381 rates->supported_rates[rates->num_rates++] = basic_mask |
5382 IEEE80211_OFDM_RATE_6MB;
5384 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5385 rates->supported_rates[rates->num_rates++] =
5386 IEEE80211_OFDM_RATE_9MB;
5388 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5389 rates->supported_rates[rates->num_rates++] = basic_mask |
5390 IEEE80211_OFDM_RATE_12MB;
5392 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5393 rates->supported_rates[rates->num_rates++] =
5394 IEEE80211_OFDM_RATE_18MB;
5396 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5397 rates->supported_rates[rates->num_rates++] = basic_mask |
5398 IEEE80211_OFDM_RATE_24MB;
5400 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5401 rates->supported_rates[rates->num_rates++] =
5402 IEEE80211_OFDM_RATE_36MB;
5404 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5405 rates->supported_rates[rates->num_rates++] =
5406 IEEE80211_OFDM_RATE_48MB;
5408 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5409 rates->supported_rates[rates->num_rates++] =
5410 IEEE80211_OFDM_RATE_54MB;
5413 struct ipw_network_match {
5414 struct ieee80211_network *network;
5415 struct ipw_supported_rates rates;
5418 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5419 struct ipw_network_match *match,
5420 struct ieee80211_network *network,
5421 int roaming)
5423 struct ipw_supported_rates rates;
5424 DECLARE_MAC_BUF(mac);
5425 DECLARE_MAC_BUF(mac2);
5427 /* Verify that this network's capability is compatible with the
5428 * current mode (AdHoc or Infrastructure) */
5429 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5430 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5431 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5432 "capability mismatch.\n",
5433 escape_essid(network->ssid, network->ssid_len),
5434 print_mac(mac, network->bssid));
5435 return 0;
5438 /* If we do not have an ESSID for this AP, we can not associate with
5439 * it */
5440 if (network->flags & NETWORK_EMPTY_ESSID) {
5441 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5442 "because of hidden ESSID.\n",
5443 escape_essid(network->ssid, network->ssid_len),
5444 print_mac(mac, network->bssid));
5445 return 0;
5448 if (unlikely(roaming)) {
5449 /* If we are roaming, then ensure check if this is a valid
5450 * network to try and roam to */
5451 if ((network->ssid_len != match->network->ssid_len) ||
5452 memcmp(network->ssid, match->network->ssid,
5453 network->ssid_len)) {
5454 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5455 "because of non-network ESSID.\n",
5456 escape_essid(network->ssid,
5457 network->ssid_len),
5458 print_mac(mac, network->bssid));
5459 return 0;
5461 } else {
5462 /* If an ESSID has been configured then compare the broadcast
5463 * ESSID to ours */
5464 if ((priv->config & CFG_STATIC_ESSID) &&
5465 ((network->ssid_len != priv->essid_len) ||
5466 memcmp(network->ssid, priv->essid,
5467 min(network->ssid_len, priv->essid_len)))) {
5468 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5470 strncpy(escaped,
5471 escape_essid(network->ssid, network->ssid_len),
5472 sizeof(escaped));
5473 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5474 "because of ESSID mismatch: '%s'.\n",
5475 escaped, print_mac(mac, network->bssid),
5476 escape_essid(priv->essid,
5477 priv->essid_len));
5478 return 0;
5482 /* If the old network rate is better than this one, don't bother
5483 * testing everything else. */
5485 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5486 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5487 "current network.\n",
5488 escape_essid(match->network->ssid,
5489 match->network->ssid_len));
5490 return 0;
5491 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5492 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5493 "current network.\n",
5494 escape_essid(match->network->ssid,
5495 match->network->ssid_len));
5496 return 0;
5499 /* Now go through and see if the requested network is valid... */
5500 if (priv->ieee->scan_age != 0 &&
5501 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5502 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5503 "because of age: %ums.\n",
5504 escape_essid(network->ssid, network->ssid_len),
5505 print_mac(mac, network->bssid),
5506 jiffies_to_msecs(jiffies -
5507 network->last_scanned));
5508 return 0;
5511 if ((priv->config & CFG_STATIC_CHANNEL) &&
5512 (network->channel != priv->channel)) {
5513 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5514 "because of channel mismatch: %d != %d.\n",
5515 escape_essid(network->ssid, network->ssid_len),
5516 print_mac(mac, network->bssid),
5517 network->channel, priv->channel);
5518 return 0;
5521 /* Verify privacy compatability */
5522 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5523 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5524 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5525 "because of privacy mismatch: %s != %s.\n",
5526 escape_essid(network->ssid, network->ssid_len),
5527 print_mac(mac, network->bssid),
5528 priv->
5529 capability & CAP_PRIVACY_ON ? "on" : "off",
5530 network->
5531 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5532 "off");
5533 return 0;
5536 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5537 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5538 "because of the same BSSID match: %s"
5539 ".\n", escape_essid(network->ssid,
5540 network->ssid_len),
5541 print_mac(mac, network->bssid),
5542 print_mac(mac2, priv->bssid));
5543 return 0;
5546 /* Filter out any incompatible freq / mode combinations */
5547 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5548 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5549 "because of invalid frequency/mode "
5550 "combination.\n",
5551 escape_essid(network->ssid, network->ssid_len),
5552 print_mac(mac, network->bssid));
5553 return 0;
5556 /* Ensure that the rates supported by the driver are compatible with
5557 * this AP, including verification of basic rates (mandatory) */
5558 if (!ipw_compatible_rates(priv, network, &rates)) {
5559 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5560 "because configured rate mask excludes "
5561 "AP mandatory rate.\n",
5562 escape_essid(network->ssid, network->ssid_len),
5563 print_mac(mac, network->bssid));
5564 return 0;
5567 if (rates.num_rates == 0) {
5568 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5569 "because of no compatible rates.\n",
5570 escape_essid(network->ssid, network->ssid_len),
5571 print_mac(mac, network->bssid));
5572 return 0;
5575 /* TODO: Perform any further minimal comparititive tests. We do not
5576 * want to put too much policy logic here; intelligent scan selection
5577 * should occur within a generic IEEE 802.11 user space tool. */
5579 /* Set up 'new' AP to this network */
5580 ipw_copy_rates(&match->rates, &rates);
5581 match->network = network;
5582 IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5583 escape_essid(network->ssid, network->ssid_len),
5584 print_mac(mac, network->bssid));
5586 return 1;
5589 static void ipw_merge_adhoc_network(struct work_struct *work)
5591 struct ipw_priv *priv =
5592 container_of(work, struct ipw_priv, merge_networks);
5593 struct ieee80211_network *network = NULL;
5594 struct ipw_network_match match = {
5595 .network = priv->assoc_network
5598 if ((priv->status & STATUS_ASSOCIATED) &&
5599 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5600 /* First pass through ROAM process -- look for a better
5601 * network */
5602 unsigned long flags;
5604 spin_lock_irqsave(&priv->ieee->lock, flags);
5605 list_for_each_entry(network, &priv->ieee->network_list, list) {
5606 if (network != priv->assoc_network)
5607 ipw_find_adhoc_network(priv, &match, network,
5610 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5612 if (match.network == priv->assoc_network) {
5613 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5614 "merge to.\n");
5615 return;
5618 mutex_lock(&priv->mutex);
5619 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5620 IPW_DEBUG_MERGE("remove network %s\n",
5621 escape_essid(priv->essid,
5622 priv->essid_len));
5623 ipw_remove_current_network(priv);
5626 ipw_disassociate(priv);
5627 priv->assoc_network = match.network;
5628 mutex_unlock(&priv->mutex);
5629 return;
5633 static int ipw_best_network(struct ipw_priv *priv,
5634 struct ipw_network_match *match,
5635 struct ieee80211_network *network, int roaming)
5637 struct ipw_supported_rates rates;
5638 DECLARE_MAC_BUF(mac);
5640 /* Verify that this network's capability is compatible with the
5641 * current mode (AdHoc or Infrastructure) */
5642 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5643 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5644 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5645 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5646 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5647 "capability mismatch.\n",
5648 escape_essid(network->ssid, network->ssid_len),
5649 print_mac(mac, network->bssid));
5650 return 0;
5653 /* If we do not have an ESSID for this AP, we can not associate with
5654 * it */
5655 if (network->flags & NETWORK_EMPTY_ESSID) {
5656 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5657 "because of hidden ESSID.\n",
5658 escape_essid(network->ssid, network->ssid_len),
5659 print_mac(mac, network->bssid));
5660 return 0;
5663 if (unlikely(roaming)) {
5664 /* If we are roaming, then ensure check if this is a valid
5665 * network to try and roam to */
5666 if ((network->ssid_len != match->network->ssid_len) ||
5667 memcmp(network->ssid, match->network->ssid,
5668 network->ssid_len)) {
5669 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5670 "because of non-network ESSID.\n",
5671 escape_essid(network->ssid,
5672 network->ssid_len),
5673 print_mac(mac, network->bssid));
5674 return 0;
5676 } else {
5677 /* If an ESSID has been configured then compare the broadcast
5678 * ESSID to ours */
5679 if ((priv->config & CFG_STATIC_ESSID) &&
5680 ((network->ssid_len != priv->essid_len) ||
5681 memcmp(network->ssid, priv->essid,
5682 min(network->ssid_len, priv->essid_len)))) {
5683 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5684 strncpy(escaped,
5685 escape_essid(network->ssid, network->ssid_len),
5686 sizeof(escaped));
5687 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5688 "because of ESSID mismatch: '%s'.\n",
5689 escaped, print_mac(mac, network->bssid),
5690 escape_essid(priv->essid,
5691 priv->essid_len));
5692 return 0;
5696 /* If the old network rate is better than this one, don't bother
5697 * testing everything else. */
5698 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5699 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5700 strncpy(escaped,
5701 escape_essid(network->ssid, network->ssid_len),
5702 sizeof(escaped));
5703 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5704 "'%s (%s)' has a stronger signal.\n",
5705 escaped, print_mac(mac, network->bssid),
5706 escape_essid(match->network->ssid,
5707 match->network->ssid_len),
5708 print_mac(mac, match->network->bssid));
5709 return 0;
5712 /* If this network has already had an association attempt within the
5713 * last 3 seconds, do not try and associate again... */
5714 if (network->last_associate &&
5715 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5716 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5717 "because of storming (%ums since last "
5718 "assoc attempt).\n",
5719 escape_essid(network->ssid, network->ssid_len),
5720 print_mac(mac, network->bssid),
5721 jiffies_to_msecs(jiffies -
5722 network->last_associate));
5723 return 0;
5726 /* Now go through and see if the requested network is valid... */
5727 if (priv->ieee->scan_age != 0 &&
5728 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5729 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5730 "because of age: %ums.\n",
5731 escape_essid(network->ssid, network->ssid_len),
5732 print_mac(mac, network->bssid),
5733 jiffies_to_msecs(jiffies -
5734 network->last_scanned));
5735 return 0;
5738 if ((priv->config & CFG_STATIC_CHANNEL) &&
5739 (network->channel != priv->channel)) {
5740 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5741 "because of channel mismatch: %d != %d.\n",
5742 escape_essid(network->ssid, network->ssid_len),
5743 print_mac(mac, network->bssid),
5744 network->channel, priv->channel);
5745 return 0;
5748 /* Verify privacy compatability */
5749 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5750 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5751 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5752 "because of privacy mismatch: %s != %s.\n",
5753 escape_essid(network->ssid, network->ssid_len),
5754 print_mac(mac, network->bssid),
5755 priv->capability & CAP_PRIVACY_ON ? "on" :
5756 "off",
5757 network->capability &
5758 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5759 return 0;
5762 if ((priv->config & CFG_STATIC_BSSID) &&
5763 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5764 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5765 "because of BSSID mismatch: %s.\n",
5766 escape_essid(network->ssid, network->ssid_len),
5767 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5768 return 0;
5771 /* Filter out any incompatible freq / mode combinations */
5772 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5773 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5774 "because of invalid frequency/mode "
5775 "combination.\n",
5776 escape_essid(network->ssid, network->ssid_len),
5777 print_mac(mac, network->bssid));
5778 return 0;
5781 /* Filter out invalid channel in current GEO */
5782 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5783 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5784 "because of invalid channel in current GEO\n",
5785 escape_essid(network->ssid, network->ssid_len),
5786 print_mac(mac, network->bssid));
5787 return 0;
5790 /* Ensure that the rates supported by the driver are compatible with
5791 * this AP, including verification of basic rates (mandatory) */
5792 if (!ipw_compatible_rates(priv, network, &rates)) {
5793 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5794 "because configured rate mask excludes "
5795 "AP mandatory rate.\n",
5796 escape_essid(network->ssid, network->ssid_len),
5797 print_mac(mac, network->bssid));
5798 return 0;
5801 if (rates.num_rates == 0) {
5802 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5803 "because of no compatible rates.\n",
5804 escape_essid(network->ssid, network->ssid_len),
5805 print_mac(mac, network->bssid));
5806 return 0;
5809 /* TODO: Perform any further minimal comparititive tests. We do not
5810 * want to put too much policy logic here; intelligent scan selection
5811 * should occur within a generic IEEE 802.11 user space tool. */
5813 /* Set up 'new' AP to this network */
5814 ipw_copy_rates(&match->rates, &rates);
5815 match->network = network;
5817 IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5818 escape_essid(network->ssid, network->ssid_len),
5819 print_mac(mac, network->bssid));
5821 return 1;
5824 static void ipw_adhoc_create(struct ipw_priv *priv,
5825 struct ieee80211_network *network)
5827 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5828 int i;
5831 * For the purposes of scanning, we can set our wireless mode
5832 * to trigger scans across combinations of bands, but when it
5833 * comes to creating a new ad-hoc network, we have tell the FW
5834 * exactly which band to use.
5836 * We also have the possibility of an invalid channel for the
5837 * chossen band. Attempting to create a new ad-hoc network
5838 * with an invalid channel for wireless mode will trigger a
5839 * FW fatal error.
5842 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5843 case IEEE80211_52GHZ_BAND:
5844 network->mode = IEEE_A;
5845 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5846 BUG_ON(i == -1);
5847 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5848 IPW_WARNING("Overriding invalid channel\n");
5849 priv->channel = geo->a[0].channel;
5851 break;
5853 case IEEE80211_24GHZ_BAND:
5854 if (priv->ieee->mode & IEEE_G)
5855 network->mode = IEEE_G;
5856 else
5857 network->mode = IEEE_B;
5858 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5859 BUG_ON(i == -1);
5860 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5861 IPW_WARNING("Overriding invalid channel\n");
5862 priv->channel = geo->bg[0].channel;
5864 break;
5866 default:
5867 IPW_WARNING("Overriding invalid channel\n");
5868 if (priv->ieee->mode & IEEE_A) {
5869 network->mode = IEEE_A;
5870 priv->channel = geo->a[0].channel;
5871 } else if (priv->ieee->mode & IEEE_G) {
5872 network->mode = IEEE_G;
5873 priv->channel = geo->bg[0].channel;
5874 } else {
5875 network->mode = IEEE_B;
5876 priv->channel = geo->bg[0].channel;
5878 break;
5881 network->channel = priv->channel;
5882 priv->config |= CFG_ADHOC_PERSIST;
5883 ipw_create_bssid(priv, network->bssid);
5884 network->ssid_len = priv->essid_len;
5885 memcpy(network->ssid, priv->essid, priv->essid_len);
5886 memset(&network->stats, 0, sizeof(network->stats));
5887 network->capability = WLAN_CAPABILITY_IBSS;
5888 if (!(priv->config & CFG_PREAMBLE_LONG))
5889 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5890 if (priv->capability & CAP_PRIVACY_ON)
5891 network->capability |= WLAN_CAPABILITY_PRIVACY;
5892 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5893 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5894 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5895 memcpy(network->rates_ex,
5896 &priv->rates.supported_rates[network->rates_len],
5897 network->rates_ex_len);
5898 network->last_scanned = 0;
5899 network->flags = 0;
5900 network->last_associate = 0;
5901 network->time_stamp[0] = 0;
5902 network->time_stamp[1] = 0;
5903 network->beacon_interval = 100; /* Default */
5904 network->listen_interval = 10; /* Default */
5905 network->atim_window = 0; /* Default */
5906 network->wpa_ie_len = 0;
5907 network->rsn_ie_len = 0;
5910 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5912 struct ipw_tgi_tx_key key;
5914 if (!(priv->ieee->sec.flags & (1 << index)))
5915 return;
5917 key.key_id = index;
5918 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5919 key.security_type = type;
5920 key.station_index = 0; /* always 0 for BSS */
5921 key.flags = 0;
5922 /* 0 for new key; previous value of counter (after fatal error) */
5923 key.tx_counter[0] = cpu_to_le32(0);
5924 key.tx_counter[1] = cpu_to_le32(0);
5926 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5929 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5931 struct ipw_wep_key key;
5932 int i;
5934 key.cmd_id = DINO_CMD_WEP_KEY;
5935 key.seq_num = 0;
5937 /* Note: AES keys cannot be set for multiple times.
5938 * Only set it at the first time. */
5939 for (i = 0; i < 4; i++) {
5940 key.key_index = i | type;
5941 if (!(priv->ieee->sec.flags & (1 << i))) {
5942 key.key_size = 0;
5943 continue;
5946 key.key_size = priv->ieee->sec.key_sizes[i];
5947 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5949 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5953 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5955 if (priv->ieee->host_encrypt)
5956 return;
5958 switch (level) {
5959 case SEC_LEVEL_3:
5960 priv->sys_config.disable_unicast_decryption = 0;
5961 priv->ieee->host_decrypt = 0;
5962 break;
5963 case SEC_LEVEL_2:
5964 priv->sys_config.disable_unicast_decryption = 1;
5965 priv->ieee->host_decrypt = 1;
5966 break;
5967 case SEC_LEVEL_1:
5968 priv->sys_config.disable_unicast_decryption = 0;
5969 priv->ieee->host_decrypt = 0;
5970 break;
5971 case SEC_LEVEL_0:
5972 priv->sys_config.disable_unicast_decryption = 1;
5973 break;
5974 default:
5975 break;
5979 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5981 if (priv->ieee->host_encrypt)
5982 return;
5984 switch (level) {
5985 case SEC_LEVEL_3:
5986 priv->sys_config.disable_multicast_decryption = 0;
5987 break;
5988 case SEC_LEVEL_2:
5989 priv->sys_config.disable_multicast_decryption = 1;
5990 break;
5991 case SEC_LEVEL_1:
5992 priv->sys_config.disable_multicast_decryption = 0;
5993 break;
5994 case SEC_LEVEL_0:
5995 priv->sys_config.disable_multicast_decryption = 1;
5996 break;
5997 default:
5998 break;
6002 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6004 switch (priv->ieee->sec.level) {
6005 case SEC_LEVEL_3:
6006 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6007 ipw_send_tgi_tx_key(priv,
6008 DCT_FLAG_EXT_SECURITY_CCM,
6009 priv->ieee->sec.active_key);
6011 if (!priv->ieee->host_mc_decrypt)
6012 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6013 break;
6014 case SEC_LEVEL_2:
6015 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6016 ipw_send_tgi_tx_key(priv,
6017 DCT_FLAG_EXT_SECURITY_TKIP,
6018 priv->ieee->sec.active_key);
6019 break;
6020 case SEC_LEVEL_1:
6021 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6022 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6023 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6024 break;
6025 case SEC_LEVEL_0:
6026 default:
6027 break;
6031 static void ipw_adhoc_check(void *data)
6033 struct ipw_priv *priv = data;
6035 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6036 !(priv->config & CFG_ADHOC_PERSIST)) {
6037 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6038 IPW_DL_STATE | IPW_DL_ASSOC,
6039 "Missed beacon: %d - disassociate\n",
6040 priv->missed_adhoc_beacons);
6041 ipw_remove_current_network(priv);
6042 ipw_disassociate(priv);
6043 return;
6046 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6047 priv->assoc_request.beacon_interval);
6050 static void ipw_bg_adhoc_check(struct work_struct *work)
6052 struct ipw_priv *priv =
6053 container_of(work, struct ipw_priv, adhoc_check.work);
6054 mutex_lock(&priv->mutex);
6055 ipw_adhoc_check(priv);
6056 mutex_unlock(&priv->mutex);
6059 static void ipw_debug_config(struct ipw_priv *priv)
6061 DECLARE_MAC_BUF(mac);
6062 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6063 "[CFG 0x%08X]\n", priv->config);
6064 if (priv->config & CFG_STATIC_CHANNEL)
6065 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6066 else
6067 IPW_DEBUG_INFO("Channel unlocked.\n");
6068 if (priv->config & CFG_STATIC_ESSID)
6069 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6070 escape_essid(priv->essid, priv->essid_len));
6071 else
6072 IPW_DEBUG_INFO("ESSID unlocked.\n");
6073 if (priv->config & CFG_STATIC_BSSID)
6074 IPW_DEBUG_INFO("BSSID locked to %s\n",
6075 print_mac(mac, priv->bssid));
6076 else
6077 IPW_DEBUG_INFO("BSSID unlocked.\n");
6078 if (priv->capability & CAP_PRIVACY_ON)
6079 IPW_DEBUG_INFO("PRIVACY on\n");
6080 else
6081 IPW_DEBUG_INFO("PRIVACY off\n");
6082 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6085 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6087 /* TODO: Verify that this works... */
6088 struct ipw_fixed_rate fr = {
6089 .tx_rates = priv->rates_mask
6091 u32 reg;
6092 u16 mask = 0;
6094 /* Identify 'current FW band' and match it with the fixed
6095 * Tx rates */
6097 switch (priv->ieee->freq_band) {
6098 case IEEE80211_52GHZ_BAND: /* A only */
6099 /* IEEE_A */
6100 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6101 /* Invalid fixed rate mask */
6102 IPW_DEBUG_WX
6103 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6104 fr.tx_rates = 0;
6105 break;
6108 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6109 break;
6111 default: /* 2.4Ghz or Mixed */
6112 /* IEEE_B */
6113 if (mode == IEEE_B) {
6114 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6115 /* Invalid fixed rate mask */
6116 IPW_DEBUG_WX
6117 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6118 fr.tx_rates = 0;
6120 break;
6123 /* IEEE_G */
6124 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6125 IEEE80211_OFDM_RATES_MASK)) {
6126 /* Invalid fixed rate mask */
6127 IPW_DEBUG_WX
6128 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6129 fr.tx_rates = 0;
6130 break;
6133 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6134 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6135 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6138 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6139 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6140 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6143 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6144 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6145 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6148 fr.tx_rates |= mask;
6149 break;
6152 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6153 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6156 static void ipw_abort_scan(struct ipw_priv *priv)
6158 int err;
6160 if (priv->status & STATUS_SCAN_ABORTING) {
6161 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6162 return;
6164 priv->status |= STATUS_SCAN_ABORTING;
6166 err = ipw_send_scan_abort(priv);
6167 if (err)
6168 IPW_DEBUG_HC("Request to abort scan failed.\n");
6171 static void ipw_add_scan_channels(struct ipw_priv *priv,
6172 struct ipw_scan_request_ext *scan,
6173 int scan_type)
6175 int channel_index = 0;
6176 const struct ieee80211_geo *geo;
6177 int i;
6179 geo = ieee80211_get_geo(priv->ieee);
6181 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6182 int start = channel_index;
6183 for (i = 0; i < geo->a_channels; i++) {
6184 if ((priv->status & STATUS_ASSOCIATED) &&
6185 geo->a[i].channel == priv->channel)
6186 continue;
6187 channel_index++;
6188 scan->channels_list[channel_index] = geo->a[i].channel;
6189 ipw_set_scan_type(scan, channel_index,
6190 geo->a[i].
6191 flags & IEEE80211_CH_PASSIVE_ONLY ?
6192 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6193 scan_type);
6196 if (start != channel_index) {
6197 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6198 (channel_index - start);
6199 channel_index++;
6203 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6204 int start = channel_index;
6205 if (priv->config & CFG_SPEED_SCAN) {
6206 int index;
6207 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6208 /* nop out the list */
6209 [0] = 0
6212 u8 channel;
6213 while (channel_index < IPW_SCAN_CHANNELS) {
6214 channel =
6215 priv->speed_scan[priv->speed_scan_pos];
6216 if (channel == 0) {
6217 priv->speed_scan_pos = 0;
6218 channel = priv->speed_scan[0];
6220 if ((priv->status & STATUS_ASSOCIATED) &&
6221 channel == priv->channel) {
6222 priv->speed_scan_pos++;
6223 continue;
6226 /* If this channel has already been
6227 * added in scan, break from loop
6228 * and this will be the first channel
6229 * in the next scan.
6231 if (channels[channel - 1] != 0)
6232 break;
6234 channels[channel - 1] = 1;
6235 priv->speed_scan_pos++;
6236 channel_index++;
6237 scan->channels_list[channel_index] = channel;
6238 index =
6239 ieee80211_channel_to_index(priv->ieee, channel);
6240 ipw_set_scan_type(scan, channel_index,
6241 geo->bg[index].
6242 flags &
6243 IEEE80211_CH_PASSIVE_ONLY ?
6244 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6245 : scan_type);
6247 } else {
6248 for (i = 0; i < geo->bg_channels; i++) {
6249 if ((priv->status & STATUS_ASSOCIATED) &&
6250 geo->bg[i].channel == priv->channel)
6251 continue;
6252 channel_index++;
6253 scan->channels_list[channel_index] =
6254 geo->bg[i].channel;
6255 ipw_set_scan_type(scan, channel_index,
6256 geo->bg[i].
6257 flags &
6258 IEEE80211_CH_PASSIVE_ONLY ?
6259 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6260 : scan_type);
6264 if (start != channel_index) {
6265 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6266 (channel_index - start);
6271 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6273 struct ipw_scan_request_ext scan;
6274 int err = 0, scan_type;
6276 if (!(priv->status & STATUS_INIT) ||
6277 (priv->status & STATUS_EXIT_PENDING))
6278 return 0;
6280 mutex_lock(&priv->mutex);
6282 if (priv->status & STATUS_SCANNING) {
6283 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6284 priv->status |= STATUS_SCAN_PENDING;
6285 goto done;
6288 if (!(priv->status & STATUS_SCAN_FORCED) &&
6289 priv->status & STATUS_SCAN_ABORTING) {
6290 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6291 priv->status |= STATUS_SCAN_PENDING;
6292 goto done;
6295 if (priv->status & STATUS_RF_KILL_MASK) {
6296 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6297 priv->status |= STATUS_SCAN_PENDING;
6298 goto done;
6301 memset(&scan, 0, sizeof(scan));
6302 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6304 if (type == IW_SCAN_TYPE_PASSIVE) {
6305 IPW_DEBUG_WX("use passive scanning\n");
6306 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6307 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6308 cpu_to_le16(120);
6309 ipw_add_scan_channels(priv, &scan, scan_type);
6310 goto send_request;
6313 /* Use active scan by default. */
6314 if (priv->config & CFG_SPEED_SCAN)
6315 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6316 cpu_to_le16(30);
6317 else
6318 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6319 cpu_to_le16(20);
6321 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6322 cpu_to_le16(20);
6324 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6326 #ifdef CONFIG_IPW2200_MONITOR
6327 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6328 u8 channel;
6329 u8 band = 0;
6331 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6332 case IEEE80211_52GHZ_BAND:
6333 band = (u8) (IPW_A_MODE << 6) | 1;
6334 channel = priv->channel;
6335 break;
6337 case IEEE80211_24GHZ_BAND:
6338 band = (u8) (IPW_B_MODE << 6) | 1;
6339 channel = priv->channel;
6340 break;
6342 default:
6343 band = (u8) (IPW_B_MODE << 6) | 1;
6344 channel = 9;
6345 break;
6348 scan.channels_list[0] = band;
6349 scan.channels_list[1] = channel;
6350 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6352 /* NOTE: The card will sit on this channel for this time
6353 * period. Scan aborts are timing sensitive and frequently
6354 * result in firmware restarts. As such, it is best to
6355 * set a small dwell_time here and just keep re-issuing
6356 * scans. Otherwise fast channel hopping will not actually
6357 * hop channels.
6359 * TODO: Move SPEED SCAN support to all modes and bands */
6360 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6361 cpu_to_le16(2000);
6362 } else {
6363 #endif /* CONFIG_IPW2200_MONITOR */
6364 /* If we are roaming, then make this a directed scan for the
6365 * current network. Otherwise, ensure that every other scan
6366 * is a fast channel hop scan */
6367 if ((priv->status & STATUS_ROAMING)
6368 || (!(priv->status & STATUS_ASSOCIATED)
6369 && (priv->config & CFG_STATIC_ESSID)
6370 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6371 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6372 if (err) {
6373 IPW_DEBUG_HC("Attempt to send SSID command "
6374 "failed.\n");
6375 goto done;
6378 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6379 } else
6380 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6382 ipw_add_scan_channels(priv, &scan, scan_type);
6383 #ifdef CONFIG_IPW2200_MONITOR
6385 #endif
6387 send_request:
6388 err = ipw_send_scan_request_ext(priv, &scan);
6389 if (err) {
6390 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6391 goto done;
6394 priv->status |= STATUS_SCANNING;
6395 priv->status &= ~STATUS_SCAN_PENDING;
6396 queue_delayed_work(priv->workqueue, &priv->scan_check,
6397 IPW_SCAN_CHECK_WATCHDOG);
6398 done:
6399 mutex_unlock(&priv->mutex);
6400 return err;
6403 static void ipw_request_passive_scan(struct work_struct *work)
6405 struct ipw_priv *priv =
6406 container_of(work, struct ipw_priv, request_passive_scan);
6407 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6410 static void ipw_request_scan(struct work_struct *work)
6412 struct ipw_priv *priv =
6413 container_of(work, struct ipw_priv, request_scan.work);
6414 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6417 static void ipw_bg_abort_scan(struct work_struct *work)
6419 struct ipw_priv *priv =
6420 container_of(work, struct ipw_priv, abort_scan);
6421 mutex_lock(&priv->mutex);
6422 ipw_abort_scan(priv);
6423 mutex_unlock(&priv->mutex);
6426 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6428 /* This is called when wpa_supplicant loads and closes the driver
6429 * interface. */
6430 priv->ieee->wpa_enabled = value;
6431 return 0;
6434 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6436 struct ieee80211_device *ieee = priv->ieee;
6437 struct ieee80211_security sec = {
6438 .flags = SEC_AUTH_MODE,
6440 int ret = 0;
6442 if (value & IW_AUTH_ALG_SHARED_KEY) {
6443 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6444 ieee->open_wep = 0;
6445 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6446 sec.auth_mode = WLAN_AUTH_OPEN;
6447 ieee->open_wep = 1;
6448 } else if (value & IW_AUTH_ALG_LEAP) {
6449 sec.auth_mode = WLAN_AUTH_LEAP;
6450 ieee->open_wep = 1;
6451 } else
6452 return -EINVAL;
6454 if (ieee->set_security)
6455 ieee->set_security(ieee->dev, &sec);
6456 else
6457 ret = -EOPNOTSUPP;
6459 return ret;
6462 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6463 int wpa_ie_len)
6465 /* make sure WPA is enabled */
6466 ipw_wpa_enable(priv, 1);
6469 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6470 char *capabilities, int length)
6472 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6474 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6475 capabilities);
6479 * WE-18 support
6482 /* SIOCSIWGENIE */
6483 static int ipw_wx_set_genie(struct net_device *dev,
6484 struct iw_request_info *info,
6485 union iwreq_data *wrqu, char *extra)
6487 struct ipw_priv *priv = ieee80211_priv(dev);
6488 struct ieee80211_device *ieee = priv->ieee;
6489 u8 *buf;
6490 int err = 0;
6492 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6493 (wrqu->data.length && extra == NULL))
6494 return -EINVAL;
6496 if (wrqu->data.length) {
6497 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6498 if (buf == NULL) {
6499 err = -ENOMEM;
6500 goto out;
6503 memcpy(buf, extra, wrqu->data.length);
6504 kfree(ieee->wpa_ie);
6505 ieee->wpa_ie = buf;
6506 ieee->wpa_ie_len = wrqu->data.length;
6507 } else {
6508 kfree(ieee->wpa_ie);
6509 ieee->wpa_ie = NULL;
6510 ieee->wpa_ie_len = 0;
6513 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6514 out:
6515 return err;
6518 /* SIOCGIWGENIE */
6519 static int ipw_wx_get_genie(struct net_device *dev,
6520 struct iw_request_info *info,
6521 union iwreq_data *wrqu, char *extra)
6523 struct ipw_priv *priv = ieee80211_priv(dev);
6524 struct ieee80211_device *ieee = priv->ieee;
6525 int err = 0;
6527 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6528 wrqu->data.length = 0;
6529 goto out;
6532 if (wrqu->data.length < ieee->wpa_ie_len) {
6533 err = -E2BIG;
6534 goto out;
6537 wrqu->data.length = ieee->wpa_ie_len;
6538 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6540 out:
6541 return err;
6544 static int wext_cipher2level(int cipher)
6546 switch (cipher) {
6547 case IW_AUTH_CIPHER_NONE:
6548 return SEC_LEVEL_0;
6549 case IW_AUTH_CIPHER_WEP40:
6550 case IW_AUTH_CIPHER_WEP104:
6551 return SEC_LEVEL_1;
6552 case IW_AUTH_CIPHER_TKIP:
6553 return SEC_LEVEL_2;
6554 case IW_AUTH_CIPHER_CCMP:
6555 return SEC_LEVEL_3;
6556 default:
6557 return -1;
6561 /* SIOCSIWAUTH */
6562 static int ipw_wx_set_auth(struct net_device *dev,
6563 struct iw_request_info *info,
6564 union iwreq_data *wrqu, char *extra)
6566 struct ipw_priv *priv = ieee80211_priv(dev);
6567 struct ieee80211_device *ieee = priv->ieee;
6568 struct iw_param *param = &wrqu->param;
6569 struct ieee80211_crypt_data *crypt;
6570 unsigned long flags;
6571 int ret = 0;
6573 switch (param->flags & IW_AUTH_INDEX) {
6574 case IW_AUTH_WPA_VERSION:
6575 break;
6576 case IW_AUTH_CIPHER_PAIRWISE:
6577 ipw_set_hw_decrypt_unicast(priv,
6578 wext_cipher2level(param->value));
6579 break;
6580 case IW_AUTH_CIPHER_GROUP:
6581 ipw_set_hw_decrypt_multicast(priv,
6582 wext_cipher2level(param->value));
6583 break;
6584 case IW_AUTH_KEY_MGMT:
6586 * ipw2200 does not use these parameters
6588 break;
6590 case IW_AUTH_TKIP_COUNTERMEASURES:
6591 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6592 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6593 break;
6595 flags = crypt->ops->get_flags(crypt->priv);
6597 if (param->value)
6598 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6599 else
6600 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6602 crypt->ops->set_flags(flags, crypt->priv);
6604 break;
6606 case IW_AUTH_DROP_UNENCRYPTED:{
6607 /* HACK:
6609 * wpa_supplicant calls set_wpa_enabled when the driver
6610 * is loaded and unloaded, regardless of if WPA is being
6611 * used. No other calls are made which can be used to
6612 * determine if encryption will be used or not prior to
6613 * association being expected. If encryption is not being
6614 * used, drop_unencrypted is set to false, else true -- we
6615 * can use this to determine if the CAP_PRIVACY_ON bit should
6616 * be set.
6618 struct ieee80211_security sec = {
6619 .flags = SEC_ENABLED,
6620 .enabled = param->value,
6622 priv->ieee->drop_unencrypted = param->value;
6623 /* We only change SEC_LEVEL for open mode. Others
6624 * are set by ipw_wpa_set_encryption.
6626 if (!param->value) {
6627 sec.flags |= SEC_LEVEL;
6628 sec.level = SEC_LEVEL_0;
6629 } else {
6630 sec.flags |= SEC_LEVEL;
6631 sec.level = SEC_LEVEL_1;
6633 if (priv->ieee->set_security)
6634 priv->ieee->set_security(priv->ieee->dev, &sec);
6635 break;
6638 case IW_AUTH_80211_AUTH_ALG:
6639 ret = ipw_wpa_set_auth_algs(priv, param->value);
6640 break;
6642 case IW_AUTH_WPA_ENABLED:
6643 ret = ipw_wpa_enable(priv, param->value);
6644 ipw_disassociate(priv);
6645 break;
6647 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6648 ieee->ieee802_1x = param->value;
6649 break;
6651 case IW_AUTH_PRIVACY_INVOKED:
6652 ieee->privacy_invoked = param->value;
6653 break;
6655 default:
6656 return -EOPNOTSUPP;
6658 return ret;
6661 /* SIOCGIWAUTH */
6662 static int ipw_wx_get_auth(struct net_device *dev,
6663 struct iw_request_info *info,
6664 union iwreq_data *wrqu, char *extra)
6666 struct ipw_priv *priv = ieee80211_priv(dev);
6667 struct ieee80211_device *ieee = priv->ieee;
6668 struct ieee80211_crypt_data *crypt;
6669 struct iw_param *param = &wrqu->param;
6670 int ret = 0;
6672 switch (param->flags & IW_AUTH_INDEX) {
6673 case IW_AUTH_WPA_VERSION:
6674 case IW_AUTH_CIPHER_PAIRWISE:
6675 case IW_AUTH_CIPHER_GROUP:
6676 case IW_AUTH_KEY_MGMT:
6678 * wpa_supplicant will control these internally
6680 ret = -EOPNOTSUPP;
6681 break;
6683 case IW_AUTH_TKIP_COUNTERMEASURES:
6684 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6685 if (!crypt || !crypt->ops->get_flags)
6686 break;
6688 param->value = (crypt->ops->get_flags(crypt->priv) &
6689 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6691 break;
6693 case IW_AUTH_DROP_UNENCRYPTED:
6694 param->value = ieee->drop_unencrypted;
6695 break;
6697 case IW_AUTH_80211_AUTH_ALG:
6698 param->value = ieee->sec.auth_mode;
6699 break;
6701 case IW_AUTH_WPA_ENABLED:
6702 param->value = ieee->wpa_enabled;
6703 break;
6705 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6706 param->value = ieee->ieee802_1x;
6707 break;
6709 case IW_AUTH_ROAMING_CONTROL:
6710 case IW_AUTH_PRIVACY_INVOKED:
6711 param->value = ieee->privacy_invoked;
6712 break;
6714 default:
6715 return -EOPNOTSUPP;
6717 return 0;
6720 /* SIOCSIWENCODEEXT */
6721 static int ipw_wx_set_encodeext(struct net_device *dev,
6722 struct iw_request_info *info,
6723 union iwreq_data *wrqu, char *extra)
6725 struct ipw_priv *priv = ieee80211_priv(dev);
6726 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6728 if (hwcrypto) {
6729 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6730 /* IPW HW can't build TKIP MIC,
6731 host decryption still needed */
6732 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6733 priv->ieee->host_mc_decrypt = 1;
6734 else {
6735 priv->ieee->host_encrypt = 0;
6736 priv->ieee->host_encrypt_msdu = 1;
6737 priv->ieee->host_decrypt = 1;
6739 } else {
6740 priv->ieee->host_encrypt = 0;
6741 priv->ieee->host_encrypt_msdu = 0;
6742 priv->ieee->host_decrypt = 0;
6743 priv->ieee->host_mc_decrypt = 0;
6747 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6750 /* SIOCGIWENCODEEXT */
6751 static int ipw_wx_get_encodeext(struct net_device *dev,
6752 struct iw_request_info *info,
6753 union iwreq_data *wrqu, char *extra)
6755 struct ipw_priv *priv = ieee80211_priv(dev);
6756 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6759 /* SIOCSIWMLME */
6760 static int ipw_wx_set_mlme(struct net_device *dev,
6761 struct iw_request_info *info,
6762 union iwreq_data *wrqu, char *extra)
6764 struct ipw_priv *priv = ieee80211_priv(dev);
6765 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6766 __le16 reason;
6768 reason = cpu_to_le16(mlme->reason_code);
6770 switch (mlme->cmd) {
6771 case IW_MLME_DEAUTH:
6772 /* silently ignore */
6773 break;
6775 case IW_MLME_DISASSOC:
6776 ipw_disassociate(priv);
6777 break;
6779 default:
6780 return -EOPNOTSUPP;
6782 return 0;
6785 #ifdef CONFIG_IPW2200_QOS
6787 /* QoS */
6789 * get the modulation type of the current network or
6790 * the card current mode
6792 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6794 u8 mode = 0;
6796 if (priv->status & STATUS_ASSOCIATED) {
6797 unsigned long flags;
6799 spin_lock_irqsave(&priv->ieee->lock, flags);
6800 mode = priv->assoc_network->mode;
6801 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6802 } else {
6803 mode = priv->ieee->mode;
6805 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6806 return mode;
6810 * Handle management frame beacon and probe response
6812 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6813 int active_network,
6814 struct ieee80211_network *network)
6816 u32 size = sizeof(struct ieee80211_qos_parameters);
6818 if (network->capability & WLAN_CAPABILITY_IBSS)
6819 network->qos_data.active = network->qos_data.supported;
6821 if (network->flags & NETWORK_HAS_QOS_MASK) {
6822 if (active_network &&
6823 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6824 network->qos_data.active = network->qos_data.supported;
6826 if ((network->qos_data.active == 1) && (active_network == 1) &&
6827 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6828 (network->qos_data.old_param_count !=
6829 network->qos_data.param_count)) {
6830 network->qos_data.old_param_count =
6831 network->qos_data.param_count;
6832 schedule_work(&priv->qos_activate);
6833 IPW_DEBUG_QOS("QoS parameters change call "
6834 "qos_activate\n");
6836 } else {
6837 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6838 memcpy(&network->qos_data.parameters,
6839 &def_parameters_CCK, size);
6840 else
6841 memcpy(&network->qos_data.parameters,
6842 &def_parameters_OFDM, size);
6844 if ((network->qos_data.active == 1) && (active_network == 1)) {
6845 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6846 schedule_work(&priv->qos_activate);
6849 network->qos_data.active = 0;
6850 network->qos_data.supported = 0;
6852 if ((priv->status & STATUS_ASSOCIATED) &&
6853 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6854 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6855 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6856 !(network->flags & NETWORK_EMPTY_ESSID))
6857 if ((network->ssid_len ==
6858 priv->assoc_network->ssid_len) &&
6859 !memcmp(network->ssid,
6860 priv->assoc_network->ssid,
6861 network->ssid_len)) {
6862 queue_work(priv->workqueue,
6863 &priv->merge_networks);
6867 return 0;
6871 * This function set up the firmware to support QoS. It sends
6872 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6874 static int ipw_qos_activate(struct ipw_priv *priv,
6875 struct ieee80211_qos_data *qos_network_data)
6877 int err;
6878 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6879 struct ieee80211_qos_parameters *active_one = NULL;
6880 u32 size = sizeof(struct ieee80211_qos_parameters);
6881 u32 burst_duration;
6882 int i;
6883 u8 type;
6885 type = ipw_qos_current_mode(priv);
6887 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6888 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6889 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6890 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6892 if (qos_network_data == NULL) {
6893 if (type == IEEE_B) {
6894 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6895 active_one = &def_parameters_CCK;
6896 } else
6897 active_one = &def_parameters_OFDM;
6899 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6900 burst_duration = ipw_qos_get_burst_duration(priv);
6901 for (i = 0; i < QOS_QUEUE_NUM; i++)
6902 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6903 cpu_to_le16(burst_duration);
6904 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6905 if (type == IEEE_B) {
6906 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6907 type);
6908 if (priv->qos_data.qos_enable == 0)
6909 active_one = &def_parameters_CCK;
6910 else
6911 active_one = priv->qos_data.def_qos_parm_CCK;
6912 } else {
6913 if (priv->qos_data.qos_enable == 0)
6914 active_one = &def_parameters_OFDM;
6915 else
6916 active_one = priv->qos_data.def_qos_parm_OFDM;
6918 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6919 } else {
6920 unsigned long flags;
6921 int active;
6923 spin_lock_irqsave(&priv->ieee->lock, flags);
6924 active_one = &(qos_network_data->parameters);
6925 qos_network_data->old_param_count =
6926 qos_network_data->param_count;
6927 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6928 active = qos_network_data->supported;
6929 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6931 if (active == 0) {
6932 burst_duration = ipw_qos_get_burst_duration(priv);
6933 for (i = 0; i < QOS_QUEUE_NUM; i++)
6934 qos_parameters[QOS_PARAM_SET_ACTIVE].
6935 tx_op_limit[i] = cpu_to_le16(burst_duration);
6939 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6940 err = ipw_send_qos_params_command(priv,
6941 (struct ieee80211_qos_parameters *)
6942 &(qos_parameters[0]));
6943 if (err)
6944 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6946 return err;
6950 * send IPW_CMD_WME_INFO to the firmware
6952 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6954 int ret = 0;
6955 struct ieee80211_qos_information_element qos_info;
6957 if (priv == NULL)
6958 return -1;
6960 qos_info.elementID = QOS_ELEMENT_ID;
6961 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6963 qos_info.version = QOS_VERSION_1;
6964 qos_info.ac_info = 0;
6966 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6967 qos_info.qui_type = QOS_OUI_TYPE;
6968 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6970 ret = ipw_send_qos_info_command(priv, &qos_info);
6971 if (ret != 0) {
6972 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6974 return ret;
6978 * Set the QoS parameter with the association request structure
6980 static int ipw_qos_association(struct ipw_priv *priv,
6981 struct ieee80211_network *network)
6983 int err = 0;
6984 struct ieee80211_qos_data *qos_data = NULL;
6985 struct ieee80211_qos_data ibss_data = {
6986 .supported = 1,
6987 .active = 1,
6990 switch (priv->ieee->iw_mode) {
6991 case IW_MODE_ADHOC:
6992 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6994 qos_data = &ibss_data;
6995 break;
6997 case IW_MODE_INFRA:
6998 qos_data = &network->qos_data;
6999 break;
7001 default:
7002 BUG();
7003 break;
7006 err = ipw_qos_activate(priv, qos_data);
7007 if (err) {
7008 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7009 return err;
7012 if (priv->qos_data.qos_enable && qos_data->supported) {
7013 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7014 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7015 return ipw_qos_set_info_element(priv);
7018 return 0;
7022 * handling the beaconing responses. if we get different QoS setting
7023 * off the network from the associated setting, adjust the QoS
7024 * setting
7026 static int ipw_qos_association_resp(struct ipw_priv *priv,
7027 struct ieee80211_network *network)
7029 int ret = 0;
7030 unsigned long flags;
7031 u32 size = sizeof(struct ieee80211_qos_parameters);
7032 int set_qos_param = 0;
7034 if ((priv == NULL) || (network == NULL) ||
7035 (priv->assoc_network == NULL))
7036 return ret;
7038 if (!(priv->status & STATUS_ASSOCIATED))
7039 return ret;
7041 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7042 return ret;
7044 spin_lock_irqsave(&priv->ieee->lock, flags);
7045 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7046 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7047 sizeof(struct ieee80211_qos_data));
7048 priv->assoc_network->qos_data.active = 1;
7049 if ((network->qos_data.old_param_count !=
7050 network->qos_data.param_count)) {
7051 set_qos_param = 1;
7052 network->qos_data.old_param_count =
7053 network->qos_data.param_count;
7056 } else {
7057 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7058 memcpy(&priv->assoc_network->qos_data.parameters,
7059 &def_parameters_CCK, size);
7060 else
7061 memcpy(&priv->assoc_network->qos_data.parameters,
7062 &def_parameters_OFDM, size);
7063 priv->assoc_network->qos_data.active = 0;
7064 priv->assoc_network->qos_data.supported = 0;
7065 set_qos_param = 1;
7068 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7070 if (set_qos_param == 1)
7071 schedule_work(&priv->qos_activate);
7073 return ret;
7076 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7078 u32 ret = 0;
7080 if ((priv == NULL))
7081 return 0;
7083 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7084 ret = priv->qos_data.burst_duration_CCK;
7085 else
7086 ret = priv->qos_data.burst_duration_OFDM;
7088 return ret;
7092 * Initialize the setting of QoS global
7094 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7095 int burst_enable, u32 burst_duration_CCK,
7096 u32 burst_duration_OFDM)
7098 priv->qos_data.qos_enable = enable;
7100 if (priv->qos_data.qos_enable) {
7101 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7102 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7103 IPW_DEBUG_QOS("QoS is enabled\n");
7104 } else {
7105 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7106 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7107 IPW_DEBUG_QOS("QoS is not enabled\n");
7110 priv->qos_data.burst_enable = burst_enable;
7112 if (burst_enable) {
7113 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7114 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7115 } else {
7116 priv->qos_data.burst_duration_CCK = 0;
7117 priv->qos_data.burst_duration_OFDM = 0;
7122 * map the packet priority to the right TX Queue
7124 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7126 if (priority > 7 || !priv->qos_data.qos_enable)
7127 priority = 0;
7129 return from_priority_to_tx_queue[priority] - 1;
7132 static int ipw_is_qos_active(struct net_device *dev,
7133 struct sk_buff *skb)
7135 struct ipw_priv *priv = ieee80211_priv(dev);
7136 struct ieee80211_qos_data *qos_data = NULL;
7137 int active, supported;
7138 u8 *daddr = skb->data + ETH_ALEN;
7139 int unicast = !is_multicast_ether_addr(daddr);
7141 if (!(priv->status & STATUS_ASSOCIATED))
7142 return 0;
7144 qos_data = &priv->assoc_network->qos_data;
7146 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7147 if (unicast == 0)
7148 qos_data->active = 0;
7149 else
7150 qos_data->active = qos_data->supported;
7152 active = qos_data->active;
7153 supported = qos_data->supported;
7154 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7155 "unicast %d\n",
7156 priv->qos_data.qos_enable, active, supported, unicast);
7157 if (active && priv->qos_data.qos_enable)
7158 return 1;
7160 return 0;
7164 * add QoS parameter to the TX command
7166 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7167 u16 priority,
7168 struct tfd_data *tfd)
7170 int tx_queue_id = 0;
7173 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7174 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7176 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7177 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7178 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7180 return 0;
7184 * background support to run QoS activate functionality
7186 static void ipw_bg_qos_activate(struct work_struct *work)
7188 struct ipw_priv *priv =
7189 container_of(work, struct ipw_priv, qos_activate);
7191 if (priv == NULL)
7192 return;
7194 mutex_lock(&priv->mutex);
7196 if (priv->status & STATUS_ASSOCIATED)
7197 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7199 mutex_unlock(&priv->mutex);
7202 static int ipw_handle_probe_response(struct net_device *dev,
7203 struct ieee80211_probe_response *resp,
7204 struct ieee80211_network *network)
7206 struct ipw_priv *priv = ieee80211_priv(dev);
7207 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7208 (network == priv->assoc_network));
7210 ipw_qos_handle_probe_response(priv, active_network, network);
7212 return 0;
7215 static int ipw_handle_beacon(struct net_device *dev,
7216 struct ieee80211_beacon *resp,
7217 struct ieee80211_network *network)
7219 struct ipw_priv *priv = ieee80211_priv(dev);
7220 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7221 (network == priv->assoc_network));
7223 ipw_qos_handle_probe_response(priv, active_network, network);
7225 return 0;
7228 static int ipw_handle_assoc_response(struct net_device *dev,
7229 struct ieee80211_assoc_response *resp,
7230 struct ieee80211_network *network)
7232 struct ipw_priv *priv = ieee80211_priv(dev);
7233 ipw_qos_association_resp(priv, network);
7234 return 0;
7237 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7238 *qos_param)
7240 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7241 sizeof(*qos_param) * 3, qos_param);
7244 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7245 *qos_param)
7247 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7248 qos_param);
7251 #endif /* CONFIG_IPW2200_QOS */
7253 static int ipw_associate_network(struct ipw_priv *priv,
7254 struct ieee80211_network *network,
7255 struct ipw_supported_rates *rates, int roaming)
7257 int err;
7258 DECLARE_MAC_BUF(mac);
7260 if (priv->config & CFG_FIXED_RATE)
7261 ipw_set_fixed_rate(priv, network->mode);
7263 if (!(priv->config & CFG_STATIC_ESSID)) {
7264 priv->essid_len = min(network->ssid_len,
7265 (u8) IW_ESSID_MAX_SIZE);
7266 memcpy(priv->essid, network->ssid, priv->essid_len);
7269 network->last_associate = jiffies;
7271 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7272 priv->assoc_request.channel = network->channel;
7273 priv->assoc_request.auth_key = 0;
7275 if ((priv->capability & CAP_PRIVACY_ON) &&
7276 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7277 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7278 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7280 if (priv->ieee->sec.level == SEC_LEVEL_1)
7281 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7283 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7284 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7285 priv->assoc_request.auth_type = AUTH_LEAP;
7286 else
7287 priv->assoc_request.auth_type = AUTH_OPEN;
7289 if (priv->ieee->wpa_ie_len) {
7290 priv->assoc_request.policy_support = 0x02; /* RSN active */
7291 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7292 priv->ieee->wpa_ie_len);
7296 * It is valid for our ieee device to support multiple modes, but
7297 * when it comes to associating to a given network we have to choose
7298 * just one mode.
7300 if (network->mode & priv->ieee->mode & IEEE_A)
7301 priv->assoc_request.ieee_mode = IPW_A_MODE;
7302 else if (network->mode & priv->ieee->mode & IEEE_G)
7303 priv->assoc_request.ieee_mode = IPW_G_MODE;
7304 else if (network->mode & priv->ieee->mode & IEEE_B)
7305 priv->assoc_request.ieee_mode = IPW_B_MODE;
7307 priv->assoc_request.capability = network->capability;
7308 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7309 && !(priv->config & CFG_PREAMBLE_LONG)) {
7310 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7311 } else {
7312 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7314 /* Clear the short preamble if we won't be supporting it */
7315 priv->assoc_request.capability &=
7316 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7319 /* Clear capability bits that aren't used in Ad Hoc */
7320 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7321 priv->assoc_request.capability &=
7322 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7324 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7325 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7326 roaming ? "Rea" : "A",
7327 escape_essid(priv->essid, priv->essid_len),
7328 network->channel,
7329 ipw_modes[priv->assoc_request.ieee_mode],
7330 rates->num_rates,
7331 (priv->assoc_request.preamble_length ==
7332 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7333 network->capability &
7334 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7335 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7336 priv->capability & CAP_PRIVACY_ON ?
7337 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7338 "(open)") : "",
7339 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7340 priv->capability & CAP_PRIVACY_ON ?
7341 '1' + priv->ieee->sec.active_key : '.',
7342 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7344 priv->assoc_request.beacon_interval = network->beacon_interval;
7345 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7346 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7347 priv->assoc_request.assoc_type = HC_IBSS_START;
7348 priv->assoc_request.assoc_tsf_msw = 0;
7349 priv->assoc_request.assoc_tsf_lsw = 0;
7350 } else {
7351 if (unlikely(roaming))
7352 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7353 else
7354 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7355 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7356 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7359 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7361 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7362 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7363 priv->assoc_request.atim_window = network->atim_window;
7364 } else {
7365 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7366 priv->assoc_request.atim_window = 0;
7369 priv->assoc_request.listen_interval = network->listen_interval;
7371 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7372 if (err) {
7373 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7374 return err;
7377 rates->ieee_mode = priv->assoc_request.ieee_mode;
7378 rates->purpose = IPW_RATE_CONNECT;
7379 ipw_send_supported_rates(priv, rates);
7381 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7382 priv->sys_config.dot11g_auto_detection = 1;
7383 else
7384 priv->sys_config.dot11g_auto_detection = 0;
7386 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7387 priv->sys_config.answer_broadcast_ssid_probe = 1;
7388 else
7389 priv->sys_config.answer_broadcast_ssid_probe = 0;
7391 err = ipw_send_system_config(priv);
7392 if (err) {
7393 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7394 return err;
7397 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7398 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7399 if (err) {
7400 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7401 return err;
7405 * If preemption is enabled, it is possible for the association
7406 * to complete before we return from ipw_send_associate. Therefore
7407 * we have to be sure and update our priviate data first.
7409 priv->channel = network->channel;
7410 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7411 priv->status |= STATUS_ASSOCIATING;
7412 priv->status &= ~STATUS_SECURITY_UPDATED;
7414 priv->assoc_network = network;
7416 #ifdef CONFIG_IPW2200_QOS
7417 ipw_qos_association(priv, network);
7418 #endif
7420 err = ipw_send_associate(priv, &priv->assoc_request);
7421 if (err) {
7422 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7423 return err;
7426 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7427 escape_essid(priv->essid, priv->essid_len),
7428 print_mac(mac, priv->bssid));
7430 return 0;
7433 static void ipw_roam(void *data)
7435 struct ipw_priv *priv = data;
7436 struct ieee80211_network *network = NULL;
7437 struct ipw_network_match match = {
7438 .network = priv->assoc_network
7441 /* The roaming process is as follows:
7443 * 1. Missed beacon threshold triggers the roaming process by
7444 * setting the status ROAM bit and requesting a scan.
7445 * 2. When the scan completes, it schedules the ROAM work
7446 * 3. The ROAM work looks at all of the known networks for one that
7447 * is a better network than the currently associated. If none
7448 * found, the ROAM process is over (ROAM bit cleared)
7449 * 4. If a better network is found, a disassociation request is
7450 * sent.
7451 * 5. When the disassociation completes, the roam work is again
7452 * scheduled. The second time through, the driver is no longer
7453 * associated, and the newly selected network is sent an
7454 * association request.
7455 * 6. At this point ,the roaming process is complete and the ROAM
7456 * status bit is cleared.
7459 /* If we are no longer associated, and the roaming bit is no longer
7460 * set, then we are not actively roaming, so just return */
7461 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7462 return;
7464 if (priv->status & STATUS_ASSOCIATED) {
7465 /* First pass through ROAM process -- look for a better
7466 * network */
7467 unsigned long flags;
7468 u8 rssi = priv->assoc_network->stats.rssi;
7469 priv->assoc_network->stats.rssi = -128;
7470 spin_lock_irqsave(&priv->ieee->lock, flags);
7471 list_for_each_entry(network, &priv->ieee->network_list, list) {
7472 if (network != priv->assoc_network)
7473 ipw_best_network(priv, &match, network, 1);
7475 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7476 priv->assoc_network->stats.rssi = rssi;
7478 if (match.network == priv->assoc_network) {
7479 IPW_DEBUG_ASSOC("No better APs in this network to "
7480 "roam to.\n");
7481 priv->status &= ~STATUS_ROAMING;
7482 ipw_debug_config(priv);
7483 return;
7486 ipw_send_disassociate(priv, 1);
7487 priv->assoc_network = match.network;
7489 return;
7492 /* Second pass through ROAM process -- request association */
7493 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7494 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7495 priv->status &= ~STATUS_ROAMING;
7498 static void ipw_bg_roam(struct work_struct *work)
7500 struct ipw_priv *priv =
7501 container_of(work, struct ipw_priv, roam);
7502 mutex_lock(&priv->mutex);
7503 ipw_roam(priv);
7504 mutex_unlock(&priv->mutex);
7507 static int ipw_associate(void *data)
7509 struct ipw_priv *priv = data;
7511 struct ieee80211_network *network = NULL;
7512 struct ipw_network_match match = {
7513 .network = NULL
7515 struct ipw_supported_rates *rates;
7516 struct list_head *element;
7517 unsigned long flags;
7519 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7520 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7521 return 0;
7524 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7525 IPW_DEBUG_ASSOC("Not attempting association (already in "
7526 "progress)\n");
7527 return 0;
7530 if (priv->status & STATUS_DISASSOCIATING) {
7531 IPW_DEBUG_ASSOC("Not attempting association (in "
7532 "disassociating)\n ");
7533 queue_work(priv->workqueue, &priv->associate);
7534 return 0;
7537 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7538 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7539 "initialized)\n");
7540 return 0;
7543 if (!(priv->config & CFG_ASSOCIATE) &&
7544 !(priv->config & (CFG_STATIC_ESSID |
7545 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7546 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7547 return 0;
7550 /* Protect our use of the network_list */
7551 spin_lock_irqsave(&priv->ieee->lock, flags);
7552 list_for_each_entry(network, &priv->ieee->network_list, list)
7553 ipw_best_network(priv, &match, network, 0);
7555 network = match.network;
7556 rates = &match.rates;
7558 if (network == NULL &&
7559 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7560 priv->config & CFG_ADHOC_CREATE &&
7561 priv->config & CFG_STATIC_ESSID &&
7562 priv->config & CFG_STATIC_CHANNEL &&
7563 !list_empty(&priv->ieee->network_free_list)) {
7564 element = priv->ieee->network_free_list.next;
7565 network = list_entry(element, struct ieee80211_network, list);
7566 ipw_adhoc_create(priv, network);
7567 rates = &priv->rates;
7568 list_del(element);
7569 list_add_tail(&network->list, &priv->ieee->network_list);
7571 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7573 /* If we reached the end of the list, then we don't have any valid
7574 * matching APs */
7575 if (!network) {
7576 ipw_debug_config(priv);
7578 if (!(priv->status & STATUS_SCANNING)) {
7579 if (!(priv->config & CFG_SPEED_SCAN))
7580 queue_delayed_work(priv->workqueue,
7581 &priv->request_scan,
7582 SCAN_INTERVAL);
7583 else
7584 queue_delayed_work(priv->workqueue,
7585 &priv->request_scan, 0);
7588 return 0;
7591 ipw_associate_network(priv, network, rates, 0);
7593 return 1;
7596 static void ipw_bg_associate(struct work_struct *work)
7598 struct ipw_priv *priv =
7599 container_of(work, struct ipw_priv, associate);
7600 mutex_lock(&priv->mutex);
7601 ipw_associate(priv);
7602 mutex_unlock(&priv->mutex);
7605 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7606 struct sk_buff *skb)
7608 struct ieee80211_hdr *hdr;
7609 u16 fc;
7611 hdr = (struct ieee80211_hdr *)skb->data;
7612 fc = le16_to_cpu(hdr->frame_ctl);
7613 if (!(fc & IEEE80211_FCTL_PROTECTED))
7614 return;
7616 fc &= ~IEEE80211_FCTL_PROTECTED;
7617 hdr->frame_ctl = cpu_to_le16(fc);
7618 switch (priv->ieee->sec.level) {
7619 case SEC_LEVEL_3:
7620 /* Remove CCMP HDR */
7621 memmove(skb->data + IEEE80211_3ADDR_LEN,
7622 skb->data + IEEE80211_3ADDR_LEN + 8,
7623 skb->len - IEEE80211_3ADDR_LEN - 8);
7624 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7625 break;
7626 case SEC_LEVEL_2:
7627 break;
7628 case SEC_LEVEL_1:
7629 /* Remove IV */
7630 memmove(skb->data + IEEE80211_3ADDR_LEN,
7631 skb->data + IEEE80211_3ADDR_LEN + 4,
7632 skb->len - IEEE80211_3ADDR_LEN - 4);
7633 skb_trim(skb, skb->len - 8); /* IV + ICV */
7634 break;
7635 case SEC_LEVEL_0:
7636 break;
7637 default:
7638 printk(KERN_ERR "Unknow security level %d\n",
7639 priv->ieee->sec.level);
7640 break;
7644 static void ipw_handle_data_packet(struct ipw_priv *priv,
7645 struct ipw_rx_mem_buffer *rxb,
7646 struct ieee80211_rx_stats *stats)
7648 struct ieee80211_hdr_4addr *hdr;
7649 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7651 /* We received data from the HW, so stop the watchdog */
7652 priv->net_dev->trans_start = jiffies;
7654 /* We only process data packets if the
7655 * interface is open */
7656 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7657 skb_tailroom(rxb->skb))) {
7658 priv->ieee->stats.rx_errors++;
7659 priv->wstats.discard.misc++;
7660 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7661 return;
7662 } else if (unlikely(!netif_running(priv->net_dev))) {
7663 priv->ieee->stats.rx_dropped++;
7664 priv->wstats.discard.misc++;
7665 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7666 return;
7669 /* Advance skb->data to the start of the actual payload */
7670 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7672 /* Set the size of the skb to the size of the frame */
7673 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7675 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7677 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7678 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7679 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7680 (is_multicast_ether_addr(hdr->addr1) ?
7681 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7682 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7684 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7685 priv->ieee->stats.rx_errors++;
7686 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7687 rxb->skb = NULL;
7688 __ipw_led_activity_on(priv);
7692 #ifdef CONFIG_IPW2200_RADIOTAP
7693 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7694 struct ipw_rx_mem_buffer *rxb,
7695 struct ieee80211_rx_stats *stats)
7697 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7698 struct ipw_rx_frame *frame = &pkt->u.frame;
7700 /* initial pull of some data */
7701 u16 received_channel = frame->received_channel;
7702 u8 antennaAndPhy = frame->antennaAndPhy;
7703 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7704 u16 pktrate = frame->rate;
7706 /* Magic struct that slots into the radiotap header -- no reason
7707 * to build this manually element by element, we can write it much
7708 * more efficiently than we can parse it. ORDER MATTERS HERE */
7709 struct ipw_rt_hdr *ipw_rt;
7711 short len = le16_to_cpu(pkt->u.frame.length);
7713 /* We received data from the HW, so stop the watchdog */
7714 priv->net_dev->trans_start = jiffies;
7716 /* We only process data packets if the
7717 * interface is open */
7718 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7719 skb_tailroom(rxb->skb))) {
7720 priv->ieee->stats.rx_errors++;
7721 priv->wstats.discard.misc++;
7722 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7723 return;
7724 } else if (unlikely(!netif_running(priv->net_dev))) {
7725 priv->ieee->stats.rx_dropped++;
7726 priv->wstats.discard.misc++;
7727 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7728 return;
7731 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7732 * that now */
7733 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7734 /* FIXME: Should alloc bigger skb instead */
7735 priv->ieee->stats.rx_dropped++;
7736 priv->wstats.discard.misc++;
7737 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7738 return;
7741 /* copy the frame itself */
7742 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7743 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7745 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7746 * part of our real header, saves a little time.
7748 * No longer necessary since we fill in all our data. Purge before merging
7749 * patch officially.
7750 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7751 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7754 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7756 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7757 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7758 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7760 /* Big bitfield of all the fields we provide in radiotap */
7761 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7762 (1 << IEEE80211_RADIOTAP_TSFT) |
7763 (1 << IEEE80211_RADIOTAP_FLAGS) |
7764 (1 << IEEE80211_RADIOTAP_RATE) |
7765 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7766 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7767 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7768 (1 << IEEE80211_RADIOTAP_ANTENNA));
7770 /* Zero the flags, we'll add to them as we go */
7771 ipw_rt->rt_flags = 0;
7772 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7773 frame->parent_tsf[2] << 16 |
7774 frame->parent_tsf[1] << 8 |
7775 frame->parent_tsf[0]);
7777 /* Convert signal to DBM */
7778 ipw_rt->rt_dbmsignal = antsignal;
7779 ipw_rt->rt_dbmnoise = frame->noise;
7781 /* Convert the channel data and set the flags */
7782 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7783 if (received_channel > 14) { /* 802.11a */
7784 ipw_rt->rt_chbitmask =
7785 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7786 } else if (antennaAndPhy & 32) { /* 802.11b */
7787 ipw_rt->rt_chbitmask =
7788 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7789 } else { /* 802.11g */
7790 ipw_rt->rt_chbitmask =
7791 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7794 /* set the rate in multiples of 500k/s */
7795 switch (pktrate) {
7796 case IPW_TX_RATE_1MB:
7797 ipw_rt->rt_rate = 2;
7798 break;
7799 case IPW_TX_RATE_2MB:
7800 ipw_rt->rt_rate = 4;
7801 break;
7802 case IPW_TX_RATE_5MB:
7803 ipw_rt->rt_rate = 10;
7804 break;
7805 case IPW_TX_RATE_6MB:
7806 ipw_rt->rt_rate = 12;
7807 break;
7808 case IPW_TX_RATE_9MB:
7809 ipw_rt->rt_rate = 18;
7810 break;
7811 case IPW_TX_RATE_11MB:
7812 ipw_rt->rt_rate = 22;
7813 break;
7814 case IPW_TX_RATE_12MB:
7815 ipw_rt->rt_rate = 24;
7816 break;
7817 case IPW_TX_RATE_18MB:
7818 ipw_rt->rt_rate = 36;
7819 break;
7820 case IPW_TX_RATE_24MB:
7821 ipw_rt->rt_rate = 48;
7822 break;
7823 case IPW_TX_RATE_36MB:
7824 ipw_rt->rt_rate = 72;
7825 break;
7826 case IPW_TX_RATE_48MB:
7827 ipw_rt->rt_rate = 96;
7828 break;
7829 case IPW_TX_RATE_54MB:
7830 ipw_rt->rt_rate = 108;
7831 break;
7832 default:
7833 ipw_rt->rt_rate = 0;
7834 break;
7837 /* antenna number */
7838 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7840 /* set the preamble flag if we have it */
7841 if ((antennaAndPhy & 64))
7842 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7844 /* Set the size of the skb to the size of the frame */
7845 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7847 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7849 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7850 priv->ieee->stats.rx_errors++;
7851 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7852 rxb->skb = NULL;
7853 /* no LED during capture */
7856 #endif
7858 #ifdef CONFIG_IPW2200_PROMISCUOUS
7859 #define ieee80211_is_probe_response(fc) \
7860 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7861 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7863 #define ieee80211_is_management(fc) \
7864 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7866 #define ieee80211_is_control(fc) \
7867 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7869 #define ieee80211_is_data(fc) \
7870 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7872 #define ieee80211_is_assoc_request(fc) \
7873 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7875 #define ieee80211_is_reassoc_request(fc) \
7876 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7878 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7879 struct ipw_rx_mem_buffer *rxb,
7880 struct ieee80211_rx_stats *stats)
7882 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7883 struct ipw_rx_frame *frame = &pkt->u.frame;
7884 struct ipw_rt_hdr *ipw_rt;
7886 /* First cache any information we need before we overwrite
7887 * the information provided in the skb from the hardware */
7888 struct ieee80211_hdr *hdr;
7889 u16 channel = frame->received_channel;
7890 u8 phy_flags = frame->antennaAndPhy;
7891 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7892 s8 noise = frame->noise;
7893 u8 rate = frame->rate;
7894 short len = le16_to_cpu(pkt->u.frame.length);
7895 struct sk_buff *skb;
7896 int hdr_only = 0;
7897 u16 filter = priv->prom_priv->filter;
7899 /* If the filter is set to not include Rx frames then return */
7900 if (filter & IPW_PROM_NO_RX)
7901 return;
7903 /* We received data from the HW, so stop the watchdog */
7904 priv->prom_net_dev->trans_start = jiffies;
7906 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7907 priv->prom_priv->ieee->stats.rx_errors++;
7908 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7909 return;
7912 /* We only process data packets if the interface is open */
7913 if (unlikely(!netif_running(priv->prom_net_dev))) {
7914 priv->prom_priv->ieee->stats.rx_dropped++;
7915 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7916 return;
7919 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7920 * that now */
7921 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7922 /* FIXME: Should alloc bigger skb instead */
7923 priv->prom_priv->ieee->stats.rx_dropped++;
7924 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7925 return;
7928 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7929 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7930 if (filter & IPW_PROM_NO_MGMT)
7931 return;
7932 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7933 hdr_only = 1;
7934 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7935 if (filter & IPW_PROM_NO_CTL)
7936 return;
7937 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7938 hdr_only = 1;
7939 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7940 if (filter & IPW_PROM_NO_DATA)
7941 return;
7942 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7943 hdr_only = 1;
7946 /* Copy the SKB since this is for the promiscuous side */
7947 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7948 if (skb == NULL) {
7949 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7950 return;
7953 /* copy the frame data to write after where the radiotap header goes */
7954 ipw_rt = (void *)skb->data;
7956 if (hdr_only)
7957 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7959 memcpy(ipw_rt->payload, hdr, len);
7961 /* Zero the radiotap static buffer ... We only need to zero the bytes
7962 * NOT part of our real header, saves a little time.
7964 * No longer necessary since we fill in all our data. Purge before
7965 * merging patch officially.
7966 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7967 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7970 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7971 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7972 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
7974 /* Set the size of the skb to the size of the frame */
7975 skb_put(skb, sizeof(*ipw_rt) + len);
7977 /* Big bitfield of all the fields we provide in radiotap */
7978 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7979 (1 << IEEE80211_RADIOTAP_TSFT) |
7980 (1 << IEEE80211_RADIOTAP_FLAGS) |
7981 (1 << IEEE80211_RADIOTAP_RATE) |
7982 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7983 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7984 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7985 (1 << IEEE80211_RADIOTAP_ANTENNA));
7987 /* Zero the flags, we'll add to them as we go */
7988 ipw_rt->rt_flags = 0;
7989 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7990 frame->parent_tsf[2] << 16 |
7991 frame->parent_tsf[1] << 8 |
7992 frame->parent_tsf[0]);
7994 /* Convert to DBM */
7995 ipw_rt->rt_dbmsignal = signal;
7996 ipw_rt->rt_dbmnoise = noise;
7998 /* Convert the channel data and set the flags */
7999 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8000 if (channel > 14) { /* 802.11a */
8001 ipw_rt->rt_chbitmask =
8002 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8003 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8004 ipw_rt->rt_chbitmask =
8005 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8006 } else { /* 802.11g */
8007 ipw_rt->rt_chbitmask =
8008 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8011 /* set the rate in multiples of 500k/s */
8012 switch (rate) {
8013 case IPW_TX_RATE_1MB:
8014 ipw_rt->rt_rate = 2;
8015 break;
8016 case IPW_TX_RATE_2MB:
8017 ipw_rt->rt_rate = 4;
8018 break;
8019 case IPW_TX_RATE_5MB:
8020 ipw_rt->rt_rate = 10;
8021 break;
8022 case IPW_TX_RATE_6MB:
8023 ipw_rt->rt_rate = 12;
8024 break;
8025 case IPW_TX_RATE_9MB:
8026 ipw_rt->rt_rate = 18;
8027 break;
8028 case IPW_TX_RATE_11MB:
8029 ipw_rt->rt_rate = 22;
8030 break;
8031 case IPW_TX_RATE_12MB:
8032 ipw_rt->rt_rate = 24;
8033 break;
8034 case IPW_TX_RATE_18MB:
8035 ipw_rt->rt_rate = 36;
8036 break;
8037 case IPW_TX_RATE_24MB:
8038 ipw_rt->rt_rate = 48;
8039 break;
8040 case IPW_TX_RATE_36MB:
8041 ipw_rt->rt_rate = 72;
8042 break;
8043 case IPW_TX_RATE_48MB:
8044 ipw_rt->rt_rate = 96;
8045 break;
8046 case IPW_TX_RATE_54MB:
8047 ipw_rt->rt_rate = 108;
8048 break;
8049 default:
8050 ipw_rt->rt_rate = 0;
8051 break;
8054 /* antenna number */
8055 ipw_rt->rt_antenna = (phy_flags & 3);
8057 /* set the preamble flag if we have it */
8058 if (phy_flags & (1 << 6))
8059 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8061 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8063 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8064 priv->prom_priv->ieee->stats.rx_errors++;
8065 dev_kfree_skb_any(skb);
8068 #endif
8070 static int is_network_packet(struct ipw_priv *priv,
8071 struct ieee80211_hdr_4addr *header)
8073 /* Filter incoming packets to determine if they are targetted toward
8074 * this network, discarding packets coming from ourselves */
8075 switch (priv->ieee->iw_mode) {
8076 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8077 /* packets from our adapter are dropped (echo) */
8078 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8079 return 0;
8081 /* {broad,multi}cast packets to our BSSID go through */
8082 if (is_multicast_ether_addr(header->addr1))
8083 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8085 /* packets to our adapter go through */
8086 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8087 ETH_ALEN);
8089 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8090 /* packets from our adapter are dropped (echo) */
8091 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8092 return 0;
8094 /* {broad,multi}cast packets to our BSS go through */
8095 if (is_multicast_ether_addr(header->addr1))
8096 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8098 /* packets to our adapter go through */
8099 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8100 ETH_ALEN);
8103 return 1;
8106 #define IPW_PACKET_RETRY_TIME HZ
8108 static int is_duplicate_packet(struct ipw_priv *priv,
8109 struct ieee80211_hdr_4addr *header)
8111 u16 sc = le16_to_cpu(header->seq_ctl);
8112 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8113 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8114 u16 *last_seq, *last_frag;
8115 unsigned long *last_time;
8117 switch (priv->ieee->iw_mode) {
8118 case IW_MODE_ADHOC:
8120 struct list_head *p;
8121 struct ipw_ibss_seq *entry = NULL;
8122 u8 *mac = header->addr2;
8123 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8125 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8126 entry =
8127 list_entry(p, struct ipw_ibss_seq, list);
8128 if (!memcmp(entry->mac, mac, ETH_ALEN))
8129 break;
8131 if (p == &priv->ibss_mac_hash[index]) {
8132 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8133 if (!entry) {
8134 IPW_ERROR
8135 ("Cannot malloc new mac entry\n");
8136 return 0;
8138 memcpy(entry->mac, mac, ETH_ALEN);
8139 entry->seq_num = seq;
8140 entry->frag_num = frag;
8141 entry->packet_time = jiffies;
8142 list_add(&entry->list,
8143 &priv->ibss_mac_hash[index]);
8144 return 0;
8146 last_seq = &entry->seq_num;
8147 last_frag = &entry->frag_num;
8148 last_time = &entry->packet_time;
8149 break;
8151 case IW_MODE_INFRA:
8152 last_seq = &priv->last_seq_num;
8153 last_frag = &priv->last_frag_num;
8154 last_time = &priv->last_packet_time;
8155 break;
8156 default:
8157 return 0;
8159 if ((*last_seq == seq) &&
8160 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8161 if (*last_frag == frag)
8162 goto drop;
8163 if (*last_frag + 1 != frag)
8164 /* out-of-order fragment */
8165 goto drop;
8166 } else
8167 *last_seq = seq;
8169 *last_frag = frag;
8170 *last_time = jiffies;
8171 return 0;
8173 drop:
8174 /* Comment this line now since we observed the card receives
8175 * duplicate packets but the FCTL_RETRY bit is not set in the
8176 * IBSS mode with fragmentation enabled.
8177 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8178 return 1;
8181 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8182 struct ipw_rx_mem_buffer *rxb,
8183 struct ieee80211_rx_stats *stats)
8185 struct sk_buff *skb = rxb->skb;
8186 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8187 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8188 (skb->data + IPW_RX_FRAME_SIZE);
8190 ieee80211_rx_mgt(priv->ieee, header, stats);
8192 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8193 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8194 IEEE80211_STYPE_PROBE_RESP) ||
8195 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8196 IEEE80211_STYPE_BEACON))) {
8197 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8198 ipw_add_station(priv, header->addr2);
8201 if (priv->config & CFG_NET_STATS) {
8202 IPW_DEBUG_HC("sending stat packet\n");
8204 /* Set the size of the skb to the size of the full
8205 * ipw header and 802.11 frame */
8206 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8207 IPW_RX_FRAME_SIZE);
8209 /* Advance past the ipw packet header to the 802.11 frame */
8210 skb_pull(skb, IPW_RX_FRAME_SIZE);
8212 /* Push the ieee80211_rx_stats before the 802.11 frame */
8213 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8215 skb->dev = priv->ieee->dev;
8217 /* Point raw at the ieee80211_stats */
8218 skb_reset_mac_header(skb);
8220 skb->pkt_type = PACKET_OTHERHOST;
8221 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8222 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8223 netif_rx(skb);
8224 rxb->skb = NULL;
8229 * Main entry function for recieving a packet with 80211 headers. This
8230 * should be called when ever the FW has notified us that there is a new
8231 * skb in the recieve queue.
8233 static void ipw_rx(struct ipw_priv *priv)
8235 struct ipw_rx_mem_buffer *rxb;
8236 struct ipw_rx_packet *pkt;
8237 struct ieee80211_hdr_4addr *header;
8238 u32 r, w, i;
8239 u8 network_packet;
8240 DECLARE_MAC_BUF(mac);
8241 DECLARE_MAC_BUF(mac2);
8242 DECLARE_MAC_BUF(mac3);
8244 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8245 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8246 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8248 while (i != r) {
8249 rxb = priv->rxq->queue[i];
8250 if (unlikely(rxb == NULL)) {
8251 printk(KERN_CRIT "Queue not allocated!\n");
8252 break;
8254 priv->rxq->queue[i] = NULL;
8256 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8257 IPW_RX_BUF_SIZE,
8258 PCI_DMA_FROMDEVICE);
8260 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8261 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8262 pkt->header.message_type,
8263 pkt->header.rx_seq_num, pkt->header.control_bits);
8265 switch (pkt->header.message_type) {
8266 case RX_FRAME_TYPE: /* 802.11 frame */ {
8267 struct ieee80211_rx_stats stats = {
8268 .rssi = pkt->u.frame.rssi_dbm -
8269 IPW_RSSI_TO_DBM,
8270 .signal =
8271 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8272 IPW_RSSI_TO_DBM + 0x100,
8273 .noise =
8274 le16_to_cpu(pkt->u.frame.noise),
8275 .rate = pkt->u.frame.rate,
8276 .mac_time = jiffies,
8277 .received_channel =
8278 pkt->u.frame.received_channel,
8279 .freq =
8280 (pkt->u.frame.
8281 control & (1 << 0)) ?
8282 IEEE80211_24GHZ_BAND :
8283 IEEE80211_52GHZ_BAND,
8284 .len = le16_to_cpu(pkt->u.frame.length),
8287 if (stats.rssi != 0)
8288 stats.mask |= IEEE80211_STATMASK_RSSI;
8289 if (stats.signal != 0)
8290 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8291 if (stats.noise != 0)
8292 stats.mask |= IEEE80211_STATMASK_NOISE;
8293 if (stats.rate != 0)
8294 stats.mask |= IEEE80211_STATMASK_RATE;
8296 priv->rx_packets++;
8298 #ifdef CONFIG_IPW2200_PROMISCUOUS
8299 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8300 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8301 #endif
8303 #ifdef CONFIG_IPW2200_MONITOR
8304 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8305 #ifdef CONFIG_IPW2200_RADIOTAP
8307 ipw_handle_data_packet_monitor(priv,
8308 rxb,
8309 &stats);
8310 #else
8311 ipw_handle_data_packet(priv, rxb,
8312 &stats);
8313 #endif
8314 break;
8316 #endif
8318 header =
8319 (struct ieee80211_hdr_4addr *)(rxb->skb->
8320 data +
8321 IPW_RX_FRAME_SIZE);
8322 /* TODO: Check Ad-Hoc dest/source and make sure
8323 * that we are actually parsing these packets
8324 * correctly -- we should probably use the
8325 * frame control of the packet and disregard
8326 * the current iw_mode */
8328 network_packet =
8329 is_network_packet(priv, header);
8330 if (network_packet && priv->assoc_network) {
8331 priv->assoc_network->stats.rssi =
8332 stats.rssi;
8333 priv->exp_avg_rssi =
8334 exponential_average(priv->exp_avg_rssi,
8335 stats.rssi, DEPTH_RSSI);
8338 IPW_DEBUG_RX("Frame: len=%u\n",
8339 le16_to_cpu(pkt->u.frame.length));
8341 if (le16_to_cpu(pkt->u.frame.length) <
8342 ieee80211_get_hdrlen(le16_to_cpu(
8343 header->frame_ctl))) {
8344 IPW_DEBUG_DROP
8345 ("Received packet is too small. "
8346 "Dropping.\n");
8347 priv->ieee->stats.rx_errors++;
8348 priv->wstats.discard.misc++;
8349 break;
8352 switch (WLAN_FC_GET_TYPE
8353 (le16_to_cpu(header->frame_ctl))) {
8355 case IEEE80211_FTYPE_MGMT:
8356 ipw_handle_mgmt_packet(priv, rxb,
8357 &stats);
8358 break;
8360 case IEEE80211_FTYPE_CTL:
8361 break;
8363 case IEEE80211_FTYPE_DATA:
8364 if (unlikely(!network_packet ||
8365 is_duplicate_packet(priv,
8366 header)))
8368 IPW_DEBUG_DROP("Dropping: "
8369 "%s, "
8370 "%s, "
8371 "%s\n",
8372 print_mac(mac,
8373 header->
8374 addr1),
8375 print_mac(mac2,
8376 header->
8377 addr2),
8378 print_mac(mac3,
8379 header->
8380 addr3));
8381 break;
8384 ipw_handle_data_packet(priv, rxb,
8385 &stats);
8387 break;
8389 break;
8392 case RX_HOST_NOTIFICATION_TYPE:{
8393 IPW_DEBUG_RX
8394 ("Notification: subtype=%02X flags=%02X size=%d\n",
8395 pkt->u.notification.subtype,
8396 pkt->u.notification.flags,
8397 le16_to_cpu(pkt->u.notification.size));
8398 ipw_rx_notification(priv, &pkt->u.notification);
8399 break;
8402 default:
8403 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8404 pkt->header.message_type);
8405 break;
8408 /* For now we just don't re-use anything. We can tweak this
8409 * later to try and re-use notification packets and SKBs that
8410 * fail to Rx correctly */
8411 if (rxb->skb != NULL) {
8412 dev_kfree_skb_any(rxb->skb);
8413 rxb->skb = NULL;
8416 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8417 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8418 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8420 i = (i + 1) % RX_QUEUE_SIZE;
8423 /* Backtrack one entry */
8424 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8426 ipw_rx_queue_restock(priv);
8429 #define DEFAULT_RTS_THRESHOLD 2304U
8430 #define MIN_RTS_THRESHOLD 1U
8431 #define MAX_RTS_THRESHOLD 2304U
8432 #define DEFAULT_BEACON_INTERVAL 100U
8433 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8434 #define DEFAULT_LONG_RETRY_LIMIT 4U
8437 * ipw_sw_reset
8438 * @option: options to control different reset behaviour
8439 * 0 = reset everything except the 'disable' module_param
8440 * 1 = reset everything and print out driver info (for probe only)
8441 * 2 = reset everything
8443 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8445 int band, modulation;
8446 int old_mode = priv->ieee->iw_mode;
8448 /* Initialize module parameter values here */
8449 priv->config = 0;
8451 /* We default to disabling the LED code as right now it causes
8452 * too many systems to lock up... */
8453 if (!led)
8454 priv->config |= CFG_NO_LED;
8456 if (associate)
8457 priv->config |= CFG_ASSOCIATE;
8458 else
8459 IPW_DEBUG_INFO("Auto associate disabled.\n");
8461 if (auto_create)
8462 priv->config |= CFG_ADHOC_CREATE;
8463 else
8464 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8466 priv->config &= ~CFG_STATIC_ESSID;
8467 priv->essid_len = 0;
8468 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8470 if (disable && option) {
8471 priv->status |= STATUS_RF_KILL_SW;
8472 IPW_DEBUG_INFO("Radio disabled.\n");
8475 if (channel != 0) {
8476 priv->config |= CFG_STATIC_CHANNEL;
8477 priv->channel = channel;
8478 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8479 /* TODO: Validate that provided channel is in range */
8481 #ifdef CONFIG_IPW2200_QOS
8482 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8483 burst_duration_CCK, burst_duration_OFDM);
8484 #endif /* CONFIG_IPW2200_QOS */
8486 switch (mode) {
8487 case 1:
8488 priv->ieee->iw_mode = IW_MODE_ADHOC;
8489 priv->net_dev->type = ARPHRD_ETHER;
8491 break;
8492 #ifdef CONFIG_IPW2200_MONITOR
8493 case 2:
8494 priv->ieee->iw_mode = IW_MODE_MONITOR;
8495 #ifdef CONFIG_IPW2200_RADIOTAP
8496 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8497 #else
8498 priv->net_dev->type = ARPHRD_IEEE80211;
8499 #endif
8500 break;
8501 #endif
8502 default:
8503 case 0:
8504 priv->net_dev->type = ARPHRD_ETHER;
8505 priv->ieee->iw_mode = IW_MODE_INFRA;
8506 break;
8509 if (hwcrypto) {
8510 priv->ieee->host_encrypt = 0;
8511 priv->ieee->host_encrypt_msdu = 0;
8512 priv->ieee->host_decrypt = 0;
8513 priv->ieee->host_mc_decrypt = 0;
8515 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8517 /* IPW2200/2915 is abled to do hardware fragmentation. */
8518 priv->ieee->host_open_frag = 0;
8520 if ((priv->pci_dev->device == 0x4223) ||
8521 (priv->pci_dev->device == 0x4224)) {
8522 if (option == 1)
8523 printk(KERN_INFO DRV_NAME
8524 ": Detected Intel PRO/Wireless 2915ABG Network "
8525 "Connection\n");
8526 priv->ieee->abg_true = 1;
8527 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8528 modulation = IEEE80211_OFDM_MODULATION |
8529 IEEE80211_CCK_MODULATION;
8530 priv->adapter = IPW_2915ABG;
8531 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8532 } else {
8533 if (option == 1)
8534 printk(KERN_INFO DRV_NAME
8535 ": Detected Intel PRO/Wireless 2200BG Network "
8536 "Connection\n");
8538 priv->ieee->abg_true = 0;
8539 band = IEEE80211_24GHZ_BAND;
8540 modulation = IEEE80211_OFDM_MODULATION |
8541 IEEE80211_CCK_MODULATION;
8542 priv->adapter = IPW_2200BG;
8543 priv->ieee->mode = IEEE_G | IEEE_B;
8546 priv->ieee->freq_band = band;
8547 priv->ieee->modulation = modulation;
8549 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8551 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8552 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8554 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8555 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8556 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8558 /* If power management is turned on, default to AC mode */
8559 priv->power_mode = IPW_POWER_AC;
8560 priv->tx_power = IPW_TX_POWER_DEFAULT;
8562 return old_mode == priv->ieee->iw_mode;
8566 * This file defines the Wireless Extension handlers. It does not
8567 * define any methods of hardware manipulation and relies on the
8568 * functions defined in ipw_main to provide the HW interaction.
8570 * The exception to this is the use of the ipw_get_ordinal()
8571 * function used to poll the hardware vs. making unecessary calls.
8575 static int ipw_wx_get_name(struct net_device *dev,
8576 struct iw_request_info *info,
8577 union iwreq_data *wrqu, char *extra)
8579 struct ipw_priv *priv = ieee80211_priv(dev);
8580 mutex_lock(&priv->mutex);
8581 if (priv->status & STATUS_RF_KILL_MASK)
8582 strcpy(wrqu->name, "radio off");
8583 else if (!(priv->status & STATUS_ASSOCIATED))
8584 strcpy(wrqu->name, "unassociated");
8585 else
8586 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8587 ipw_modes[priv->assoc_request.ieee_mode]);
8588 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8589 mutex_unlock(&priv->mutex);
8590 return 0;
8593 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8595 if (channel == 0) {
8596 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8597 priv->config &= ~CFG_STATIC_CHANNEL;
8598 IPW_DEBUG_ASSOC("Attempting to associate with new "
8599 "parameters.\n");
8600 ipw_associate(priv);
8601 return 0;
8604 priv->config |= CFG_STATIC_CHANNEL;
8606 if (priv->channel == channel) {
8607 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8608 channel);
8609 return 0;
8612 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8613 priv->channel = channel;
8615 #ifdef CONFIG_IPW2200_MONITOR
8616 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8617 int i;
8618 if (priv->status & STATUS_SCANNING) {
8619 IPW_DEBUG_SCAN("Scan abort triggered due to "
8620 "channel change.\n");
8621 ipw_abort_scan(priv);
8624 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8625 udelay(10);
8627 if (priv->status & STATUS_SCANNING)
8628 IPW_DEBUG_SCAN("Still scanning...\n");
8629 else
8630 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8631 1000 - i);
8633 return 0;
8635 #endif /* CONFIG_IPW2200_MONITOR */
8637 /* Network configuration changed -- force [re]association */
8638 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8639 if (!ipw_disassociate(priv))
8640 ipw_associate(priv);
8642 return 0;
8645 static int ipw_wx_set_freq(struct net_device *dev,
8646 struct iw_request_info *info,
8647 union iwreq_data *wrqu, char *extra)
8649 struct ipw_priv *priv = ieee80211_priv(dev);
8650 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8651 struct iw_freq *fwrq = &wrqu->freq;
8652 int ret = 0, i;
8653 u8 channel, flags;
8654 int band;
8656 if (fwrq->m == 0) {
8657 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8658 mutex_lock(&priv->mutex);
8659 ret = ipw_set_channel(priv, 0);
8660 mutex_unlock(&priv->mutex);
8661 return ret;
8663 /* if setting by freq convert to channel */
8664 if (fwrq->e == 1) {
8665 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8666 if (channel == 0)
8667 return -EINVAL;
8668 } else
8669 channel = fwrq->m;
8671 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8672 return -EINVAL;
8674 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8675 i = ieee80211_channel_to_index(priv->ieee, channel);
8676 if (i == -1)
8677 return -EINVAL;
8679 flags = (band == IEEE80211_24GHZ_BAND) ?
8680 geo->bg[i].flags : geo->a[i].flags;
8681 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8682 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8683 return -EINVAL;
8687 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8688 mutex_lock(&priv->mutex);
8689 ret = ipw_set_channel(priv, channel);
8690 mutex_unlock(&priv->mutex);
8691 return ret;
8694 static int ipw_wx_get_freq(struct net_device *dev,
8695 struct iw_request_info *info,
8696 union iwreq_data *wrqu, char *extra)
8698 struct ipw_priv *priv = ieee80211_priv(dev);
8700 wrqu->freq.e = 0;
8702 /* If we are associated, trying to associate, or have a statically
8703 * configured CHANNEL then return that; otherwise return ANY */
8704 mutex_lock(&priv->mutex);
8705 if (priv->config & CFG_STATIC_CHANNEL ||
8706 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8707 int i;
8709 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8710 BUG_ON(i == -1);
8711 wrqu->freq.e = 1;
8713 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8714 case IEEE80211_52GHZ_BAND:
8715 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8716 break;
8718 case IEEE80211_24GHZ_BAND:
8719 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8720 break;
8722 default:
8723 BUG();
8725 } else
8726 wrqu->freq.m = 0;
8728 mutex_unlock(&priv->mutex);
8729 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8730 return 0;
8733 static int ipw_wx_set_mode(struct net_device *dev,
8734 struct iw_request_info *info,
8735 union iwreq_data *wrqu, char *extra)
8737 struct ipw_priv *priv = ieee80211_priv(dev);
8738 int err = 0;
8740 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8742 switch (wrqu->mode) {
8743 #ifdef CONFIG_IPW2200_MONITOR
8744 case IW_MODE_MONITOR:
8745 #endif
8746 case IW_MODE_ADHOC:
8747 case IW_MODE_INFRA:
8748 break;
8749 case IW_MODE_AUTO:
8750 wrqu->mode = IW_MODE_INFRA;
8751 break;
8752 default:
8753 return -EINVAL;
8755 if (wrqu->mode == priv->ieee->iw_mode)
8756 return 0;
8758 mutex_lock(&priv->mutex);
8760 ipw_sw_reset(priv, 0);
8762 #ifdef CONFIG_IPW2200_MONITOR
8763 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8764 priv->net_dev->type = ARPHRD_ETHER;
8766 if (wrqu->mode == IW_MODE_MONITOR)
8767 #ifdef CONFIG_IPW2200_RADIOTAP
8768 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8769 #else
8770 priv->net_dev->type = ARPHRD_IEEE80211;
8771 #endif
8772 #endif /* CONFIG_IPW2200_MONITOR */
8774 /* Free the existing firmware and reset the fw_loaded
8775 * flag so ipw_load() will bring in the new firmawre */
8776 free_firmware();
8778 priv->ieee->iw_mode = wrqu->mode;
8780 queue_work(priv->workqueue, &priv->adapter_restart);
8781 mutex_unlock(&priv->mutex);
8782 return err;
8785 static int ipw_wx_get_mode(struct net_device *dev,
8786 struct iw_request_info *info,
8787 union iwreq_data *wrqu, char *extra)
8789 struct ipw_priv *priv = ieee80211_priv(dev);
8790 mutex_lock(&priv->mutex);
8791 wrqu->mode = priv->ieee->iw_mode;
8792 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8793 mutex_unlock(&priv->mutex);
8794 return 0;
8797 /* Values are in microsecond */
8798 static const s32 timeout_duration[] = {
8799 350000,
8800 250000,
8801 75000,
8802 37000,
8803 25000,
8806 static const s32 period_duration[] = {
8807 400000,
8808 700000,
8809 1000000,
8810 1000000,
8811 1000000
8814 static int ipw_wx_get_range(struct net_device *dev,
8815 struct iw_request_info *info,
8816 union iwreq_data *wrqu, char *extra)
8818 struct ipw_priv *priv = ieee80211_priv(dev);
8819 struct iw_range *range = (struct iw_range *)extra;
8820 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8821 int i = 0, j;
8823 wrqu->data.length = sizeof(*range);
8824 memset(range, 0, sizeof(*range));
8826 /* 54Mbs == ~27 Mb/s real (802.11g) */
8827 range->throughput = 27 * 1000 * 1000;
8829 range->max_qual.qual = 100;
8830 /* TODO: Find real max RSSI and stick here */
8831 range->max_qual.level = 0;
8832 range->max_qual.noise = 0;
8833 range->max_qual.updated = 7; /* Updated all three */
8835 range->avg_qual.qual = 70;
8836 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8837 range->avg_qual.level = 0; /* FIXME to real average level */
8838 range->avg_qual.noise = 0;
8839 range->avg_qual.updated = 7; /* Updated all three */
8840 mutex_lock(&priv->mutex);
8841 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8843 for (i = 0; i < range->num_bitrates; i++)
8844 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8845 500000;
8847 range->max_rts = DEFAULT_RTS_THRESHOLD;
8848 range->min_frag = MIN_FRAG_THRESHOLD;
8849 range->max_frag = MAX_FRAG_THRESHOLD;
8851 range->encoding_size[0] = 5;
8852 range->encoding_size[1] = 13;
8853 range->num_encoding_sizes = 2;
8854 range->max_encoding_tokens = WEP_KEYS;
8856 /* Set the Wireless Extension versions */
8857 range->we_version_compiled = WIRELESS_EXT;
8858 range->we_version_source = 18;
8860 i = 0;
8861 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8862 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8863 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8864 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8865 continue;
8867 range->freq[i].i = geo->bg[j].channel;
8868 range->freq[i].m = geo->bg[j].freq * 100000;
8869 range->freq[i].e = 1;
8870 i++;
8874 if (priv->ieee->mode & IEEE_A) {
8875 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8876 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8877 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8878 continue;
8880 range->freq[i].i = geo->a[j].channel;
8881 range->freq[i].m = geo->a[j].freq * 100000;
8882 range->freq[i].e = 1;
8883 i++;
8887 range->num_channels = i;
8888 range->num_frequency = i;
8890 mutex_unlock(&priv->mutex);
8892 /* Event capability (kernel + driver) */
8893 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8894 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8895 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8896 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8897 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8899 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8900 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8902 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8904 IPW_DEBUG_WX("GET Range\n");
8905 return 0;
8908 static int ipw_wx_set_wap(struct net_device *dev,
8909 struct iw_request_info *info,
8910 union iwreq_data *wrqu, char *extra)
8912 struct ipw_priv *priv = ieee80211_priv(dev);
8913 DECLARE_MAC_BUF(mac);
8915 static const unsigned char any[] = {
8916 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8918 static const unsigned char off[] = {
8919 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8922 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8923 return -EINVAL;
8924 mutex_lock(&priv->mutex);
8925 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8926 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8927 /* we disable mandatory BSSID association */
8928 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8929 priv->config &= ~CFG_STATIC_BSSID;
8930 IPW_DEBUG_ASSOC("Attempting to associate with new "
8931 "parameters.\n");
8932 ipw_associate(priv);
8933 mutex_unlock(&priv->mutex);
8934 return 0;
8937 priv->config |= CFG_STATIC_BSSID;
8938 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8939 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8940 mutex_unlock(&priv->mutex);
8941 return 0;
8944 IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
8945 print_mac(mac, wrqu->ap_addr.sa_data));
8947 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8949 /* Network configuration changed -- force [re]association */
8950 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8951 if (!ipw_disassociate(priv))
8952 ipw_associate(priv);
8954 mutex_unlock(&priv->mutex);
8955 return 0;
8958 static int ipw_wx_get_wap(struct net_device *dev,
8959 struct iw_request_info *info,
8960 union iwreq_data *wrqu, char *extra)
8962 struct ipw_priv *priv = ieee80211_priv(dev);
8963 DECLARE_MAC_BUF(mac);
8965 /* If we are associated, trying to associate, or have a statically
8966 * configured BSSID then return that; otherwise return ANY */
8967 mutex_lock(&priv->mutex);
8968 if (priv->config & CFG_STATIC_BSSID ||
8969 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8970 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8971 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8972 } else
8973 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8975 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
8976 print_mac(mac, wrqu->ap_addr.sa_data));
8977 mutex_unlock(&priv->mutex);
8978 return 0;
8981 static int ipw_wx_set_essid(struct net_device *dev,
8982 struct iw_request_info *info,
8983 union iwreq_data *wrqu, char *extra)
8985 struct ipw_priv *priv = ieee80211_priv(dev);
8986 int length;
8988 mutex_lock(&priv->mutex);
8990 if (!wrqu->essid.flags)
8992 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8993 ipw_disassociate(priv);
8994 priv->config &= ~CFG_STATIC_ESSID;
8995 ipw_associate(priv);
8996 mutex_unlock(&priv->mutex);
8997 return 0;
9000 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9002 priv->config |= CFG_STATIC_ESSID;
9004 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9005 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9006 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9007 mutex_unlock(&priv->mutex);
9008 return 0;
9011 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9012 length);
9014 priv->essid_len = length;
9015 memcpy(priv->essid, extra, priv->essid_len);
9017 /* Network configuration changed -- force [re]association */
9018 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9019 if (!ipw_disassociate(priv))
9020 ipw_associate(priv);
9022 mutex_unlock(&priv->mutex);
9023 return 0;
9026 static int ipw_wx_get_essid(struct net_device *dev,
9027 struct iw_request_info *info,
9028 union iwreq_data *wrqu, char *extra)
9030 struct ipw_priv *priv = ieee80211_priv(dev);
9032 /* If we are associated, trying to associate, or have a statically
9033 * configured ESSID then return that; otherwise return ANY */
9034 mutex_lock(&priv->mutex);
9035 if (priv->config & CFG_STATIC_ESSID ||
9036 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9037 IPW_DEBUG_WX("Getting essid: '%s'\n",
9038 escape_essid(priv->essid, priv->essid_len));
9039 memcpy(extra, priv->essid, priv->essid_len);
9040 wrqu->essid.length = priv->essid_len;
9041 wrqu->essid.flags = 1; /* active */
9042 } else {
9043 IPW_DEBUG_WX("Getting essid: ANY\n");
9044 wrqu->essid.length = 0;
9045 wrqu->essid.flags = 0; /* active */
9047 mutex_unlock(&priv->mutex);
9048 return 0;
9051 static int ipw_wx_set_nick(struct net_device *dev,
9052 struct iw_request_info *info,
9053 union iwreq_data *wrqu, char *extra)
9055 struct ipw_priv *priv = ieee80211_priv(dev);
9057 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9058 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9059 return -E2BIG;
9060 mutex_lock(&priv->mutex);
9061 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9062 memset(priv->nick, 0, sizeof(priv->nick));
9063 memcpy(priv->nick, extra, wrqu->data.length);
9064 IPW_DEBUG_TRACE("<<\n");
9065 mutex_unlock(&priv->mutex);
9066 return 0;
9070 static int ipw_wx_get_nick(struct net_device *dev,
9071 struct iw_request_info *info,
9072 union iwreq_data *wrqu, char *extra)
9074 struct ipw_priv *priv = ieee80211_priv(dev);
9075 IPW_DEBUG_WX("Getting nick\n");
9076 mutex_lock(&priv->mutex);
9077 wrqu->data.length = strlen(priv->nick);
9078 memcpy(extra, priv->nick, wrqu->data.length);
9079 wrqu->data.flags = 1; /* active */
9080 mutex_unlock(&priv->mutex);
9081 return 0;
9084 static int ipw_wx_set_sens(struct net_device *dev,
9085 struct iw_request_info *info,
9086 union iwreq_data *wrqu, char *extra)
9088 struct ipw_priv *priv = ieee80211_priv(dev);
9089 int err = 0;
9091 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9092 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9093 mutex_lock(&priv->mutex);
9095 if (wrqu->sens.fixed == 0)
9097 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9098 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9099 goto out;
9101 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9102 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9103 err = -EINVAL;
9104 goto out;
9107 priv->roaming_threshold = wrqu->sens.value;
9108 priv->disassociate_threshold = 3*wrqu->sens.value;
9109 out:
9110 mutex_unlock(&priv->mutex);
9111 return err;
9114 static int ipw_wx_get_sens(struct net_device *dev,
9115 struct iw_request_info *info,
9116 union iwreq_data *wrqu, char *extra)
9118 struct ipw_priv *priv = ieee80211_priv(dev);
9119 mutex_lock(&priv->mutex);
9120 wrqu->sens.fixed = 1;
9121 wrqu->sens.value = priv->roaming_threshold;
9122 mutex_unlock(&priv->mutex);
9124 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9125 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9127 return 0;
9130 static int ipw_wx_set_rate(struct net_device *dev,
9131 struct iw_request_info *info,
9132 union iwreq_data *wrqu, char *extra)
9134 /* TODO: We should use semaphores or locks for access to priv */
9135 struct ipw_priv *priv = ieee80211_priv(dev);
9136 u32 target_rate = wrqu->bitrate.value;
9137 u32 fixed, mask;
9139 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9140 /* value = X, fixed = 1 means only rate X */
9141 /* value = X, fixed = 0 means all rates lower equal X */
9143 if (target_rate == -1) {
9144 fixed = 0;
9145 mask = IEEE80211_DEFAULT_RATES_MASK;
9146 /* Now we should reassociate */
9147 goto apply;
9150 mask = 0;
9151 fixed = wrqu->bitrate.fixed;
9153 if (target_rate == 1000000 || !fixed)
9154 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9155 if (target_rate == 1000000)
9156 goto apply;
9158 if (target_rate == 2000000 || !fixed)
9159 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9160 if (target_rate == 2000000)
9161 goto apply;
9163 if (target_rate == 5500000 || !fixed)
9164 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9165 if (target_rate == 5500000)
9166 goto apply;
9168 if (target_rate == 6000000 || !fixed)
9169 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9170 if (target_rate == 6000000)
9171 goto apply;
9173 if (target_rate == 9000000 || !fixed)
9174 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9175 if (target_rate == 9000000)
9176 goto apply;
9178 if (target_rate == 11000000 || !fixed)
9179 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9180 if (target_rate == 11000000)
9181 goto apply;
9183 if (target_rate == 12000000 || !fixed)
9184 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9185 if (target_rate == 12000000)
9186 goto apply;
9188 if (target_rate == 18000000 || !fixed)
9189 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9190 if (target_rate == 18000000)
9191 goto apply;
9193 if (target_rate == 24000000 || !fixed)
9194 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9195 if (target_rate == 24000000)
9196 goto apply;
9198 if (target_rate == 36000000 || !fixed)
9199 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9200 if (target_rate == 36000000)
9201 goto apply;
9203 if (target_rate == 48000000 || !fixed)
9204 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9205 if (target_rate == 48000000)
9206 goto apply;
9208 if (target_rate == 54000000 || !fixed)
9209 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9210 if (target_rate == 54000000)
9211 goto apply;
9213 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9214 return -EINVAL;
9216 apply:
9217 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9218 mask, fixed ? "fixed" : "sub-rates");
9219 mutex_lock(&priv->mutex);
9220 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9221 priv->config &= ~CFG_FIXED_RATE;
9222 ipw_set_fixed_rate(priv, priv->ieee->mode);
9223 } else
9224 priv->config |= CFG_FIXED_RATE;
9226 if (priv->rates_mask == mask) {
9227 IPW_DEBUG_WX("Mask set to current mask.\n");
9228 mutex_unlock(&priv->mutex);
9229 return 0;
9232 priv->rates_mask = mask;
9234 /* Network configuration changed -- force [re]association */
9235 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9236 if (!ipw_disassociate(priv))
9237 ipw_associate(priv);
9239 mutex_unlock(&priv->mutex);
9240 return 0;
9243 static int ipw_wx_get_rate(struct net_device *dev,
9244 struct iw_request_info *info,
9245 union iwreq_data *wrqu, char *extra)
9247 struct ipw_priv *priv = ieee80211_priv(dev);
9248 mutex_lock(&priv->mutex);
9249 wrqu->bitrate.value = priv->last_rate;
9250 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9251 mutex_unlock(&priv->mutex);
9252 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9253 return 0;
9256 static int ipw_wx_set_rts(struct net_device *dev,
9257 struct iw_request_info *info,
9258 union iwreq_data *wrqu, char *extra)
9260 struct ipw_priv *priv = ieee80211_priv(dev);
9261 mutex_lock(&priv->mutex);
9262 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9263 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9264 else {
9265 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9266 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9267 mutex_unlock(&priv->mutex);
9268 return -EINVAL;
9270 priv->rts_threshold = wrqu->rts.value;
9273 ipw_send_rts_threshold(priv, priv->rts_threshold);
9274 mutex_unlock(&priv->mutex);
9275 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9276 return 0;
9279 static int ipw_wx_get_rts(struct net_device *dev,
9280 struct iw_request_info *info,
9281 union iwreq_data *wrqu, char *extra)
9283 struct ipw_priv *priv = ieee80211_priv(dev);
9284 mutex_lock(&priv->mutex);
9285 wrqu->rts.value = priv->rts_threshold;
9286 wrqu->rts.fixed = 0; /* no auto select */
9287 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9288 mutex_unlock(&priv->mutex);
9289 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9290 return 0;
9293 static int ipw_wx_set_txpow(struct net_device *dev,
9294 struct iw_request_info *info,
9295 union iwreq_data *wrqu, char *extra)
9297 struct ipw_priv *priv = ieee80211_priv(dev);
9298 int err = 0;
9300 mutex_lock(&priv->mutex);
9301 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9302 err = -EINPROGRESS;
9303 goto out;
9306 if (!wrqu->power.fixed)
9307 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9309 if (wrqu->power.flags != IW_TXPOW_DBM) {
9310 err = -EINVAL;
9311 goto out;
9314 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9315 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9316 err = -EINVAL;
9317 goto out;
9320 priv->tx_power = wrqu->power.value;
9321 err = ipw_set_tx_power(priv);
9322 out:
9323 mutex_unlock(&priv->mutex);
9324 return err;
9327 static int ipw_wx_get_txpow(struct net_device *dev,
9328 struct iw_request_info *info,
9329 union iwreq_data *wrqu, char *extra)
9331 struct ipw_priv *priv = ieee80211_priv(dev);
9332 mutex_lock(&priv->mutex);
9333 wrqu->power.value = priv->tx_power;
9334 wrqu->power.fixed = 1;
9335 wrqu->power.flags = IW_TXPOW_DBM;
9336 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9337 mutex_unlock(&priv->mutex);
9339 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9340 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9342 return 0;
9345 static int ipw_wx_set_frag(struct net_device *dev,
9346 struct iw_request_info *info,
9347 union iwreq_data *wrqu, char *extra)
9349 struct ipw_priv *priv = ieee80211_priv(dev);
9350 mutex_lock(&priv->mutex);
9351 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9352 priv->ieee->fts = DEFAULT_FTS;
9353 else {
9354 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9355 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9356 mutex_unlock(&priv->mutex);
9357 return -EINVAL;
9360 priv->ieee->fts = wrqu->frag.value & ~0x1;
9363 ipw_send_frag_threshold(priv, wrqu->frag.value);
9364 mutex_unlock(&priv->mutex);
9365 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9366 return 0;
9369 static int ipw_wx_get_frag(struct net_device *dev,
9370 struct iw_request_info *info,
9371 union iwreq_data *wrqu, char *extra)
9373 struct ipw_priv *priv = ieee80211_priv(dev);
9374 mutex_lock(&priv->mutex);
9375 wrqu->frag.value = priv->ieee->fts;
9376 wrqu->frag.fixed = 0; /* no auto select */
9377 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9378 mutex_unlock(&priv->mutex);
9379 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9381 return 0;
9384 static int ipw_wx_set_retry(struct net_device *dev,
9385 struct iw_request_info *info,
9386 union iwreq_data *wrqu, char *extra)
9388 struct ipw_priv *priv = ieee80211_priv(dev);
9390 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9391 return -EINVAL;
9393 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9394 return 0;
9396 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9397 return -EINVAL;
9399 mutex_lock(&priv->mutex);
9400 if (wrqu->retry.flags & IW_RETRY_SHORT)
9401 priv->short_retry_limit = (u8) wrqu->retry.value;
9402 else if (wrqu->retry.flags & IW_RETRY_LONG)
9403 priv->long_retry_limit = (u8) wrqu->retry.value;
9404 else {
9405 priv->short_retry_limit = (u8) wrqu->retry.value;
9406 priv->long_retry_limit = (u8) wrqu->retry.value;
9409 ipw_send_retry_limit(priv, priv->short_retry_limit,
9410 priv->long_retry_limit);
9411 mutex_unlock(&priv->mutex);
9412 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9413 priv->short_retry_limit, priv->long_retry_limit);
9414 return 0;
9417 static int ipw_wx_get_retry(struct net_device *dev,
9418 struct iw_request_info *info,
9419 union iwreq_data *wrqu, char *extra)
9421 struct ipw_priv *priv = ieee80211_priv(dev);
9423 mutex_lock(&priv->mutex);
9424 wrqu->retry.disabled = 0;
9426 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9427 mutex_unlock(&priv->mutex);
9428 return -EINVAL;
9431 if (wrqu->retry.flags & IW_RETRY_LONG) {
9432 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9433 wrqu->retry.value = priv->long_retry_limit;
9434 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9435 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9436 wrqu->retry.value = priv->short_retry_limit;
9437 } else {
9438 wrqu->retry.flags = IW_RETRY_LIMIT;
9439 wrqu->retry.value = priv->short_retry_limit;
9441 mutex_unlock(&priv->mutex);
9443 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9445 return 0;
9448 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9449 int essid_len)
9451 struct ipw_scan_request_ext scan;
9452 int err = 0, scan_type;
9454 if (!(priv->status & STATUS_INIT) ||
9455 (priv->status & STATUS_EXIT_PENDING))
9456 return 0;
9458 mutex_lock(&priv->mutex);
9460 if (priv->status & STATUS_RF_KILL_MASK) {
9461 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9462 priv->status |= STATUS_SCAN_PENDING;
9463 goto done;
9466 IPW_DEBUG_HC("starting request direct scan!\n");
9468 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9469 /* We should not sleep here; otherwise we will block most
9470 * of the system (for instance, we hold rtnl_lock when we
9471 * get here).
9473 err = -EAGAIN;
9474 goto done;
9476 memset(&scan, 0, sizeof(scan));
9478 if (priv->config & CFG_SPEED_SCAN)
9479 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9480 cpu_to_le16(30);
9481 else
9482 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9483 cpu_to_le16(20);
9485 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9486 cpu_to_le16(20);
9487 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9488 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9490 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9492 err = ipw_send_ssid(priv, essid, essid_len);
9493 if (err) {
9494 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9495 goto done;
9497 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9499 ipw_add_scan_channels(priv, &scan, scan_type);
9501 err = ipw_send_scan_request_ext(priv, &scan);
9502 if (err) {
9503 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9504 goto done;
9507 priv->status |= STATUS_SCANNING;
9509 done:
9510 mutex_unlock(&priv->mutex);
9511 return err;
9514 static int ipw_wx_set_scan(struct net_device *dev,
9515 struct iw_request_info *info,
9516 union iwreq_data *wrqu, char *extra)
9518 struct ipw_priv *priv = ieee80211_priv(dev);
9519 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9521 mutex_lock(&priv->mutex);
9522 priv->user_requested_scan = 1;
9523 mutex_unlock(&priv->mutex);
9525 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9526 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9527 ipw_request_direct_scan(priv, req->essid,
9528 req->essid_len);
9529 return 0;
9531 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9532 queue_work(priv->workqueue,
9533 &priv->request_passive_scan);
9534 return 0;
9538 IPW_DEBUG_WX("Start scan\n");
9540 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9542 return 0;
9545 static int ipw_wx_get_scan(struct net_device *dev,
9546 struct iw_request_info *info,
9547 union iwreq_data *wrqu, char *extra)
9549 struct ipw_priv *priv = ieee80211_priv(dev);
9550 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9553 static int ipw_wx_set_encode(struct net_device *dev,
9554 struct iw_request_info *info,
9555 union iwreq_data *wrqu, char *key)
9557 struct ipw_priv *priv = ieee80211_priv(dev);
9558 int ret;
9559 u32 cap = priv->capability;
9561 mutex_lock(&priv->mutex);
9562 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9564 /* In IBSS mode, we need to notify the firmware to update
9565 * the beacon info after we changed the capability. */
9566 if (cap != priv->capability &&
9567 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9568 priv->status & STATUS_ASSOCIATED)
9569 ipw_disassociate(priv);
9571 mutex_unlock(&priv->mutex);
9572 return ret;
9575 static int ipw_wx_get_encode(struct net_device *dev,
9576 struct iw_request_info *info,
9577 union iwreq_data *wrqu, char *key)
9579 struct ipw_priv *priv = ieee80211_priv(dev);
9580 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9583 static int ipw_wx_set_power(struct net_device *dev,
9584 struct iw_request_info *info,
9585 union iwreq_data *wrqu, char *extra)
9587 struct ipw_priv *priv = ieee80211_priv(dev);
9588 int err;
9589 mutex_lock(&priv->mutex);
9590 if (wrqu->power.disabled) {
9591 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9592 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9593 if (err) {
9594 IPW_DEBUG_WX("failed setting power mode.\n");
9595 mutex_unlock(&priv->mutex);
9596 return err;
9598 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9599 mutex_unlock(&priv->mutex);
9600 return 0;
9603 switch (wrqu->power.flags & IW_POWER_MODE) {
9604 case IW_POWER_ON: /* If not specified */
9605 case IW_POWER_MODE: /* If set all mask */
9606 case IW_POWER_ALL_R: /* If explicitly state all */
9607 break;
9608 default: /* Otherwise we don't support it */
9609 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9610 wrqu->power.flags);
9611 mutex_unlock(&priv->mutex);
9612 return -EOPNOTSUPP;
9615 /* If the user hasn't specified a power management mode yet, default
9616 * to BATTERY */
9617 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9618 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9619 else
9620 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9622 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9623 if (err) {
9624 IPW_DEBUG_WX("failed setting power mode.\n");
9625 mutex_unlock(&priv->mutex);
9626 return err;
9629 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9630 mutex_unlock(&priv->mutex);
9631 return 0;
9634 static int ipw_wx_get_power(struct net_device *dev,
9635 struct iw_request_info *info,
9636 union iwreq_data *wrqu, char *extra)
9638 struct ipw_priv *priv = ieee80211_priv(dev);
9639 mutex_lock(&priv->mutex);
9640 if (!(priv->power_mode & IPW_POWER_ENABLED))
9641 wrqu->power.disabled = 1;
9642 else
9643 wrqu->power.disabled = 0;
9645 mutex_unlock(&priv->mutex);
9646 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9648 return 0;
9651 static int ipw_wx_set_powermode(struct net_device *dev,
9652 struct iw_request_info *info,
9653 union iwreq_data *wrqu, char *extra)
9655 struct ipw_priv *priv = ieee80211_priv(dev);
9656 int mode = *(int *)extra;
9657 int err;
9659 mutex_lock(&priv->mutex);
9660 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9661 mode = IPW_POWER_AC;
9663 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9664 err = ipw_send_power_mode(priv, mode);
9665 if (err) {
9666 IPW_DEBUG_WX("failed setting power mode.\n");
9667 mutex_unlock(&priv->mutex);
9668 return err;
9670 priv->power_mode = IPW_POWER_ENABLED | mode;
9672 mutex_unlock(&priv->mutex);
9673 return 0;
9676 #define MAX_WX_STRING 80
9677 static int ipw_wx_get_powermode(struct net_device *dev,
9678 struct iw_request_info *info,
9679 union iwreq_data *wrqu, char *extra)
9681 struct ipw_priv *priv = ieee80211_priv(dev);
9682 int level = IPW_POWER_LEVEL(priv->power_mode);
9683 char *p = extra;
9685 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9687 switch (level) {
9688 case IPW_POWER_AC:
9689 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9690 break;
9691 case IPW_POWER_BATTERY:
9692 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9693 break;
9694 default:
9695 p += snprintf(p, MAX_WX_STRING - (p - extra),
9696 "(Timeout %dms, Period %dms)",
9697 timeout_duration[level - 1] / 1000,
9698 period_duration[level - 1] / 1000);
9701 if (!(priv->power_mode & IPW_POWER_ENABLED))
9702 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9704 wrqu->data.length = p - extra + 1;
9706 return 0;
9709 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9710 struct iw_request_info *info,
9711 union iwreq_data *wrqu, char *extra)
9713 struct ipw_priv *priv = ieee80211_priv(dev);
9714 int mode = *(int *)extra;
9715 u8 band = 0, modulation = 0;
9717 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9718 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9719 return -EINVAL;
9721 mutex_lock(&priv->mutex);
9722 if (priv->adapter == IPW_2915ABG) {
9723 priv->ieee->abg_true = 1;
9724 if (mode & IEEE_A) {
9725 band |= IEEE80211_52GHZ_BAND;
9726 modulation |= IEEE80211_OFDM_MODULATION;
9727 } else
9728 priv->ieee->abg_true = 0;
9729 } else {
9730 if (mode & IEEE_A) {
9731 IPW_WARNING("Attempt to set 2200BG into "
9732 "802.11a mode\n");
9733 mutex_unlock(&priv->mutex);
9734 return -EINVAL;
9737 priv->ieee->abg_true = 0;
9740 if (mode & IEEE_B) {
9741 band |= IEEE80211_24GHZ_BAND;
9742 modulation |= IEEE80211_CCK_MODULATION;
9743 } else
9744 priv->ieee->abg_true = 0;
9746 if (mode & IEEE_G) {
9747 band |= IEEE80211_24GHZ_BAND;
9748 modulation |= IEEE80211_OFDM_MODULATION;
9749 } else
9750 priv->ieee->abg_true = 0;
9752 priv->ieee->mode = mode;
9753 priv->ieee->freq_band = band;
9754 priv->ieee->modulation = modulation;
9755 init_supported_rates(priv, &priv->rates);
9757 /* Network configuration changed -- force [re]association */
9758 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9759 if (!ipw_disassociate(priv)) {
9760 ipw_send_supported_rates(priv, &priv->rates);
9761 ipw_associate(priv);
9764 /* Update the band LEDs */
9765 ipw_led_band_on(priv);
9767 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9768 mode & IEEE_A ? 'a' : '.',
9769 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9770 mutex_unlock(&priv->mutex);
9771 return 0;
9774 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9775 struct iw_request_info *info,
9776 union iwreq_data *wrqu, char *extra)
9778 struct ipw_priv *priv = ieee80211_priv(dev);
9779 mutex_lock(&priv->mutex);
9780 switch (priv->ieee->mode) {
9781 case IEEE_A:
9782 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9783 break;
9784 case IEEE_B:
9785 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9786 break;
9787 case IEEE_A | IEEE_B:
9788 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9789 break;
9790 case IEEE_G:
9791 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9792 break;
9793 case IEEE_A | IEEE_G:
9794 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9795 break;
9796 case IEEE_B | IEEE_G:
9797 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9798 break;
9799 case IEEE_A | IEEE_B | IEEE_G:
9800 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9801 break;
9802 default:
9803 strncpy(extra, "unknown", MAX_WX_STRING);
9804 break;
9807 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9809 wrqu->data.length = strlen(extra) + 1;
9810 mutex_unlock(&priv->mutex);
9812 return 0;
9815 static int ipw_wx_set_preamble(struct net_device *dev,
9816 struct iw_request_info *info,
9817 union iwreq_data *wrqu, char *extra)
9819 struct ipw_priv *priv = ieee80211_priv(dev);
9820 int mode = *(int *)extra;
9821 mutex_lock(&priv->mutex);
9822 /* Switching from SHORT -> LONG requires a disassociation */
9823 if (mode == 1) {
9824 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9825 priv->config |= CFG_PREAMBLE_LONG;
9827 /* Network configuration changed -- force [re]association */
9828 IPW_DEBUG_ASSOC
9829 ("[re]association triggered due to preamble change.\n");
9830 if (!ipw_disassociate(priv))
9831 ipw_associate(priv);
9833 goto done;
9836 if (mode == 0) {
9837 priv->config &= ~CFG_PREAMBLE_LONG;
9838 goto done;
9840 mutex_unlock(&priv->mutex);
9841 return -EINVAL;
9843 done:
9844 mutex_unlock(&priv->mutex);
9845 return 0;
9848 static int ipw_wx_get_preamble(struct net_device *dev,
9849 struct iw_request_info *info,
9850 union iwreq_data *wrqu, char *extra)
9852 struct ipw_priv *priv = ieee80211_priv(dev);
9853 mutex_lock(&priv->mutex);
9854 if (priv->config & CFG_PREAMBLE_LONG)
9855 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9856 else
9857 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9858 mutex_unlock(&priv->mutex);
9859 return 0;
9862 #ifdef CONFIG_IPW2200_MONITOR
9863 static int ipw_wx_set_monitor(struct net_device *dev,
9864 struct iw_request_info *info,
9865 union iwreq_data *wrqu, char *extra)
9867 struct ipw_priv *priv = ieee80211_priv(dev);
9868 int *parms = (int *)extra;
9869 int enable = (parms[0] > 0);
9870 mutex_lock(&priv->mutex);
9871 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9872 if (enable) {
9873 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9874 #ifdef CONFIG_IPW2200_RADIOTAP
9875 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9876 #else
9877 priv->net_dev->type = ARPHRD_IEEE80211;
9878 #endif
9879 queue_work(priv->workqueue, &priv->adapter_restart);
9882 ipw_set_channel(priv, parms[1]);
9883 } else {
9884 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9885 mutex_unlock(&priv->mutex);
9886 return 0;
9888 priv->net_dev->type = ARPHRD_ETHER;
9889 queue_work(priv->workqueue, &priv->adapter_restart);
9891 mutex_unlock(&priv->mutex);
9892 return 0;
9895 #endif /* CONFIG_IPW2200_MONITOR */
9897 static int ipw_wx_reset(struct net_device *dev,
9898 struct iw_request_info *info,
9899 union iwreq_data *wrqu, char *extra)
9901 struct ipw_priv *priv = ieee80211_priv(dev);
9902 IPW_DEBUG_WX("RESET\n");
9903 queue_work(priv->workqueue, &priv->adapter_restart);
9904 return 0;
9907 static int ipw_wx_sw_reset(struct net_device *dev,
9908 struct iw_request_info *info,
9909 union iwreq_data *wrqu, char *extra)
9911 struct ipw_priv *priv = ieee80211_priv(dev);
9912 union iwreq_data wrqu_sec = {
9913 .encoding = {
9914 .flags = IW_ENCODE_DISABLED,
9917 int ret;
9919 IPW_DEBUG_WX("SW_RESET\n");
9921 mutex_lock(&priv->mutex);
9923 ret = ipw_sw_reset(priv, 2);
9924 if (!ret) {
9925 free_firmware();
9926 ipw_adapter_restart(priv);
9929 /* The SW reset bit might have been toggled on by the 'disable'
9930 * module parameter, so take appropriate action */
9931 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9933 mutex_unlock(&priv->mutex);
9934 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9935 mutex_lock(&priv->mutex);
9937 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9938 /* Configuration likely changed -- force [re]association */
9939 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9940 "reset.\n");
9941 if (!ipw_disassociate(priv))
9942 ipw_associate(priv);
9945 mutex_unlock(&priv->mutex);
9947 return 0;
9950 /* Rebase the WE IOCTLs to zero for the handler array */
9951 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9952 static iw_handler ipw_wx_handlers[] = {
9953 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9954 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9955 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9956 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9957 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9958 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9959 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9960 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9961 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9962 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9963 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9964 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9965 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9966 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9967 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9968 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9969 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9970 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9971 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9972 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9973 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9974 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9975 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9976 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9977 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9978 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9979 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9980 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9981 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9982 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9983 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9984 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9985 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9986 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9987 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9988 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9989 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9990 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9991 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9992 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9993 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9996 enum {
9997 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9998 IPW_PRIV_GET_POWER,
9999 IPW_PRIV_SET_MODE,
10000 IPW_PRIV_GET_MODE,
10001 IPW_PRIV_SET_PREAMBLE,
10002 IPW_PRIV_GET_PREAMBLE,
10003 IPW_PRIV_RESET,
10004 IPW_PRIV_SW_RESET,
10005 #ifdef CONFIG_IPW2200_MONITOR
10006 IPW_PRIV_SET_MONITOR,
10007 #endif
10010 static struct iw_priv_args ipw_priv_args[] = {
10012 .cmd = IPW_PRIV_SET_POWER,
10013 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10014 .name = "set_power"},
10016 .cmd = IPW_PRIV_GET_POWER,
10017 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10018 .name = "get_power"},
10020 .cmd = IPW_PRIV_SET_MODE,
10021 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10022 .name = "set_mode"},
10024 .cmd = IPW_PRIV_GET_MODE,
10025 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10026 .name = "get_mode"},
10028 .cmd = IPW_PRIV_SET_PREAMBLE,
10029 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10030 .name = "set_preamble"},
10032 .cmd = IPW_PRIV_GET_PREAMBLE,
10033 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10034 .name = "get_preamble"},
10036 IPW_PRIV_RESET,
10037 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10039 IPW_PRIV_SW_RESET,
10040 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10041 #ifdef CONFIG_IPW2200_MONITOR
10043 IPW_PRIV_SET_MONITOR,
10044 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10045 #endif /* CONFIG_IPW2200_MONITOR */
10048 static iw_handler ipw_priv_handler[] = {
10049 ipw_wx_set_powermode,
10050 ipw_wx_get_powermode,
10051 ipw_wx_set_wireless_mode,
10052 ipw_wx_get_wireless_mode,
10053 ipw_wx_set_preamble,
10054 ipw_wx_get_preamble,
10055 ipw_wx_reset,
10056 ipw_wx_sw_reset,
10057 #ifdef CONFIG_IPW2200_MONITOR
10058 ipw_wx_set_monitor,
10059 #endif
10062 static struct iw_handler_def ipw_wx_handler_def = {
10063 .standard = ipw_wx_handlers,
10064 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10065 .num_private = ARRAY_SIZE(ipw_priv_handler),
10066 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10067 .private = ipw_priv_handler,
10068 .private_args = ipw_priv_args,
10069 .get_wireless_stats = ipw_get_wireless_stats,
10073 * Get wireless statistics.
10074 * Called by /proc/net/wireless
10075 * Also called by SIOCGIWSTATS
10077 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10079 struct ipw_priv *priv = ieee80211_priv(dev);
10080 struct iw_statistics *wstats;
10082 wstats = &priv->wstats;
10084 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10085 * netdev->get_wireless_stats seems to be called before fw is
10086 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10087 * and associated; if not associcated, the values are all meaningless
10088 * anyway, so set them all to NULL and INVALID */
10089 if (!(priv->status & STATUS_ASSOCIATED)) {
10090 wstats->miss.beacon = 0;
10091 wstats->discard.retries = 0;
10092 wstats->qual.qual = 0;
10093 wstats->qual.level = 0;
10094 wstats->qual.noise = 0;
10095 wstats->qual.updated = 7;
10096 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10097 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10098 return wstats;
10101 wstats->qual.qual = priv->quality;
10102 wstats->qual.level = priv->exp_avg_rssi;
10103 wstats->qual.noise = priv->exp_avg_noise;
10104 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10105 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10107 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10108 wstats->discard.retries = priv->last_tx_failures;
10109 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10111 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10112 goto fail_get_ordinal;
10113 wstats->discard.retries += tx_retry; */
10115 return wstats;
10118 /* net device stuff */
10120 static void init_sys_config(struct ipw_sys_config *sys_config)
10122 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10123 sys_config->bt_coexistence = 0;
10124 sys_config->answer_broadcast_ssid_probe = 0;
10125 sys_config->accept_all_data_frames = 0;
10126 sys_config->accept_non_directed_frames = 1;
10127 sys_config->exclude_unicast_unencrypted = 0;
10128 sys_config->disable_unicast_decryption = 1;
10129 sys_config->exclude_multicast_unencrypted = 0;
10130 sys_config->disable_multicast_decryption = 1;
10131 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10132 antenna = CFG_SYS_ANTENNA_BOTH;
10133 sys_config->antenna_diversity = antenna;
10134 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10135 sys_config->dot11g_auto_detection = 0;
10136 sys_config->enable_cts_to_self = 0;
10137 sys_config->bt_coexist_collision_thr = 0;
10138 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10139 sys_config->silence_threshold = 0x1e;
10142 static int ipw_net_open(struct net_device *dev)
10144 struct ipw_priv *priv = ieee80211_priv(dev);
10145 IPW_DEBUG_INFO("dev->open\n");
10146 /* we should be verifying the device is ready to be opened */
10147 mutex_lock(&priv->mutex);
10148 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10149 (priv->status & STATUS_ASSOCIATED))
10150 netif_start_queue(dev);
10151 mutex_unlock(&priv->mutex);
10152 return 0;
10155 static int ipw_net_stop(struct net_device *dev)
10157 IPW_DEBUG_INFO("dev->close\n");
10158 netif_stop_queue(dev);
10159 return 0;
10163 todo:
10165 modify to send one tfd per fragment instead of using chunking. otherwise
10166 we need to heavily modify the ieee80211_skb_to_txb.
10169 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10170 int pri)
10172 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10173 txb->fragments[0]->data;
10174 int i = 0;
10175 struct tfd_frame *tfd;
10176 #ifdef CONFIG_IPW2200_QOS
10177 int tx_id = ipw_get_tx_queue_number(priv, pri);
10178 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10179 #else
10180 struct clx2_tx_queue *txq = &priv->txq[0];
10181 #endif
10182 struct clx2_queue *q = &txq->q;
10183 u8 id, hdr_len, unicast;
10184 u16 remaining_bytes;
10185 int fc;
10186 DECLARE_MAC_BUF(mac);
10188 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10189 switch (priv->ieee->iw_mode) {
10190 case IW_MODE_ADHOC:
10191 unicast = !is_multicast_ether_addr(hdr->addr1);
10192 id = ipw_find_station(priv, hdr->addr1);
10193 if (id == IPW_INVALID_STATION) {
10194 id = ipw_add_station(priv, hdr->addr1);
10195 if (id == IPW_INVALID_STATION) {
10196 IPW_WARNING("Attempt to send data to "
10197 "invalid cell: %s\n",
10198 print_mac(mac, hdr->addr1));
10199 goto drop;
10202 break;
10204 case IW_MODE_INFRA:
10205 default:
10206 unicast = !is_multicast_ether_addr(hdr->addr3);
10207 id = 0;
10208 break;
10211 tfd = &txq->bd[q->first_empty];
10212 txq->txb[q->first_empty] = txb;
10213 memset(tfd, 0, sizeof(*tfd));
10214 tfd->u.data.station_number = id;
10216 tfd->control_flags.message_type = TX_FRAME_TYPE;
10217 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10219 tfd->u.data.cmd_id = DINO_CMD_TX;
10220 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10221 remaining_bytes = txb->payload_size;
10223 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10224 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10225 else
10226 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10228 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10229 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10231 fc = le16_to_cpu(hdr->frame_ctl);
10232 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10234 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10236 if (likely(unicast))
10237 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10239 if (txb->encrypted && !priv->ieee->host_encrypt) {
10240 switch (priv->ieee->sec.level) {
10241 case SEC_LEVEL_3:
10242 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10243 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10244 /* XXX: ACK flag must be set for CCMP even if it
10245 * is a multicast/broadcast packet, because CCMP
10246 * group communication encrypted by GTK is
10247 * actually done by the AP. */
10248 if (!unicast)
10249 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10251 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10252 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10253 tfd->u.data.key_index = 0;
10254 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10255 break;
10256 case SEC_LEVEL_2:
10257 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10258 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10259 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10260 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10261 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10262 break;
10263 case SEC_LEVEL_1:
10264 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10265 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10266 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10267 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10269 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10270 else
10271 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10272 break;
10273 case SEC_LEVEL_0:
10274 break;
10275 default:
10276 printk(KERN_ERR "Unknow security level %d\n",
10277 priv->ieee->sec.level);
10278 break;
10280 } else
10281 /* No hardware encryption */
10282 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10284 #ifdef CONFIG_IPW2200_QOS
10285 if (fc & IEEE80211_STYPE_QOS_DATA)
10286 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10287 #endif /* CONFIG_IPW2200_QOS */
10289 /* payload */
10290 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10291 txb->nr_frags));
10292 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10293 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10294 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10295 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10296 i, le32_to_cpu(tfd->u.data.num_chunks),
10297 txb->fragments[i]->len - hdr_len);
10298 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10299 i, tfd->u.data.num_chunks,
10300 txb->fragments[i]->len - hdr_len);
10301 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10302 txb->fragments[i]->len - hdr_len);
10304 tfd->u.data.chunk_ptr[i] =
10305 cpu_to_le32(pci_map_single
10306 (priv->pci_dev,
10307 txb->fragments[i]->data + hdr_len,
10308 txb->fragments[i]->len - hdr_len,
10309 PCI_DMA_TODEVICE));
10310 tfd->u.data.chunk_len[i] =
10311 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10314 if (i != txb->nr_frags) {
10315 struct sk_buff *skb;
10316 u16 remaining_bytes = 0;
10317 int j;
10319 for (j = i; j < txb->nr_frags; j++)
10320 remaining_bytes += txb->fragments[j]->len - hdr_len;
10322 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10323 remaining_bytes);
10324 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10325 if (skb != NULL) {
10326 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10327 for (j = i; j < txb->nr_frags; j++) {
10328 int size = txb->fragments[j]->len - hdr_len;
10330 printk(KERN_INFO "Adding frag %d %d...\n",
10331 j, size);
10332 memcpy(skb_put(skb, size),
10333 txb->fragments[j]->data + hdr_len, size);
10335 dev_kfree_skb_any(txb->fragments[i]);
10336 txb->fragments[i] = skb;
10337 tfd->u.data.chunk_ptr[i] =
10338 cpu_to_le32(pci_map_single
10339 (priv->pci_dev, skb->data,
10340 remaining_bytes,
10341 PCI_DMA_TODEVICE));
10343 tfd->u.data.num_chunks =
10344 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10349 /* kick DMA */
10350 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10351 ipw_write32(priv, q->reg_w, q->first_empty);
10353 if (ipw_queue_space(q) < q->high_mark)
10354 netif_stop_queue(priv->net_dev);
10356 return NETDEV_TX_OK;
10358 drop:
10359 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10360 ieee80211_txb_free(txb);
10361 return NETDEV_TX_OK;
10364 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10366 struct ipw_priv *priv = ieee80211_priv(dev);
10367 #ifdef CONFIG_IPW2200_QOS
10368 int tx_id = ipw_get_tx_queue_number(priv, pri);
10369 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10370 #else
10371 struct clx2_tx_queue *txq = &priv->txq[0];
10372 #endif /* CONFIG_IPW2200_QOS */
10374 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10375 return 1;
10377 return 0;
10380 #ifdef CONFIG_IPW2200_PROMISCUOUS
10381 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10382 struct ieee80211_txb *txb)
10384 struct ieee80211_rx_stats dummystats;
10385 struct ieee80211_hdr *hdr;
10386 u8 n;
10387 u16 filter = priv->prom_priv->filter;
10388 int hdr_only = 0;
10390 if (filter & IPW_PROM_NO_TX)
10391 return;
10393 memset(&dummystats, 0, sizeof(dummystats));
10395 /* Filtering of fragment chains is done agains the first fragment */
10396 hdr = (void *)txb->fragments[0]->data;
10397 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10398 if (filter & IPW_PROM_NO_MGMT)
10399 return;
10400 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10401 hdr_only = 1;
10402 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10403 if (filter & IPW_PROM_NO_CTL)
10404 return;
10405 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10406 hdr_only = 1;
10407 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10408 if (filter & IPW_PROM_NO_DATA)
10409 return;
10410 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10411 hdr_only = 1;
10414 for(n=0; n<txb->nr_frags; ++n) {
10415 struct sk_buff *src = txb->fragments[n];
10416 struct sk_buff *dst;
10417 struct ieee80211_radiotap_header *rt_hdr;
10418 int len;
10420 if (hdr_only) {
10421 hdr = (void *)src->data;
10422 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10423 } else
10424 len = src->len;
10426 dst = alloc_skb(
10427 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10428 if (!dst) continue;
10430 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10432 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10433 rt_hdr->it_pad = 0;
10434 rt_hdr->it_present = 0; /* after all, it's just an idea */
10435 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10437 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10438 ieee80211chan2mhz(priv->channel));
10439 if (priv->channel > 14) /* 802.11a */
10440 *(__le16*)skb_put(dst, sizeof(u16)) =
10441 cpu_to_le16(IEEE80211_CHAN_OFDM |
10442 IEEE80211_CHAN_5GHZ);
10443 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10444 *(__le16*)skb_put(dst, sizeof(u16)) =
10445 cpu_to_le16(IEEE80211_CHAN_CCK |
10446 IEEE80211_CHAN_2GHZ);
10447 else /* 802.11g */
10448 *(__le16*)skb_put(dst, sizeof(u16)) =
10449 cpu_to_le16(IEEE80211_CHAN_OFDM |
10450 IEEE80211_CHAN_2GHZ);
10452 rt_hdr->it_len = cpu_to_le16(dst->len);
10454 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10456 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10457 dev_kfree_skb_any(dst);
10460 #endif
10462 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10463 struct net_device *dev, int pri)
10465 struct ipw_priv *priv = ieee80211_priv(dev);
10466 unsigned long flags;
10467 int ret;
10469 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10470 spin_lock_irqsave(&priv->lock, flags);
10472 if (!(priv->status & STATUS_ASSOCIATED)) {
10473 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10474 priv->ieee->stats.tx_carrier_errors++;
10475 netif_stop_queue(dev);
10476 goto fail_unlock;
10479 #ifdef CONFIG_IPW2200_PROMISCUOUS
10480 if (rtap_iface && netif_running(priv->prom_net_dev))
10481 ipw_handle_promiscuous_tx(priv, txb);
10482 #endif
10484 ret = ipw_tx_skb(priv, txb, pri);
10485 if (ret == NETDEV_TX_OK)
10486 __ipw_led_activity_on(priv);
10487 spin_unlock_irqrestore(&priv->lock, flags);
10489 return ret;
10491 fail_unlock:
10492 spin_unlock_irqrestore(&priv->lock, flags);
10493 return 1;
10496 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10498 struct ipw_priv *priv = ieee80211_priv(dev);
10500 priv->ieee->stats.tx_packets = priv->tx_packets;
10501 priv->ieee->stats.rx_packets = priv->rx_packets;
10502 return &priv->ieee->stats;
10505 static void ipw_net_set_multicast_list(struct net_device *dev)
10510 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10512 struct ipw_priv *priv = ieee80211_priv(dev);
10513 struct sockaddr *addr = p;
10514 DECLARE_MAC_BUF(mac);
10516 if (!is_valid_ether_addr(addr->sa_data))
10517 return -EADDRNOTAVAIL;
10518 mutex_lock(&priv->mutex);
10519 priv->config |= CFG_CUSTOM_MAC;
10520 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10521 printk(KERN_INFO "%s: Setting MAC to %s\n",
10522 priv->net_dev->name, print_mac(mac, priv->mac_addr));
10523 queue_work(priv->workqueue, &priv->adapter_restart);
10524 mutex_unlock(&priv->mutex);
10525 return 0;
10528 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10529 struct ethtool_drvinfo *info)
10531 struct ipw_priv *p = ieee80211_priv(dev);
10532 char vers[64];
10533 char date[32];
10534 u32 len;
10536 strcpy(info->driver, DRV_NAME);
10537 strcpy(info->version, DRV_VERSION);
10539 len = sizeof(vers);
10540 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10541 len = sizeof(date);
10542 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10544 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10545 vers, date);
10546 strcpy(info->bus_info, pci_name(p->pci_dev));
10547 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10550 static u32 ipw_ethtool_get_link(struct net_device *dev)
10552 struct ipw_priv *priv = ieee80211_priv(dev);
10553 return (priv->status & STATUS_ASSOCIATED) != 0;
10556 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10558 return IPW_EEPROM_IMAGE_SIZE;
10561 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10562 struct ethtool_eeprom *eeprom, u8 * bytes)
10564 struct ipw_priv *p = ieee80211_priv(dev);
10566 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10567 return -EINVAL;
10568 mutex_lock(&p->mutex);
10569 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10570 mutex_unlock(&p->mutex);
10571 return 0;
10574 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10575 struct ethtool_eeprom *eeprom, u8 * bytes)
10577 struct ipw_priv *p = ieee80211_priv(dev);
10578 int i;
10580 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10581 return -EINVAL;
10582 mutex_lock(&p->mutex);
10583 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10584 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10585 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10586 mutex_unlock(&p->mutex);
10587 return 0;
10590 static const struct ethtool_ops ipw_ethtool_ops = {
10591 .get_link = ipw_ethtool_get_link,
10592 .get_drvinfo = ipw_ethtool_get_drvinfo,
10593 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10594 .get_eeprom = ipw_ethtool_get_eeprom,
10595 .set_eeprom = ipw_ethtool_set_eeprom,
10598 static irqreturn_t ipw_isr(int irq, void *data)
10600 struct ipw_priv *priv = data;
10601 u32 inta, inta_mask;
10603 if (!priv)
10604 return IRQ_NONE;
10606 spin_lock(&priv->irq_lock);
10608 if (!(priv->status & STATUS_INT_ENABLED)) {
10609 /* IRQ is disabled */
10610 goto none;
10613 inta = ipw_read32(priv, IPW_INTA_RW);
10614 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10616 if (inta == 0xFFFFFFFF) {
10617 /* Hardware disappeared */
10618 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10619 goto none;
10622 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10623 /* Shared interrupt */
10624 goto none;
10627 /* tell the device to stop sending interrupts */
10628 __ipw_disable_interrupts(priv);
10630 /* ack current interrupts */
10631 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10632 ipw_write32(priv, IPW_INTA_RW, inta);
10634 /* Cache INTA value for our tasklet */
10635 priv->isr_inta = inta;
10637 tasklet_schedule(&priv->irq_tasklet);
10639 spin_unlock(&priv->irq_lock);
10641 return IRQ_HANDLED;
10642 none:
10643 spin_unlock(&priv->irq_lock);
10644 return IRQ_NONE;
10647 static void ipw_rf_kill(void *adapter)
10649 struct ipw_priv *priv = adapter;
10650 unsigned long flags;
10652 spin_lock_irqsave(&priv->lock, flags);
10654 if (rf_kill_active(priv)) {
10655 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10656 if (priv->workqueue)
10657 queue_delayed_work(priv->workqueue,
10658 &priv->rf_kill, 2 * HZ);
10659 goto exit_unlock;
10662 /* RF Kill is now disabled, so bring the device back up */
10664 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10665 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10666 "device\n");
10668 /* we can not do an adapter restart while inside an irq lock */
10669 queue_work(priv->workqueue, &priv->adapter_restart);
10670 } else
10671 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10672 "enabled\n");
10674 exit_unlock:
10675 spin_unlock_irqrestore(&priv->lock, flags);
10678 static void ipw_bg_rf_kill(struct work_struct *work)
10680 struct ipw_priv *priv =
10681 container_of(work, struct ipw_priv, rf_kill.work);
10682 mutex_lock(&priv->mutex);
10683 ipw_rf_kill(priv);
10684 mutex_unlock(&priv->mutex);
10687 static void ipw_link_up(struct ipw_priv *priv)
10689 priv->last_seq_num = -1;
10690 priv->last_frag_num = -1;
10691 priv->last_packet_time = 0;
10693 netif_carrier_on(priv->net_dev);
10694 if (netif_queue_stopped(priv->net_dev)) {
10695 IPW_DEBUG_NOTIF("waking queue\n");
10696 netif_wake_queue(priv->net_dev);
10697 } else {
10698 IPW_DEBUG_NOTIF("starting queue\n");
10699 netif_start_queue(priv->net_dev);
10702 cancel_delayed_work(&priv->request_scan);
10703 cancel_delayed_work(&priv->scan_event);
10704 ipw_reset_stats(priv);
10705 /* Ensure the rate is updated immediately */
10706 priv->last_rate = ipw_get_current_rate(priv);
10707 ipw_gather_stats(priv);
10708 ipw_led_link_up(priv);
10709 notify_wx_assoc_event(priv);
10711 if (priv->config & CFG_BACKGROUND_SCAN)
10712 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10715 static void ipw_bg_link_up(struct work_struct *work)
10717 struct ipw_priv *priv =
10718 container_of(work, struct ipw_priv, link_up);
10719 mutex_lock(&priv->mutex);
10720 ipw_link_up(priv);
10721 mutex_unlock(&priv->mutex);
10724 static void ipw_link_down(struct ipw_priv *priv)
10726 ipw_led_link_down(priv);
10727 netif_carrier_off(priv->net_dev);
10728 netif_stop_queue(priv->net_dev);
10729 notify_wx_assoc_event(priv);
10731 /* Cancel any queued work ... */
10732 cancel_delayed_work(&priv->request_scan);
10733 cancel_delayed_work(&priv->adhoc_check);
10734 cancel_delayed_work(&priv->gather_stats);
10736 ipw_reset_stats(priv);
10738 if (!(priv->status & STATUS_EXIT_PENDING)) {
10739 /* Queue up another scan... */
10740 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10741 } else
10742 cancel_delayed_work(&priv->scan_event);
10745 static void ipw_bg_link_down(struct work_struct *work)
10747 struct ipw_priv *priv =
10748 container_of(work, struct ipw_priv, link_down);
10749 mutex_lock(&priv->mutex);
10750 ipw_link_down(priv);
10751 mutex_unlock(&priv->mutex);
10754 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10756 int ret = 0;
10758 priv->workqueue = create_workqueue(DRV_NAME);
10759 init_waitqueue_head(&priv->wait_command_queue);
10760 init_waitqueue_head(&priv->wait_state);
10762 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10763 INIT_WORK(&priv->associate, ipw_bg_associate);
10764 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10765 INIT_WORK(&priv->system_config, ipw_system_config);
10766 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10767 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10768 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10769 INIT_WORK(&priv->up, ipw_bg_up);
10770 INIT_WORK(&priv->down, ipw_bg_down);
10771 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10772 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10773 INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10774 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10775 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10776 INIT_WORK(&priv->roam, ipw_bg_roam);
10777 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10778 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10779 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10780 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10781 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10782 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10783 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10785 #ifdef CONFIG_IPW2200_QOS
10786 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10787 #endif /* CONFIG_IPW2200_QOS */
10789 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10790 ipw_irq_tasklet, (unsigned long)priv);
10792 return ret;
10795 static void shim__set_security(struct net_device *dev,
10796 struct ieee80211_security *sec)
10798 struct ipw_priv *priv = ieee80211_priv(dev);
10799 int i;
10800 for (i = 0; i < 4; i++) {
10801 if (sec->flags & (1 << i)) {
10802 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10803 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10804 if (sec->key_sizes[i] == 0)
10805 priv->ieee->sec.flags &= ~(1 << i);
10806 else {
10807 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10808 sec->key_sizes[i]);
10809 priv->ieee->sec.flags |= (1 << i);
10811 priv->status |= STATUS_SECURITY_UPDATED;
10812 } else if (sec->level != SEC_LEVEL_1)
10813 priv->ieee->sec.flags &= ~(1 << i);
10816 if (sec->flags & SEC_ACTIVE_KEY) {
10817 if (sec->active_key <= 3) {
10818 priv->ieee->sec.active_key = sec->active_key;
10819 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10820 } else
10821 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10822 priv->status |= STATUS_SECURITY_UPDATED;
10823 } else
10824 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10826 if ((sec->flags & SEC_AUTH_MODE) &&
10827 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10828 priv->ieee->sec.auth_mode = sec->auth_mode;
10829 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10830 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10831 priv->capability |= CAP_SHARED_KEY;
10832 else
10833 priv->capability &= ~CAP_SHARED_KEY;
10834 priv->status |= STATUS_SECURITY_UPDATED;
10837 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10838 priv->ieee->sec.flags |= SEC_ENABLED;
10839 priv->ieee->sec.enabled = sec->enabled;
10840 priv->status |= STATUS_SECURITY_UPDATED;
10841 if (sec->enabled)
10842 priv->capability |= CAP_PRIVACY_ON;
10843 else
10844 priv->capability &= ~CAP_PRIVACY_ON;
10847 if (sec->flags & SEC_ENCRYPT)
10848 priv->ieee->sec.encrypt = sec->encrypt;
10850 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10851 priv->ieee->sec.level = sec->level;
10852 priv->ieee->sec.flags |= SEC_LEVEL;
10853 priv->status |= STATUS_SECURITY_UPDATED;
10856 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10857 ipw_set_hwcrypto_keys(priv);
10859 /* To match current functionality of ipw2100 (which works well w/
10860 * various supplicants, we don't force a disassociate if the
10861 * privacy capability changes ... */
10862 #if 0
10863 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10864 (((priv->assoc_request.capability &
10865 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10866 (!(priv->assoc_request.capability &
10867 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10868 IPW_DEBUG_ASSOC("Disassociating due to capability "
10869 "change.\n");
10870 ipw_disassociate(priv);
10872 #endif
10875 static int init_supported_rates(struct ipw_priv *priv,
10876 struct ipw_supported_rates *rates)
10878 /* TODO: Mask out rates based on priv->rates_mask */
10880 memset(rates, 0, sizeof(*rates));
10881 /* configure supported rates */
10882 switch (priv->ieee->freq_band) {
10883 case IEEE80211_52GHZ_BAND:
10884 rates->ieee_mode = IPW_A_MODE;
10885 rates->purpose = IPW_RATE_CAPABILITIES;
10886 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10887 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10888 break;
10890 default: /* Mixed or 2.4Ghz */
10891 rates->ieee_mode = IPW_G_MODE;
10892 rates->purpose = IPW_RATE_CAPABILITIES;
10893 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10894 IEEE80211_CCK_DEFAULT_RATES_MASK);
10895 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10896 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10897 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10899 break;
10902 return 0;
10905 static int ipw_config(struct ipw_priv *priv)
10907 /* This is only called from ipw_up, which resets/reloads the firmware
10908 so, we don't need to first disable the card before we configure
10909 it */
10910 if (ipw_set_tx_power(priv))
10911 goto error;
10913 /* initialize adapter address */
10914 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10915 goto error;
10917 /* set basic system config settings */
10918 init_sys_config(&priv->sys_config);
10920 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10921 * Does not support BT priority yet (don't abort or defer our Tx) */
10922 if (bt_coexist) {
10923 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10925 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10926 priv->sys_config.bt_coexistence
10927 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10928 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10929 priv->sys_config.bt_coexistence
10930 |= CFG_BT_COEXISTENCE_OOB;
10933 #ifdef CONFIG_IPW2200_PROMISCUOUS
10934 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10935 priv->sys_config.accept_all_data_frames = 1;
10936 priv->sys_config.accept_non_directed_frames = 1;
10937 priv->sys_config.accept_all_mgmt_bcpr = 1;
10938 priv->sys_config.accept_all_mgmt_frames = 1;
10940 #endif
10942 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10943 priv->sys_config.answer_broadcast_ssid_probe = 1;
10944 else
10945 priv->sys_config.answer_broadcast_ssid_probe = 0;
10947 if (ipw_send_system_config(priv))
10948 goto error;
10950 init_supported_rates(priv, &priv->rates);
10951 if (ipw_send_supported_rates(priv, &priv->rates))
10952 goto error;
10954 /* Set request-to-send threshold */
10955 if (priv->rts_threshold) {
10956 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10957 goto error;
10959 #ifdef CONFIG_IPW2200_QOS
10960 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10961 ipw_qos_activate(priv, NULL);
10962 #endif /* CONFIG_IPW2200_QOS */
10964 if (ipw_set_random_seed(priv))
10965 goto error;
10967 /* final state transition to the RUN state */
10968 if (ipw_send_host_complete(priv))
10969 goto error;
10971 priv->status |= STATUS_INIT;
10973 ipw_led_init(priv);
10974 ipw_led_radio_on(priv);
10975 priv->notif_missed_beacons = 0;
10977 /* Set hardware WEP key if it is configured. */
10978 if ((priv->capability & CAP_PRIVACY_ON) &&
10979 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10980 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10981 ipw_set_hwcrypto_keys(priv);
10983 return 0;
10985 error:
10986 return -EIO;
10990 * NOTE:
10992 * These tables have been tested in conjunction with the
10993 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10995 * Altering this values, using it on other hardware, or in geographies
10996 * not intended for resale of the above mentioned Intel adapters has
10997 * not been tested.
10999 * Remember to update the table in README.ipw2200 when changing this
11000 * table.
11003 static const struct ieee80211_geo ipw_geos[] = {
11004 { /* Restricted */
11005 "---",
11006 .bg_channels = 11,
11007 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11008 {2427, 4}, {2432, 5}, {2437, 6},
11009 {2442, 7}, {2447, 8}, {2452, 9},
11010 {2457, 10}, {2462, 11}},
11013 { /* Custom US/Canada */
11014 "ZZF",
11015 .bg_channels = 11,
11016 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11017 {2427, 4}, {2432, 5}, {2437, 6},
11018 {2442, 7}, {2447, 8}, {2452, 9},
11019 {2457, 10}, {2462, 11}},
11020 .a_channels = 8,
11021 .a = {{5180, 36},
11022 {5200, 40},
11023 {5220, 44},
11024 {5240, 48},
11025 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11026 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11027 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11028 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11031 { /* Rest of World */
11032 "ZZD",
11033 .bg_channels = 13,
11034 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11035 {2427, 4}, {2432, 5}, {2437, 6},
11036 {2442, 7}, {2447, 8}, {2452, 9},
11037 {2457, 10}, {2462, 11}, {2467, 12},
11038 {2472, 13}},
11041 { /* Custom USA & Europe & High */
11042 "ZZA",
11043 .bg_channels = 11,
11044 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11045 {2427, 4}, {2432, 5}, {2437, 6},
11046 {2442, 7}, {2447, 8}, {2452, 9},
11047 {2457, 10}, {2462, 11}},
11048 .a_channels = 13,
11049 .a = {{5180, 36},
11050 {5200, 40},
11051 {5220, 44},
11052 {5240, 48},
11053 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11054 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11055 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11056 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11057 {5745, 149},
11058 {5765, 153},
11059 {5785, 157},
11060 {5805, 161},
11061 {5825, 165}},
11064 { /* Custom NA & Europe */
11065 "ZZB",
11066 .bg_channels = 11,
11067 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11068 {2427, 4}, {2432, 5}, {2437, 6},
11069 {2442, 7}, {2447, 8}, {2452, 9},
11070 {2457, 10}, {2462, 11}},
11071 .a_channels = 13,
11072 .a = {{5180, 36},
11073 {5200, 40},
11074 {5220, 44},
11075 {5240, 48},
11076 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11077 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11078 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11079 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11080 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11081 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11082 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11083 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11084 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11087 { /* Custom Japan */
11088 "ZZC",
11089 .bg_channels = 11,
11090 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11091 {2427, 4}, {2432, 5}, {2437, 6},
11092 {2442, 7}, {2447, 8}, {2452, 9},
11093 {2457, 10}, {2462, 11}},
11094 .a_channels = 4,
11095 .a = {{5170, 34}, {5190, 38},
11096 {5210, 42}, {5230, 46}},
11099 { /* Custom */
11100 "ZZM",
11101 .bg_channels = 11,
11102 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11103 {2427, 4}, {2432, 5}, {2437, 6},
11104 {2442, 7}, {2447, 8}, {2452, 9},
11105 {2457, 10}, {2462, 11}},
11108 { /* Europe */
11109 "ZZE",
11110 .bg_channels = 13,
11111 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11112 {2427, 4}, {2432, 5}, {2437, 6},
11113 {2442, 7}, {2447, 8}, {2452, 9},
11114 {2457, 10}, {2462, 11}, {2467, 12},
11115 {2472, 13}},
11116 .a_channels = 19,
11117 .a = {{5180, 36},
11118 {5200, 40},
11119 {5220, 44},
11120 {5240, 48},
11121 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11122 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11123 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11124 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11125 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11126 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11127 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11128 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11129 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11130 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11131 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11132 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11133 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11134 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11135 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11138 { /* Custom Japan */
11139 "ZZJ",
11140 .bg_channels = 14,
11141 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11142 {2427, 4}, {2432, 5}, {2437, 6},
11143 {2442, 7}, {2447, 8}, {2452, 9},
11144 {2457, 10}, {2462, 11}, {2467, 12},
11145 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11146 .a_channels = 4,
11147 .a = {{5170, 34}, {5190, 38},
11148 {5210, 42}, {5230, 46}},
11151 { /* Rest of World */
11152 "ZZR",
11153 .bg_channels = 14,
11154 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11155 {2427, 4}, {2432, 5}, {2437, 6},
11156 {2442, 7}, {2447, 8}, {2452, 9},
11157 {2457, 10}, {2462, 11}, {2467, 12},
11158 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11159 IEEE80211_CH_PASSIVE_ONLY}},
11162 { /* High Band */
11163 "ZZH",
11164 .bg_channels = 13,
11165 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11166 {2427, 4}, {2432, 5}, {2437, 6},
11167 {2442, 7}, {2447, 8}, {2452, 9},
11168 {2457, 10}, {2462, 11},
11169 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11170 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11171 .a_channels = 4,
11172 .a = {{5745, 149}, {5765, 153},
11173 {5785, 157}, {5805, 161}},
11176 { /* Custom Europe */
11177 "ZZG",
11178 .bg_channels = 13,
11179 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11180 {2427, 4}, {2432, 5}, {2437, 6},
11181 {2442, 7}, {2447, 8}, {2452, 9},
11182 {2457, 10}, {2462, 11},
11183 {2467, 12}, {2472, 13}},
11184 .a_channels = 4,
11185 .a = {{5180, 36}, {5200, 40},
11186 {5220, 44}, {5240, 48}},
11189 { /* Europe */
11190 "ZZK",
11191 .bg_channels = 13,
11192 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11193 {2427, 4}, {2432, 5}, {2437, 6},
11194 {2442, 7}, {2447, 8}, {2452, 9},
11195 {2457, 10}, {2462, 11},
11196 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11197 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11198 .a_channels = 24,
11199 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11200 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11201 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11202 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11203 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11204 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11205 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11206 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11207 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11208 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11209 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11210 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11211 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11212 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11213 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11214 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11215 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11216 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11217 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11218 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11219 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11220 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11221 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11222 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11225 { /* Europe */
11226 "ZZL",
11227 .bg_channels = 11,
11228 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11229 {2427, 4}, {2432, 5}, {2437, 6},
11230 {2442, 7}, {2447, 8}, {2452, 9},
11231 {2457, 10}, {2462, 11}},
11232 .a_channels = 13,
11233 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11234 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11235 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11236 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11237 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11238 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11239 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11240 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11241 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11242 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11243 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11244 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11245 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11249 #define MAX_HW_RESTARTS 5
11250 static int ipw_up(struct ipw_priv *priv)
11252 int rc, i, j;
11254 if (priv->status & STATUS_EXIT_PENDING)
11255 return -EIO;
11257 if (cmdlog && !priv->cmdlog) {
11258 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11259 GFP_KERNEL);
11260 if (priv->cmdlog == NULL) {
11261 IPW_ERROR("Error allocating %d command log entries.\n",
11262 cmdlog);
11263 return -ENOMEM;
11264 } else {
11265 priv->cmdlog_len = cmdlog;
11269 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11270 /* Load the microcode, firmware, and eeprom.
11271 * Also start the clocks. */
11272 rc = ipw_load(priv);
11273 if (rc) {
11274 IPW_ERROR("Unable to load firmware: %d\n", rc);
11275 return rc;
11278 ipw_init_ordinals(priv);
11279 if (!(priv->config & CFG_CUSTOM_MAC))
11280 eeprom_parse_mac(priv, priv->mac_addr);
11281 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11283 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11284 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11285 ipw_geos[j].name, 3))
11286 break;
11288 if (j == ARRAY_SIZE(ipw_geos)) {
11289 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11290 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11291 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11292 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11293 j = 0;
11295 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11296 IPW_WARNING("Could not set geography.");
11297 return 0;
11300 if (priv->status & STATUS_RF_KILL_SW) {
11301 IPW_WARNING("Radio disabled by module parameter.\n");
11302 return 0;
11303 } else if (rf_kill_active(priv)) {
11304 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11305 "Kill switch must be turned off for "
11306 "wireless networking to work.\n");
11307 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11308 2 * HZ);
11309 return 0;
11312 rc = ipw_config(priv);
11313 if (!rc) {
11314 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11316 /* If configure to try and auto-associate, kick
11317 * off a scan. */
11318 queue_delayed_work(priv->workqueue,
11319 &priv->request_scan, 0);
11321 return 0;
11324 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11325 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11326 i, MAX_HW_RESTARTS);
11328 /* We had an error bringing up the hardware, so take it
11329 * all the way back down so we can try again */
11330 ipw_down(priv);
11333 /* tried to restart and config the device for as long as our
11334 * patience could withstand */
11335 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11337 return -EIO;
11340 static void ipw_bg_up(struct work_struct *work)
11342 struct ipw_priv *priv =
11343 container_of(work, struct ipw_priv, up);
11344 mutex_lock(&priv->mutex);
11345 ipw_up(priv);
11346 mutex_unlock(&priv->mutex);
11349 static void ipw_deinit(struct ipw_priv *priv)
11351 int i;
11353 if (priv->status & STATUS_SCANNING) {
11354 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11355 ipw_abort_scan(priv);
11358 if (priv->status & STATUS_ASSOCIATED) {
11359 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11360 ipw_disassociate(priv);
11363 ipw_led_shutdown(priv);
11365 /* Wait up to 1s for status to change to not scanning and not
11366 * associated (disassociation can take a while for a ful 802.11
11367 * exchange */
11368 for (i = 1000; i && (priv->status &
11369 (STATUS_DISASSOCIATING |
11370 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11371 udelay(10);
11373 if (priv->status & (STATUS_DISASSOCIATING |
11374 STATUS_ASSOCIATED | STATUS_SCANNING))
11375 IPW_DEBUG_INFO("Still associated or scanning...\n");
11376 else
11377 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11379 /* Attempt to disable the card */
11380 ipw_send_card_disable(priv, 0);
11382 priv->status &= ~STATUS_INIT;
11385 static void ipw_down(struct ipw_priv *priv)
11387 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11389 priv->status |= STATUS_EXIT_PENDING;
11391 if (ipw_is_init(priv))
11392 ipw_deinit(priv);
11394 /* Wipe out the EXIT_PENDING status bit if we are not actually
11395 * exiting the module */
11396 if (!exit_pending)
11397 priv->status &= ~STATUS_EXIT_PENDING;
11399 /* tell the device to stop sending interrupts */
11400 ipw_disable_interrupts(priv);
11402 /* Clear all bits but the RF Kill */
11403 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11404 netif_carrier_off(priv->net_dev);
11405 netif_stop_queue(priv->net_dev);
11407 ipw_stop_nic(priv);
11409 ipw_led_radio_off(priv);
11412 static void ipw_bg_down(struct work_struct *work)
11414 struct ipw_priv *priv =
11415 container_of(work, struct ipw_priv, down);
11416 mutex_lock(&priv->mutex);
11417 ipw_down(priv);
11418 mutex_unlock(&priv->mutex);
11421 /* Called by register_netdev() */
11422 static int ipw_net_init(struct net_device *dev)
11424 struct ipw_priv *priv = ieee80211_priv(dev);
11425 mutex_lock(&priv->mutex);
11427 if (ipw_up(priv)) {
11428 mutex_unlock(&priv->mutex);
11429 return -EIO;
11432 mutex_unlock(&priv->mutex);
11433 return 0;
11436 /* PCI driver stuff */
11437 static struct pci_device_id card_ids[] = {
11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11439 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11440 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11441 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11442 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11443 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11444 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11445 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11446 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11447 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11448 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11449 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11450 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11451 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11452 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11453 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11454 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11455 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11456 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11457 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11458 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11459 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11461 /* required last entry */
11462 {0,}
11465 MODULE_DEVICE_TABLE(pci, card_ids);
11467 static struct attribute *ipw_sysfs_entries[] = {
11468 &dev_attr_rf_kill.attr,
11469 &dev_attr_direct_dword.attr,
11470 &dev_attr_indirect_byte.attr,
11471 &dev_attr_indirect_dword.attr,
11472 &dev_attr_mem_gpio_reg.attr,
11473 &dev_attr_command_event_reg.attr,
11474 &dev_attr_nic_type.attr,
11475 &dev_attr_status.attr,
11476 &dev_attr_cfg.attr,
11477 &dev_attr_error.attr,
11478 &dev_attr_event_log.attr,
11479 &dev_attr_cmd_log.attr,
11480 &dev_attr_eeprom_delay.attr,
11481 &dev_attr_ucode_version.attr,
11482 &dev_attr_rtc.attr,
11483 &dev_attr_scan_age.attr,
11484 &dev_attr_led.attr,
11485 &dev_attr_speed_scan.attr,
11486 &dev_attr_net_stats.attr,
11487 &dev_attr_channels.attr,
11488 #ifdef CONFIG_IPW2200_PROMISCUOUS
11489 &dev_attr_rtap_iface.attr,
11490 &dev_attr_rtap_filter.attr,
11491 #endif
11492 NULL
11495 static struct attribute_group ipw_attribute_group = {
11496 .name = NULL, /* put in device directory */
11497 .attrs = ipw_sysfs_entries,
11500 #ifdef CONFIG_IPW2200_PROMISCUOUS
11501 static int ipw_prom_open(struct net_device *dev)
11503 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11504 struct ipw_priv *priv = prom_priv->priv;
11506 IPW_DEBUG_INFO("prom dev->open\n");
11507 netif_carrier_off(dev);
11508 netif_stop_queue(dev);
11510 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11511 priv->sys_config.accept_all_data_frames = 1;
11512 priv->sys_config.accept_non_directed_frames = 1;
11513 priv->sys_config.accept_all_mgmt_bcpr = 1;
11514 priv->sys_config.accept_all_mgmt_frames = 1;
11516 ipw_send_system_config(priv);
11519 return 0;
11522 static int ipw_prom_stop(struct net_device *dev)
11524 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11525 struct ipw_priv *priv = prom_priv->priv;
11527 IPW_DEBUG_INFO("prom dev->stop\n");
11529 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11530 priv->sys_config.accept_all_data_frames = 0;
11531 priv->sys_config.accept_non_directed_frames = 0;
11532 priv->sys_config.accept_all_mgmt_bcpr = 0;
11533 priv->sys_config.accept_all_mgmt_frames = 0;
11535 ipw_send_system_config(priv);
11538 return 0;
11541 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11543 IPW_DEBUG_INFO("prom dev->xmit\n");
11544 netif_stop_queue(dev);
11545 return -EOPNOTSUPP;
11548 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11550 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11551 return &prom_priv->ieee->stats;
11554 static int ipw_prom_alloc(struct ipw_priv *priv)
11556 int rc = 0;
11558 if (priv->prom_net_dev)
11559 return -EPERM;
11561 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11562 if (priv->prom_net_dev == NULL)
11563 return -ENOMEM;
11565 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11566 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11567 priv->prom_priv->priv = priv;
11569 strcpy(priv->prom_net_dev->name, "rtap%d");
11571 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11572 priv->prom_net_dev->open = ipw_prom_open;
11573 priv->prom_net_dev->stop = ipw_prom_stop;
11574 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11575 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11577 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11579 rc = register_netdev(priv->prom_net_dev);
11580 if (rc) {
11581 free_ieee80211(priv->prom_net_dev);
11582 priv->prom_net_dev = NULL;
11583 return rc;
11586 return 0;
11589 static void ipw_prom_free(struct ipw_priv *priv)
11591 if (!priv->prom_net_dev)
11592 return;
11594 unregister_netdev(priv->prom_net_dev);
11595 free_ieee80211(priv->prom_net_dev);
11597 priv->prom_net_dev = NULL;
11600 #endif
11603 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11604 const struct pci_device_id *ent)
11606 int err = 0;
11607 struct net_device *net_dev;
11608 void __iomem *base;
11609 u32 length, val;
11610 struct ipw_priv *priv;
11611 int i;
11613 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11614 if (net_dev == NULL) {
11615 err = -ENOMEM;
11616 goto out;
11619 priv = ieee80211_priv(net_dev);
11620 priv->ieee = netdev_priv(net_dev);
11622 priv->net_dev = net_dev;
11623 priv->pci_dev = pdev;
11624 ipw_debug_level = debug;
11625 spin_lock_init(&priv->irq_lock);
11626 spin_lock_init(&priv->lock);
11627 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11628 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11630 mutex_init(&priv->mutex);
11631 if (pci_enable_device(pdev)) {
11632 err = -ENODEV;
11633 goto out_free_ieee80211;
11636 pci_set_master(pdev);
11638 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11639 if (!err)
11640 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11641 if (err) {
11642 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11643 goto out_pci_disable_device;
11646 pci_set_drvdata(pdev, priv);
11648 err = pci_request_regions(pdev, DRV_NAME);
11649 if (err)
11650 goto out_pci_disable_device;
11652 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11653 * PCI Tx retries from interfering with C3 CPU state */
11654 pci_read_config_dword(pdev, 0x40, &val);
11655 if ((val & 0x0000ff00) != 0)
11656 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11658 length = pci_resource_len(pdev, 0);
11659 priv->hw_len = length;
11661 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11662 if (!base) {
11663 err = -ENODEV;
11664 goto out_pci_release_regions;
11667 priv->hw_base = base;
11668 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11669 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11671 err = ipw_setup_deferred_work(priv);
11672 if (err) {
11673 IPW_ERROR("Unable to setup deferred work\n");
11674 goto out_iounmap;
11677 ipw_sw_reset(priv, 1);
11679 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11680 if (err) {
11681 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11682 goto out_destroy_workqueue;
11685 SET_NETDEV_DEV(net_dev, &pdev->dev);
11687 mutex_lock(&priv->mutex);
11689 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11690 priv->ieee->set_security = shim__set_security;
11691 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11693 #ifdef CONFIG_IPW2200_QOS
11694 priv->ieee->is_qos_active = ipw_is_qos_active;
11695 priv->ieee->handle_probe_response = ipw_handle_beacon;
11696 priv->ieee->handle_beacon = ipw_handle_probe_response;
11697 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11698 #endif /* CONFIG_IPW2200_QOS */
11700 priv->ieee->perfect_rssi = -20;
11701 priv->ieee->worst_rssi = -85;
11703 net_dev->open = ipw_net_open;
11704 net_dev->stop = ipw_net_stop;
11705 net_dev->init = ipw_net_init;
11706 net_dev->get_stats = ipw_net_get_stats;
11707 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11708 net_dev->set_mac_address = ipw_net_set_mac_address;
11709 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11710 net_dev->wireless_data = &priv->wireless_data;
11711 net_dev->wireless_handlers = &ipw_wx_handler_def;
11712 net_dev->ethtool_ops = &ipw_ethtool_ops;
11713 net_dev->irq = pdev->irq;
11714 net_dev->base_addr = (unsigned long)priv->hw_base;
11715 net_dev->mem_start = pci_resource_start(pdev, 0);
11716 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11718 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11719 if (err) {
11720 IPW_ERROR("failed to create sysfs device attributes\n");
11721 mutex_unlock(&priv->mutex);
11722 goto out_release_irq;
11725 mutex_unlock(&priv->mutex);
11726 err = register_netdev(net_dev);
11727 if (err) {
11728 IPW_ERROR("failed to register network device\n");
11729 goto out_remove_sysfs;
11732 #ifdef CONFIG_IPW2200_PROMISCUOUS
11733 if (rtap_iface) {
11734 err = ipw_prom_alloc(priv);
11735 if (err) {
11736 IPW_ERROR("Failed to register promiscuous network "
11737 "device (error %d).\n", err);
11738 unregister_netdev(priv->net_dev);
11739 goto out_remove_sysfs;
11742 #endif
11744 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11745 "channels, %d 802.11a channels)\n",
11746 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11747 priv->ieee->geo.a_channels);
11749 return 0;
11751 out_remove_sysfs:
11752 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11753 out_release_irq:
11754 free_irq(pdev->irq, priv);
11755 out_destroy_workqueue:
11756 destroy_workqueue(priv->workqueue);
11757 priv->workqueue = NULL;
11758 out_iounmap:
11759 iounmap(priv->hw_base);
11760 out_pci_release_regions:
11761 pci_release_regions(pdev);
11762 out_pci_disable_device:
11763 pci_disable_device(pdev);
11764 pci_set_drvdata(pdev, NULL);
11765 out_free_ieee80211:
11766 free_ieee80211(priv->net_dev);
11767 out:
11768 return err;
11771 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11773 struct ipw_priv *priv = pci_get_drvdata(pdev);
11774 struct list_head *p, *q;
11775 int i;
11777 if (!priv)
11778 return;
11780 mutex_lock(&priv->mutex);
11782 priv->status |= STATUS_EXIT_PENDING;
11783 ipw_down(priv);
11784 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11786 mutex_unlock(&priv->mutex);
11788 unregister_netdev(priv->net_dev);
11790 if (priv->rxq) {
11791 ipw_rx_queue_free(priv, priv->rxq);
11792 priv->rxq = NULL;
11794 ipw_tx_queue_free(priv);
11796 if (priv->cmdlog) {
11797 kfree(priv->cmdlog);
11798 priv->cmdlog = NULL;
11800 /* ipw_down will ensure that there is no more pending work
11801 * in the workqueue's, so we can safely remove them now. */
11802 cancel_delayed_work(&priv->adhoc_check);
11803 cancel_delayed_work(&priv->gather_stats);
11804 cancel_delayed_work(&priv->request_scan);
11805 cancel_delayed_work(&priv->scan_event);
11806 cancel_delayed_work(&priv->rf_kill);
11807 cancel_delayed_work(&priv->scan_check);
11808 destroy_workqueue(priv->workqueue);
11809 priv->workqueue = NULL;
11811 /* Free MAC hash list for ADHOC */
11812 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11813 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11814 list_del(p);
11815 kfree(list_entry(p, struct ipw_ibss_seq, list));
11819 kfree(priv->error);
11820 priv->error = NULL;
11822 #ifdef CONFIG_IPW2200_PROMISCUOUS
11823 ipw_prom_free(priv);
11824 #endif
11826 free_irq(pdev->irq, priv);
11827 iounmap(priv->hw_base);
11828 pci_release_regions(pdev);
11829 pci_disable_device(pdev);
11830 pci_set_drvdata(pdev, NULL);
11831 free_ieee80211(priv->net_dev);
11832 free_firmware();
11835 #ifdef CONFIG_PM
11836 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11838 struct ipw_priv *priv = pci_get_drvdata(pdev);
11839 struct net_device *dev = priv->net_dev;
11841 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11843 /* Take down the device; powers it off, etc. */
11844 ipw_down(priv);
11846 /* Remove the PRESENT state of the device */
11847 netif_device_detach(dev);
11849 pci_save_state(pdev);
11850 pci_disable_device(pdev);
11851 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11853 return 0;
11856 static int ipw_pci_resume(struct pci_dev *pdev)
11858 struct ipw_priv *priv = pci_get_drvdata(pdev);
11859 struct net_device *dev = priv->net_dev;
11860 int err;
11861 u32 val;
11863 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11865 pci_set_power_state(pdev, PCI_D0);
11866 err = pci_enable_device(pdev);
11867 if (err) {
11868 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11869 dev->name);
11870 return err;
11872 pci_restore_state(pdev);
11875 * Suspend/Resume resets the PCI configuration space, so we have to
11876 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11877 * from interfering with C3 CPU state. pci_restore_state won't help
11878 * here since it only restores the first 64 bytes pci config header.
11880 pci_read_config_dword(pdev, 0x40, &val);
11881 if ((val & 0x0000ff00) != 0)
11882 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11884 /* Set the device back into the PRESENT state; this will also wake
11885 * the queue of needed */
11886 netif_device_attach(dev);
11888 /* Bring the device back up */
11889 queue_work(priv->workqueue, &priv->up);
11891 return 0;
11893 #endif
11895 static void ipw_pci_shutdown(struct pci_dev *pdev)
11897 struct ipw_priv *priv = pci_get_drvdata(pdev);
11899 /* Take down the device; powers it off, etc. */
11900 ipw_down(priv);
11902 pci_disable_device(pdev);
11905 /* driver initialization stuff */
11906 static struct pci_driver ipw_driver = {
11907 .name = DRV_NAME,
11908 .id_table = card_ids,
11909 .probe = ipw_pci_probe,
11910 .remove = __devexit_p(ipw_pci_remove),
11911 #ifdef CONFIG_PM
11912 .suspend = ipw_pci_suspend,
11913 .resume = ipw_pci_resume,
11914 #endif
11915 .shutdown = ipw_pci_shutdown,
11918 static int __init ipw_init(void)
11920 int ret;
11922 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11923 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11925 ret = pci_register_driver(&ipw_driver);
11926 if (ret) {
11927 IPW_ERROR("Unable to initialize PCI module\n");
11928 return ret;
11931 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11932 if (ret) {
11933 IPW_ERROR("Unable to create driver sysfs file\n");
11934 pci_unregister_driver(&ipw_driver);
11935 return ret;
11938 return ret;
11941 static void __exit ipw_exit(void)
11943 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11944 pci_unregister_driver(&ipw_driver);
11947 module_param(disable, int, 0444);
11948 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11950 module_param(associate, int, 0444);
11951 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11953 module_param(auto_create, int, 0444);
11954 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11956 module_param(led, int, 0444);
11957 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11959 module_param(debug, int, 0444);
11960 MODULE_PARM_DESC(debug, "debug output mask");
11962 module_param(channel, int, 0444);
11963 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11965 #ifdef CONFIG_IPW2200_PROMISCUOUS
11966 module_param(rtap_iface, int, 0444);
11967 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11968 #endif
11970 #ifdef CONFIG_IPW2200_QOS
11971 module_param(qos_enable, int, 0444);
11972 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11974 module_param(qos_burst_enable, int, 0444);
11975 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11977 module_param(qos_no_ack_mask, int, 0444);
11978 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11980 module_param(burst_duration_CCK, int, 0444);
11981 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11983 module_param(burst_duration_OFDM, int, 0444);
11984 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11985 #endif /* CONFIG_IPW2200_QOS */
11987 #ifdef CONFIG_IPW2200_MONITOR
11988 module_param(mode, int, 0444);
11989 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11990 #else
11991 module_param(mode, int, 0444);
11992 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11993 #endif
11995 module_param(bt_coexist, int, 0444);
11996 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11998 module_param(hwcrypto, int, 0444);
11999 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12001 module_param(cmdlog, int, 0444);
12002 MODULE_PARM_DESC(cmdlog,
12003 "allocate a ring buffer for logging firmware commands");
12005 module_param(roaming, int, 0444);
12006 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12008 module_param(antenna, int, 0444);
12009 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12011 module_exit(ipw_exit);
12012 module_init(ipw_init);