mm: consider all swapped back pages in used-once logic
[linux-2.6/libata-dev.git] / fs / nfs / direct.c
blob23d170bc44f4b88bea2016983bb7fa7daa2a0ae5
1 /*
2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
54 #include <asm/uaccess.h>
55 #include <linux/atomic.h>
57 #include "internal.h"
58 #include "iostat.h"
59 #include "pnfs.h"
61 #define NFSDBG_FACILITY NFSDBG_VFS
63 static struct kmem_cache *nfs_direct_cachep;
66 * This represents a set of asynchronous requests that we're waiting on
68 struct nfs_direct_req {
69 struct kref kref; /* release manager */
71 /* I/O parameters */
72 struct nfs_open_context *ctx; /* file open context info */
73 struct nfs_lock_context *l_ctx; /* Lock context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
77 /* completion state */
78 atomic_t io_count; /* i/os we're waiting for */
79 spinlock_t lock; /* protect completion state */
80 ssize_t count, /* bytes actually processed */
81 error; /* any reported error */
82 struct completion completion; /* wait for i/o completion */
84 /* commit state */
85 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
86 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
87 struct work_struct work;
88 int flags;
89 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
90 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
91 struct nfs_writeverf verf; /* unstable write verifier */
94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
97 static void nfs_direct_write_schedule_work(struct work_struct *work);
99 static inline void get_dreq(struct nfs_direct_req *dreq)
101 atomic_inc(&dreq->io_count);
104 static inline int put_dreq(struct nfs_direct_req *dreq)
106 return atomic_dec_and_test(&dreq->io_count);
110 * nfs_direct_IO - NFS address space operation for direct I/O
111 * @rw: direction (read or write)
112 * @iocb: target I/O control block
113 * @iov: array of vectors that define I/O buffer
114 * @pos: offset in file to begin the operation
115 * @nr_segs: size of iovec array
117 * The presence of this routine in the address space ops vector means
118 * the NFS client supports direct I/O. However, we shunt off direct
119 * read and write requests before the VFS gets them, so this method
120 * should never be called.
122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
124 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
125 iocb->ki_filp->f_path.dentry->d_name.name,
126 (long long) pos, nr_segs);
128 return -EINVAL;
131 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
133 unsigned int i;
134 for (i = 0; i < npages; i++)
135 page_cache_release(pages[i]);
138 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
139 struct nfs_direct_req *dreq)
141 cinfo->lock = &dreq->lock;
142 cinfo->mds = &dreq->mds_cinfo;
143 cinfo->ds = &dreq->ds_cinfo;
144 cinfo->dreq = dreq;
145 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
150 struct nfs_direct_req *dreq;
152 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
153 if (!dreq)
154 return NULL;
156 kref_init(&dreq->kref);
157 kref_get(&dreq->kref);
158 init_completion(&dreq->completion);
159 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
160 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
161 spin_lock_init(&dreq->lock);
163 return dreq;
166 static void nfs_direct_req_free(struct kref *kref)
168 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
170 if (dreq->l_ctx != NULL)
171 nfs_put_lock_context(dreq->l_ctx);
172 if (dreq->ctx != NULL)
173 put_nfs_open_context(dreq->ctx);
174 kmem_cache_free(nfs_direct_cachep, dreq);
177 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
179 kref_put(&dreq->kref, nfs_direct_req_free);
183 * Collects and returns the final error value/byte-count.
185 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
187 ssize_t result = -EIOCBQUEUED;
189 /* Async requests don't wait here */
190 if (dreq->iocb)
191 goto out;
193 result = wait_for_completion_killable(&dreq->completion);
195 if (!result)
196 result = dreq->error;
197 if (!result)
198 result = dreq->count;
200 out:
201 return (ssize_t) result;
205 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
206 * the iocb is still valid here if this is a synchronous request.
208 static void nfs_direct_complete(struct nfs_direct_req *dreq)
210 if (dreq->iocb) {
211 long res = (long) dreq->error;
212 if (!res)
213 res = (long) dreq->count;
214 aio_complete(dreq->iocb, res, 0);
216 complete_all(&dreq->completion);
218 nfs_direct_req_release(dreq);
221 static void nfs_direct_readpage_release(struct nfs_page *req)
223 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
224 req->wb_context->dentry->d_inode->i_sb->s_id,
225 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
226 req->wb_bytes,
227 (long long)req_offset(req));
228 nfs_release_request(req);
231 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
233 unsigned long bytes = 0;
234 struct nfs_direct_req *dreq = hdr->dreq;
236 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
237 goto out_put;
239 spin_lock(&dreq->lock);
240 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
241 dreq->error = hdr->error;
242 else
243 dreq->count += hdr->good_bytes;
244 spin_unlock(&dreq->lock);
246 while (!list_empty(&hdr->pages)) {
247 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
248 struct page *page = req->wb_page;
250 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
251 if (bytes > hdr->good_bytes)
252 zero_user(page, 0, PAGE_SIZE);
253 else if (hdr->good_bytes - bytes < PAGE_SIZE)
254 zero_user_segment(page,
255 hdr->good_bytes & ~PAGE_MASK,
256 PAGE_SIZE);
258 if (!PageCompound(page)) {
259 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
260 if (bytes < hdr->good_bytes)
261 set_page_dirty(page);
262 } else
263 set_page_dirty(page);
265 bytes += req->wb_bytes;
266 nfs_list_remove_request(req);
267 nfs_direct_readpage_release(req);
269 out_put:
270 if (put_dreq(dreq))
271 nfs_direct_complete(dreq);
272 hdr->release(hdr);
275 static void nfs_read_sync_pgio_error(struct list_head *head)
277 struct nfs_page *req;
279 while (!list_empty(head)) {
280 req = nfs_list_entry(head->next);
281 nfs_list_remove_request(req);
282 nfs_release_request(req);
286 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
288 get_dreq(hdr->dreq);
291 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
292 .error_cleanup = nfs_read_sync_pgio_error,
293 .init_hdr = nfs_direct_pgio_init,
294 .completion = nfs_direct_read_completion,
298 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
299 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
300 * bail and stop sending more reads. Read length accounting is
301 * handled automatically by nfs_direct_read_result(). Otherwise, if
302 * no requests have been sent, just return an error.
304 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
305 const struct iovec *iov,
306 loff_t pos)
308 struct nfs_direct_req *dreq = desc->pg_dreq;
309 struct nfs_open_context *ctx = dreq->ctx;
310 struct inode *inode = ctx->dentry->d_inode;
311 unsigned long user_addr = (unsigned long)iov->iov_base;
312 size_t count = iov->iov_len;
313 size_t rsize = NFS_SERVER(inode)->rsize;
314 unsigned int pgbase;
315 int result;
316 ssize_t started = 0;
317 struct page **pagevec = NULL;
318 unsigned int npages;
320 do {
321 size_t bytes;
322 int i;
324 pgbase = user_addr & ~PAGE_MASK;
325 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
327 result = -ENOMEM;
328 npages = nfs_page_array_len(pgbase, bytes);
329 if (!pagevec)
330 pagevec = kmalloc(npages * sizeof(struct page *),
331 GFP_KERNEL);
332 if (!pagevec)
333 break;
334 down_read(&current->mm->mmap_sem);
335 result = get_user_pages(current, current->mm, user_addr,
336 npages, 1, 0, pagevec, NULL);
337 up_read(&current->mm->mmap_sem);
338 if (result < 0)
339 break;
340 if ((unsigned)result < npages) {
341 bytes = result * PAGE_SIZE;
342 if (bytes <= pgbase) {
343 nfs_direct_release_pages(pagevec, result);
344 break;
346 bytes -= pgbase;
347 npages = result;
350 for (i = 0; i < npages; i++) {
351 struct nfs_page *req;
352 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
353 /* XXX do we need to do the eof zeroing found in async_filler? */
354 req = nfs_create_request(dreq->ctx, dreq->inode,
355 pagevec[i],
356 pgbase, req_len);
357 if (IS_ERR(req)) {
358 result = PTR_ERR(req);
359 break;
361 req->wb_index = pos >> PAGE_SHIFT;
362 req->wb_offset = pos & ~PAGE_MASK;
363 if (!nfs_pageio_add_request(desc, req)) {
364 result = desc->pg_error;
365 nfs_release_request(req);
366 break;
368 pgbase = 0;
369 bytes -= req_len;
370 started += req_len;
371 user_addr += req_len;
372 pos += req_len;
373 count -= req_len;
375 /* The nfs_page now hold references to these pages */
376 nfs_direct_release_pages(pagevec, npages);
377 } while (count != 0 && result >= 0);
379 kfree(pagevec);
381 if (started)
382 return started;
383 return result < 0 ? (ssize_t) result : -EFAULT;
386 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
387 const struct iovec *iov,
388 unsigned long nr_segs,
389 loff_t pos)
391 struct nfs_pageio_descriptor desc;
392 ssize_t result = -EINVAL;
393 size_t requested_bytes = 0;
394 unsigned long seg;
396 nfs_pageio_init_read(&desc, dreq->inode,
397 &nfs_direct_read_completion_ops);
398 get_dreq(dreq);
399 desc.pg_dreq = dreq;
401 for (seg = 0; seg < nr_segs; seg++) {
402 const struct iovec *vec = &iov[seg];
403 result = nfs_direct_read_schedule_segment(&desc, vec, pos);
404 if (result < 0)
405 break;
406 requested_bytes += result;
407 if ((size_t)result < vec->iov_len)
408 break;
409 pos += vec->iov_len;
412 nfs_pageio_complete(&desc);
415 * If no bytes were started, return the error, and let the
416 * generic layer handle the completion.
418 if (requested_bytes == 0) {
419 nfs_direct_req_release(dreq);
420 return result < 0 ? result : -EIO;
423 if (put_dreq(dreq))
424 nfs_direct_complete(dreq);
425 return 0;
428 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
429 unsigned long nr_segs, loff_t pos)
431 ssize_t result = -ENOMEM;
432 struct inode *inode = iocb->ki_filp->f_mapping->host;
433 struct nfs_direct_req *dreq;
435 dreq = nfs_direct_req_alloc();
436 if (dreq == NULL)
437 goto out;
439 dreq->inode = inode;
440 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
441 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
442 if (dreq->l_ctx == NULL)
443 goto out_release;
444 if (!is_sync_kiocb(iocb))
445 dreq->iocb = iocb;
447 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
448 if (!result)
449 result = nfs_direct_wait(dreq);
450 NFS_I(inode)->read_io += result;
451 out_release:
452 nfs_direct_req_release(dreq);
453 out:
454 return result;
457 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
458 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
460 struct nfs_pageio_descriptor desc;
461 struct nfs_page *req, *tmp;
462 LIST_HEAD(reqs);
463 struct nfs_commit_info cinfo;
464 LIST_HEAD(failed);
466 nfs_init_cinfo_from_dreq(&cinfo, dreq);
467 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
468 spin_lock(cinfo.lock);
469 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
470 spin_unlock(cinfo.lock);
472 dreq->count = 0;
473 get_dreq(dreq);
475 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE,
476 &nfs_direct_write_completion_ops);
477 desc.pg_dreq = dreq;
479 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
480 if (!nfs_pageio_add_request(&desc, req)) {
481 nfs_list_add_request(req, &failed);
482 spin_lock(cinfo.lock);
483 dreq->flags = 0;
484 dreq->error = -EIO;
485 spin_unlock(cinfo.lock);
488 nfs_pageio_complete(&desc);
490 while (!list_empty(&failed))
491 nfs_unlock_and_release_request(req);
493 if (put_dreq(dreq))
494 nfs_direct_write_complete(dreq, dreq->inode);
497 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
499 struct nfs_direct_req *dreq = data->dreq;
500 struct nfs_commit_info cinfo;
501 struct nfs_page *req;
502 int status = data->task.tk_status;
504 nfs_init_cinfo_from_dreq(&cinfo, dreq);
505 if (status < 0) {
506 dprintk("NFS: %5u commit failed with error %d.\n",
507 data->task.tk_pid, status);
508 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
509 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
510 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
511 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
514 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
515 while (!list_empty(&data->pages)) {
516 req = nfs_list_entry(data->pages.next);
517 nfs_list_remove_request(req);
518 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
519 /* Note the rewrite will go through mds */
520 kref_get(&req->wb_kref);
521 nfs_mark_request_commit(req, NULL, &cinfo);
523 nfs_unlock_and_release_request(req);
526 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
527 nfs_direct_write_complete(dreq, data->inode);
530 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
532 /* There is no lock to clear */
535 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
536 .completion = nfs_direct_commit_complete,
537 .error_cleanup = nfs_direct_error_cleanup,
540 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
542 int res;
543 struct nfs_commit_info cinfo;
544 LIST_HEAD(mds_list);
546 nfs_init_cinfo_from_dreq(&cinfo, dreq);
547 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
548 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
549 if (res < 0) /* res == -ENOMEM */
550 nfs_direct_write_reschedule(dreq);
553 static void nfs_direct_write_schedule_work(struct work_struct *work)
555 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
556 int flags = dreq->flags;
558 dreq->flags = 0;
559 switch (flags) {
560 case NFS_ODIRECT_DO_COMMIT:
561 nfs_direct_commit_schedule(dreq);
562 break;
563 case NFS_ODIRECT_RESCHED_WRITES:
564 nfs_direct_write_reschedule(dreq);
565 break;
566 default:
567 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
568 nfs_direct_complete(dreq);
572 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
574 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
577 #else
578 static void nfs_direct_write_schedule_work(struct work_struct *work)
582 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
584 nfs_zap_mapping(inode, inode->i_mapping);
585 nfs_direct_complete(dreq);
587 #endif
590 * NB: Return the value of the first error return code. Subsequent
591 * errors after the first one are ignored.
594 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
595 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
596 * bail and stop sending more writes. Write length accounting is
597 * handled automatically by nfs_direct_write_result(). Otherwise, if
598 * no requests have been sent, just return an error.
600 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
601 const struct iovec *iov,
602 loff_t pos)
604 struct nfs_direct_req *dreq = desc->pg_dreq;
605 struct nfs_open_context *ctx = dreq->ctx;
606 struct inode *inode = ctx->dentry->d_inode;
607 unsigned long user_addr = (unsigned long)iov->iov_base;
608 size_t count = iov->iov_len;
609 size_t wsize = NFS_SERVER(inode)->wsize;
610 unsigned int pgbase;
611 int result;
612 ssize_t started = 0;
613 struct page **pagevec = NULL;
614 unsigned int npages;
616 do {
617 size_t bytes;
618 int i;
620 pgbase = user_addr & ~PAGE_MASK;
621 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
623 result = -ENOMEM;
624 npages = nfs_page_array_len(pgbase, bytes);
625 if (!pagevec)
626 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
627 if (!pagevec)
628 break;
630 down_read(&current->mm->mmap_sem);
631 result = get_user_pages(current, current->mm, user_addr,
632 npages, 0, 0, pagevec, NULL);
633 up_read(&current->mm->mmap_sem);
634 if (result < 0)
635 break;
637 if ((unsigned)result < npages) {
638 bytes = result * PAGE_SIZE;
639 if (bytes <= pgbase) {
640 nfs_direct_release_pages(pagevec, result);
641 break;
643 bytes -= pgbase;
644 npages = result;
647 for (i = 0; i < npages; i++) {
648 struct nfs_page *req;
649 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
651 req = nfs_create_request(dreq->ctx, dreq->inode,
652 pagevec[i],
653 pgbase, req_len);
654 if (IS_ERR(req)) {
655 result = PTR_ERR(req);
656 break;
658 nfs_lock_request(req);
659 req->wb_index = pos >> PAGE_SHIFT;
660 req->wb_offset = pos & ~PAGE_MASK;
661 if (!nfs_pageio_add_request(desc, req)) {
662 result = desc->pg_error;
663 nfs_unlock_and_release_request(req);
664 break;
666 pgbase = 0;
667 bytes -= req_len;
668 started += req_len;
669 user_addr += req_len;
670 pos += req_len;
671 count -= req_len;
673 /* The nfs_page now hold references to these pages */
674 nfs_direct_release_pages(pagevec, npages);
675 } while (count != 0 && result >= 0);
677 kfree(pagevec);
679 if (started)
680 return started;
681 return result < 0 ? (ssize_t) result : -EFAULT;
684 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
686 struct nfs_direct_req *dreq = hdr->dreq;
687 struct nfs_commit_info cinfo;
688 int bit = -1;
689 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
691 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
692 goto out_put;
694 nfs_init_cinfo_from_dreq(&cinfo, dreq);
696 spin_lock(&dreq->lock);
698 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
699 dreq->flags = 0;
700 dreq->error = hdr->error;
702 if (dreq->error != 0)
703 bit = NFS_IOHDR_ERROR;
704 else {
705 dreq->count += hdr->good_bytes;
706 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
707 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
708 bit = NFS_IOHDR_NEED_RESCHED;
709 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
710 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
711 bit = NFS_IOHDR_NEED_RESCHED;
712 else if (dreq->flags == 0) {
713 memcpy(&dreq->verf, &req->wb_verf,
714 sizeof(dreq->verf));
715 bit = NFS_IOHDR_NEED_COMMIT;
716 dreq->flags = NFS_ODIRECT_DO_COMMIT;
717 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
718 if (memcmp(&dreq->verf, &req->wb_verf, sizeof(dreq->verf))) {
719 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
720 bit = NFS_IOHDR_NEED_RESCHED;
721 } else
722 bit = NFS_IOHDR_NEED_COMMIT;
726 spin_unlock(&dreq->lock);
728 while (!list_empty(&hdr->pages)) {
729 req = nfs_list_entry(hdr->pages.next);
730 nfs_list_remove_request(req);
731 switch (bit) {
732 case NFS_IOHDR_NEED_RESCHED:
733 case NFS_IOHDR_NEED_COMMIT:
734 kref_get(&req->wb_kref);
735 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
737 nfs_unlock_and_release_request(req);
740 out_put:
741 if (put_dreq(dreq))
742 nfs_direct_write_complete(dreq, hdr->inode);
743 hdr->release(hdr);
746 static void nfs_write_sync_pgio_error(struct list_head *head)
748 struct nfs_page *req;
750 while (!list_empty(head)) {
751 req = nfs_list_entry(head->next);
752 nfs_list_remove_request(req);
753 nfs_unlock_and_release_request(req);
757 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
758 .error_cleanup = nfs_write_sync_pgio_error,
759 .init_hdr = nfs_direct_pgio_init,
760 .completion = nfs_direct_write_completion,
763 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
764 const struct iovec *iov,
765 unsigned long nr_segs,
766 loff_t pos)
768 struct nfs_pageio_descriptor desc;
769 ssize_t result = 0;
770 size_t requested_bytes = 0;
771 unsigned long seg;
773 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_COND_STABLE,
774 &nfs_direct_write_completion_ops);
775 desc.pg_dreq = dreq;
776 get_dreq(dreq);
778 for (seg = 0; seg < nr_segs; seg++) {
779 const struct iovec *vec = &iov[seg];
780 result = nfs_direct_write_schedule_segment(&desc, vec, pos);
781 if (result < 0)
782 break;
783 requested_bytes += result;
784 if ((size_t)result < vec->iov_len)
785 break;
786 pos += vec->iov_len;
788 nfs_pageio_complete(&desc);
789 NFS_I(dreq->inode)->write_io += desc.pg_bytes_written;
792 * If no bytes were started, return the error, and let the
793 * generic layer handle the completion.
795 if (requested_bytes == 0) {
796 nfs_direct_req_release(dreq);
797 return result < 0 ? result : -EIO;
800 if (put_dreq(dreq))
801 nfs_direct_write_complete(dreq, dreq->inode);
802 return 0;
805 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
806 unsigned long nr_segs, loff_t pos,
807 size_t count)
809 ssize_t result = -ENOMEM;
810 struct inode *inode = iocb->ki_filp->f_mapping->host;
811 struct nfs_direct_req *dreq;
813 dreq = nfs_direct_req_alloc();
814 if (!dreq)
815 goto out;
817 dreq->inode = inode;
818 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
819 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
820 if (dreq->l_ctx == NULL)
821 goto out_release;
822 if (!is_sync_kiocb(iocb))
823 dreq->iocb = iocb;
825 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos);
826 if (!result)
827 result = nfs_direct_wait(dreq);
828 out_release:
829 nfs_direct_req_release(dreq);
830 out:
831 return result;
835 * nfs_file_direct_read - file direct read operation for NFS files
836 * @iocb: target I/O control block
837 * @iov: vector of user buffers into which to read data
838 * @nr_segs: size of iov vector
839 * @pos: byte offset in file where reading starts
841 * We use this function for direct reads instead of calling
842 * generic_file_aio_read() in order to avoid gfar's check to see if
843 * the request starts before the end of the file. For that check
844 * to work, we must generate a GETATTR before each direct read, and
845 * even then there is a window between the GETATTR and the subsequent
846 * READ where the file size could change. Our preference is simply
847 * to do all reads the application wants, and the server will take
848 * care of managing the end of file boundary.
850 * This function also eliminates unnecessarily updating the file's
851 * atime locally, as the NFS server sets the file's atime, and this
852 * client must read the updated atime from the server back into its
853 * cache.
855 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
856 unsigned long nr_segs, loff_t pos)
858 ssize_t retval = -EINVAL;
859 struct file *file = iocb->ki_filp;
860 struct address_space *mapping = file->f_mapping;
861 size_t count;
863 count = iov_length(iov, nr_segs);
864 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
866 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
867 file->f_path.dentry->d_parent->d_name.name,
868 file->f_path.dentry->d_name.name,
869 count, (long long) pos);
871 retval = 0;
872 if (!count)
873 goto out;
875 retval = nfs_sync_mapping(mapping);
876 if (retval)
877 goto out;
879 task_io_account_read(count);
881 retval = nfs_direct_read(iocb, iov, nr_segs, pos);
882 if (retval > 0)
883 iocb->ki_pos = pos + retval;
885 out:
886 return retval;
890 * nfs_file_direct_write - file direct write operation for NFS files
891 * @iocb: target I/O control block
892 * @iov: vector of user buffers from which to write data
893 * @nr_segs: size of iov vector
894 * @pos: byte offset in file where writing starts
896 * We use this function for direct writes instead of calling
897 * generic_file_aio_write() in order to avoid taking the inode
898 * semaphore and updating the i_size. The NFS server will set
899 * the new i_size and this client must read the updated size
900 * back into its cache. We let the server do generic write
901 * parameter checking and report problems.
903 * We eliminate local atime updates, see direct read above.
905 * We avoid unnecessary page cache invalidations for normal cached
906 * readers of this file.
908 * Note that O_APPEND is not supported for NFS direct writes, as there
909 * is no atomic O_APPEND write facility in the NFS protocol.
911 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
912 unsigned long nr_segs, loff_t pos)
914 ssize_t retval = -EINVAL;
915 struct file *file = iocb->ki_filp;
916 struct address_space *mapping = file->f_mapping;
917 size_t count;
919 count = iov_length(iov, nr_segs);
920 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
922 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
923 file->f_path.dentry->d_parent->d_name.name,
924 file->f_path.dentry->d_name.name,
925 count, (long long) pos);
927 retval = generic_write_checks(file, &pos, &count, 0);
928 if (retval)
929 goto out;
931 retval = -EINVAL;
932 if ((ssize_t) count < 0)
933 goto out;
934 retval = 0;
935 if (!count)
936 goto out;
938 retval = nfs_sync_mapping(mapping);
939 if (retval)
940 goto out;
942 task_io_account_write(count);
944 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
945 if (retval > 0) {
946 struct inode *inode = mapping->host;
948 iocb->ki_pos = pos + retval;
949 spin_lock(&inode->i_lock);
950 if (i_size_read(inode) < iocb->ki_pos)
951 i_size_write(inode, iocb->ki_pos);
952 spin_unlock(&inode->i_lock);
954 out:
955 return retval;
959 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
962 int __init nfs_init_directcache(void)
964 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
965 sizeof(struct nfs_direct_req),
966 0, (SLAB_RECLAIM_ACCOUNT|
967 SLAB_MEM_SPREAD),
968 NULL);
969 if (nfs_direct_cachep == NULL)
970 return -ENOMEM;
972 return 0;
976 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
979 void nfs_destroy_directcache(void)
981 kmem_cache_destroy(nfs_direct_cachep);