agp/intel: Fix the pre-9xx chipset flush.
[linux-2.6/libata-dev.git] / drivers / gpu / drm / i915 / i915_gem.c
blob30ea4b6b021917bbfbc54bea3c65a5e64f036a39
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include <linux/swap.h>
34 #include <linux/pci.h>
36 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57 unsigned long end)
59 drm_i915_private_t *dev_priv = dev->dev_private;
61 if (start >= end ||
62 (start & (PAGE_SIZE - 1)) != 0 ||
63 (end & (PAGE_SIZE - 1)) != 0) {
64 return -EINVAL;
67 drm_mm_init(&dev_priv->mm.gtt_space, start,
68 end - start);
70 dev->gtt_total = (uint32_t) (end - start);
72 return 0;
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77 struct drm_file *file_priv)
79 struct drm_i915_gem_init *args = data;
80 int ret;
82 mutex_lock(&dev->struct_mutex);
83 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84 mutex_unlock(&dev->struct_mutex);
86 return ret;
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
93 struct drm_i915_gem_get_aperture *args = data;
95 if (!(dev->driver->driver_features & DRIVER_GEM))
96 return -ENODEV;
98 args->aper_size = dev->gtt_total;
99 args->aper_available_size = (args->aper_size -
100 atomic_read(&dev->pin_memory));
102 return 0;
107 * Creates a new mm object and returns a handle to it.
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
113 struct drm_i915_gem_create *args = data;
114 struct drm_gem_object *obj;
115 int ret;
116 u32 handle;
118 args->size = roundup(args->size, PAGE_SIZE);
120 /* Allocate the new object */
121 obj = drm_gem_object_alloc(dev, args->size);
122 if (obj == NULL)
123 return -ENOMEM;
125 ret = drm_gem_handle_create(file_priv, obj, &handle);
126 mutex_lock(&dev->struct_mutex);
127 drm_gem_object_handle_unreference(obj);
128 mutex_unlock(&dev->struct_mutex);
130 if (ret)
131 return ret;
133 args->handle = handle;
135 return 0;
138 static inline int
139 fast_shmem_read(struct page **pages,
140 loff_t page_base, int page_offset,
141 char __user *data,
142 int length)
144 char __iomem *vaddr;
145 int unwritten;
147 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
148 if (vaddr == NULL)
149 return -ENOMEM;
150 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
151 kunmap_atomic(vaddr, KM_USER0);
153 if (unwritten)
154 return -EFAULT;
156 return 0;
159 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
161 drm_i915_private_t *dev_priv = obj->dev->dev_private;
162 struct drm_i915_gem_object *obj_priv = obj->driver_private;
164 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
165 obj_priv->tiling_mode != I915_TILING_NONE;
168 static inline int
169 slow_shmem_copy(struct page *dst_page,
170 int dst_offset,
171 struct page *src_page,
172 int src_offset,
173 int length)
175 char *dst_vaddr, *src_vaddr;
177 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
178 if (dst_vaddr == NULL)
179 return -ENOMEM;
181 src_vaddr = kmap_atomic(src_page, KM_USER1);
182 if (src_vaddr == NULL) {
183 kunmap_atomic(dst_vaddr, KM_USER0);
184 return -ENOMEM;
187 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
189 kunmap_atomic(src_vaddr, KM_USER1);
190 kunmap_atomic(dst_vaddr, KM_USER0);
192 return 0;
195 static inline int
196 slow_shmem_bit17_copy(struct page *gpu_page,
197 int gpu_offset,
198 struct page *cpu_page,
199 int cpu_offset,
200 int length,
201 int is_read)
203 char *gpu_vaddr, *cpu_vaddr;
205 /* Use the unswizzled path if this page isn't affected. */
206 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207 if (is_read)
208 return slow_shmem_copy(cpu_page, cpu_offset,
209 gpu_page, gpu_offset, length);
210 else
211 return slow_shmem_copy(gpu_page, gpu_offset,
212 cpu_page, cpu_offset, length);
215 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
216 if (gpu_vaddr == NULL)
217 return -ENOMEM;
219 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
220 if (cpu_vaddr == NULL) {
221 kunmap_atomic(gpu_vaddr, KM_USER0);
222 return -ENOMEM;
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
247 kunmap_atomic(cpu_vaddr, KM_USER1);
248 kunmap_atomic(gpu_vaddr, KM_USER0);
250 return 0;
254 * This is the fast shmem pread path, which attempts to copy_from_user directly
255 * from the backing pages of the object to the user's address space. On a
256 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
258 static int
259 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
260 struct drm_i915_gem_pread *args,
261 struct drm_file *file_priv)
263 struct drm_i915_gem_object *obj_priv = obj->driver_private;
264 ssize_t remain;
265 loff_t offset, page_base;
266 char __user *user_data;
267 int page_offset, page_length;
268 int ret;
270 user_data = (char __user *) (uintptr_t) args->data_ptr;
271 remain = args->size;
273 mutex_lock(&dev->struct_mutex);
275 ret = i915_gem_object_get_pages(obj);
276 if (ret != 0)
277 goto fail_unlock;
279 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
280 args->size);
281 if (ret != 0)
282 goto fail_put_pages;
284 obj_priv = obj->driver_private;
285 offset = args->offset;
287 while (remain > 0) {
288 /* Operation in this page
290 * page_base = page offset within aperture
291 * page_offset = offset within page
292 * page_length = bytes to copy for this page
294 page_base = (offset & ~(PAGE_SIZE-1));
295 page_offset = offset & (PAGE_SIZE-1);
296 page_length = remain;
297 if ((page_offset + remain) > PAGE_SIZE)
298 page_length = PAGE_SIZE - page_offset;
300 ret = fast_shmem_read(obj_priv->pages,
301 page_base, page_offset,
302 user_data, page_length);
303 if (ret)
304 goto fail_put_pages;
306 remain -= page_length;
307 user_data += page_length;
308 offset += page_length;
311 fail_put_pages:
312 i915_gem_object_put_pages(obj);
313 fail_unlock:
314 mutex_unlock(&dev->struct_mutex);
316 return ret;
320 * This is the fallback shmem pread path, which allocates temporary storage
321 * in kernel space to copy_to_user into outside of the struct_mutex, so we
322 * can copy out of the object's backing pages while holding the struct mutex
323 * and not take page faults.
325 static int
326 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
327 struct drm_i915_gem_pread *args,
328 struct drm_file *file_priv)
330 struct drm_i915_gem_object *obj_priv = obj->driver_private;
331 struct mm_struct *mm = current->mm;
332 struct page **user_pages;
333 ssize_t remain;
334 loff_t offset, pinned_pages, i;
335 loff_t first_data_page, last_data_page, num_pages;
336 int shmem_page_index, shmem_page_offset;
337 int data_page_index, data_page_offset;
338 int page_length;
339 int ret;
340 uint64_t data_ptr = args->data_ptr;
341 int do_bit17_swizzling;
343 remain = args->size;
345 /* Pin the user pages containing the data. We can't fault while
346 * holding the struct mutex, yet we want to hold it while
347 * dereferencing the user data.
349 first_data_page = data_ptr / PAGE_SIZE;
350 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
351 num_pages = last_data_page - first_data_page + 1;
353 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
354 if (user_pages == NULL)
355 return -ENOMEM;
357 down_read(&mm->mmap_sem);
358 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
359 num_pages, 1, 0, user_pages, NULL);
360 up_read(&mm->mmap_sem);
361 if (pinned_pages < num_pages) {
362 ret = -EFAULT;
363 goto fail_put_user_pages;
366 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
368 mutex_lock(&dev->struct_mutex);
370 ret = i915_gem_object_get_pages(obj);
371 if (ret != 0)
372 goto fail_unlock;
374 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
375 args->size);
376 if (ret != 0)
377 goto fail_put_pages;
379 obj_priv = obj->driver_private;
380 offset = args->offset;
382 while (remain > 0) {
383 /* Operation in this page
385 * shmem_page_index = page number within shmem file
386 * shmem_page_offset = offset within page in shmem file
387 * data_page_index = page number in get_user_pages return
388 * data_page_offset = offset with data_page_index page.
389 * page_length = bytes to copy for this page
391 shmem_page_index = offset / PAGE_SIZE;
392 shmem_page_offset = offset & ~PAGE_MASK;
393 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
394 data_page_offset = data_ptr & ~PAGE_MASK;
396 page_length = remain;
397 if ((shmem_page_offset + page_length) > PAGE_SIZE)
398 page_length = PAGE_SIZE - shmem_page_offset;
399 if ((data_page_offset + page_length) > PAGE_SIZE)
400 page_length = PAGE_SIZE - data_page_offset;
402 if (do_bit17_swizzling) {
403 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
404 shmem_page_offset,
405 user_pages[data_page_index],
406 data_page_offset,
407 page_length,
409 } else {
410 ret = slow_shmem_copy(user_pages[data_page_index],
411 data_page_offset,
412 obj_priv->pages[shmem_page_index],
413 shmem_page_offset,
414 page_length);
416 if (ret)
417 goto fail_put_pages;
419 remain -= page_length;
420 data_ptr += page_length;
421 offset += page_length;
424 fail_put_pages:
425 i915_gem_object_put_pages(obj);
426 fail_unlock:
427 mutex_unlock(&dev->struct_mutex);
428 fail_put_user_pages:
429 for (i = 0; i < pinned_pages; i++) {
430 SetPageDirty(user_pages[i]);
431 page_cache_release(user_pages[i]);
433 drm_free_large(user_pages);
435 return ret;
439 * Reads data from the object referenced by handle.
441 * On error, the contents of *data are undefined.
444 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
445 struct drm_file *file_priv)
447 struct drm_i915_gem_pread *args = data;
448 struct drm_gem_object *obj;
449 struct drm_i915_gem_object *obj_priv;
450 int ret;
452 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
453 if (obj == NULL)
454 return -EBADF;
455 obj_priv = obj->driver_private;
457 /* Bounds check source.
459 * XXX: This could use review for overflow issues...
461 if (args->offset > obj->size || args->size > obj->size ||
462 args->offset + args->size > obj->size) {
463 drm_gem_object_unreference(obj);
464 return -EINVAL;
467 if (i915_gem_object_needs_bit17_swizzle(obj)) {
468 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
469 } else {
470 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
471 if (ret != 0)
472 ret = i915_gem_shmem_pread_slow(dev, obj, args,
473 file_priv);
476 drm_gem_object_unreference(obj);
478 return ret;
481 /* This is the fast write path which cannot handle
482 * page faults in the source data
485 static inline int
486 fast_user_write(struct io_mapping *mapping,
487 loff_t page_base, int page_offset,
488 char __user *user_data,
489 int length)
491 char *vaddr_atomic;
492 unsigned long unwritten;
494 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
495 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
496 user_data, length);
497 io_mapping_unmap_atomic(vaddr_atomic);
498 if (unwritten)
499 return -EFAULT;
500 return 0;
503 /* Here's the write path which can sleep for
504 * page faults
507 static inline int
508 slow_kernel_write(struct io_mapping *mapping,
509 loff_t gtt_base, int gtt_offset,
510 struct page *user_page, int user_offset,
511 int length)
513 char *src_vaddr, *dst_vaddr;
514 unsigned long unwritten;
516 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
517 src_vaddr = kmap_atomic(user_page, KM_USER1);
518 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
519 src_vaddr + user_offset,
520 length);
521 kunmap_atomic(src_vaddr, KM_USER1);
522 io_mapping_unmap_atomic(dst_vaddr);
523 if (unwritten)
524 return -EFAULT;
525 return 0;
528 static inline int
529 fast_shmem_write(struct page **pages,
530 loff_t page_base, int page_offset,
531 char __user *data,
532 int length)
534 char __iomem *vaddr;
535 unsigned long unwritten;
537 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
538 if (vaddr == NULL)
539 return -ENOMEM;
540 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
541 kunmap_atomic(vaddr, KM_USER0);
543 if (unwritten)
544 return -EFAULT;
545 return 0;
549 * This is the fast pwrite path, where we copy the data directly from the
550 * user into the GTT, uncached.
552 static int
553 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
554 struct drm_i915_gem_pwrite *args,
555 struct drm_file *file_priv)
557 struct drm_i915_gem_object *obj_priv = obj->driver_private;
558 drm_i915_private_t *dev_priv = dev->dev_private;
559 ssize_t remain;
560 loff_t offset, page_base;
561 char __user *user_data;
562 int page_offset, page_length;
563 int ret;
565 user_data = (char __user *) (uintptr_t) args->data_ptr;
566 remain = args->size;
567 if (!access_ok(VERIFY_READ, user_data, remain))
568 return -EFAULT;
571 mutex_lock(&dev->struct_mutex);
572 ret = i915_gem_object_pin(obj, 0);
573 if (ret) {
574 mutex_unlock(&dev->struct_mutex);
575 return ret;
577 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
578 if (ret)
579 goto fail;
581 obj_priv = obj->driver_private;
582 offset = obj_priv->gtt_offset + args->offset;
584 while (remain > 0) {
585 /* Operation in this page
587 * page_base = page offset within aperture
588 * page_offset = offset within page
589 * page_length = bytes to copy for this page
591 page_base = (offset & ~(PAGE_SIZE-1));
592 page_offset = offset & (PAGE_SIZE-1);
593 page_length = remain;
594 if ((page_offset + remain) > PAGE_SIZE)
595 page_length = PAGE_SIZE - page_offset;
597 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
598 page_offset, user_data, page_length);
600 /* If we get a fault while copying data, then (presumably) our
601 * source page isn't available. Return the error and we'll
602 * retry in the slow path.
604 if (ret)
605 goto fail;
607 remain -= page_length;
608 user_data += page_length;
609 offset += page_length;
612 fail:
613 i915_gem_object_unpin(obj);
614 mutex_unlock(&dev->struct_mutex);
616 return ret;
620 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
621 * the memory and maps it using kmap_atomic for copying.
623 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
624 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
626 static int
627 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
628 struct drm_i915_gem_pwrite *args,
629 struct drm_file *file_priv)
631 struct drm_i915_gem_object *obj_priv = obj->driver_private;
632 drm_i915_private_t *dev_priv = dev->dev_private;
633 ssize_t remain;
634 loff_t gtt_page_base, offset;
635 loff_t first_data_page, last_data_page, num_pages;
636 loff_t pinned_pages, i;
637 struct page **user_pages;
638 struct mm_struct *mm = current->mm;
639 int gtt_page_offset, data_page_offset, data_page_index, page_length;
640 int ret;
641 uint64_t data_ptr = args->data_ptr;
643 remain = args->size;
645 /* Pin the user pages containing the data. We can't fault while
646 * holding the struct mutex, and all of the pwrite implementations
647 * want to hold it while dereferencing the user data.
649 first_data_page = data_ptr / PAGE_SIZE;
650 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
651 num_pages = last_data_page - first_data_page + 1;
653 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
654 if (user_pages == NULL)
655 return -ENOMEM;
657 down_read(&mm->mmap_sem);
658 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
659 num_pages, 0, 0, user_pages, NULL);
660 up_read(&mm->mmap_sem);
661 if (pinned_pages < num_pages) {
662 ret = -EFAULT;
663 goto out_unpin_pages;
666 mutex_lock(&dev->struct_mutex);
667 ret = i915_gem_object_pin(obj, 0);
668 if (ret)
669 goto out_unlock;
671 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
672 if (ret)
673 goto out_unpin_object;
675 obj_priv = obj->driver_private;
676 offset = obj_priv->gtt_offset + args->offset;
678 while (remain > 0) {
679 /* Operation in this page
681 * gtt_page_base = page offset within aperture
682 * gtt_page_offset = offset within page in aperture
683 * data_page_index = page number in get_user_pages return
684 * data_page_offset = offset with data_page_index page.
685 * page_length = bytes to copy for this page
687 gtt_page_base = offset & PAGE_MASK;
688 gtt_page_offset = offset & ~PAGE_MASK;
689 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
690 data_page_offset = data_ptr & ~PAGE_MASK;
692 page_length = remain;
693 if ((gtt_page_offset + page_length) > PAGE_SIZE)
694 page_length = PAGE_SIZE - gtt_page_offset;
695 if ((data_page_offset + page_length) > PAGE_SIZE)
696 page_length = PAGE_SIZE - data_page_offset;
698 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
699 gtt_page_base, gtt_page_offset,
700 user_pages[data_page_index],
701 data_page_offset,
702 page_length);
704 /* If we get a fault while copying data, then (presumably) our
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
708 if (ret)
709 goto out_unpin_object;
711 remain -= page_length;
712 offset += page_length;
713 data_ptr += page_length;
716 out_unpin_object:
717 i915_gem_object_unpin(obj);
718 out_unlock:
719 mutex_unlock(&dev->struct_mutex);
720 out_unpin_pages:
721 for (i = 0; i < pinned_pages; i++)
722 page_cache_release(user_pages[i]);
723 drm_free_large(user_pages);
725 return ret;
729 * This is the fast shmem pwrite path, which attempts to directly
730 * copy_from_user into the kmapped pages backing the object.
732 static int
733 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
734 struct drm_i915_gem_pwrite *args,
735 struct drm_file *file_priv)
737 struct drm_i915_gem_object *obj_priv = obj->driver_private;
738 ssize_t remain;
739 loff_t offset, page_base;
740 char __user *user_data;
741 int page_offset, page_length;
742 int ret;
744 user_data = (char __user *) (uintptr_t) args->data_ptr;
745 remain = args->size;
747 mutex_lock(&dev->struct_mutex);
749 ret = i915_gem_object_get_pages(obj);
750 if (ret != 0)
751 goto fail_unlock;
753 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
754 if (ret != 0)
755 goto fail_put_pages;
757 obj_priv = obj->driver_private;
758 offset = args->offset;
759 obj_priv->dirty = 1;
761 while (remain > 0) {
762 /* Operation in this page
764 * page_base = page offset within aperture
765 * page_offset = offset within page
766 * page_length = bytes to copy for this page
768 page_base = (offset & ~(PAGE_SIZE-1));
769 page_offset = offset & (PAGE_SIZE-1);
770 page_length = remain;
771 if ((page_offset + remain) > PAGE_SIZE)
772 page_length = PAGE_SIZE - page_offset;
774 ret = fast_shmem_write(obj_priv->pages,
775 page_base, page_offset,
776 user_data, page_length);
777 if (ret)
778 goto fail_put_pages;
780 remain -= page_length;
781 user_data += page_length;
782 offset += page_length;
785 fail_put_pages:
786 i915_gem_object_put_pages(obj);
787 fail_unlock:
788 mutex_unlock(&dev->struct_mutex);
790 return ret;
794 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
795 * the memory and maps it using kmap_atomic for copying.
797 * This avoids taking mmap_sem for faulting on the user's address while the
798 * struct_mutex is held.
800 static int
801 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
802 struct drm_i915_gem_pwrite *args,
803 struct drm_file *file_priv)
805 struct drm_i915_gem_object *obj_priv = obj->driver_private;
806 struct mm_struct *mm = current->mm;
807 struct page **user_pages;
808 ssize_t remain;
809 loff_t offset, pinned_pages, i;
810 loff_t first_data_page, last_data_page, num_pages;
811 int shmem_page_index, shmem_page_offset;
812 int data_page_index, data_page_offset;
813 int page_length;
814 int ret;
815 uint64_t data_ptr = args->data_ptr;
816 int do_bit17_swizzling;
818 remain = args->size;
820 /* Pin the user pages containing the data. We can't fault while
821 * holding the struct mutex, and all of the pwrite implementations
822 * want to hold it while dereferencing the user data.
824 first_data_page = data_ptr / PAGE_SIZE;
825 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
826 num_pages = last_data_page - first_data_page + 1;
828 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
829 if (user_pages == NULL)
830 return -ENOMEM;
832 down_read(&mm->mmap_sem);
833 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
834 num_pages, 0, 0, user_pages, NULL);
835 up_read(&mm->mmap_sem);
836 if (pinned_pages < num_pages) {
837 ret = -EFAULT;
838 goto fail_put_user_pages;
841 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
843 mutex_lock(&dev->struct_mutex);
845 ret = i915_gem_object_get_pages(obj);
846 if (ret != 0)
847 goto fail_unlock;
849 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
850 if (ret != 0)
851 goto fail_put_pages;
853 obj_priv = obj->driver_private;
854 offset = args->offset;
855 obj_priv->dirty = 1;
857 while (remain > 0) {
858 /* Operation in this page
860 * shmem_page_index = page number within shmem file
861 * shmem_page_offset = offset within page in shmem file
862 * data_page_index = page number in get_user_pages return
863 * data_page_offset = offset with data_page_index page.
864 * page_length = bytes to copy for this page
866 shmem_page_index = offset / PAGE_SIZE;
867 shmem_page_offset = offset & ~PAGE_MASK;
868 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
869 data_page_offset = data_ptr & ~PAGE_MASK;
871 page_length = remain;
872 if ((shmem_page_offset + page_length) > PAGE_SIZE)
873 page_length = PAGE_SIZE - shmem_page_offset;
874 if ((data_page_offset + page_length) > PAGE_SIZE)
875 page_length = PAGE_SIZE - data_page_offset;
877 if (do_bit17_swizzling) {
878 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
879 shmem_page_offset,
880 user_pages[data_page_index],
881 data_page_offset,
882 page_length,
884 } else {
885 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
886 shmem_page_offset,
887 user_pages[data_page_index],
888 data_page_offset,
889 page_length);
891 if (ret)
892 goto fail_put_pages;
894 remain -= page_length;
895 data_ptr += page_length;
896 offset += page_length;
899 fail_put_pages:
900 i915_gem_object_put_pages(obj);
901 fail_unlock:
902 mutex_unlock(&dev->struct_mutex);
903 fail_put_user_pages:
904 for (i = 0; i < pinned_pages; i++)
905 page_cache_release(user_pages[i]);
906 drm_free_large(user_pages);
908 return ret;
912 * Writes data to the object referenced by handle.
914 * On error, the contents of the buffer that were to be modified are undefined.
917 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
918 struct drm_file *file_priv)
920 struct drm_i915_gem_pwrite *args = data;
921 struct drm_gem_object *obj;
922 struct drm_i915_gem_object *obj_priv;
923 int ret = 0;
925 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
926 if (obj == NULL)
927 return -EBADF;
928 obj_priv = obj->driver_private;
930 /* Bounds check destination.
932 * XXX: This could use review for overflow issues...
934 if (args->offset > obj->size || args->size > obj->size ||
935 args->offset + args->size > obj->size) {
936 drm_gem_object_unreference(obj);
937 return -EINVAL;
940 /* We can only do the GTT pwrite on untiled buffers, as otherwise
941 * it would end up going through the fenced access, and we'll get
942 * different detiling behavior between reading and writing.
943 * pread/pwrite currently are reading and writing from the CPU
944 * perspective, requiring manual detiling by the client.
946 if (obj_priv->phys_obj)
947 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
948 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
949 dev->gtt_total != 0) {
950 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
951 if (ret == -EFAULT) {
952 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
953 file_priv);
955 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
956 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
957 } else {
958 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
959 if (ret == -EFAULT) {
960 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
961 file_priv);
965 #if WATCH_PWRITE
966 if (ret)
967 DRM_INFO("pwrite failed %d\n", ret);
968 #endif
970 drm_gem_object_unreference(obj);
972 return ret;
976 * Called when user space prepares to use an object with the CPU, either
977 * through the mmap ioctl's mapping or a GTT mapping.
980 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
981 struct drm_file *file_priv)
983 struct drm_i915_private *dev_priv = dev->dev_private;
984 struct drm_i915_gem_set_domain *args = data;
985 struct drm_gem_object *obj;
986 struct drm_i915_gem_object *obj_priv;
987 uint32_t read_domains = args->read_domains;
988 uint32_t write_domain = args->write_domain;
989 int ret;
991 if (!(dev->driver->driver_features & DRIVER_GEM))
992 return -ENODEV;
994 /* Only handle setting domains to types used by the CPU. */
995 if (write_domain & I915_GEM_GPU_DOMAINS)
996 return -EINVAL;
998 if (read_domains & I915_GEM_GPU_DOMAINS)
999 return -EINVAL;
1001 /* Having something in the write domain implies it's in the read
1002 * domain, and only that read domain. Enforce that in the request.
1004 if (write_domain != 0 && read_domains != write_domain)
1005 return -EINVAL;
1007 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008 if (obj == NULL)
1009 return -EBADF;
1010 obj_priv = obj->driver_private;
1012 mutex_lock(&dev->struct_mutex);
1014 intel_mark_busy(dev, obj);
1016 #if WATCH_BUF
1017 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1018 obj, obj->size, read_domains, write_domain);
1019 #endif
1020 if (read_domains & I915_GEM_DOMAIN_GTT) {
1021 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1023 /* Update the LRU on the fence for the CPU access that's
1024 * about to occur.
1026 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1027 list_move_tail(&obj_priv->fence_list,
1028 &dev_priv->mm.fence_list);
1031 /* Silently promote "you're not bound, there was nothing to do"
1032 * to success, since the client was just asking us to
1033 * make sure everything was done.
1035 if (ret == -EINVAL)
1036 ret = 0;
1037 } else {
1038 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1041 drm_gem_object_unreference(obj);
1042 mutex_unlock(&dev->struct_mutex);
1043 return ret;
1047 * Called when user space has done writes to this buffer
1050 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1051 struct drm_file *file_priv)
1053 struct drm_i915_gem_sw_finish *args = data;
1054 struct drm_gem_object *obj;
1055 struct drm_i915_gem_object *obj_priv;
1056 int ret = 0;
1058 if (!(dev->driver->driver_features & DRIVER_GEM))
1059 return -ENODEV;
1061 mutex_lock(&dev->struct_mutex);
1062 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1063 if (obj == NULL) {
1064 mutex_unlock(&dev->struct_mutex);
1065 return -EBADF;
1068 #if WATCH_BUF
1069 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1070 __func__, args->handle, obj, obj->size);
1071 #endif
1072 obj_priv = obj->driver_private;
1074 /* Pinned buffers may be scanout, so flush the cache */
1075 if (obj_priv->pin_count)
1076 i915_gem_object_flush_cpu_write_domain(obj);
1078 drm_gem_object_unreference(obj);
1079 mutex_unlock(&dev->struct_mutex);
1080 return ret;
1084 * Maps the contents of an object, returning the address it is mapped
1085 * into.
1087 * While the mapping holds a reference on the contents of the object, it doesn't
1088 * imply a ref on the object itself.
1091 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1092 struct drm_file *file_priv)
1094 struct drm_i915_gem_mmap *args = data;
1095 struct drm_gem_object *obj;
1096 loff_t offset;
1097 unsigned long addr;
1099 if (!(dev->driver->driver_features & DRIVER_GEM))
1100 return -ENODEV;
1102 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1103 if (obj == NULL)
1104 return -EBADF;
1106 offset = args->offset;
1108 down_write(&current->mm->mmap_sem);
1109 addr = do_mmap(obj->filp, 0, args->size,
1110 PROT_READ | PROT_WRITE, MAP_SHARED,
1111 args->offset);
1112 up_write(&current->mm->mmap_sem);
1113 mutex_lock(&dev->struct_mutex);
1114 drm_gem_object_unreference(obj);
1115 mutex_unlock(&dev->struct_mutex);
1116 if (IS_ERR((void *)addr))
1117 return addr;
1119 args->addr_ptr = (uint64_t) addr;
1121 return 0;
1125 * i915_gem_fault - fault a page into the GTT
1126 * vma: VMA in question
1127 * vmf: fault info
1129 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1130 * from userspace. The fault handler takes care of binding the object to
1131 * the GTT (if needed), allocating and programming a fence register (again,
1132 * only if needed based on whether the old reg is still valid or the object
1133 * is tiled) and inserting a new PTE into the faulting process.
1135 * Note that the faulting process may involve evicting existing objects
1136 * from the GTT and/or fence registers to make room. So performance may
1137 * suffer if the GTT working set is large or there are few fence registers
1138 * left.
1140 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1142 struct drm_gem_object *obj = vma->vm_private_data;
1143 struct drm_device *dev = obj->dev;
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1146 pgoff_t page_offset;
1147 unsigned long pfn;
1148 int ret = 0;
1149 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1151 /* We don't use vmf->pgoff since that has the fake offset */
1152 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1153 PAGE_SHIFT;
1155 /* Now bind it into the GTT if needed */
1156 mutex_lock(&dev->struct_mutex);
1157 if (!obj_priv->gtt_space) {
1158 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1159 if (ret) {
1160 mutex_unlock(&dev->struct_mutex);
1161 return VM_FAULT_SIGBUS;
1164 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1165 if (ret) {
1166 mutex_unlock(&dev->struct_mutex);
1167 return VM_FAULT_SIGBUS;
1170 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1173 /* Need a new fence register? */
1174 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1175 ret = i915_gem_object_get_fence_reg(obj);
1176 if (ret) {
1177 mutex_unlock(&dev->struct_mutex);
1178 return VM_FAULT_SIGBUS;
1182 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1183 page_offset;
1185 /* Finally, remap it using the new GTT offset */
1186 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1188 mutex_unlock(&dev->struct_mutex);
1190 switch (ret) {
1191 case -ENOMEM:
1192 case -EAGAIN:
1193 return VM_FAULT_OOM;
1194 case -EFAULT:
1195 case -EINVAL:
1196 return VM_FAULT_SIGBUS;
1197 default:
1198 return VM_FAULT_NOPAGE;
1203 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1204 * @obj: obj in question
1206 * GEM memory mapping works by handing back to userspace a fake mmap offset
1207 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1208 * up the object based on the offset and sets up the various memory mapping
1209 * structures.
1211 * This routine allocates and attaches a fake offset for @obj.
1213 static int
1214 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1216 struct drm_device *dev = obj->dev;
1217 struct drm_gem_mm *mm = dev->mm_private;
1218 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1219 struct drm_map_list *list;
1220 struct drm_local_map *map;
1221 int ret = 0;
1223 /* Set the object up for mmap'ing */
1224 list = &obj->map_list;
1225 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1226 if (!list->map)
1227 return -ENOMEM;
1229 map = list->map;
1230 map->type = _DRM_GEM;
1231 map->size = obj->size;
1232 map->handle = obj;
1234 /* Get a DRM GEM mmap offset allocated... */
1235 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1236 obj->size / PAGE_SIZE, 0, 0);
1237 if (!list->file_offset_node) {
1238 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1239 ret = -ENOMEM;
1240 goto out_free_list;
1243 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1244 obj->size / PAGE_SIZE, 0);
1245 if (!list->file_offset_node) {
1246 ret = -ENOMEM;
1247 goto out_free_list;
1250 list->hash.key = list->file_offset_node->start;
1251 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1252 DRM_ERROR("failed to add to map hash\n");
1253 goto out_free_mm;
1256 /* By now we should be all set, any drm_mmap request on the offset
1257 * below will get to our mmap & fault handler */
1258 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1260 return 0;
1262 out_free_mm:
1263 drm_mm_put_block(list->file_offset_node);
1264 out_free_list:
1265 kfree(list->map);
1267 return ret;
1271 * i915_gem_release_mmap - remove physical page mappings
1272 * @obj: obj in question
1274 * Preserve the reservation of the mmaping with the DRM core code, but
1275 * relinquish ownership of the pages back to the system.
1277 * It is vital that we remove the page mapping if we have mapped a tiled
1278 * object through the GTT and then lose the fence register due to
1279 * resource pressure. Similarly if the object has been moved out of the
1280 * aperture, than pages mapped into userspace must be revoked. Removing the
1281 * mapping will then trigger a page fault on the next user access, allowing
1282 * fixup by i915_gem_fault().
1284 void
1285 i915_gem_release_mmap(struct drm_gem_object *obj)
1287 struct drm_device *dev = obj->dev;
1288 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1290 if (dev->dev_mapping)
1291 unmap_mapping_range(dev->dev_mapping,
1292 obj_priv->mmap_offset, obj->size, 1);
1295 static void
1296 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1298 struct drm_device *dev = obj->dev;
1299 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1300 struct drm_gem_mm *mm = dev->mm_private;
1301 struct drm_map_list *list;
1303 list = &obj->map_list;
1304 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1306 if (list->file_offset_node) {
1307 drm_mm_put_block(list->file_offset_node);
1308 list->file_offset_node = NULL;
1311 if (list->map) {
1312 kfree(list->map);
1313 list->map = NULL;
1316 obj_priv->mmap_offset = 0;
1320 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1321 * @obj: object to check
1323 * Return the required GTT alignment for an object, taking into account
1324 * potential fence register mapping if needed.
1326 static uint32_t
1327 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1329 struct drm_device *dev = obj->dev;
1330 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1331 int start, i;
1334 * Minimum alignment is 4k (GTT page size), but might be greater
1335 * if a fence register is needed for the object.
1337 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1338 return 4096;
1341 * Previous chips need to be aligned to the size of the smallest
1342 * fence register that can contain the object.
1344 if (IS_I9XX(dev))
1345 start = 1024*1024;
1346 else
1347 start = 512*1024;
1349 for (i = start; i < obj->size; i <<= 1)
1352 return i;
1356 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1357 * @dev: DRM device
1358 * @data: GTT mapping ioctl data
1359 * @file_priv: GEM object info
1361 * Simply returns the fake offset to userspace so it can mmap it.
1362 * The mmap call will end up in drm_gem_mmap(), which will set things
1363 * up so we can get faults in the handler above.
1365 * The fault handler will take care of binding the object into the GTT
1366 * (since it may have been evicted to make room for something), allocating
1367 * a fence register, and mapping the appropriate aperture address into
1368 * userspace.
1371 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1372 struct drm_file *file_priv)
1374 struct drm_i915_gem_mmap_gtt *args = data;
1375 struct drm_i915_private *dev_priv = dev->dev_private;
1376 struct drm_gem_object *obj;
1377 struct drm_i915_gem_object *obj_priv;
1378 int ret;
1380 if (!(dev->driver->driver_features & DRIVER_GEM))
1381 return -ENODEV;
1383 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1384 if (obj == NULL)
1385 return -EBADF;
1387 mutex_lock(&dev->struct_mutex);
1389 obj_priv = obj->driver_private;
1391 if (!obj_priv->mmap_offset) {
1392 ret = i915_gem_create_mmap_offset(obj);
1393 if (ret) {
1394 drm_gem_object_unreference(obj);
1395 mutex_unlock(&dev->struct_mutex);
1396 return ret;
1400 args->offset = obj_priv->mmap_offset;
1402 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1404 /* Make sure the alignment is correct for fence regs etc */
1405 if (obj_priv->agp_mem &&
1406 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1407 drm_gem_object_unreference(obj);
1408 mutex_unlock(&dev->struct_mutex);
1409 return -EINVAL;
1413 * Pull it into the GTT so that we have a page list (makes the
1414 * initial fault faster and any subsequent flushing possible).
1416 if (!obj_priv->agp_mem) {
1417 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1418 if (ret) {
1419 drm_gem_object_unreference(obj);
1420 mutex_unlock(&dev->struct_mutex);
1421 return ret;
1423 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1426 drm_gem_object_unreference(obj);
1427 mutex_unlock(&dev->struct_mutex);
1429 return 0;
1432 void
1433 i915_gem_object_put_pages(struct drm_gem_object *obj)
1435 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1436 int page_count = obj->size / PAGE_SIZE;
1437 int i;
1439 BUG_ON(obj_priv->pages_refcount == 0);
1441 if (--obj_priv->pages_refcount != 0)
1442 return;
1444 if (obj_priv->tiling_mode != I915_TILING_NONE)
1445 i915_gem_object_save_bit_17_swizzle(obj);
1447 for (i = 0; i < page_count; i++)
1448 if (obj_priv->pages[i] != NULL) {
1449 if (obj_priv->dirty)
1450 set_page_dirty(obj_priv->pages[i]);
1451 mark_page_accessed(obj_priv->pages[i]);
1452 page_cache_release(obj_priv->pages[i]);
1454 obj_priv->dirty = 0;
1456 drm_free_large(obj_priv->pages);
1457 obj_priv->pages = NULL;
1460 static void
1461 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1463 struct drm_device *dev = obj->dev;
1464 drm_i915_private_t *dev_priv = dev->dev_private;
1465 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1467 /* Add a reference if we're newly entering the active list. */
1468 if (!obj_priv->active) {
1469 drm_gem_object_reference(obj);
1470 obj_priv->active = 1;
1472 /* Move from whatever list we were on to the tail of execution. */
1473 spin_lock(&dev_priv->mm.active_list_lock);
1474 list_move_tail(&obj_priv->list,
1475 &dev_priv->mm.active_list);
1476 spin_unlock(&dev_priv->mm.active_list_lock);
1477 obj_priv->last_rendering_seqno = seqno;
1480 static void
1481 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1483 struct drm_device *dev = obj->dev;
1484 drm_i915_private_t *dev_priv = dev->dev_private;
1485 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1487 BUG_ON(!obj_priv->active);
1488 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1489 obj_priv->last_rendering_seqno = 0;
1492 static void
1493 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1495 struct drm_device *dev = obj->dev;
1496 drm_i915_private_t *dev_priv = dev->dev_private;
1497 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1499 i915_verify_inactive(dev, __FILE__, __LINE__);
1500 if (obj_priv->pin_count != 0)
1501 list_del_init(&obj_priv->list);
1502 else
1503 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1505 obj_priv->last_rendering_seqno = 0;
1506 if (obj_priv->active) {
1507 obj_priv->active = 0;
1508 drm_gem_object_unreference(obj);
1510 i915_verify_inactive(dev, __FILE__, __LINE__);
1514 * Creates a new sequence number, emitting a write of it to the status page
1515 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1517 * Must be called with struct_lock held.
1519 * Returned sequence numbers are nonzero on success.
1521 static uint32_t
1522 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1523 uint32_t flush_domains)
1525 drm_i915_private_t *dev_priv = dev->dev_private;
1526 struct drm_i915_file_private *i915_file_priv = NULL;
1527 struct drm_i915_gem_request *request;
1528 uint32_t seqno;
1529 int was_empty;
1530 RING_LOCALS;
1532 if (file_priv != NULL)
1533 i915_file_priv = file_priv->driver_priv;
1535 request = kzalloc(sizeof(*request), GFP_KERNEL);
1536 if (request == NULL)
1537 return 0;
1539 /* Grab the seqno we're going to make this request be, and bump the
1540 * next (skipping 0 so it can be the reserved no-seqno value).
1542 seqno = dev_priv->mm.next_gem_seqno;
1543 dev_priv->mm.next_gem_seqno++;
1544 if (dev_priv->mm.next_gem_seqno == 0)
1545 dev_priv->mm.next_gem_seqno++;
1547 BEGIN_LP_RING(4);
1548 OUT_RING(MI_STORE_DWORD_INDEX);
1549 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1550 OUT_RING(seqno);
1552 OUT_RING(MI_USER_INTERRUPT);
1553 ADVANCE_LP_RING();
1555 DRM_DEBUG("%d\n", seqno);
1557 request->seqno = seqno;
1558 request->emitted_jiffies = jiffies;
1559 was_empty = list_empty(&dev_priv->mm.request_list);
1560 list_add_tail(&request->list, &dev_priv->mm.request_list);
1561 if (i915_file_priv) {
1562 list_add_tail(&request->client_list,
1563 &i915_file_priv->mm.request_list);
1564 } else {
1565 INIT_LIST_HEAD(&request->client_list);
1568 /* Associate any objects on the flushing list matching the write
1569 * domain we're flushing with our flush.
1571 if (flush_domains != 0) {
1572 struct drm_i915_gem_object *obj_priv, *next;
1574 list_for_each_entry_safe(obj_priv, next,
1575 &dev_priv->mm.flushing_list, list) {
1576 struct drm_gem_object *obj = obj_priv->obj;
1578 if ((obj->write_domain & flush_domains) ==
1579 obj->write_domain) {
1580 obj->write_domain = 0;
1581 i915_gem_object_move_to_active(obj, seqno);
1587 if (was_empty && !dev_priv->mm.suspended)
1588 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1589 return seqno;
1593 * Command execution barrier
1595 * Ensures that all commands in the ring are finished
1596 * before signalling the CPU
1598 static uint32_t
1599 i915_retire_commands(struct drm_device *dev)
1601 drm_i915_private_t *dev_priv = dev->dev_private;
1602 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1603 uint32_t flush_domains = 0;
1604 RING_LOCALS;
1606 /* The sampler always gets flushed on i965 (sigh) */
1607 if (IS_I965G(dev))
1608 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1609 BEGIN_LP_RING(2);
1610 OUT_RING(cmd);
1611 OUT_RING(0); /* noop */
1612 ADVANCE_LP_RING();
1613 return flush_domains;
1617 * Moves buffers associated only with the given active seqno from the active
1618 * to inactive list, potentially freeing them.
1620 static void
1621 i915_gem_retire_request(struct drm_device *dev,
1622 struct drm_i915_gem_request *request)
1624 drm_i915_private_t *dev_priv = dev->dev_private;
1626 /* Move any buffers on the active list that are no longer referenced
1627 * by the ringbuffer to the flushing/inactive lists as appropriate.
1629 spin_lock(&dev_priv->mm.active_list_lock);
1630 while (!list_empty(&dev_priv->mm.active_list)) {
1631 struct drm_gem_object *obj;
1632 struct drm_i915_gem_object *obj_priv;
1634 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1635 struct drm_i915_gem_object,
1636 list);
1637 obj = obj_priv->obj;
1639 /* If the seqno being retired doesn't match the oldest in the
1640 * list, then the oldest in the list must still be newer than
1641 * this seqno.
1643 if (obj_priv->last_rendering_seqno != request->seqno)
1644 goto out;
1646 #if WATCH_LRU
1647 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1648 __func__, request->seqno, obj);
1649 #endif
1651 if (obj->write_domain != 0)
1652 i915_gem_object_move_to_flushing(obj);
1653 else {
1654 /* Take a reference on the object so it won't be
1655 * freed while the spinlock is held. The list
1656 * protection for this spinlock is safe when breaking
1657 * the lock like this since the next thing we do
1658 * is just get the head of the list again.
1660 drm_gem_object_reference(obj);
1661 i915_gem_object_move_to_inactive(obj);
1662 spin_unlock(&dev_priv->mm.active_list_lock);
1663 drm_gem_object_unreference(obj);
1664 spin_lock(&dev_priv->mm.active_list_lock);
1667 out:
1668 spin_unlock(&dev_priv->mm.active_list_lock);
1672 * Returns true if seq1 is later than seq2.
1674 static int
1675 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1677 return (int32_t)(seq1 - seq2) >= 0;
1680 uint32_t
1681 i915_get_gem_seqno(struct drm_device *dev)
1683 drm_i915_private_t *dev_priv = dev->dev_private;
1685 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1689 * This function clears the request list as sequence numbers are passed.
1691 void
1692 i915_gem_retire_requests(struct drm_device *dev)
1694 drm_i915_private_t *dev_priv = dev->dev_private;
1695 uint32_t seqno;
1697 if (!dev_priv->hw_status_page)
1698 return;
1700 seqno = i915_get_gem_seqno(dev);
1702 while (!list_empty(&dev_priv->mm.request_list)) {
1703 struct drm_i915_gem_request *request;
1704 uint32_t retiring_seqno;
1706 request = list_first_entry(&dev_priv->mm.request_list,
1707 struct drm_i915_gem_request,
1708 list);
1709 retiring_seqno = request->seqno;
1711 if (i915_seqno_passed(seqno, retiring_seqno) ||
1712 dev_priv->mm.wedged) {
1713 i915_gem_retire_request(dev, request);
1715 list_del(&request->list);
1716 list_del(&request->client_list);
1717 kfree(request);
1718 } else
1719 break;
1723 void
1724 i915_gem_retire_work_handler(struct work_struct *work)
1726 drm_i915_private_t *dev_priv;
1727 struct drm_device *dev;
1729 dev_priv = container_of(work, drm_i915_private_t,
1730 mm.retire_work.work);
1731 dev = dev_priv->dev;
1733 mutex_lock(&dev->struct_mutex);
1734 i915_gem_retire_requests(dev);
1735 if (!dev_priv->mm.suspended &&
1736 !list_empty(&dev_priv->mm.request_list))
1737 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1738 mutex_unlock(&dev->struct_mutex);
1742 * Waits for a sequence number to be signaled, and cleans up the
1743 * request and object lists appropriately for that event.
1745 static int
1746 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1748 drm_i915_private_t *dev_priv = dev->dev_private;
1749 u32 ier;
1750 int ret = 0;
1752 BUG_ON(seqno == 0);
1754 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1755 if (IS_IGDNG(dev))
1756 ier = I915_READ(DEIER) | I915_READ(GTIER);
1757 else
1758 ier = I915_READ(IER);
1759 if (!ier) {
1760 DRM_ERROR("something (likely vbetool) disabled "
1761 "interrupts, re-enabling\n");
1762 i915_driver_irq_preinstall(dev);
1763 i915_driver_irq_postinstall(dev);
1766 dev_priv->mm.waiting_gem_seqno = seqno;
1767 i915_user_irq_get(dev);
1768 ret = wait_event_interruptible(dev_priv->irq_queue,
1769 i915_seqno_passed(i915_get_gem_seqno(dev),
1770 seqno) ||
1771 dev_priv->mm.wedged);
1772 i915_user_irq_put(dev);
1773 dev_priv->mm.waiting_gem_seqno = 0;
1775 if (dev_priv->mm.wedged)
1776 ret = -EIO;
1778 if (ret && ret != -ERESTARTSYS)
1779 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1780 __func__, ret, seqno, i915_get_gem_seqno(dev));
1782 /* Directly dispatch request retiring. While we have the work queue
1783 * to handle this, the waiter on a request often wants an associated
1784 * buffer to have made it to the inactive list, and we would need
1785 * a separate wait queue to handle that.
1787 if (ret == 0)
1788 i915_gem_retire_requests(dev);
1790 return ret;
1793 static void
1794 i915_gem_flush(struct drm_device *dev,
1795 uint32_t invalidate_domains,
1796 uint32_t flush_domains)
1798 drm_i915_private_t *dev_priv = dev->dev_private;
1799 uint32_t cmd;
1800 RING_LOCALS;
1802 #if WATCH_EXEC
1803 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1804 invalidate_domains, flush_domains);
1805 #endif
1807 if (flush_domains & I915_GEM_DOMAIN_CPU)
1808 drm_agp_chipset_flush(dev);
1810 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1812 * read/write caches:
1814 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1815 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1816 * also flushed at 2d versus 3d pipeline switches.
1818 * read-only caches:
1820 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1821 * MI_READ_FLUSH is set, and is always flushed on 965.
1823 * I915_GEM_DOMAIN_COMMAND may not exist?
1825 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1826 * invalidated when MI_EXE_FLUSH is set.
1828 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1829 * invalidated with every MI_FLUSH.
1831 * TLBs:
1833 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1834 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1835 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1836 * are flushed at any MI_FLUSH.
1839 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1840 if ((invalidate_domains|flush_domains) &
1841 I915_GEM_DOMAIN_RENDER)
1842 cmd &= ~MI_NO_WRITE_FLUSH;
1843 if (!IS_I965G(dev)) {
1845 * On the 965, the sampler cache always gets flushed
1846 * and this bit is reserved.
1848 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1849 cmd |= MI_READ_FLUSH;
1851 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1852 cmd |= MI_EXE_FLUSH;
1854 #if WATCH_EXEC
1855 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1856 #endif
1857 BEGIN_LP_RING(2);
1858 OUT_RING(cmd);
1859 OUT_RING(0); /* noop */
1860 ADVANCE_LP_RING();
1865 * Ensures that all rendering to the object has completed and the object is
1866 * safe to unbind from the GTT or access from the CPU.
1868 static int
1869 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1871 struct drm_device *dev = obj->dev;
1872 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1873 int ret;
1875 /* This function only exists to support waiting for existing rendering,
1876 * not for emitting required flushes.
1878 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1880 /* If there is rendering queued on the buffer being evicted, wait for
1881 * it.
1883 if (obj_priv->active) {
1884 #if WATCH_BUF
1885 DRM_INFO("%s: object %p wait for seqno %08x\n",
1886 __func__, obj, obj_priv->last_rendering_seqno);
1887 #endif
1888 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1889 if (ret != 0)
1890 return ret;
1893 return 0;
1897 * Unbinds an object from the GTT aperture.
1900 i915_gem_object_unbind(struct drm_gem_object *obj)
1902 struct drm_device *dev = obj->dev;
1903 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1904 int ret = 0;
1906 #if WATCH_BUF
1907 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1908 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1909 #endif
1910 if (obj_priv->gtt_space == NULL)
1911 return 0;
1913 if (obj_priv->pin_count != 0) {
1914 DRM_ERROR("Attempting to unbind pinned buffer\n");
1915 return -EINVAL;
1918 /* blow away mappings if mapped through GTT */
1919 i915_gem_release_mmap(obj);
1921 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1922 i915_gem_clear_fence_reg(obj);
1924 /* Move the object to the CPU domain to ensure that
1925 * any possible CPU writes while it's not in the GTT
1926 * are flushed when we go to remap it. This will
1927 * also ensure that all pending GPU writes are finished
1928 * before we unbind.
1930 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1931 if (ret) {
1932 if (ret != -ERESTARTSYS)
1933 DRM_ERROR("set_domain failed: %d\n", ret);
1934 return ret;
1937 BUG_ON(obj_priv->active);
1939 if (obj_priv->agp_mem != NULL) {
1940 drm_unbind_agp(obj_priv->agp_mem);
1941 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1942 obj_priv->agp_mem = NULL;
1945 i915_gem_object_put_pages(obj);
1947 if (obj_priv->gtt_space) {
1948 atomic_dec(&dev->gtt_count);
1949 atomic_sub(obj->size, &dev->gtt_memory);
1951 drm_mm_put_block(obj_priv->gtt_space);
1952 obj_priv->gtt_space = NULL;
1955 /* Remove ourselves from the LRU list if present. */
1956 if (!list_empty(&obj_priv->list))
1957 list_del_init(&obj_priv->list);
1959 return 0;
1962 static int
1963 i915_gem_evict_something(struct drm_device *dev)
1965 drm_i915_private_t *dev_priv = dev->dev_private;
1966 struct drm_gem_object *obj;
1967 struct drm_i915_gem_object *obj_priv;
1968 int ret = 0;
1970 for (;;) {
1971 /* If there's an inactive buffer available now, grab it
1972 * and be done.
1974 if (!list_empty(&dev_priv->mm.inactive_list)) {
1975 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1976 struct drm_i915_gem_object,
1977 list);
1978 obj = obj_priv->obj;
1979 BUG_ON(obj_priv->pin_count != 0);
1980 #if WATCH_LRU
1981 DRM_INFO("%s: evicting %p\n", __func__, obj);
1982 #endif
1983 BUG_ON(obj_priv->active);
1985 /* Wait on the rendering and unbind the buffer. */
1986 ret = i915_gem_object_unbind(obj);
1987 break;
1990 /* If we didn't get anything, but the ring is still processing
1991 * things, wait for one of those things to finish and hopefully
1992 * leave us a buffer to evict.
1994 if (!list_empty(&dev_priv->mm.request_list)) {
1995 struct drm_i915_gem_request *request;
1997 request = list_first_entry(&dev_priv->mm.request_list,
1998 struct drm_i915_gem_request,
1999 list);
2001 ret = i915_wait_request(dev, request->seqno);
2002 if (ret)
2003 break;
2005 /* if waiting caused an object to become inactive,
2006 * then loop around and wait for it. Otherwise, we
2007 * assume that waiting freed and unbound something,
2008 * so there should now be some space in the GTT
2010 if (!list_empty(&dev_priv->mm.inactive_list))
2011 continue;
2012 break;
2015 /* If we didn't have anything on the request list but there
2016 * are buffers awaiting a flush, emit one and try again.
2017 * When we wait on it, those buffers waiting for that flush
2018 * will get moved to inactive.
2020 if (!list_empty(&dev_priv->mm.flushing_list)) {
2021 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2022 struct drm_i915_gem_object,
2023 list);
2024 obj = obj_priv->obj;
2026 i915_gem_flush(dev,
2027 obj->write_domain,
2028 obj->write_domain);
2029 i915_add_request(dev, NULL, obj->write_domain);
2031 obj = NULL;
2032 continue;
2035 DRM_ERROR("inactive empty %d request empty %d "
2036 "flushing empty %d\n",
2037 list_empty(&dev_priv->mm.inactive_list),
2038 list_empty(&dev_priv->mm.request_list),
2039 list_empty(&dev_priv->mm.flushing_list));
2040 /* If we didn't do any of the above, there's nothing to be done
2041 * and we just can't fit it in.
2043 return -ENOSPC;
2045 return ret;
2048 static int
2049 i915_gem_evict_everything(struct drm_device *dev)
2051 int ret;
2053 for (;;) {
2054 ret = i915_gem_evict_something(dev);
2055 if (ret != 0)
2056 break;
2058 if (ret == -ENOSPC)
2059 return 0;
2060 return ret;
2064 i915_gem_object_get_pages(struct drm_gem_object *obj)
2066 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2067 int page_count, i;
2068 struct address_space *mapping;
2069 struct inode *inode;
2070 struct page *page;
2071 int ret;
2073 if (obj_priv->pages_refcount++ != 0)
2074 return 0;
2076 /* Get the list of pages out of our struct file. They'll be pinned
2077 * at this point until we release them.
2079 page_count = obj->size / PAGE_SIZE;
2080 BUG_ON(obj_priv->pages != NULL);
2081 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2082 if (obj_priv->pages == NULL) {
2083 DRM_ERROR("Faled to allocate page list\n");
2084 obj_priv->pages_refcount--;
2085 return -ENOMEM;
2088 inode = obj->filp->f_path.dentry->d_inode;
2089 mapping = inode->i_mapping;
2090 for (i = 0; i < page_count; i++) {
2091 page = read_mapping_page(mapping, i, NULL);
2092 if (IS_ERR(page)) {
2093 ret = PTR_ERR(page);
2094 DRM_ERROR("read_mapping_page failed: %d\n", ret);
2095 i915_gem_object_put_pages(obj);
2096 return ret;
2098 obj_priv->pages[i] = page;
2101 if (obj_priv->tiling_mode != I915_TILING_NONE)
2102 i915_gem_object_do_bit_17_swizzle(obj);
2104 return 0;
2107 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2109 struct drm_gem_object *obj = reg->obj;
2110 struct drm_device *dev = obj->dev;
2111 drm_i915_private_t *dev_priv = dev->dev_private;
2112 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2113 int regnum = obj_priv->fence_reg;
2114 uint64_t val;
2116 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2117 0xfffff000) << 32;
2118 val |= obj_priv->gtt_offset & 0xfffff000;
2119 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2120 if (obj_priv->tiling_mode == I915_TILING_Y)
2121 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2122 val |= I965_FENCE_REG_VALID;
2124 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2127 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2129 struct drm_gem_object *obj = reg->obj;
2130 struct drm_device *dev = obj->dev;
2131 drm_i915_private_t *dev_priv = dev->dev_private;
2132 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2133 int regnum = obj_priv->fence_reg;
2134 int tile_width;
2135 uint32_t fence_reg, val;
2136 uint32_t pitch_val;
2138 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2139 (obj_priv->gtt_offset & (obj->size - 1))) {
2140 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2141 __func__, obj_priv->gtt_offset, obj->size);
2142 return;
2145 if (obj_priv->tiling_mode == I915_TILING_Y &&
2146 HAS_128_BYTE_Y_TILING(dev))
2147 tile_width = 128;
2148 else
2149 tile_width = 512;
2151 /* Note: pitch better be a power of two tile widths */
2152 pitch_val = obj_priv->stride / tile_width;
2153 pitch_val = ffs(pitch_val) - 1;
2155 val = obj_priv->gtt_offset;
2156 if (obj_priv->tiling_mode == I915_TILING_Y)
2157 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2158 val |= I915_FENCE_SIZE_BITS(obj->size);
2159 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2160 val |= I830_FENCE_REG_VALID;
2162 if (regnum < 8)
2163 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2164 else
2165 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2166 I915_WRITE(fence_reg, val);
2169 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2171 struct drm_gem_object *obj = reg->obj;
2172 struct drm_device *dev = obj->dev;
2173 drm_i915_private_t *dev_priv = dev->dev_private;
2174 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2175 int regnum = obj_priv->fence_reg;
2176 uint32_t val;
2177 uint32_t pitch_val;
2178 uint32_t fence_size_bits;
2180 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2181 (obj_priv->gtt_offset & (obj->size - 1))) {
2182 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2183 __func__, obj_priv->gtt_offset);
2184 return;
2187 pitch_val = obj_priv->stride / 128;
2188 pitch_val = ffs(pitch_val) - 1;
2189 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2191 val = obj_priv->gtt_offset;
2192 if (obj_priv->tiling_mode == I915_TILING_Y)
2193 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2194 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2195 WARN_ON(fence_size_bits & ~0x00000f00);
2196 val |= fence_size_bits;
2197 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2198 val |= I830_FENCE_REG_VALID;
2200 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2204 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2205 * @obj: object to map through a fence reg
2207 * When mapping objects through the GTT, userspace wants to be able to write
2208 * to them without having to worry about swizzling if the object is tiled.
2210 * This function walks the fence regs looking for a free one for @obj,
2211 * stealing one if it can't find any.
2213 * It then sets up the reg based on the object's properties: address, pitch
2214 * and tiling format.
2217 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2219 struct drm_device *dev = obj->dev;
2220 struct drm_i915_private *dev_priv = dev->dev_private;
2221 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2222 struct drm_i915_fence_reg *reg = NULL;
2223 struct drm_i915_gem_object *old_obj_priv = NULL;
2224 int i, ret, avail;
2226 /* Just update our place in the LRU if our fence is getting used. */
2227 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2228 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2229 return 0;
2232 switch (obj_priv->tiling_mode) {
2233 case I915_TILING_NONE:
2234 WARN(1, "allocating a fence for non-tiled object?\n");
2235 break;
2236 case I915_TILING_X:
2237 if (!obj_priv->stride)
2238 return -EINVAL;
2239 WARN((obj_priv->stride & (512 - 1)),
2240 "object 0x%08x is X tiled but has non-512B pitch\n",
2241 obj_priv->gtt_offset);
2242 break;
2243 case I915_TILING_Y:
2244 if (!obj_priv->stride)
2245 return -EINVAL;
2246 WARN((obj_priv->stride & (128 - 1)),
2247 "object 0x%08x is Y tiled but has non-128B pitch\n",
2248 obj_priv->gtt_offset);
2249 break;
2252 /* First try to find a free reg */
2253 avail = 0;
2254 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2255 reg = &dev_priv->fence_regs[i];
2256 if (!reg->obj)
2257 break;
2259 old_obj_priv = reg->obj->driver_private;
2260 if (!old_obj_priv->pin_count)
2261 avail++;
2264 /* None available, try to steal one or wait for a user to finish */
2265 if (i == dev_priv->num_fence_regs) {
2266 struct drm_gem_object *old_obj = NULL;
2268 if (avail == 0)
2269 return -ENOSPC;
2271 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2272 fence_list) {
2273 old_obj = old_obj_priv->obj;
2275 if (old_obj_priv->pin_count)
2276 continue;
2278 /* Take a reference, as otherwise the wait_rendering
2279 * below may cause the object to get freed out from
2280 * under us.
2282 drm_gem_object_reference(old_obj);
2284 /* i915 uses fences for GPU access to tiled buffers */
2285 if (IS_I965G(dev) || !old_obj_priv->active)
2286 break;
2288 /* This brings the object to the head of the LRU if it
2289 * had been written to. The only way this should
2290 * result in us waiting longer than the expected
2291 * optimal amount of time is if there was a
2292 * fence-using buffer later that was read-only.
2294 i915_gem_object_flush_gpu_write_domain(old_obj);
2295 ret = i915_gem_object_wait_rendering(old_obj);
2296 if (ret != 0) {
2297 drm_gem_object_unreference(old_obj);
2298 return ret;
2301 break;
2305 * Zap this virtual mapping so we can set up a fence again
2306 * for this object next time we need it.
2308 i915_gem_release_mmap(old_obj);
2310 i = old_obj_priv->fence_reg;
2311 reg = &dev_priv->fence_regs[i];
2313 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2314 list_del_init(&old_obj_priv->fence_list);
2316 drm_gem_object_unreference(old_obj);
2319 obj_priv->fence_reg = i;
2320 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2322 reg->obj = obj;
2324 if (IS_I965G(dev))
2325 i965_write_fence_reg(reg);
2326 else if (IS_I9XX(dev))
2327 i915_write_fence_reg(reg);
2328 else
2329 i830_write_fence_reg(reg);
2331 return 0;
2335 * i915_gem_clear_fence_reg - clear out fence register info
2336 * @obj: object to clear
2338 * Zeroes out the fence register itself and clears out the associated
2339 * data structures in dev_priv and obj_priv.
2341 static void
2342 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2344 struct drm_device *dev = obj->dev;
2345 drm_i915_private_t *dev_priv = dev->dev_private;
2346 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2348 if (IS_I965G(dev))
2349 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2350 else {
2351 uint32_t fence_reg;
2353 if (obj_priv->fence_reg < 8)
2354 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2355 else
2356 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2357 8) * 4;
2359 I915_WRITE(fence_reg, 0);
2362 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2363 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2364 list_del_init(&obj_priv->fence_list);
2368 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2369 * to the buffer to finish, and then resets the fence register.
2370 * @obj: tiled object holding a fence register.
2372 * Zeroes out the fence register itself and clears out the associated
2373 * data structures in dev_priv and obj_priv.
2376 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2378 struct drm_device *dev = obj->dev;
2379 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2381 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2382 return 0;
2384 /* On the i915, GPU access to tiled buffers is via a fence,
2385 * therefore we must wait for any outstanding access to complete
2386 * before clearing the fence.
2388 if (!IS_I965G(dev)) {
2389 int ret;
2391 i915_gem_object_flush_gpu_write_domain(obj);
2392 i915_gem_object_flush_gtt_write_domain(obj);
2393 ret = i915_gem_object_wait_rendering(obj);
2394 if (ret != 0)
2395 return ret;
2398 i915_gem_clear_fence_reg (obj);
2400 return 0;
2404 * Finds free space in the GTT aperture and binds the object there.
2406 static int
2407 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2409 struct drm_device *dev = obj->dev;
2410 drm_i915_private_t *dev_priv = dev->dev_private;
2411 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2412 struct drm_mm_node *free_space;
2413 int page_count, ret;
2415 if (dev_priv->mm.suspended)
2416 return -EBUSY;
2417 if (alignment == 0)
2418 alignment = i915_gem_get_gtt_alignment(obj);
2419 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2420 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2421 return -EINVAL;
2424 search_free:
2425 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2426 obj->size, alignment, 0);
2427 if (free_space != NULL) {
2428 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2429 alignment);
2430 if (obj_priv->gtt_space != NULL) {
2431 obj_priv->gtt_space->private = obj;
2432 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2435 if (obj_priv->gtt_space == NULL) {
2436 bool lists_empty;
2438 /* If the gtt is empty and we're still having trouble
2439 * fitting our object in, we're out of memory.
2441 #if WATCH_LRU
2442 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2443 #endif
2444 spin_lock(&dev_priv->mm.active_list_lock);
2445 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2446 list_empty(&dev_priv->mm.flushing_list) &&
2447 list_empty(&dev_priv->mm.active_list));
2448 spin_unlock(&dev_priv->mm.active_list_lock);
2449 if (lists_empty) {
2450 DRM_ERROR("GTT full, but LRU list empty\n");
2451 return -ENOSPC;
2454 ret = i915_gem_evict_something(dev);
2455 if (ret != 0) {
2456 if (ret != -ERESTARTSYS)
2457 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2458 return ret;
2460 goto search_free;
2463 #if WATCH_BUF
2464 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2465 obj->size, obj_priv->gtt_offset);
2466 #endif
2467 ret = i915_gem_object_get_pages(obj);
2468 if (ret) {
2469 drm_mm_put_block(obj_priv->gtt_space);
2470 obj_priv->gtt_space = NULL;
2471 return ret;
2474 page_count = obj->size / PAGE_SIZE;
2475 /* Create an AGP memory structure pointing at our pages, and bind it
2476 * into the GTT.
2478 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2479 obj_priv->pages,
2480 page_count,
2481 obj_priv->gtt_offset,
2482 obj_priv->agp_type);
2483 if (obj_priv->agp_mem == NULL) {
2484 i915_gem_object_put_pages(obj);
2485 drm_mm_put_block(obj_priv->gtt_space);
2486 obj_priv->gtt_space = NULL;
2487 return -ENOMEM;
2489 atomic_inc(&dev->gtt_count);
2490 atomic_add(obj->size, &dev->gtt_memory);
2492 /* Assert that the object is not currently in any GPU domain. As it
2493 * wasn't in the GTT, there shouldn't be any way it could have been in
2494 * a GPU cache
2496 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2497 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2499 return 0;
2502 void
2503 i915_gem_clflush_object(struct drm_gem_object *obj)
2505 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2507 /* If we don't have a page list set up, then we're not pinned
2508 * to GPU, and we can ignore the cache flush because it'll happen
2509 * again at bind time.
2511 if (obj_priv->pages == NULL)
2512 return;
2514 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2517 /** Flushes any GPU write domain for the object if it's dirty. */
2518 static void
2519 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2521 struct drm_device *dev = obj->dev;
2522 uint32_t seqno;
2524 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2525 return;
2527 /* Queue the GPU write cache flushing we need. */
2528 i915_gem_flush(dev, 0, obj->write_domain);
2529 seqno = i915_add_request(dev, NULL, obj->write_domain);
2530 obj->write_domain = 0;
2531 i915_gem_object_move_to_active(obj, seqno);
2534 /** Flushes the GTT write domain for the object if it's dirty. */
2535 static void
2536 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2538 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2539 return;
2541 /* No actual flushing is required for the GTT write domain. Writes
2542 * to it immediately go to main memory as far as we know, so there's
2543 * no chipset flush. It also doesn't land in render cache.
2545 obj->write_domain = 0;
2548 /** Flushes the CPU write domain for the object if it's dirty. */
2549 static void
2550 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2552 struct drm_device *dev = obj->dev;
2554 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2555 return;
2557 i915_gem_clflush_object(obj);
2558 drm_agp_chipset_flush(dev);
2559 obj->write_domain = 0;
2563 * Moves a single object to the GTT read, and possibly write domain.
2565 * This function returns when the move is complete, including waiting on
2566 * flushes to occur.
2569 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2571 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2572 int ret;
2574 /* Not valid to be called on unbound objects. */
2575 if (obj_priv->gtt_space == NULL)
2576 return -EINVAL;
2578 i915_gem_object_flush_gpu_write_domain(obj);
2579 /* Wait on any GPU rendering and flushing to occur. */
2580 ret = i915_gem_object_wait_rendering(obj);
2581 if (ret != 0)
2582 return ret;
2584 /* If we're writing through the GTT domain, then CPU and GPU caches
2585 * will need to be invalidated at next use.
2587 if (write)
2588 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2590 i915_gem_object_flush_cpu_write_domain(obj);
2592 /* It should now be out of any other write domains, and we can update
2593 * the domain values for our changes.
2595 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2596 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2597 if (write) {
2598 obj->write_domain = I915_GEM_DOMAIN_GTT;
2599 obj_priv->dirty = 1;
2602 return 0;
2606 * Moves a single object to the CPU read, and possibly write domain.
2608 * This function returns when the move is complete, including waiting on
2609 * flushes to occur.
2611 static int
2612 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2614 int ret;
2616 i915_gem_object_flush_gpu_write_domain(obj);
2617 /* Wait on any GPU rendering and flushing to occur. */
2618 ret = i915_gem_object_wait_rendering(obj);
2619 if (ret != 0)
2620 return ret;
2622 i915_gem_object_flush_gtt_write_domain(obj);
2624 /* If we have a partially-valid cache of the object in the CPU,
2625 * finish invalidating it and free the per-page flags.
2627 i915_gem_object_set_to_full_cpu_read_domain(obj);
2629 /* Flush the CPU cache if it's still invalid. */
2630 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2631 i915_gem_clflush_object(obj);
2633 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2636 /* It should now be out of any other write domains, and we can update
2637 * the domain values for our changes.
2639 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2641 /* If we're writing through the CPU, then the GPU read domains will
2642 * need to be invalidated at next use.
2644 if (write) {
2645 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2646 obj->write_domain = I915_GEM_DOMAIN_CPU;
2649 return 0;
2653 * Set the next domain for the specified object. This
2654 * may not actually perform the necessary flushing/invaliding though,
2655 * as that may want to be batched with other set_domain operations
2657 * This is (we hope) the only really tricky part of gem. The goal
2658 * is fairly simple -- track which caches hold bits of the object
2659 * and make sure they remain coherent. A few concrete examples may
2660 * help to explain how it works. For shorthand, we use the notation
2661 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2662 * a pair of read and write domain masks.
2664 * Case 1: the batch buffer
2666 * 1. Allocated
2667 * 2. Written by CPU
2668 * 3. Mapped to GTT
2669 * 4. Read by GPU
2670 * 5. Unmapped from GTT
2671 * 6. Freed
2673 * Let's take these a step at a time
2675 * 1. Allocated
2676 * Pages allocated from the kernel may still have
2677 * cache contents, so we set them to (CPU, CPU) always.
2678 * 2. Written by CPU (using pwrite)
2679 * The pwrite function calls set_domain (CPU, CPU) and
2680 * this function does nothing (as nothing changes)
2681 * 3. Mapped by GTT
2682 * This function asserts that the object is not
2683 * currently in any GPU-based read or write domains
2684 * 4. Read by GPU
2685 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2686 * As write_domain is zero, this function adds in the
2687 * current read domains (CPU+COMMAND, 0).
2688 * flush_domains is set to CPU.
2689 * invalidate_domains is set to COMMAND
2690 * clflush is run to get data out of the CPU caches
2691 * then i915_dev_set_domain calls i915_gem_flush to
2692 * emit an MI_FLUSH and drm_agp_chipset_flush
2693 * 5. Unmapped from GTT
2694 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2695 * flush_domains and invalidate_domains end up both zero
2696 * so no flushing/invalidating happens
2697 * 6. Freed
2698 * yay, done
2700 * Case 2: The shared render buffer
2702 * 1. Allocated
2703 * 2. Mapped to GTT
2704 * 3. Read/written by GPU
2705 * 4. set_domain to (CPU,CPU)
2706 * 5. Read/written by CPU
2707 * 6. Read/written by GPU
2709 * 1. Allocated
2710 * Same as last example, (CPU, CPU)
2711 * 2. Mapped to GTT
2712 * Nothing changes (assertions find that it is not in the GPU)
2713 * 3. Read/written by GPU
2714 * execbuffer calls set_domain (RENDER, RENDER)
2715 * flush_domains gets CPU
2716 * invalidate_domains gets GPU
2717 * clflush (obj)
2718 * MI_FLUSH and drm_agp_chipset_flush
2719 * 4. set_domain (CPU, CPU)
2720 * flush_domains gets GPU
2721 * invalidate_domains gets CPU
2722 * wait_rendering (obj) to make sure all drawing is complete.
2723 * This will include an MI_FLUSH to get the data from GPU
2724 * to memory
2725 * clflush (obj) to invalidate the CPU cache
2726 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2727 * 5. Read/written by CPU
2728 * cache lines are loaded and dirtied
2729 * 6. Read written by GPU
2730 * Same as last GPU access
2732 * Case 3: The constant buffer
2734 * 1. Allocated
2735 * 2. Written by CPU
2736 * 3. Read by GPU
2737 * 4. Updated (written) by CPU again
2738 * 5. Read by GPU
2740 * 1. Allocated
2741 * (CPU, CPU)
2742 * 2. Written by CPU
2743 * (CPU, CPU)
2744 * 3. Read by GPU
2745 * (CPU+RENDER, 0)
2746 * flush_domains = CPU
2747 * invalidate_domains = RENDER
2748 * clflush (obj)
2749 * MI_FLUSH
2750 * drm_agp_chipset_flush
2751 * 4. Updated (written) by CPU again
2752 * (CPU, CPU)
2753 * flush_domains = 0 (no previous write domain)
2754 * invalidate_domains = 0 (no new read domains)
2755 * 5. Read by GPU
2756 * (CPU+RENDER, 0)
2757 * flush_domains = CPU
2758 * invalidate_domains = RENDER
2759 * clflush (obj)
2760 * MI_FLUSH
2761 * drm_agp_chipset_flush
2763 static void
2764 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2766 struct drm_device *dev = obj->dev;
2767 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2768 uint32_t invalidate_domains = 0;
2769 uint32_t flush_domains = 0;
2771 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2772 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2774 intel_mark_busy(dev, obj);
2776 #if WATCH_BUF
2777 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2778 __func__, obj,
2779 obj->read_domains, obj->pending_read_domains,
2780 obj->write_domain, obj->pending_write_domain);
2781 #endif
2783 * If the object isn't moving to a new write domain,
2784 * let the object stay in multiple read domains
2786 if (obj->pending_write_domain == 0)
2787 obj->pending_read_domains |= obj->read_domains;
2788 else
2789 obj_priv->dirty = 1;
2792 * Flush the current write domain if
2793 * the new read domains don't match. Invalidate
2794 * any read domains which differ from the old
2795 * write domain
2797 if (obj->write_domain &&
2798 obj->write_domain != obj->pending_read_domains) {
2799 flush_domains |= obj->write_domain;
2800 invalidate_domains |=
2801 obj->pending_read_domains & ~obj->write_domain;
2804 * Invalidate any read caches which may have
2805 * stale data. That is, any new read domains.
2807 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2808 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2809 #if WATCH_BUF
2810 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2811 __func__, flush_domains, invalidate_domains);
2812 #endif
2813 i915_gem_clflush_object(obj);
2816 /* The actual obj->write_domain will be updated with
2817 * pending_write_domain after we emit the accumulated flush for all
2818 * of our domain changes in execbuffers (which clears objects'
2819 * write_domains). So if we have a current write domain that we
2820 * aren't changing, set pending_write_domain to that.
2822 if (flush_domains == 0 && obj->pending_write_domain == 0)
2823 obj->pending_write_domain = obj->write_domain;
2824 obj->read_domains = obj->pending_read_domains;
2826 dev->invalidate_domains |= invalidate_domains;
2827 dev->flush_domains |= flush_domains;
2828 #if WATCH_BUF
2829 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2830 __func__,
2831 obj->read_domains, obj->write_domain,
2832 dev->invalidate_domains, dev->flush_domains);
2833 #endif
2837 * Moves the object from a partially CPU read to a full one.
2839 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2840 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2842 static void
2843 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2845 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2847 if (!obj_priv->page_cpu_valid)
2848 return;
2850 /* If we're partially in the CPU read domain, finish moving it in.
2852 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2853 int i;
2855 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2856 if (obj_priv->page_cpu_valid[i])
2857 continue;
2858 drm_clflush_pages(obj_priv->pages + i, 1);
2862 /* Free the page_cpu_valid mappings which are now stale, whether
2863 * or not we've got I915_GEM_DOMAIN_CPU.
2865 kfree(obj_priv->page_cpu_valid);
2866 obj_priv->page_cpu_valid = NULL;
2870 * Set the CPU read domain on a range of the object.
2872 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2873 * not entirely valid. The page_cpu_valid member of the object flags which
2874 * pages have been flushed, and will be respected by
2875 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2876 * of the whole object.
2878 * This function returns when the move is complete, including waiting on
2879 * flushes to occur.
2881 static int
2882 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2883 uint64_t offset, uint64_t size)
2885 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2886 int i, ret;
2888 if (offset == 0 && size == obj->size)
2889 return i915_gem_object_set_to_cpu_domain(obj, 0);
2891 i915_gem_object_flush_gpu_write_domain(obj);
2892 /* Wait on any GPU rendering and flushing to occur. */
2893 ret = i915_gem_object_wait_rendering(obj);
2894 if (ret != 0)
2895 return ret;
2896 i915_gem_object_flush_gtt_write_domain(obj);
2898 /* If we're already fully in the CPU read domain, we're done. */
2899 if (obj_priv->page_cpu_valid == NULL &&
2900 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2901 return 0;
2903 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2904 * newly adding I915_GEM_DOMAIN_CPU
2906 if (obj_priv->page_cpu_valid == NULL) {
2907 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2908 GFP_KERNEL);
2909 if (obj_priv->page_cpu_valid == NULL)
2910 return -ENOMEM;
2911 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2912 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2914 /* Flush the cache on any pages that are still invalid from the CPU's
2915 * perspective.
2917 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2918 i++) {
2919 if (obj_priv->page_cpu_valid[i])
2920 continue;
2922 drm_clflush_pages(obj_priv->pages + i, 1);
2924 obj_priv->page_cpu_valid[i] = 1;
2927 /* It should now be out of any other write domains, and we can update
2928 * the domain values for our changes.
2930 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2932 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2934 return 0;
2938 * Pin an object to the GTT and evaluate the relocations landing in it.
2940 static int
2941 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2942 struct drm_file *file_priv,
2943 struct drm_i915_gem_exec_object *entry,
2944 struct drm_i915_gem_relocation_entry *relocs)
2946 struct drm_device *dev = obj->dev;
2947 drm_i915_private_t *dev_priv = dev->dev_private;
2948 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2949 int i, ret;
2950 void __iomem *reloc_page;
2952 /* Choose the GTT offset for our buffer and put it there. */
2953 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2954 if (ret)
2955 return ret;
2957 entry->offset = obj_priv->gtt_offset;
2959 /* Apply the relocations, using the GTT aperture to avoid cache
2960 * flushing requirements.
2962 for (i = 0; i < entry->relocation_count; i++) {
2963 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2964 struct drm_gem_object *target_obj;
2965 struct drm_i915_gem_object *target_obj_priv;
2966 uint32_t reloc_val, reloc_offset;
2967 uint32_t __iomem *reloc_entry;
2969 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2970 reloc->target_handle);
2971 if (target_obj == NULL) {
2972 i915_gem_object_unpin(obj);
2973 return -EBADF;
2975 target_obj_priv = target_obj->driver_private;
2977 /* The target buffer should have appeared before us in the
2978 * exec_object list, so it should have a GTT space bound by now.
2980 if (target_obj_priv->gtt_space == NULL) {
2981 DRM_ERROR("No GTT space found for object %d\n",
2982 reloc->target_handle);
2983 drm_gem_object_unreference(target_obj);
2984 i915_gem_object_unpin(obj);
2985 return -EINVAL;
2988 if (reloc->offset > obj->size - 4) {
2989 DRM_ERROR("Relocation beyond object bounds: "
2990 "obj %p target %d offset %d size %d.\n",
2991 obj, reloc->target_handle,
2992 (int) reloc->offset, (int) obj->size);
2993 drm_gem_object_unreference(target_obj);
2994 i915_gem_object_unpin(obj);
2995 return -EINVAL;
2997 if (reloc->offset & 3) {
2998 DRM_ERROR("Relocation not 4-byte aligned: "
2999 "obj %p target %d offset %d.\n",
3000 obj, reloc->target_handle,
3001 (int) reloc->offset);
3002 drm_gem_object_unreference(target_obj);
3003 i915_gem_object_unpin(obj);
3004 return -EINVAL;
3007 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3008 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3009 DRM_ERROR("reloc with read/write CPU domains: "
3010 "obj %p target %d offset %d "
3011 "read %08x write %08x",
3012 obj, reloc->target_handle,
3013 (int) reloc->offset,
3014 reloc->read_domains,
3015 reloc->write_domain);
3016 drm_gem_object_unreference(target_obj);
3017 i915_gem_object_unpin(obj);
3018 return -EINVAL;
3021 if (reloc->write_domain && target_obj->pending_write_domain &&
3022 reloc->write_domain != target_obj->pending_write_domain) {
3023 DRM_ERROR("Write domain conflict: "
3024 "obj %p target %d offset %d "
3025 "new %08x old %08x\n",
3026 obj, reloc->target_handle,
3027 (int) reloc->offset,
3028 reloc->write_domain,
3029 target_obj->pending_write_domain);
3030 drm_gem_object_unreference(target_obj);
3031 i915_gem_object_unpin(obj);
3032 return -EINVAL;
3035 #if WATCH_RELOC
3036 DRM_INFO("%s: obj %p offset %08x target %d "
3037 "read %08x write %08x gtt %08x "
3038 "presumed %08x delta %08x\n",
3039 __func__,
3040 obj,
3041 (int) reloc->offset,
3042 (int) reloc->target_handle,
3043 (int) reloc->read_domains,
3044 (int) reloc->write_domain,
3045 (int) target_obj_priv->gtt_offset,
3046 (int) reloc->presumed_offset,
3047 reloc->delta);
3048 #endif
3050 target_obj->pending_read_domains |= reloc->read_domains;
3051 target_obj->pending_write_domain |= reloc->write_domain;
3053 /* If the relocation already has the right value in it, no
3054 * more work needs to be done.
3056 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3057 drm_gem_object_unreference(target_obj);
3058 continue;
3061 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3062 if (ret != 0) {
3063 drm_gem_object_unreference(target_obj);
3064 i915_gem_object_unpin(obj);
3065 return -EINVAL;
3068 /* Map the page containing the relocation we're going to
3069 * perform.
3071 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3072 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3073 (reloc_offset &
3074 ~(PAGE_SIZE - 1)));
3075 reloc_entry = (uint32_t __iomem *)(reloc_page +
3076 (reloc_offset & (PAGE_SIZE - 1)));
3077 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3079 #if WATCH_BUF
3080 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3081 obj, (unsigned int) reloc->offset,
3082 readl(reloc_entry), reloc_val);
3083 #endif
3084 writel(reloc_val, reloc_entry);
3085 io_mapping_unmap_atomic(reloc_page);
3087 /* The updated presumed offset for this entry will be
3088 * copied back out to the user.
3090 reloc->presumed_offset = target_obj_priv->gtt_offset;
3092 drm_gem_object_unreference(target_obj);
3095 #if WATCH_BUF
3096 if (0)
3097 i915_gem_dump_object(obj, 128, __func__, ~0);
3098 #endif
3099 return 0;
3102 /** Dispatch a batchbuffer to the ring
3104 static int
3105 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3106 struct drm_i915_gem_execbuffer *exec,
3107 struct drm_clip_rect *cliprects,
3108 uint64_t exec_offset)
3110 drm_i915_private_t *dev_priv = dev->dev_private;
3111 int nbox = exec->num_cliprects;
3112 int i = 0, count;
3113 uint32_t exec_start, exec_len;
3114 RING_LOCALS;
3116 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3117 exec_len = (uint32_t) exec->batch_len;
3119 count = nbox ? nbox : 1;
3121 for (i = 0; i < count; i++) {
3122 if (i < nbox) {
3123 int ret = i915_emit_box(dev, cliprects, i,
3124 exec->DR1, exec->DR4);
3125 if (ret)
3126 return ret;
3129 if (IS_I830(dev) || IS_845G(dev)) {
3130 BEGIN_LP_RING(4);
3131 OUT_RING(MI_BATCH_BUFFER);
3132 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3133 OUT_RING(exec_start + exec_len - 4);
3134 OUT_RING(0);
3135 ADVANCE_LP_RING();
3136 } else {
3137 BEGIN_LP_RING(2);
3138 if (IS_I965G(dev)) {
3139 OUT_RING(MI_BATCH_BUFFER_START |
3140 (2 << 6) |
3141 MI_BATCH_NON_SECURE_I965);
3142 OUT_RING(exec_start);
3143 } else {
3144 OUT_RING(MI_BATCH_BUFFER_START |
3145 (2 << 6));
3146 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3148 ADVANCE_LP_RING();
3152 /* XXX breadcrumb */
3153 return 0;
3156 /* Throttle our rendering by waiting until the ring has completed our requests
3157 * emitted over 20 msec ago.
3159 * Note that if we were to use the current jiffies each time around the loop,
3160 * we wouldn't escape the function with any frames outstanding if the time to
3161 * render a frame was over 20ms.
3163 * This should get us reasonable parallelism between CPU and GPU but also
3164 * relatively low latency when blocking on a particular request to finish.
3166 static int
3167 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3169 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3170 int ret = 0;
3171 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3173 mutex_lock(&dev->struct_mutex);
3174 while (!list_empty(&i915_file_priv->mm.request_list)) {
3175 struct drm_i915_gem_request *request;
3177 request = list_first_entry(&i915_file_priv->mm.request_list,
3178 struct drm_i915_gem_request,
3179 client_list);
3181 if (time_after_eq(request->emitted_jiffies, recent_enough))
3182 break;
3184 ret = i915_wait_request(dev, request->seqno);
3185 if (ret != 0)
3186 break;
3188 mutex_unlock(&dev->struct_mutex);
3190 return ret;
3193 static int
3194 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3195 uint32_t buffer_count,
3196 struct drm_i915_gem_relocation_entry **relocs)
3198 uint32_t reloc_count = 0, reloc_index = 0, i;
3199 int ret;
3201 *relocs = NULL;
3202 for (i = 0; i < buffer_count; i++) {
3203 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3204 return -EINVAL;
3205 reloc_count += exec_list[i].relocation_count;
3208 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3209 if (*relocs == NULL)
3210 return -ENOMEM;
3212 for (i = 0; i < buffer_count; i++) {
3213 struct drm_i915_gem_relocation_entry __user *user_relocs;
3215 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3217 ret = copy_from_user(&(*relocs)[reloc_index],
3218 user_relocs,
3219 exec_list[i].relocation_count *
3220 sizeof(**relocs));
3221 if (ret != 0) {
3222 drm_free_large(*relocs);
3223 *relocs = NULL;
3224 return -EFAULT;
3227 reloc_index += exec_list[i].relocation_count;
3230 return 0;
3233 static int
3234 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3235 uint32_t buffer_count,
3236 struct drm_i915_gem_relocation_entry *relocs)
3238 uint32_t reloc_count = 0, i;
3239 int ret = 0;
3241 for (i = 0; i < buffer_count; i++) {
3242 struct drm_i915_gem_relocation_entry __user *user_relocs;
3243 int unwritten;
3245 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3247 unwritten = copy_to_user(user_relocs,
3248 &relocs[reloc_count],
3249 exec_list[i].relocation_count *
3250 sizeof(*relocs));
3252 if (unwritten) {
3253 ret = -EFAULT;
3254 goto err;
3257 reloc_count += exec_list[i].relocation_count;
3260 err:
3261 drm_free_large(relocs);
3263 return ret;
3266 static int
3267 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3268 uint64_t exec_offset)
3270 uint32_t exec_start, exec_len;
3272 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3273 exec_len = (uint32_t) exec->batch_len;
3275 if ((exec_start | exec_len) & 0x7)
3276 return -EINVAL;
3278 if (!exec_start)
3279 return -EINVAL;
3281 return 0;
3285 i915_gem_execbuffer(struct drm_device *dev, void *data,
3286 struct drm_file *file_priv)
3288 drm_i915_private_t *dev_priv = dev->dev_private;
3289 struct drm_i915_gem_execbuffer *args = data;
3290 struct drm_i915_gem_exec_object *exec_list = NULL;
3291 struct drm_gem_object **object_list = NULL;
3292 struct drm_gem_object *batch_obj;
3293 struct drm_i915_gem_object *obj_priv;
3294 struct drm_clip_rect *cliprects = NULL;
3295 struct drm_i915_gem_relocation_entry *relocs;
3296 int ret, ret2, i, pinned = 0;
3297 uint64_t exec_offset;
3298 uint32_t seqno, flush_domains, reloc_index;
3299 int pin_tries;
3301 #if WATCH_EXEC
3302 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3303 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3304 #endif
3306 if (args->buffer_count < 1) {
3307 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3308 return -EINVAL;
3310 /* Copy in the exec list from userland */
3311 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3312 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3313 if (exec_list == NULL || object_list == NULL) {
3314 DRM_ERROR("Failed to allocate exec or object list "
3315 "for %d buffers\n",
3316 args->buffer_count);
3317 ret = -ENOMEM;
3318 goto pre_mutex_err;
3320 ret = copy_from_user(exec_list,
3321 (struct drm_i915_relocation_entry __user *)
3322 (uintptr_t) args->buffers_ptr,
3323 sizeof(*exec_list) * args->buffer_count);
3324 if (ret != 0) {
3325 DRM_ERROR("copy %d exec entries failed %d\n",
3326 args->buffer_count, ret);
3327 goto pre_mutex_err;
3330 if (args->num_cliprects != 0) {
3331 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3332 GFP_KERNEL);
3333 if (cliprects == NULL)
3334 goto pre_mutex_err;
3336 ret = copy_from_user(cliprects,
3337 (struct drm_clip_rect __user *)
3338 (uintptr_t) args->cliprects_ptr,
3339 sizeof(*cliprects) * args->num_cliprects);
3340 if (ret != 0) {
3341 DRM_ERROR("copy %d cliprects failed: %d\n",
3342 args->num_cliprects, ret);
3343 goto pre_mutex_err;
3347 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3348 &relocs);
3349 if (ret != 0)
3350 goto pre_mutex_err;
3352 mutex_lock(&dev->struct_mutex);
3354 i915_verify_inactive(dev, __FILE__, __LINE__);
3356 if (dev_priv->mm.wedged) {
3357 DRM_ERROR("Execbuf while wedged\n");
3358 mutex_unlock(&dev->struct_mutex);
3359 ret = -EIO;
3360 goto pre_mutex_err;
3363 if (dev_priv->mm.suspended) {
3364 DRM_ERROR("Execbuf while VT-switched.\n");
3365 mutex_unlock(&dev->struct_mutex);
3366 ret = -EBUSY;
3367 goto pre_mutex_err;
3370 /* Look up object handles */
3371 for (i = 0; i < args->buffer_count; i++) {
3372 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3373 exec_list[i].handle);
3374 if (object_list[i] == NULL) {
3375 DRM_ERROR("Invalid object handle %d at index %d\n",
3376 exec_list[i].handle, i);
3377 ret = -EBADF;
3378 goto err;
3381 obj_priv = object_list[i]->driver_private;
3382 if (obj_priv->in_execbuffer) {
3383 DRM_ERROR("Object %p appears more than once in object list\n",
3384 object_list[i]);
3385 ret = -EBADF;
3386 goto err;
3388 obj_priv->in_execbuffer = true;
3391 /* Pin and relocate */
3392 for (pin_tries = 0; ; pin_tries++) {
3393 ret = 0;
3394 reloc_index = 0;
3396 for (i = 0; i < args->buffer_count; i++) {
3397 object_list[i]->pending_read_domains = 0;
3398 object_list[i]->pending_write_domain = 0;
3399 ret = i915_gem_object_pin_and_relocate(object_list[i],
3400 file_priv,
3401 &exec_list[i],
3402 &relocs[reloc_index]);
3403 if (ret)
3404 break;
3405 pinned = i + 1;
3406 reloc_index += exec_list[i].relocation_count;
3408 /* success */
3409 if (ret == 0)
3410 break;
3412 /* error other than GTT full, or we've already tried again */
3413 if (ret != -ENOSPC || pin_tries >= 1) {
3414 if (ret != -ERESTARTSYS)
3415 DRM_ERROR("Failed to pin buffers %d\n", ret);
3416 goto err;
3419 /* unpin all of our buffers */
3420 for (i = 0; i < pinned; i++)
3421 i915_gem_object_unpin(object_list[i]);
3422 pinned = 0;
3424 /* evict everyone we can from the aperture */
3425 ret = i915_gem_evict_everything(dev);
3426 if (ret)
3427 goto err;
3430 /* Set the pending read domains for the batch buffer to COMMAND */
3431 batch_obj = object_list[args->buffer_count-1];
3432 if (batch_obj->pending_write_domain) {
3433 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3434 ret = -EINVAL;
3435 goto err;
3437 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3439 /* Sanity check the batch buffer, prior to moving objects */
3440 exec_offset = exec_list[args->buffer_count - 1].offset;
3441 ret = i915_gem_check_execbuffer (args, exec_offset);
3442 if (ret != 0) {
3443 DRM_ERROR("execbuf with invalid offset/length\n");
3444 goto err;
3447 i915_verify_inactive(dev, __FILE__, __LINE__);
3449 /* Zero the global flush/invalidate flags. These
3450 * will be modified as new domains are computed
3451 * for each object
3453 dev->invalidate_domains = 0;
3454 dev->flush_domains = 0;
3456 for (i = 0; i < args->buffer_count; i++) {
3457 struct drm_gem_object *obj = object_list[i];
3459 /* Compute new gpu domains and update invalidate/flush */
3460 i915_gem_object_set_to_gpu_domain(obj);
3463 i915_verify_inactive(dev, __FILE__, __LINE__);
3465 if (dev->invalidate_domains | dev->flush_domains) {
3466 #if WATCH_EXEC
3467 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3468 __func__,
3469 dev->invalidate_domains,
3470 dev->flush_domains);
3471 #endif
3472 i915_gem_flush(dev,
3473 dev->invalidate_domains,
3474 dev->flush_domains);
3475 if (dev->flush_domains)
3476 (void)i915_add_request(dev, file_priv,
3477 dev->flush_domains);
3480 for (i = 0; i < args->buffer_count; i++) {
3481 struct drm_gem_object *obj = object_list[i];
3483 obj->write_domain = obj->pending_write_domain;
3486 i915_verify_inactive(dev, __FILE__, __LINE__);
3488 #if WATCH_COHERENCY
3489 for (i = 0; i < args->buffer_count; i++) {
3490 i915_gem_object_check_coherency(object_list[i],
3491 exec_list[i].handle);
3493 #endif
3495 #if WATCH_EXEC
3496 i915_gem_dump_object(batch_obj,
3497 args->batch_len,
3498 __func__,
3499 ~0);
3500 #endif
3502 /* Exec the batchbuffer */
3503 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3504 if (ret) {
3505 DRM_ERROR("dispatch failed %d\n", ret);
3506 goto err;
3510 * Ensure that the commands in the batch buffer are
3511 * finished before the interrupt fires
3513 flush_domains = i915_retire_commands(dev);
3515 i915_verify_inactive(dev, __FILE__, __LINE__);
3518 * Get a seqno representing the execution of the current buffer,
3519 * which we can wait on. We would like to mitigate these interrupts,
3520 * likely by only creating seqnos occasionally (so that we have
3521 * *some* interrupts representing completion of buffers that we can
3522 * wait on when trying to clear up gtt space).
3524 seqno = i915_add_request(dev, file_priv, flush_domains);
3525 BUG_ON(seqno == 0);
3526 for (i = 0; i < args->buffer_count; i++) {
3527 struct drm_gem_object *obj = object_list[i];
3529 i915_gem_object_move_to_active(obj, seqno);
3530 #if WATCH_LRU
3531 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3532 #endif
3534 #if WATCH_LRU
3535 i915_dump_lru(dev, __func__);
3536 #endif
3538 i915_verify_inactive(dev, __FILE__, __LINE__);
3540 err:
3541 for (i = 0; i < pinned; i++)
3542 i915_gem_object_unpin(object_list[i]);
3544 for (i = 0; i < args->buffer_count; i++) {
3545 if (object_list[i]) {
3546 obj_priv = object_list[i]->driver_private;
3547 obj_priv->in_execbuffer = false;
3549 drm_gem_object_unreference(object_list[i]);
3552 mutex_unlock(&dev->struct_mutex);
3554 if (!ret) {
3555 /* Copy the new buffer offsets back to the user's exec list. */
3556 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3557 (uintptr_t) args->buffers_ptr,
3558 exec_list,
3559 sizeof(*exec_list) * args->buffer_count);
3560 if (ret) {
3561 ret = -EFAULT;
3562 DRM_ERROR("failed to copy %d exec entries "
3563 "back to user (%d)\n",
3564 args->buffer_count, ret);
3568 /* Copy the updated relocations out regardless of current error
3569 * state. Failure to update the relocs would mean that the next
3570 * time userland calls execbuf, it would do so with presumed offset
3571 * state that didn't match the actual object state.
3573 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3574 relocs);
3575 if (ret2 != 0) {
3576 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3578 if (ret == 0)
3579 ret = ret2;
3582 pre_mutex_err:
3583 drm_free_large(object_list);
3584 drm_free_large(exec_list);
3585 kfree(cliprects);
3587 return ret;
3591 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3593 struct drm_device *dev = obj->dev;
3594 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3595 int ret;
3597 i915_verify_inactive(dev, __FILE__, __LINE__);
3598 if (obj_priv->gtt_space == NULL) {
3599 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3600 if (ret != 0) {
3601 if (ret != -EBUSY && ret != -ERESTARTSYS)
3602 DRM_ERROR("Failure to bind: %d\n", ret);
3603 return ret;
3607 * Pre-965 chips need a fence register set up in order to
3608 * properly handle tiled surfaces.
3610 if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3611 ret = i915_gem_object_get_fence_reg(obj);
3612 if (ret != 0) {
3613 if (ret != -EBUSY && ret != -ERESTARTSYS)
3614 DRM_ERROR("Failure to install fence: %d\n",
3615 ret);
3616 return ret;
3619 obj_priv->pin_count++;
3621 /* If the object is not active and not pending a flush,
3622 * remove it from the inactive list
3624 if (obj_priv->pin_count == 1) {
3625 atomic_inc(&dev->pin_count);
3626 atomic_add(obj->size, &dev->pin_memory);
3627 if (!obj_priv->active &&
3628 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3629 !list_empty(&obj_priv->list))
3630 list_del_init(&obj_priv->list);
3632 i915_verify_inactive(dev, __FILE__, __LINE__);
3634 return 0;
3637 void
3638 i915_gem_object_unpin(struct drm_gem_object *obj)
3640 struct drm_device *dev = obj->dev;
3641 drm_i915_private_t *dev_priv = dev->dev_private;
3642 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3644 i915_verify_inactive(dev, __FILE__, __LINE__);
3645 obj_priv->pin_count--;
3646 BUG_ON(obj_priv->pin_count < 0);
3647 BUG_ON(obj_priv->gtt_space == NULL);
3649 /* If the object is no longer pinned, and is
3650 * neither active nor being flushed, then stick it on
3651 * the inactive list
3653 if (obj_priv->pin_count == 0) {
3654 if (!obj_priv->active &&
3655 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3656 list_move_tail(&obj_priv->list,
3657 &dev_priv->mm.inactive_list);
3658 atomic_dec(&dev->pin_count);
3659 atomic_sub(obj->size, &dev->pin_memory);
3661 i915_verify_inactive(dev, __FILE__, __LINE__);
3665 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3666 struct drm_file *file_priv)
3668 struct drm_i915_gem_pin *args = data;
3669 struct drm_gem_object *obj;
3670 struct drm_i915_gem_object *obj_priv;
3671 int ret;
3673 mutex_lock(&dev->struct_mutex);
3675 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3676 if (obj == NULL) {
3677 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3678 args->handle);
3679 mutex_unlock(&dev->struct_mutex);
3680 return -EBADF;
3682 obj_priv = obj->driver_private;
3684 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3685 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3686 args->handle);
3687 drm_gem_object_unreference(obj);
3688 mutex_unlock(&dev->struct_mutex);
3689 return -EINVAL;
3692 obj_priv->user_pin_count++;
3693 obj_priv->pin_filp = file_priv;
3694 if (obj_priv->user_pin_count == 1) {
3695 ret = i915_gem_object_pin(obj, args->alignment);
3696 if (ret != 0) {
3697 drm_gem_object_unreference(obj);
3698 mutex_unlock(&dev->struct_mutex);
3699 return ret;
3703 /* XXX - flush the CPU caches for pinned objects
3704 * as the X server doesn't manage domains yet
3706 i915_gem_object_flush_cpu_write_domain(obj);
3707 args->offset = obj_priv->gtt_offset;
3708 drm_gem_object_unreference(obj);
3709 mutex_unlock(&dev->struct_mutex);
3711 return 0;
3715 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3716 struct drm_file *file_priv)
3718 struct drm_i915_gem_pin *args = data;
3719 struct drm_gem_object *obj;
3720 struct drm_i915_gem_object *obj_priv;
3722 mutex_lock(&dev->struct_mutex);
3724 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3725 if (obj == NULL) {
3726 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3727 args->handle);
3728 mutex_unlock(&dev->struct_mutex);
3729 return -EBADF;
3732 obj_priv = obj->driver_private;
3733 if (obj_priv->pin_filp != file_priv) {
3734 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3735 args->handle);
3736 drm_gem_object_unreference(obj);
3737 mutex_unlock(&dev->struct_mutex);
3738 return -EINVAL;
3740 obj_priv->user_pin_count--;
3741 if (obj_priv->user_pin_count == 0) {
3742 obj_priv->pin_filp = NULL;
3743 i915_gem_object_unpin(obj);
3746 drm_gem_object_unreference(obj);
3747 mutex_unlock(&dev->struct_mutex);
3748 return 0;
3752 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3753 struct drm_file *file_priv)
3755 struct drm_i915_gem_busy *args = data;
3756 struct drm_gem_object *obj;
3757 struct drm_i915_gem_object *obj_priv;
3759 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3760 if (obj == NULL) {
3761 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3762 args->handle);
3763 return -EBADF;
3766 mutex_lock(&dev->struct_mutex);
3767 /* Update the active list for the hardware's current position.
3768 * Otherwise this only updates on a delayed timer or when irqs are
3769 * actually unmasked, and our working set ends up being larger than
3770 * required.
3772 i915_gem_retire_requests(dev);
3774 obj_priv = obj->driver_private;
3775 /* Don't count being on the flushing list against the object being
3776 * done. Otherwise, a buffer left on the flushing list but not getting
3777 * flushed (because nobody's flushing that domain) won't ever return
3778 * unbusy and get reused by libdrm's bo cache. The other expected
3779 * consumer of this interface, OpenGL's occlusion queries, also specs
3780 * that the objects get unbusy "eventually" without any interference.
3782 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3784 drm_gem_object_unreference(obj);
3785 mutex_unlock(&dev->struct_mutex);
3786 return 0;
3790 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3791 struct drm_file *file_priv)
3793 return i915_gem_ring_throttle(dev, file_priv);
3796 int i915_gem_init_object(struct drm_gem_object *obj)
3798 struct drm_i915_gem_object *obj_priv;
3800 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3801 if (obj_priv == NULL)
3802 return -ENOMEM;
3805 * We've just allocated pages from the kernel,
3806 * so they've just been written by the CPU with
3807 * zeros. They'll need to be clflushed before we
3808 * use them with the GPU.
3810 obj->write_domain = I915_GEM_DOMAIN_CPU;
3811 obj->read_domains = I915_GEM_DOMAIN_CPU;
3813 obj_priv->agp_type = AGP_USER_MEMORY;
3815 obj->driver_private = obj_priv;
3816 obj_priv->obj = obj;
3817 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3818 INIT_LIST_HEAD(&obj_priv->list);
3819 INIT_LIST_HEAD(&obj_priv->fence_list);
3821 return 0;
3824 void i915_gem_free_object(struct drm_gem_object *obj)
3826 struct drm_device *dev = obj->dev;
3827 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3829 while (obj_priv->pin_count > 0)
3830 i915_gem_object_unpin(obj);
3832 if (obj_priv->phys_obj)
3833 i915_gem_detach_phys_object(dev, obj);
3835 i915_gem_object_unbind(obj);
3837 i915_gem_free_mmap_offset(obj);
3839 kfree(obj_priv->page_cpu_valid);
3840 kfree(obj_priv->bit_17);
3841 kfree(obj->driver_private);
3844 /** Unbinds all objects that are on the given buffer list. */
3845 static int
3846 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3848 struct drm_gem_object *obj;
3849 struct drm_i915_gem_object *obj_priv;
3850 int ret;
3852 while (!list_empty(head)) {
3853 obj_priv = list_first_entry(head,
3854 struct drm_i915_gem_object,
3855 list);
3856 obj = obj_priv->obj;
3858 if (obj_priv->pin_count != 0) {
3859 DRM_ERROR("Pinned object in unbind list\n");
3860 mutex_unlock(&dev->struct_mutex);
3861 return -EINVAL;
3864 ret = i915_gem_object_unbind(obj);
3865 if (ret != 0) {
3866 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3867 ret);
3868 mutex_unlock(&dev->struct_mutex);
3869 return ret;
3874 return 0;
3878 i915_gem_idle(struct drm_device *dev)
3880 drm_i915_private_t *dev_priv = dev->dev_private;
3881 uint32_t seqno, cur_seqno, last_seqno;
3882 int stuck, ret;
3884 mutex_lock(&dev->struct_mutex);
3886 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3887 mutex_unlock(&dev->struct_mutex);
3888 return 0;
3891 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3892 * We need to replace this with a semaphore, or something.
3894 dev_priv->mm.suspended = 1;
3896 /* Cancel the retire work handler, wait for it to finish if running
3898 mutex_unlock(&dev->struct_mutex);
3899 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3900 mutex_lock(&dev->struct_mutex);
3902 i915_kernel_lost_context(dev);
3904 /* Flush the GPU along with all non-CPU write domains
3906 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3907 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3909 if (seqno == 0) {
3910 mutex_unlock(&dev->struct_mutex);
3911 return -ENOMEM;
3914 dev_priv->mm.waiting_gem_seqno = seqno;
3915 last_seqno = 0;
3916 stuck = 0;
3917 for (;;) {
3918 cur_seqno = i915_get_gem_seqno(dev);
3919 if (i915_seqno_passed(cur_seqno, seqno))
3920 break;
3921 if (last_seqno == cur_seqno) {
3922 if (stuck++ > 100) {
3923 DRM_ERROR("hardware wedged\n");
3924 dev_priv->mm.wedged = 1;
3925 DRM_WAKEUP(&dev_priv->irq_queue);
3926 break;
3929 msleep(10);
3930 last_seqno = cur_seqno;
3932 dev_priv->mm.waiting_gem_seqno = 0;
3934 i915_gem_retire_requests(dev);
3936 spin_lock(&dev_priv->mm.active_list_lock);
3937 if (!dev_priv->mm.wedged) {
3938 /* Active and flushing should now be empty as we've
3939 * waited for a sequence higher than any pending execbuffer
3941 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3942 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3943 /* Request should now be empty as we've also waited
3944 * for the last request in the list
3946 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3949 /* Empty the active and flushing lists to inactive. If there's
3950 * anything left at this point, it means that we're wedged and
3951 * nothing good's going to happen by leaving them there. So strip
3952 * the GPU domains and just stuff them onto inactive.
3954 while (!list_empty(&dev_priv->mm.active_list)) {
3955 struct drm_i915_gem_object *obj_priv;
3957 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3958 struct drm_i915_gem_object,
3959 list);
3960 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3961 i915_gem_object_move_to_inactive(obj_priv->obj);
3963 spin_unlock(&dev_priv->mm.active_list_lock);
3965 while (!list_empty(&dev_priv->mm.flushing_list)) {
3966 struct drm_i915_gem_object *obj_priv;
3968 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3969 struct drm_i915_gem_object,
3970 list);
3971 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3972 i915_gem_object_move_to_inactive(obj_priv->obj);
3976 /* Move all inactive buffers out of the GTT. */
3977 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3978 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3979 if (ret) {
3980 mutex_unlock(&dev->struct_mutex);
3981 return ret;
3984 i915_gem_cleanup_ringbuffer(dev);
3985 mutex_unlock(&dev->struct_mutex);
3987 return 0;
3990 static int
3991 i915_gem_init_hws(struct drm_device *dev)
3993 drm_i915_private_t *dev_priv = dev->dev_private;
3994 struct drm_gem_object *obj;
3995 struct drm_i915_gem_object *obj_priv;
3996 int ret;
3998 /* If we need a physical address for the status page, it's already
3999 * initialized at driver load time.
4001 if (!I915_NEED_GFX_HWS(dev))
4002 return 0;
4004 obj = drm_gem_object_alloc(dev, 4096);
4005 if (obj == NULL) {
4006 DRM_ERROR("Failed to allocate status page\n");
4007 return -ENOMEM;
4009 obj_priv = obj->driver_private;
4010 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4012 ret = i915_gem_object_pin(obj, 4096);
4013 if (ret != 0) {
4014 drm_gem_object_unreference(obj);
4015 return ret;
4018 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4020 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4021 if (dev_priv->hw_status_page == NULL) {
4022 DRM_ERROR("Failed to map status page.\n");
4023 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4024 i915_gem_object_unpin(obj);
4025 drm_gem_object_unreference(obj);
4026 return -EINVAL;
4028 dev_priv->hws_obj = obj;
4029 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4030 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4031 I915_READ(HWS_PGA); /* posting read */
4032 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4034 return 0;
4037 static void
4038 i915_gem_cleanup_hws(struct drm_device *dev)
4040 drm_i915_private_t *dev_priv = dev->dev_private;
4041 struct drm_gem_object *obj;
4042 struct drm_i915_gem_object *obj_priv;
4044 if (dev_priv->hws_obj == NULL)
4045 return;
4047 obj = dev_priv->hws_obj;
4048 obj_priv = obj->driver_private;
4050 kunmap(obj_priv->pages[0]);
4051 i915_gem_object_unpin(obj);
4052 drm_gem_object_unreference(obj);
4053 dev_priv->hws_obj = NULL;
4055 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4056 dev_priv->hw_status_page = NULL;
4058 /* Write high address into HWS_PGA when disabling. */
4059 I915_WRITE(HWS_PGA, 0x1ffff000);
4063 i915_gem_init_ringbuffer(struct drm_device *dev)
4065 drm_i915_private_t *dev_priv = dev->dev_private;
4066 struct drm_gem_object *obj;
4067 struct drm_i915_gem_object *obj_priv;
4068 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4069 int ret;
4070 u32 head;
4072 ret = i915_gem_init_hws(dev);
4073 if (ret != 0)
4074 return ret;
4076 obj = drm_gem_object_alloc(dev, 128 * 1024);
4077 if (obj == NULL) {
4078 DRM_ERROR("Failed to allocate ringbuffer\n");
4079 i915_gem_cleanup_hws(dev);
4080 return -ENOMEM;
4082 obj_priv = obj->driver_private;
4084 ret = i915_gem_object_pin(obj, 4096);
4085 if (ret != 0) {
4086 drm_gem_object_unreference(obj);
4087 i915_gem_cleanup_hws(dev);
4088 return ret;
4091 /* Set up the kernel mapping for the ring. */
4092 ring->Size = obj->size;
4094 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4095 ring->map.size = obj->size;
4096 ring->map.type = 0;
4097 ring->map.flags = 0;
4098 ring->map.mtrr = 0;
4100 drm_core_ioremap_wc(&ring->map, dev);
4101 if (ring->map.handle == NULL) {
4102 DRM_ERROR("Failed to map ringbuffer.\n");
4103 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4104 i915_gem_object_unpin(obj);
4105 drm_gem_object_unreference(obj);
4106 i915_gem_cleanup_hws(dev);
4107 return -EINVAL;
4109 ring->ring_obj = obj;
4110 ring->virtual_start = ring->map.handle;
4112 /* Stop the ring if it's running. */
4113 I915_WRITE(PRB0_CTL, 0);
4114 I915_WRITE(PRB0_TAIL, 0);
4115 I915_WRITE(PRB0_HEAD, 0);
4117 /* Initialize the ring. */
4118 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4119 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4121 /* G45 ring initialization fails to reset head to zero */
4122 if (head != 0) {
4123 DRM_ERROR("Ring head not reset to zero "
4124 "ctl %08x head %08x tail %08x start %08x\n",
4125 I915_READ(PRB0_CTL),
4126 I915_READ(PRB0_HEAD),
4127 I915_READ(PRB0_TAIL),
4128 I915_READ(PRB0_START));
4129 I915_WRITE(PRB0_HEAD, 0);
4131 DRM_ERROR("Ring head forced to zero "
4132 "ctl %08x head %08x tail %08x start %08x\n",
4133 I915_READ(PRB0_CTL),
4134 I915_READ(PRB0_HEAD),
4135 I915_READ(PRB0_TAIL),
4136 I915_READ(PRB0_START));
4139 I915_WRITE(PRB0_CTL,
4140 ((obj->size - 4096) & RING_NR_PAGES) |
4141 RING_NO_REPORT |
4142 RING_VALID);
4144 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4146 /* If the head is still not zero, the ring is dead */
4147 if (head != 0) {
4148 DRM_ERROR("Ring initialization failed "
4149 "ctl %08x head %08x tail %08x start %08x\n",
4150 I915_READ(PRB0_CTL),
4151 I915_READ(PRB0_HEAD),
4152 I915_READ(PRB0_TAIL),
4153 I915_READ(PRB0_START));
4154 return -EIO;
4157 /* Update our cache of the ring state */
4158 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4159 i915_kernel_lost_context(dev);
4160 else {
4161 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4162 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4163 ring->space = ring->head - (ring->tail + 8);
4164 if (ring->space < 0)
4165 ring->space += ring->Size;
4168 return 0;
4171 void
4172 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4174 drm_i915_private_t *dev_priv = dev->dev_private;
4176 if (dev_priv->ring.ring_obj == NULL)
4177 return;
4179 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4181 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4182 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4183 dev_priv->ring.ring_obj = NULL;
4184 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4186 i915_gem_cleanup_hws(dev);
4190 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4191 struct drm_file *file_priv)
4193 drm_i915_private_t *dev_priv = dev->dev_private;
4194 int ret;
4196 if (drm_core_check_feature(dev, DRIVER_MODESET))
4197 return 0;
4199 if (dev_priv->mm.wedged) {
4200 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4201 dev_priv->mm.wedged = 0;
4204 mutex_lock(&dev->struct_mutex);
4205 dev_priv->mm.suspended = 0;
4207 ret = i915_gem_init_ringbuffer(dev);
4208 if (ret != 0) {
4209 mutex_unlock(&dev->struct_mutex);
4210 return ret;
4213 spin_lock(&dev_priv->mm.active_list_lock);
4214 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4215 spin_unlock(&dev_priv->mm.active_list_lock);
4217 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4218 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4219 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4220 mutex_unlock(&dev->struct_mutex);
4222 drm_irq_install(dev);
4224 return 0;
4228 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4229 struct drm_file *file_priv)
4231 int ret;
4233 if (drm_core_check_feature(dev, DRIVER_MODESET))
4234 return 0;
4236 ret = i915_gem_idle(dev);
4237 drm_irq_uninstall(dev);
4239 return ret;
4242 void
4243 i915_gem_lastclose(struct drm_device *dev)
4245 int ret;
4247 if (drm_core_check_feature(dev, DRIVER_MODESET))
4248 return;
4250 ret = i915_gem_idle(dev);
4251 if (ret)
4252 DRM_ERROR("failed to idle hardware: %d\n", ret);
4255 void
4256 i915_gem_load(struct drm_device *dev)
4258 int i;
4259 drm_i915_private_t *dev_priv = dev->dev_private;
4261 spin_lock_init(&dev_priv->mm.active_list_lock);
4262 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4263 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4264 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4265 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4266 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4267 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4268 i915_gem_retire_work_handler);
4269 dev_priv->mm.next_gem_seqno = 1;
4271 /* Old X drivers will take 0-2 for front, back, depth buffers */
4272 dev_priv->fence_reg_start = 3;
4274 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4275 dev_priv->num_fence_regs = 16;
4276 else
4277 dev_priv->num_fence_regs = 8;
4279 /* Initialize fence registers to zero */
4280 if (IS_I965G(dev)) {
4281 for (i = 0; i < 16; i++)
4282 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4283 } else {
4284 for (i = 0; i < 8; i++)
4285 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4286 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4287 for (i = 0; i < 8; i++)
4288 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4291 i915_gem_detect_bit_6_swizzle(dev);
4295 * Create a physically contiguous memory object for this object
4296 * e.g. for cursor + overlay regs
4298 int i915_gem_init_phys_object(struct drm_device *dev,
4299 int id, int size)
4301 drm_i915_private_t *dev_priv = dev->dev_private;
4302 struct drm_i915_gem_phys_object *phys_obj;
4303 int ret;
4305 if (dev_priv->mm.phys_objs[id - 1] || !size)
4306 return 0;
4308 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4309 if (!phys_obj)
4310 return -ENOMEM;
4312 phys_obj->id = id;
4314 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4315 if (!phys_obj->handle) {
4316 ret = -ENOMEM;
4317 goto kfree_obj;
4319 #ifdef CONFIG_X86
4320 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4321 #endif
4323 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4325 return 0;
4326 kfree_obj:
4327 kfree(phys_obj);
4328 return ret;
4331 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4333 drm_i915_private_t *dev_priv = dev->dev_private;
4334 struct drm_i915_gem_phys_object *phys_obj;
4336 if (!dev_priv->mm.phys_objs[id - 1])
4337 return;
4339 phys_obj = dev_priv->mm.phys_objs[id - 1];
4340 if (phys_obj->cur_obj) {
4341 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4344 #ifdef CONFIG_X86
4345 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4346 #endif
4347 drm_pci_free(dev, phys_obj->handle);
4348 kfree(phys_obj);
4349 dev_priv->mm.phys_objs[id - 1] = NULL;
4352 void i915_gem_free_all_phys_object(struct drm_device *dev)
4354 int i;
4356 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4357 i915_gem_free_phys_object(dev, i);
4360 void i915_gem_detach_phys_object(struct drm_device *dev,
4361 struct drm_gem_object *obj)
4363 struct drm_i915_gem_object *obj_priv;
4364 int i;
4365 int ret;
4366 int page_count;
4368 obj_priv = obj->driver_private;
4369 if (!obj_priv->phys_obj)
4370 return;
4372 ret = i915_gem_object_get_pages(obj);
4373 if (ret)
4374 goto out;
4376 page_count = obj->size / PAGE_SIZE;
4378 for (i = 0; i < page_count; i++) {
4379 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4380 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4382 memcpy(dst, src, PAGE_SIZE);
4383 kunmap_atomic(dst, KM_USER0);
4385 drm_clflush_pages(obj_priv->pages, page_count);
4386 drm_agp_chipset_flush(dev);
4388 i915_gem_object_put_pages(obj);
4389 out:
4390 obj_priv->phys_obj->cur_obj = NULL;
4391 obj_priv->phys_obj = NULL;
4395 i915_gem_attach_phys_object(struct drm_device *dev,
4396 struct drm_gem_object *obj, int id)
4398 drm_i915_private_t *dev_priv = dev->dev_private;
4399 struct drm_i915_gem_object *obj_priv;
4400 int ret = 0;
4401 int page_count;
4402 int i;
4404 if (id > I915_MAX_PHYS_OBJECT)
4405 return -EINVAL;
4407 obj_priv = obj->driver_private;
4409 if (obj_priv->phys_obj) {
4410 if (obj_priv->phys_obj->id == id)
4411 return 0;
4412 i915_gem_detach_phys_object(dev, obj);
4416 /* create a new object */
4417 if (!dev_priv->mm.phys_objs[id - 1]) {
4418 ret = i915_gem_init_phys_object(dev, id,
4419 obj->size);
4420 if (ret) {
4421 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4422 goto out;
4426 /* bind to the object */
4427 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4428 obj_priv->phys_obj->cur_obj = obj;
4430 ret = i915_gem_object_get_pages(obj);
4431 if (ret) {
4432 DRM_ERROR("failed to get page list\n");
4433 goto out;
4436 page_count = obj->size / PAGE_SIZE;
4438 for (i = 0; i < page_count; i++) {
4439 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4440 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4442 memcpy(dst, src, PAGE_SIZE);
4443 kunmap_atomic(src, KM_USER0);
4446 i915_gem_object_put_pages(obj);
4448 return 0;
4449 out:
4450 return ret;
4453 static int
4454 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4455 struct drm_i915_gem_pwrite *args,
4456 struct drm_file *file_priv)
4458 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4459 void *obj_addr;
4460 int ret;
4461 char __user *user_data;
4463 user_data = (char __user *) (uintptr_t) args->data_ptr;
4464 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4466 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4467 ret = copy_from_user(obj_addr, user_data, args->size);
4468 if (ret)
4469 return -EFAULT;
4471 drm_agp_chipset_flush(dev);
4472 return 0;
4475 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4477 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4479 /* Clean up our request list when the client is going away, so that
4480 * later retire_requests won't dereference our soon-to-be-gone
4481 * file_priv.
4483 mutex_lock(&dev->struct_mutex);
4484 while (!list_empty(&i915_file_priv->mm.request_list))
4485 list_del_init(i915_file_priv->mm.request_list.next);
4486 mutex_unlock(&dev->struct_mutex);