2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/signal.h>
35 #include <asm/param.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/siginfo.h>
39 #include <asm/cacheflush.h>
40 #include "audit.h" /* audit_signal_info() */
43 * SLAB caches for signal bits.
46 static struct kmem_cache
*sigqueue_cachep
;
48 int print_fatal_signals __read_mostly
;
50 static void __user
*sig_handler(struct task_struct
*t
, int sig
)
52 return t
->sighand
->action
[sig
- 1].sa
.sa_handler
;
55 static int sig_handler_ignored(void __user
*handler
, int sig
)
57 /* Is it explicitly or implicitly ignored? */
58 return handler
== SIG_IGN
||
59 (handler
== SIG_DFL
&& sig_kernel_ignore(sig
));
62 static int sig_task_ignored(struct task_struct
*t
, int sig
, bool force
)
66 handler
= sig_handler(t
, sig
);
68 if (unlikely(t
->signal
->flags
& SIGNAL_UNKILLABLE
) &&
69 handler
== SIG_DFL
&& !force
)
72 return sig_handler_ignored(handler
, sig
);
75 static int sig_ignored(struct task_struct
*t
, int sig
, bool force
)
78 * Blocked signals are never ignored, since the
79 * signal handler may change by the time it is
82 if (sigismember(&t
->blocked
, sig
) || sigismember(&t
->real_blocked
, sig
))
85 if (!sig_task_ignored(t
, sig
, force
))
89 * Tracers may want to know about even ignored signals.
95 * Re-calculate pending state from the set of locally pending
96 * signals, globally pending signals, and blocked signals.
98 static inline int has_pending_signals(sigset_t
*signal
, sigset_t
*blocked
)
103 switch (_NSIG_WORDS
) {
105 for (i
= _NSIG_WORDS
, ready
= 0; --i
>= 0 ;)
106 ready
|= signal
->sig
[i
] &~ blocked
->sig
[i
];
109 case 4: ready
= signal
->sig
[3] &~ blocked
->sig
[3];
110 ready
|= signal
->sig
[2] &~ blocked
->sig
[2];
111 ready
|= signal
->sig
[1] &~ blocked
->sig
[1];
112 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
115 case 2: ready
= signal
->sig
[1] &~ blocked
->sig
[1];
116 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
119 case 1: ready
= signal
->sig
[0] &~ blocked
->sig
[0];
124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
126 static int recalc_sigpending_tsk(struct task_struct
*t
)
128 if ((t
->jobctl
& JOBCTL_PENDING_MASK
) ||
129 PENDING(&t
->pending
, &t
->blocked
) ||
130 PENDING(&t
->signal
->shared_pending
, &t
->blocked
)) {
131 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
135 * We must never clear the flag in another thread, or in current
136 * when it's possible the current syscall is returning -ERESTART*.
137 * So we don't clear it here, and only callers who know they should do.
143 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
144 * This is superfluous when called on current, the wakeup is a harmless no-op.
146 void recalc_sigpending_and_wake(struct task_struct
*t
)
148 if (recalc_sigpending_tsk(t
))
149 signal_wake_up(t
, 0);
152 void recalc_sigpending(void)
154 if (!recalc_sigpending_tsk(current
) && !freezing(current
))
155 clear_thread_flag(TIF_SIGPENDING
);
159 /* Given the mask, find the first available signal that should be serviced. */
161 #define SYNCHRONOUS_MASK \
162 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
163 sigmask(SIGTRAP) | sigmask(SIGFPE))
165 int next_signal(struct sigpending
*pending
, sigset_t
*mask
)
167 unsigned long i
, *s
, *m
, x
;
170 s
= pending
->signal
.sig
;
174 * Handle the first word specially: it contains the
175 * synchronous signals that need to be dequeued first.
179 if (x
& SYNCHRONOUS_MASK
)
180 x
&= SYNCHRONOUS_MASK
;
185 switch (_NSIG_WORDS
) {
187 for (i
= 1; i
< _NSIG_WORDS
; ++i
) {
191 sig
= ffz(~x
) + i
*_NSIG_BPW
+ 1;
200 sig
= ffz(~x
) + _NSIG_BPW
+ 1;
211 static inline void print_dropped_signal(int sig
)
213 static DEFINE_RATELIMIT_STATE(ratelimit_state
, 5 * HZ
, 10);
215 if (!print_fatal_signals
)
218 if (!__ratelimit(&ratelimit_state
))
221 printk(KERN_INFO
"%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
222 current
->comm
, current
->pid
, sig
);
226 * task_set_jobctl_pending - set jobctl pending bits
228 * @mask: pending bits to set
230 * Clear @mask from @task->jobctl. @mask must be subset of
231 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
232 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
233 * cleared. If @task is already being killed or exiting, this function
237 * Must be called with @task->sighand->siglock held.
240 * %true if @mask is set, %false if made noop because @task was dying.
242 bool task_set_jobctl_pending(struct task_struct
*task
, unsigned int mask
)
244 BUG_ON(mask
& ~(JOBCTL_PENDING_MASK
| JOBCTL_STOP_CONSUME
|
245 JOBCTL_STOP_SIGMASK
| JOBCTL_TRAPPING
));
246 BUG_ON((mask
& JOBCTL_TRAPPING
) && !(mask
& JOBCTL_PENDING_MASK
));
248 if (unlikely(fatal_signal_pending(task
) || (task
->flags
& PF_EXITING
)))
251 if (mask
& JOBCTL_STOP_SIGMASK
)
252 task
->jobctl
&= ~JOBCTL_STOP_SIGMASK
;
254 task
->jobctl
|= mask
;
259 * task_clear_jobctl_trapping - clear jobctl trapping bit
262 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
263 * Clear it and wake up the ptracer. Note that we don't need any further
264 * locking. @task->siglock guarantees that @task->parent points to the
268 * Must be called with @task->sighand->siglock held.
270 void task_clear_jobctl_trapping(struct task_struct
*task
)
272 if (unlikely(task
->jobctl
& JOBCTL_TRAPPING
)) {
273 task
->jobctl
&= ~JOBCTL_TRAPPING
;
274 wake_up_bit(&task
->jobctl
, JOBCTL_TRAPPING_BIT
);
279 * task_clear_jobctl_pending - clear jobctl pending bits
281 * @mask: pending bits to clear
283 * Clear @mask from @task->jobctl. @mask must be subset of
284 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
285 * STOP bits are cleared together.
287 * If clearing of @mask leaves no stop or trap pending, this function calls
288 * task_clear_jobctl_trapping().
291 * Must be called with @task->sighand->siglock held.
293 void task_clear_jobctl_pending(struct task_struct
*task
, unsigned int mask
)
295 BUG_ON(mask
& ~JOBCTL_PENDING_MASK
);
297 if (mask
& JOBCTL_STOP_PENDING
)
298 mask
|= JOBCTL_STOP_CONSUME
| JOBCTL_STOP_DEQUEUED
;
300 task
->jobctl
&= ~mask
;
302 if (!(task
->jobctl
& JOBCTL_PENDING_MASK
))
303 task_clear_jobctl_trapping(task
);
307 * task_participate_group_stop - participate in a group stop
308 * @task: task participating in a group stop
310 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
311 * Group stop states are cleared and the group stop count is consumed if
312 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
313 * stop, the appropriate %SIGNAL_* flags are set.
316 * Must be called with @task->sighand->siglock held.
319 * %true if group stop completion should be notified to the parent, %false
322 static bool task_participate_group_stop(struct task_struct
*task
)
324 struct signal_struct
*sig
= task
->signal
;
325 bool consume
= task
->jobctl
& JOBCTL_STOP_CONSUME
;
327 WARN_ON_ONCE(!(task
->jobctl
& JOBCTL_STOP_PENDING
));
329 task_clear_jobctl_pending(task
, JOBCTL_STOP_PENDING
);
334 if (!WARN_ON_ONCE(sig
->group_stop_count
== 0))
335 sig
->group_stop_count
--;
338 * Tell the caller to notify completion iff we are entering into a
339 * fresh group stop. Read comment in do_signal_stop() for details.
341 if (!sig
->group_stop_count
&& !(sig
->flags
& SIGNAL_STOP_STOPPED
)) {
342 sig
->flags
= SIGNAL_STOP_STOPPED
;
349 * allocate a new signal queue record
350 * - this may be called without locks if and only if t == current, otherwise an
351 * appropriate lock must be held to stop the target task from exiting
353 static struct sigqueue
*
354 __sigqueue_alloc(int sig
, struct task_struct
*t
, gfp_t flags
, int override_rlimit
)
356 struct sigqueue
*q
= NULL
;
357 struct user_struct
*user
;
360 * Protect access to @t credentials. This can go away when all
361 * callers hold rcu read lock.
364 user
= get_uid(__task_cred(t
)->user
);
365 atomic_inc(&user
->sigpending
);
368 if (override_rlimit
||
369 atomic_read(&user
->sigpending
) <=
370 task_rlimit(t
, RLIMIT_SIGPENDING
)) {
371 q
= kmem_cache_alloc(sigqueue_cachep
, flags
);
373 print_dropped_signal(sig
);
376 if (unlikely(q
== NULL
)) {
377 atomic_dec(&user
->sigpending
);
380 INIT_LIST_HEAD(&q
->list
);
388 static void __sigqueue_free(struct sigqueue
*q
)
390 if (q
->flags
& SIGQUEUE_PREALLOC
)
392 atomic_dec(&q
->user
->sigpending
);
394 kmem_cache_free(sigqueue_cachep
, q
);
397 void flush_sigqueue(struct sigpending
*queue
)
401 sigemptyset(&queue
->signal
);
402 while (!list_empty(&queue
->list
)) {
403 q
= list_entry(queue
->list
.next
, struct sigqueue
, list
);
404 list_del_init(&q
->list
);
410 * Flush all pending signals for a task.
412 void __flush_signals(struct task_struct
*t
)
414 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
415 flush_sigqueue(&t
->pending
);
416 flush_sigqueue(&t
->signal
->shared_pending
);
419 void flush_signals(struct task_struct
*t
)
423 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
425 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
428 static void __flush_itimer_signals(struct sigpending
*pending
)
430 sigset_t signal
, retain
;
431 struct sigqueue
*q
, *n
;
433 signal
= pending
->signal
;
434 sigemptyset(&retain
);
436 list_for_each_entry_safe(q
, n
, &pending
->list
, list
) {
437 int sig
= q
->info
.si_signo
;
439 if (likely(q
->info
.si_code
!= SI_TIMER
)) {
440 sigaddset(&retain
, sig
);
442 sigdelset(&signal
, sig
);
443 list_del_init(&q
->list
);
448 sigorsets(&pending
->signal
, &signal
, &retain
);
451 void flush_itimer_signals(void)
453 struct task_struct
*tsk
= current
;
456 spin_lock_irqsave(&tsk
->sighand
->siglock
, flags
);
457 __flush_itimer_signals(&tsk
->pending
);
458 __flush_itimer_signals(&tsk
->signal
->shared_pending
);
459 spin_unlock_irqrestore(&tsk
->sighand
->siglock
, flags
);
462 void ignore_signals(struct task_struct
*t
)
466 for (i
= 0; i
< _NSIG
; ++i
)
467 t
->sighand
->action
[i
].sa
.sa_handler
= SIG_IGN
;
473 * Flush all handlers for a task.
477 flush_signal_handlers(struct task_struct
*t
, int force_default
)
480 struct k_sigaction
*ka
= &t
->sighand
->action
[0];
481 for (i
= _NSIG
; i
!= 0 ; i
--) {
482 if (force_default
|| ka
->sa
.sa_handler
!= SIG_IGN
)
483 ka
->sa
.sa_handler
= SIG_DFL
;
485 sigemptyset(&ka
->sa
.sa_mask
);
490 int unhandled_signal(struct task_struct
*tsk
, int sig
)
492 void __user
*handler
= tsk
->sighand
->action
[sig
-1].sa
.sa_handler
;
493 if (is_global_init(tsk
))
495 if (handler
!= SIG_IGN
&& handler
!= SIG_DFL
)
497 /* if ptraced, let the tracer determine */
502 * Notify the system that a driver wants to block all signals for this
503 * process, and wants to be notified if any signals at all were to be
504 * sent/acted upon. If the notifier routine returns non-zero, then the
505 * signal will be acted upon after all. If the notifier routine returns 0,
506 * then then signal will be blocked. Only one block per process is
507 * allowed. priv is a pointer to private data that the notifier routine
508 * can use to determine if the signal should be blocked or not.
511 block_all_signals(int (*notifier
)(void *priv
), void *priv
, sigset_t
*mask
)
515 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
516 current
->notifier_mask
= mask
;
517 current
->notifier_data
= priv
;
518 current
->notifier
= notifier
;
519 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
522 /* Notify the system that blocking has ended. */
525 unblock_all_signals(void)
529 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
530 current
->notifier
= NULL
;
531 current
->notifier_data
= NULL
;
533 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
536 static void collect_signal(int sig
, struct sigpending
*list
, siginfo_t
*info
)
538 struct sigqueue
*q
, *first
= NULL
;
541 * Collect the siginfo appropriate to this signal. Check if
542 * there is another siginfo for the same signal.
544 list_for_each_entry(q
, &list
->list
, list
) {
545 if (q
->info
.si_signo
== sig
) {
552 sigdelset(&list
->signal
, sig
);
556 list_del_init(&first
->list
);
557 copy_siginfo(info
, &first
->info
);
558 __sigqueue_free(first
);
561 * Ok, it wasn't in the queue. This must be
562 * a fast-pathed signal or we must have been
563 * out of queue space. So zero out the info.
565 info
->si_signo
= sig
;
567 info
->si_code
= SI_USER
;
573 static int __dequeue_signal(struct sigpending
*pending
, sigset_t
*mask
,
576 int sig
= next_signal(pending
, mask
);
579 if (current
->notifier
) {
580 if (sigismember(current
->notifier_mask
, sig
)) {
581 if (!(current
->notifier
)(current
->notifier_data
)) {
582 clear_thread_flag(TIF_SIGPENDING
);
588 collect_signal(sig
, pending
, info
);
595 * Dequeue a signal and return the element to the caller, which is
596 * expected to free it.
598 * All callers have to hold the siglock.
600 int dequeue_signal(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
)
604 /* We only dequeue private signals from ourselves, we don't let
605 * signalfd steal them
607 signr
= __dequeue_signal(&tsk
->pending
, mask
, info
);
609 signr
= __dequeue_signal(&tsk
->signal
->shared_pending
,
614 * itimers are process shared and we restart periodic
615 * itimers in the signal delivery path to prevent DoS
616 * attacks in the high resolution timer case. This is
617 * compliant with the old way of self-restarting
618 * itimers, as the SIGALRM is a legacy signal and only
619 * queued once. Changing the restart behaviour to
620 * restart the timer in the signal dequeue path is
621 * reducing the timer noise on heavy loaded !highres
624 if (unlikely(signr
== SIGALRM
)) {
625 struct hrtimer
*tmr
= &tsk
->signal
->real_timer
;
627 if (!hrtimer_is_queued(tmr
) &&
628 tsk
->signal
->it_real_incr
.tv64
!= 0) {
629 hrtimer_forward(tmr
, tmr
->base
->get_time(),
630 tsk
->signal
->it_real_incr
);
631 hrtimer_restart(tmr
);
640 if (unlikely(sig_kernel_stop(signr
))) {
642 * Set a marker that we have dequeued a stop signal. Our
643 * caller might release the siglock and then the pending
644 * stop signal it is about to process is no longer in the
645 * pending bitmasks, but must still be cleared by a SIGCONT
646 * (and overruled by a SIGKILL). So those cases clear this
647 * shared flag after we've set it. Note that this flag may
648 * remain set after the signal we return is ignored or
649 * handled. That doesn't matter because its only purpose
650 * is to alert stop-signal processing code when another
651 * processor has come along and cleared the flag.
653 current
->jobctl
|= JOBCTL_STOP_DEQUEUED
;
655 if ((info
->si_code
& __SI_MASK
) == __SI_TIMER
&& info
->si_sys_private
) {
657 * Release the siglock to ensure proper locking order
658 * of timer locks outside of siglocks. Note, we leave
659 * irqs disabled here, since the posix-timers code is
660 * about to disable them again anyway.
662 spin_unlock(&tsk
->sighand
->siglock
);
663 do_schedule_next_timer(info
);
664 spin_lock(&tsk
->sighand
->siglock
);
670 * Tell a process that it has a new active signal..
672 * NOTE! we rely on the previous spin_lock to
673 * lock interrupts for us! We can only be called with
674 * "siglock" held, and the local interrupt must
675 * have been disabled when that got acquired!
677 * No need to set need_resched since signal event passing
678 * goes through ->blocked
680 void signal_wake_up(struct task_struct
*t
, int resume
)
684 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
687 * For SIGKILL, we want to wake it up in the stopped/traced/killable
688 * case. We don't check t->state here because there is a race with it
689 * executing another processor and just now entering stopped state.
690 * By using wake_up_state, we ensure the process will wake up and
691 * handle its death signal.
693 mask
= TASK_INTERRUPTIBLE
;
695 mask
|= TASK_WAKEKILL
;
696 if (!wake_up_state(t
, mask
))
701 * Remove signals in mask from the pending set and queue.
702 * Returns 1 if any signals were found.
704 * All callers must be holding the siglock.
706 * This version takes a sigset mask and looks at all signals,
707 * not just those in the first mask word.
709 static int rm_from_queue_full(sigset_t
*mask
, struct sigpending
*s
)
711 struct sigqueue
*q
, *n
;
714 sigandsets(&m
, mask
, &s
->signal
);
715 if (sigisemptyset(&m
))
718 sigandnsets(&s
->signal
, &s
->signal
, mask
);
719 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
720 if (sigismember(mask
, q
->info
.si_signo
)) {
721 list_del_init(&q
->list
);
728 * Remove signals in mask from the pending set and queue.
729 * Returns 1 if any signals were found.
731 * All callers must be holding the siglock.
733 static int rm_from_queue(unsigned long mask
, struct sigpending
*s
)
735 struct sigqueue
*q
, *n
;
737 if (!sigtestsetmask(&s
->signal
, mask
))
740 sigdelsetmask(&s
->signal
, mask
);
741 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
742 if (q
->info
.si_signo
< SIGRTMIN
&&
743 (mask
& sigmask(q
->info
.si_signo
))) {
744 list_del_init(&q
->list
);
751 static inline int is_si_special(const struct siginfo
*info
)
753 return info
<= SEND_SIG_FORCED
;
756 static inline bool si_fromuser(const struct siginfo
*info
)
758 return info
== SEND_SIG_NOINFO
||
759 (!is_si_special(info
) && SI_FROMUSER(info
));
763 * called with RCU read lock from check_kill_permission()
765 static int kill_ok_by_cred(struct task_struct
*t
)
767 const struct cred
*cred
= current_cred();
768 const struct cred
*tcred
= __task_cred(t
);
770 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
771 (cred
->euid
== tcred
->suid
||
772 cred
->euid
== tcred
->uid
||
773 cred
->uid
== tcred
->suid
||
774 cred
->uid
== tcred
->uid
))
777 if (ns_capable(tcred
->user
->user_ns
, CAP_KILL
))
784 * Bad permissions for sending the signal
785 * - the caller must hold the RCU read lock
787 static int check_kill_permission(int sig
, struct siginfo
*info
,
788 struct task_struct
*t
)
793 if (!valid_signal(sig
))
796 if (!si_fromuser(info
))
799 error
= audit_signal_info(sig
, t
); /* Let audit system see the signal */
803 if (!same_thread_group(current
, t
) &&
804 !kill_ok_by_cred(t
)) {
807 sid
= task_session(t
);
809 * We don't return the error if sid == NULL. The
810 * task was unhashed, the caller must notice this.
812 if (!sid
|| sid
== task_session(current
))
819 return security_task_kill(t
, info
, sig
, 0);
823 * ptrace_trap_notify - schedule trap to notify ptracer
824 * @t: tracee wanting to notify tracer
826 * This function schedules sticky ptrace trap which is cleared on the next
827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
830 * If @t is running, STOP trap will be taken. If trapped for STOP and
831 * ptracer is listening for events, tracee is woken up so that it can
832 * re-trap for the new event. If trapped otherwise, STOP trap will be
833 * eventually taken without returning to userland after the existing traps
834 * are finished by PTRACE_CONT.
837 * Must be called with @task->sighand->siglock held.
839 static void ptrace_trap_notify(struct task_struct
*t
)
841 WARN_ON_ONCE(!(t
->ptrace
& PT_SEIZED
));
842 assert_spin_locked(&t
->sighand
->siglock
);
844 task_set_jobctl_pending(t
, JOBCTL_TRAP_NOTIFY
);
845 signal_wake_up(t
, t
->jobctl
& JOBCTL_LISTENING
);
849 * Handle magic process-wide effects of stop/continue signals. Unlike
850 * the signal actions, these happen immediately at signal-generation
851 * time regardless of blocking, ignoring, or handling. This does the
852 * actual continuing for SIGCONT, but not the actual stopping for stop
853 * signals. The process stop is done as a signal action for SIG_DFL.
855 * Returns true if the signal should be actually delivered, otherwise
856 * it should be dropped.
858 static int prepare_signal(int sig
, struct task_struct
*p
, bool force
)
860 struct signal_struct
*signal
= p
->signal
;
861 struct task_struct
*t
;
863 if (unlikely(signal
->flags
& SIGNAL_GROUP_EXIT
)) {
865 * The process is in the middle of dying, nothing to do.
867 } else if (sig_kernel_stop(sig
)) {
869 * This is a stop signal. Remove SIGCONT from all queues.
871 rm_from_queue(sigmask(SIGCONT
), &signal
->shared_pending
);
874 rm_from_queue(sigmask(SIGCONT
), &t
->pending
);
875 } while_each_thread(p
, t
);
876 } else if (sig
== SIGCONT
) {
879 * Remove all stop signals from all queues, wake all threads.
881 rm_from_queue(SIG_KERNEL_STOP_MASK
, &signal
->shared_pending
);
884 task_clear_jobctl_pending(t
, JOBCTL_STOP_PENDING
);
885 rm_from_queue(SIG_KERNEL_STOP_MASK
, &t
->pending
);
886 if (likely(!(t
->ptrace
& PT_SEIZED
)))
887 wake_up_state(t
, __TASK_STOPPED
);
889 ptrace_trap_notify(t
);
890 } while_each_thread(p
, t
);
893 * Notify the parent with CLD_CONTINUED if we were stopped.
895 * If we were in the middle of a group stop, we pretend it
896 * was already finished, and then continued. Since SIGCHLD
897 * doesn't queue we report only CLD_STOPPED, as if the next
898 * CLD_CONTINUED was dropped.
901 if (signal
->flags
& SIGNAL_STOP_STOPPED
)
902 why
|= SIGNAL_CLD_CONTINUED
;
903 else if (signal
->group_stop_count
)
904 why
|= SIGNAL_CLD_STOPPED
;
908 * The first thread which returns from do_signal_stop()
909 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 * notify its parent. See get_signal_to_deliver().
912 signal
->flags
= why
| SIGNAL_STOP_CONTINUED
;
913 signal
->group_stop_count
= 0;
914 signal
->group_exit_code
= 0;
918 return !sig_ignored(p
, sig
, force
);
922 * Test if P wants to take SIG. After we've checked all threads with this,
923 * it's equivalent to finding no threads not blocking SIG. Any threads not
924 * blocking SIG were ruled out because they are not running and already
925 * have pending signals. Such threads will dequeue from the shared queue
926 * as soon as they're available, so putting the signal on the shared queue
927 * will be equivalent to sending it to one such thread.
929 static inline int wants_signal(int sig
, struct task_struct
*p
)
931 if (sigismember(&p
->blocked
, sig
))
933 if (p
->flags
& PF_EXITING
)
937 if (task_is_stopped_or_traced(p
))
939 return task_curr(p
) || !signal_pending(p
);
942 static void complete_signal(int sig
, struct task_struct
*p
, int group
)
944 struct signal_struct
*signal
= p
->signal
;
945 struct task_struct
*t
;
948 * Now find a thread we can wake up to take the signal off the queue.
950 * If the main thread wants the signal, it gets first crack.
951 * Probably the least surprising to the average bear.
953 if (wants_signal(sig
, p
))
955 else if (!group
|| thread_group_empty(p
))
957 * There is just one thread and it does not need to be woken.
958 * It will dequeue unblocked signals before it runs again.
963 * Otherwise try to find a suitable thread.
965 t
= signal
->curr_target
;
966 while (!wants_signal(sig
, t
)) {
968 if (t
== signal
->curr_target
)
970 * No thread needs to be woken.
971 * Any eligible threads will see
972 * the signal in the queue soon.
976 signal
->curr_target
= t
;
980 * Found a killable thread. If the signal will be fatal,
981 * then start taking the whole group down immediately.
983 if (sig_fatal(p
, sig
) &&
984 !(signal
->flags
& (SIGNAL_UNKILLABLE
| SIGNAL_GROUP_EXIT
)) &&
985 !sigismember(&t
->real_blocked
, sig
) &&
986 (sig
== SIGKILL
|| !t
->ptrace
)) {
988 * This signal will be fatal to the whole group.
990 if (!sig_kernel_coredump(sig
)) {
992 * Start a group exit and wake everybody up.
993 * This way we don't have other threads
994 * running and doing things after a slower
995 * thread has the fatal signal pending.
997 signal
->flags
= SIGNAL_GROUP_EXIT
;
998 signal
->group_exit_code
= sig
;
999 signal
->group_stop_count
= 0;
1002 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
1003 sigaddset(&t
->pending
.signal
, SIGKILL
);
1004 signal_wake_up(t
, 1);
1005 } while_each_thread(p
, t
);
1011 * The signal is already in the shared-pending queue.
1012 * Tell the chosen thread to wake up and dequeue it.
1014 signal_wake_up(t
, sig
== SIGKILL
);
1018 static inline int legacy_queue(struct sigpending
*signals
, int sig
)
1020 return (sig
< SIGRTMIN
) && sigismember(&signals
->signal
, sig
);
1024 * map the uid in struct cred into user namespace *ns
1026 static inline uid_t
map_cred_ns(const struct cred
*cred
,
1027 struct user_namespace
*ns
)
1029 return user_ns_map_uid(ns
, cred
, cred
->uid
);
1032 #ifdef CONFIG_USER_NS
1033 static inline void userns_fixup_signal_uid(struct siginfo
*info
, struct task_struct
*t
)
1035 if (current_user_ns() == task_cred_xxx(t
, user_ns
))
1038 if (SI_FROMKERNEL(info
))
1041 info
->si_uid
= user_ns_map_uid(task_cred_xxx(t
, user_ns
),
1042 current_cred(), info
->si_uid
);
1045 static inline void userns_fixup_signal_uid(struct siginfo
*info
, struct task_struct
*t
)
1051 static int __send_signal(int sig
, struct siginfo
*info
, struct task_struct
*t
,
1052 int group
, int from_ancestor_ns
)
1054 struct sigpending
*pending
;
1056 int override_rlimit
;
1057 int ret
= 0, result
;
1059 assert_spin_locked(&t
->sighand
->siglock
);
1061 result
= TRACE_SIGNAL_IGNORED
;
1062 if (!prepare_signal(sig
, t
,
1063 from_ancestor_ns
|| (info
== SEND_SIG_FORCED
)))
1066 pending
= group
? &t
->signal
->shared_pending
: &t
->pending
;
1068 * Short-circuit ignored signals and support queuing
1069 * exactly one non-rt signal, so that we can get more
1070 * detailed information about the cause of the signal.
1072 result
= TRACE_SIGNAL_ALREADY_PENDING
;
1073 if (legacy_queue(pending
, sig
))
1076 result
= TRACE_SIGNAL_DELIVERED
;
1078 * fast-pathed signals for kernel-internal things like SIGSTOP
1081 if (info
== SEND_SIG_FORCED
)
1085 * Real-time signals must be queued if sent by sigqueue, or
1086 * some other real-time mechanism. It is implementation
1087 * defined whether kill() does so. We attempt to do so, on
1088 * the principle of least surprise, but since kill is not
1089 * allowed to fail with EAGAIN when low on memory we just
1090 * make sure at least one signal gets delivered and don't
1091 * pass on the info struct.
1094 override_rlimit
= (is_si_special(info
) || info
->si_code
>= 0);
1096 override_rlimit
= 0;
1098 q
= __sigqueue_alloc(sig
, t
, GFP_ATOMIC
| __GFP_NOTRACK_FALSE_POSITIVE
,
1101 list_add_tail(&q
->list
, &pending
->list
);
1102 switch ((unsigned long) info
) {
1103 case (unsigned long) SEND_SIG_NOINFO
:
1104 q
->info
.si_signo
= sig
;
1105 q
->info
.si_errno
= 0;
1106 q
->info
.si_code
= SI_USER
;
1107 q
->info
.si_pid
= task_tgid_nr_ns(current
,
1108 task_active_pid_ns(t
));
1109 q
->info
.si_uid
= current_uid();
1111 case (unsigned long) SEND_SIG_PRIV
:
1112 q
->info
.si_signo
= sig
;
1113 q
->info
.si_errno
= 0;
1114 q
->info
.si_code
= SI_KERNEL
;
1119 copy_siginfo(&q
->info
, info
);
1120 if (from_ancestor_ns
)
1125 userns_fixup_signal_uid(&q
->info
, t
);
1127 } else if (!is_si_special(info
)) {
1128 if (sig
>= SIGRTMIN
&& info
->si_code
!= SI_USER
) {
1130 * Queue overflow, abort. We may abort if the
1131 * signal was rt and sent by user using something
1132 * other than kill().
1134 result
= TRACE_SIGNAL_OVERFLOW_FAIL
;
1139 * This is a silent loss of information. We still
1140 * send the signal, but the *info bits are lost.
1142 result
= TRACE_SIGNAL_LOSE_INFO
;
1147 signalfd_notify(t
, sig
);
1148 sigaddset(&pending
->signal
, sig
);
1149 complete_signal(sig
, t
, group
);
1151 trace_signal_generate(sig
, info
, t
, group
, result
);
1155 static int send_signal(int sig
, struct siginfo
*info
, struct task_struct
*t
,
1158 int from_ancestor_ns
= 0;
1160 #ifdef CONFIG_PID_NS
1161 from_ancestor_ns
= si_fromuser(info
) &&
1162 !task_pid_nr_ns(current
, task_active_pid_ns(t
));
1165 return __send_signal(sig
, info
, t
, group
, from_ancestor_ns
);
1168 static void print_fatal_signal(struct pt_regs
*regs
, int signr
)
1170 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1171 current
->comm
, task_pid_nr(current
), signr
);
1173 #if defined(__i386__) && !defined(__arch_um__)
1174 printk("code at %08lx: ", regs
->ip
);
1177 for (i
= 0; i
< 16; i
++) {
1180 if (get_user(insn
, (unsigned char *)(regs
->ip
+ i
)))
1182 printk("%02x ", insn
);
1192 static int __init
setup_print_fatal_signals(char *str
)
1194 get_option (&str
, &print_fatal_signals
);
1199 __setup("print-fatal-signals=", setup_print_fatal_signals
);
1202 __group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1204 return send_signal(sig
, info
, p
, 1);
1208 specific_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
1210 return send_signal(sig
, info
, t
, 0);
1213 int do_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
,
1216 unsigned long flags
;
1219 if (lock_task_sighand(p
, &flags
)) {
1220 ret
= send_signal(sig
, info
, p
, group
);
1221 unlock_task_sighand(p
, &flags
);
1228 * Force a signal that the process can't ignore: if necessary
1229 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1231 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1232 * since we do not want to have a signal handler that was blocked
1233 * be invoked when user space had explicitly blocked it.
1235 * We don't want to have recursive SIGSEGV's etc, for example,
1236 * that is why we also clear SIGNAL_UNKILLABLE.
1239 force_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
1241 unsigned long int flags
;
1242 int ret
, blocked
, ignored
;
1243 struct k_sigaction
*action
;
1245 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
1246 action
= &t
->sighand
->action
[sig
-1];
1247 ignored
= action
->sa
.sa_handler
== SIG_IGN
;
1248 blocked
= sigismember(&t
->blocked
, sig
);
1249 if (blocked
|| ignored
) {
1250 action
->sa
.sa_handler
= SIG_DFL
;
1252 sigdelset(&t
->blocked
, sig
);
1253 recalc_sigpending_and_wake(t
);
1256 if (action
->sa
.sa_handler
== SIG_DFL
)
1257 t
->signal
->flags
&= ~SIGNAL_UNKILLABLE
;
1258 ret
= specific_send_sig_info(sig
, info
, t
);
1259 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
1265 * Nuke all other threads in the group.
1267 int zap_other_threads(struct task_struct
*p
)
1269 struct task_struct
*t
= p
;
1272 p
->signal
->group_stop_count
= 0;
1274 while_each_thread(p
, t
) {
1275 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
1278 /* Don't bother with already dead threads */
1281 sigaddset(&t
->pending
.signal
, SIGKILL
);
1282 signal_wake_up(t
, 1);
1288 struct sighand_struct
*__lock_task_sighand(struct task_struct
*tsk
,
1289 unsigned long *flags
)
1291 struct sighand_struct
*sighand
;
1294 local_irq_save(*flags
);
1296 sighand
= rcu_dereference(tsk
->sighand
);
1297 if (unlikely(sighand
== NULL
)) {
1299 local_irq_restore(*flags
);
1303 spin_lock(&sighand
->siglock
);
1304 if (likely(sighand
== tsk
->sighand
)) {
1308 spin_unlock(&sighand
->siglock
);
1310 local_irq_restore(*flags
);
1317 * send signal info to all the members of a group
1319 int group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1324 ret
= check_kill_permission(sig
, info
, p
);
1328 ret
= do_send_sig_info(sig
, info
, p
, true);
1334 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1335 * control characters do (^C, ^Z etc)
1336 * - the caller must hold at least a readlock on tasklist_lock
1338 int __kill_pgrp_info(int sig
, struct siginfo
*info
, struct pid
*pgrp
)
1340 struct task_struct
*p
= NULL
;
1341 int retval
, success
;
1345 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
1346 int err
= group_send_sig_info(sig
, info
, p
);
1349 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
1350 return success
? 0 : retval
;
1353 int kill_pid_info(int sig
, struct siginfo
*info
, struct pid
*pid
)
1356 struct task_struct
*p
;
1360 p
= pid_task(pid
, PIDTYPE_PID
);
1362 error
= group_send_sig_info(sig
, info
, p
);
1363 if (unlikely(error
== -ESRCH
))
1365 * The task was unhashed in between, try again.
1366 * If it is dead, pid_task() will return NULL,
1367 * if we race with de_thread() it will find the
1377 int kill_proc_info(int sig
, struct siginfo
*info
, pid_t pid
)
1381 error
= kill_pid_info(sig
, info
, find_vpid(pid
));
1386 static int kill_as_cred_perm(const struct cred
*cred
,
1387 struct task_struct
*target
)
1389 const struct cred
*pcred
= __task_cred(target
);
1390 if (cred
->user_ns
!= pcred
->user_ns
)
1392 if (cred
->euid
!= pcred
->suid
&& cred
->euid
!= pcred
->uid
&&
1393 cred
->uid
!= pcred
->suid
&& cred
->uid
!= pcred
->uid
)
1398 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1399 int kill_pid_info_as_cred(int sig
, struct siginfo
*info
, struct pid
*pid
,
1400 const struct cred
*cred
, u32 secid
)
1403 struct task_struct
*p
;
1404 unsigned long flags
;
1406 if (!valid_signal(sig
))
1410 p
= pid_task(pid
, PIDTYPE_PID
);
1415 if (si_fromuser(info
) && !kill_as_cred_perm(cred
, p
)) {
1419 ret
= security_task_kill(p
, info
, sig
, secid
);
1424 if (lock_task_sighand(p
, &flags
)) {
1425 ret
= __send_signal(sig
, info
, p
, 1, 0);
1426 unlock_task_sighand(p
, &flags
);
1434 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred
);
1437 * kill_something_info() interprets pid in interesting ways just like kill(2).
1439 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1440 * is probably wrong. Should make it like BSD or SYSV.
1443 static int kill_something_info(int sig
, struct siginfo
*info
, pid_t pid
)
1449 ret
= kill_pid_info(sig
, info
, find_vpid(pid
));
1454 read_lock(&tasklist_lock
);
1456 ret
= __kill_pgrp_info(sig
, info
,
1457 pid
? find_vpid(-pid
) : task_pgrp(current
));
1459 int retval
= 0, count
= 0;
1460 struct task_struct
* p
;
1462 for_each_process(p
) {
1463 if (task_pid_vnr(p
) > 1 &&
1464 !same_thread_group(p
, current
)) {
1465 int err
= group_send_sig_info(sig
, info
, p
);
1471 ret
= count
? retval
: -ESRCH
;
1473 read_unlock(&tasklist_lock
);
1479 * These are for backward compatibility with the rest of the kernel source.
1482 int send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1485 * Make sure legacy kernel users don't send in bad values
1486 * (normal paths check this in check_kill_permission).
1488 if (!valid_signal(sig
))
1491 return do_send_sig_info(sig
, info
, p
, false);
1494 #define __si_special(priv) \
1495 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1498 send_sig(int sig
, struct task_struct
*p
, int priv
)
1500 return send_sig_info(sig
, __si_special(priv
), p
);
1504 force_sig(int sig
, struct task_struct
*p
)
1506 force_sig_info(sig
, SEND_SIG_PRIV
, p
);
1510 * When things go south during signal handling, we
1511 * will force a SIGSEGV. And if the signal that caused
1512 * the problem was already a SIGSEGV, we'll want to
1513 * make sure we don't even try to deliver the signal..
1516 force_sigsegv(int sig
, struct task_struct
*p
)
1518 if (sig
== SIGSEGV
) {
1519 unsigned long flags
;
1520 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1521 p
->sighand
->action
[sig
- 1].sa
.sa_handler
= SIG_DFL
;
1522 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1524 force_sig(SIGSEGV
, p
);
1528 int kill_pgrp(struct pid
*pid
, int sig
, int priv
)
1532 read_lock(&tasklist_lock
);
1533 ret
= __kill_pgrp_info(sig
, __si_special(priv
), pid
);
1534 read_unlock(&tasklist_lock
);
1538 EXPORT_SYMBOL(kill_pgrp
);
1540 int kill_pid(struct pid
*pid
, int sig
, int priv
)
1542 return kill_pid_info(sig
, __si_special(priv
), pid
);
1544 EXPORT_SYMBOL(kill_pid
);
1547 * These functions support sending signals using preallocated sigqueue
1548 * structures. This is needed "because realtime applications cannot
1549 * afford to lose notifications of asynchronous events, like timer
1550 * expirations or I/O completions". In the case of POSIX Timers
1551 * we allocate the sigqueue structure from the timer_create. If this
1552 * allocation fails we are able to report the failure to the application
1553 * with an EAGAIN error.
1555 struct sigqueue
*sigqueue_alloc(void)
1557 struct sigqueue
*q
= __sigqueue_alloc(-1, current
, GFP_KERNEL
, 0);
1560 q
->flags
|= SIGQUEUE_PREALLOC
;
1565 void sigqueue_free(struct sigqueue
*q
)
1567 unsigned long flags
;
1568 spinlock_t
*lock
= ¤t
->sighand
->siglock
;
1570 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1572 * We must hold ->siglock while testing q->list
1573 * to serialize with collect_signal() or with
1574 * __exit_signal()->flush_sigqueue().
1576 spin_lock_irqsave(lock
, flags
);
1577 q
->flags
&= ~SIGQUEUE_PREALLOC
;
1579 * If it is queued it will be freed when dequeued,
1580 * like the "regular" sigqueue.
1582 if (!list_empty(&q
->list
))
1584 spin_unlock_irqrestore(lock
, flags
);
1590 int send_sigqueue(struct sigqueue
*q
, struct task_struct
*t
, int group
)
1592 int sig
= q
->info
.si_signo
;
1593 struct sigpending
*pending
;
1594 unsigned long flags
;
1597 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1600 if (!likely(lock_task_sighand(t
, &flags
)))
1603 ret
= 1; /* the signal is ignored */
1604 result
= TRACE_SIGNAL_IGNORED
;
1605 if (!prepare_signal(sig
, t
, false))
1609 if (unlikely(!list_empty(&q
->list
))) {
1611 * If an SI_TIMER entry is already queue just increment
1612 * the overrun count.
1614 BUG_ON(q
->info
.si_code
!= SI_TIMER
);
1615 q
->info
.si_overrun
++;
1616 result
= TRACE_SIGNAL_ALREADY_PENDING
;
1619 q
->info
.si_overrun
= 0;
1621 signalfd_notify(t
, sig
);
1622 pending
= group
? &t
->signal
->shared_pending
: &t
->pending
;
1623 list_add_tail(&q
->list
, &pending
->list
);
1624 sigaddset(&pending
->signal
, sig
);
1625 complete_signal(sig
, t
, group
);
1626 result
= TRACE_SIGNAL_DELIVERED
;
1628 trace_signal_generate(sig
, &q
->info
, t
, group
, result
);
1629 unlock_task_sighand(t
, &flags
);
1635 * Let a parent know about the death of a child.
1636 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1638 * Returns true if our parent ignored us and so we've switched to
1641 bool do_notify_parent(struct task_struct
*tsk
, int sig
)
1643 struct siginfo info
;
1644 unsigned long flags
;
1645 struct sighand_struct
*psig
;
1646 bool autoreap
= false;
1650 /* do_notify_parent_cldstop should have been called instead. */
1651 BUG_ON(task_is_stopped_or_traced(tsk
));
1653 BUG_ON(!tsk
->ptrace
&&
1654 (tsk
->group_leader
!= tsk
|| !thread_group_empty(tsk
)));
1656 if (sig
!= SIGCHLD
) {
1658 * This is only possible if parent == real_parent.
1659 * Check if it has changed security domain.
1661 if (tsk
->parent_exec_id
!= tsk
->parent
->self_exec_id
)
1665 info
.si_signo
= sig
;
1668 * we are under tasklist_lock here so our parent is tied to
1669 * us and cannot exit and release its namespace.
1671 * the only it can is to switch its nsproxy with sys_unshare,
1672 * bu uncharing pid namespaces is not allowed, so we'll always
1673 * see relevant namespace
1675 * write_lock() currently calls preempt_disable() which is the
1676 * same as rcu_read_lock(), but according to Oleg, this is not
1677 * correct to rely on this
1680 info
.si_pid
= task_pid_nr_ns(tsk
, tsk
->parent
->nsproxy
->pid_ns
);
1681 info
.si_uid
= map_cred_ns(__task_cred(tsk
),
1682 task_cred_xxx(tsk
->parent
, user_ns
));
1685 info
.si_utime
= cputime_to_clock_t(tsk
->utime
+ tsk
->signal
->utime
);
1686 info
.si_stime
= cputime_to_clock_t(tsk
->stime
+ tsk
->signal
->stime
);
1688 info
.si_status
= tsk
->exit_code
& 0x7f;
1689 if (tsk
->exit_code
& 0x80)
1690 info
.si_code
= CLD_DUMPED
;
1691 else if (tsk
->exit_code
& 0x7f)
1692 info
.si_code
= CLD_KILLED
;
1694 info
.si_code
= CLD_EXITED
;
1695 info
.si_status
= tsk
->exit_code
>> 8;
1698 psig
= tsk
->parent
->sighand
;
1699 spin_lock_irqsave(&psig
->siglock
, flags
);
1700 if (!tsk
->ptrace
&& sig
== SIGCHLD
&&
1701 (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
||
1702 (psig
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDWAIT
))) {
1704 * We are exiting and our parent doesn't care. POSIX.1
1705 * defines special semantics for setting SIGCHLD to SIG_IGN
1706 * or setting the SA_NOCLDWAIT flag: we should be reaped
1707 * automatically and not left for our parent's wait4 call.
1708 * Rather than having the parent do it as a magic kind of
1709 * signal handler, we just set this to tell do_exit that we
1710 * can be cleaned up without becoming a zombie. Note that
1711 * we still call __wake_up_parent in this case, because a
1712 * blocked sys_wait4 might now return -ECHILD.
1714 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1715 * is implementation-defined: we do (if you don't want
1716 * it, just use SIG_IGN instead).
1719 if (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
)
1722 if (valid_signal(sig
) && sig
)
1723 __group_send_sig_info(sig
, &info
, tsk
->parent
);
1724 __wake_up_parent(tsk
, tsk
->parent
);
1725 spin_unlock_irqrestore(&psig
->siglock
, flags
);
1731 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1732 * @tsk: task reporting the state change
1733 * @for_ptracer: the notification is for ptracer
1734 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1736 * Notify @tsk's parent that the stopped/continued state has changed. If
1737 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1738 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1741 * Must be called with tasklist_lock at least read locked.
1743 static void do_notify_parent_cldstop(struct task_struct
*tsk
,
1744 bool for_ptracer
, int why
)
1746 struct siginfo info
;
1747 unsigned long flags
;
1748 struct task_struct
*parent
;
1749 struct sighand_struct
*sighand
;
1752 parent
= tsk
->parent
;
1754 tsk
= tsk
->group_leader
;
1755 parent
= tsk
->real_parent
;
1758 info
.si_signo
= SIGCHLD
;
1761 * see comment in do_notify_parent() about the following 4 lines
1764 info
.si_pid
= task_pid_nr_ns(tsk
, parent
->nsproxy
->pid_ns
);
1765 info
.si_uid
= map_cred_ns(__task_cred(tsk
),
1766 task_cred_xxx(parent
, user_ns
));
1769 info
.si_utime
= cputime_to_clock_t(tsk
->utime
);
1770 info
.si_stime
= cputime_to_clock_t(tsk
->stime
);
1775 info
.si_status
= SIGCONT
;
1778 info
.si_status
= tsk
->signal
->group_exit_code
& 0x7f;
1781 info
.si_status
= tsk
->exit_code
& 0x7f;
1787 sighand
= parent
->sighand
;
1788 spin_lock_irqsave(&sighand
->siglock
, flags
);
1789 if (sighand
->action
[SIGCHLD
-1].sa
.sa_handler
!= SIG_IGN
&&
1790 !(sighand
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDSTOP
))
1791 __group_send_sig_info(SIGCHLD
, &info
, parent
);
1793 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1795 __wake_up_parent(tsk
, parent
);
1796 spin_unlock_irqrestore(&sighand
->siglock
, flags
);
1799 static inline int may_ptrace_stop(void)
1801 if (!likely(current
->ptrace
))
1804 * Are we in the middle of do_coredump?
1805 * If so and our tracer is also part of the coredump stopping
1806 * is a deadlock situation, and pointless because our tracer
1807 * is dead so don't allow us to stop.
1808 * If SIGKILL was already sent before the caller unlocked
1809 * ->siglock we must see ->core_state != NULL. Otherwise it
1810 * is safe to enter schedule().
1812 if (unlikely(current
->mm
->core_state
) &&
1813 unlikely(current
->mm
== current
->parent
->mm
))
1820 * Return non-zero if there is a SIGKILL that should be waking us up.
1821 * Called with the siglock held.
1823 static int sigkill_pending(struct task_struct
*tsk
)
1825 return sigismember(&tsk
->pending
.signal
, SIGKILL
) ||
1826 sigismember(&tsk
->signal
->shared_pending
.signal
, SIGKILL
);
1830 * This must be called with current->sighand->siglock held.
1832 * This should be the path for all ptrace stops.
1833 * We always set current->last_siginfo while stopped here.
1834 * That makes it a way to test a stopped process for
1835 * being ptrace-stopped vs being job-control-stopped.
1837 * If we actually decide not to stop at all because the tracer
1838 * is gone, we keep current->exit_code unless clear_code.
1840 static void ptrace_stop(int exit_code
, int why
, int clear_code
, siginfo_t
*info
)
1841 __releases(¤t
->sighand
->siglock
)
1842 __acquires(¤t
->sighand
->siglock
)
1844 bool gstop_done
= false;
1846 if (arch_ptrace_stop_needed(exit_code
, info
)) {
1848 * The arch code has something special to do before a
1849 * ptrace stop. This is allowed to block, e.g. for faults
1850 * on user stack pages. We can't keep the siglock while
1851 * calling arch_ptrace_stop, so we must release it now.
1852 * To preserve proper semantics, we must do this before
1853 * any signal bookkeeping like checking group_stop_count.
1854 * Meanwhile, a SIGKILL could come in before we retake the
1855 * siglock. That must prevent us from sleeping in TASK_TRACED.
1856 * So after regaining the lock, we must check for SIGKILL.
1858 spin_unlock_irq(¤t
->sighand
->siglock
);
1859 arch_ptrace_stop(exit_code
, info
);
1860 spin_lock_irq(¤t
->sighand
->siglock
);
1861 if (sigkill_pending(current
))
1866 * We're committing to trapping. TRACED should be visible before
1867 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1868 * Also, transition to TRACED and updates to ->jobctl should be
1869 * atomic with respect to siglock and should be done after the arch
1870 * hook as siglock is released and regrabbed across it.
1872 set_current_state(TASK_TRACED
);
1874 current
->last_siginfo
= info
;
1875 current
->exit_code
= exit_code
;
1878 * If @why is CLD_STOPPED, we're trapping to participate in a group
1879 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1880 * across siglock relocks since INTERRUPT was scheduled, PENDING
1881 * could be clear now. We act as if SIGCONT is received after
1882 * TASK_TRACED is entered - ignore it.
1884 if (why
== CLD_STOPPED
&& (current
->jobctl
& JOBCTL_STOP_PENDING
))
1885 gstop_done
= task_participate_group_stop(current
);
1887 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1888 task_clear_jobctl_pending(current
, JOBCTL_TRAP_STOP
);
1889 if (info
&& info
->si_code
>> 8 == PTRACE_EVENT_STOP
)
1890 task_clear_jobctl_pending(current
, JOBCTL_TRAP_NOTIFY
);
1892 /* entering a trap, clear TRAPPING */
1893 task_clear_jobctl_trapping(current
);
1895 spin_unlock_irq(¤t
->sighand
->siglock
);
1896 read_lock(&tasklist_lock
);
1897 if (may_ptrace_stop()) {
1899 * Notify parents of the stop.
1901 * While ptraced, there are two parents - the ptracer and
1902 * the real_parent of the group_leader. The ptracer should
1903 * know about every stop while the real parent is only
1904 * interested in the completion of group stop. The states
1905 * for the two don't interact with each other. Notify
1906 * separately unless they're gonna be duplicates.
1908 do_notify_parent_cldstop(current
, true, why
);
1909 if (gstop_done
&& ptrace_reparented(current
))
1910 do_notify_parent_cldstop(current
, false, why
);
1913 * Don't want to allow preemption here, because
1914 * sys_ptrace() needs this task to be inactive.
1916 * XXX: implement read_unlock_no_resched().
1919 read_unlock(&tasklist_lock
);
1920 preempt_enable_no_resched();
1924 * By the time we got the lock, our tracer went away.
1925 * Don't drop the lock yet, another tracer may come.
1927 * If @gstop_done, the ptracer went away between group stop
1928 * completion and here. During detach, it would have set
1929 * JOBCTL_STOP_PENDING on us and we'll re-enter
1930 * TASK_STOPPED in do_signal_stop() on return, so notifying
1931 * the real parent of the group stop completion is enough.
1934 do_notify_parent_cldstop(current
, false, why
);
1936 __set_current_state(TASK_RUNNING
);
1938 current
->exit_code
= 0;
1939 read_unlock(&tasklist_lock
);
1943 * While in TASK_TRACED, we were considered "frozen enough".
1944 * Now that we woke up, it's crucial if we're supposed to be
1945 * frozen that we freeze now before running anything substantial.
1950 * We are back. Now reacquire the siglock before touching
1951 * last_siginfo, so that we are sure to have synchronized with
1952 * any signal-sending on another CPU that wants to examine it.
1954 spin_lock_irq(¤t
->sighand
->siglock
);
1955 current
->last_siginfo
= NULL
;
1957 /* LISTENING can be set only during STOP traps, clear it */
1958 current
->jobctl
&= ~JOBCTL_LISTENING
;
1961 * Queued signals ignored us while we were stopped for tracing.
1962 * So check for any that we should take before resuming user mode.
1963 * This sets TIF_SIGPENDING, but never clears it.
1965 recalc_sigpending_tsk(current
);
1968 static void ptrace_do_notify(int signr
, int exit_code
, int why
)
1972 memset(&info
, 0, sizeof info
);
1973 info
.si_signo
= signr
;
1974 info
.si_code
= exit_code
;
1975 info
.si_pid
= task_pid_vnr(current
);
1976 info
.si_uid
= current_uid();
1978 /* Let the debugger run. */
1979 ptrace_stop(exit_code
, why
, 1, &info
);
1982 void ptrace_notify(int exit_code
)
1984 BUG_ON((exit_code
& (0x7f | ~0xffff)) != SIGTRAP
);
1986 spin_lock_irq(¤t
->sighand
->siglock
);
1987 ptrace_do_notify(SIGTRAP
, exit_code
, CLD_TRAPPED
);
1988 spin_unlock_irq(¤t
->sighand
->siglock
);
1992 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1993 * @signr: signr causing group stop if initiating
1995 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1996 * and participate in it. If already set, participate in the existing
1997 * group stop. If participated in a group stop (and thus slept), %true is
1998 * returned with siglock released.
2000 * If ptraced, this function doesn't handle stop itself. Instead,
2001 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2002 * untouched. The caller must ensure that INTERRUPT trap handling takes
2003 * places afterwards.
2006 * Must be called with @current->sighand->siglock held, which is released
2010 * %false if group stop is already cancelled or ptrace trap is scheduled.
2011 * %true if participated in group stop.
2013 static bool do_signal_stop(int signr
)
2014 __releases(¤t
->sighand
->siglock
)
2016 struct signal_struct
*sig
= current
->signal
;
2018 if (!(current
->jobctl
& JOBCTL_STOP_PENDING
)) {
2019 unsigned int gstop
= JOBCTL_STOP_PENDING
| JOBCTL_STOP_CONSUME
;
2020 struct task_struct
*t
;
2022 /* signr will be recorded in task->jobctl for retries */
2023 WARN_ON_ONCE(signr
& ~JOBCTL_STOP_SIGMASK
);
2025 if (!likely(current
->jobctl
& JOBCTL_STOP_DEQUEUED
) ||
2026 unlikely(signal_group_exit(sig
)))
2029 * There is no group stop already in progress. We must
2032 * While ptraced, a task may be resumed while group stop is
2033 * still in effect and then receive a stop signal and
2034 * initiate another group stop. This deviates from the
2035 * usual behavior as two consecutive stop signals can't
2036 * cause two group stops when !ptraced. That is why we
2037 * also check !task_is_stopped(t) below.
2039 * The condition can be distinguished by testing whether
2040 * SIGNAL_STOP_STOPPED is already set. Don't generate
2041 * group_exit_code in such case.
2043 * This is not necessary for SIGNAL_STOP_CONTINUED because
2044 * an intervening stop signal is required to cause two
2045 * continued events regardless of ptrace.
2047 if (!(sig
->flags
& SIGNAL_STOP_STOPPED
))
2048 sig
->group_exit_code
= signr
;
2050 sig
->group_stop_count
= 0;
2052 if (task_set_jobctl_pending(current
, signr
| gstop
))
2053 sig
->group_stop_count
++;
2055 for (t
= next_thread(current
); t
!= current
;
2056 t
= next_thread(t
)) {
2058 * Setting state to TASK_STOPPED for a group
2059 * stop is always done with the siglock held,
2060 * so this check has no races.
2062 if (!task_is_stopped(t
) &&
2063 task_set_jobctl_pending(t
, signr
| gstop
)) {
2064 sig
->group_stop_count
++;
2065 if (likely(!(t
->ptrace
& PT_SEIZED
)))
2066 signal_wake_up(t
, 0);
2068 ptrace_trap_notify(t
);
2073 if (likely(!current
->ptrace
)) {
2077 * If there are no other threads in the group, or if there
2078 * is a group stop in progress and we are the last to stop,
2079 * report to the parent.
2081 if (task_participate_group_stop(current
))
2082 notify
= CLD_STOPPED
;
2084 __set_current_state(TASK_STOPPED
);
2085 spin_unlock_irq(¤t
->sighand
->siglock
);
2088 * Notify the parent of the group stop completion. Because
2089 * we're not holding either the siglock or tasklist_lock
2090 * here, ptracer may attach inbetween; however, this is for
2091 * group stop and should always be delivered to the real
2092 * parent of the group leader. The new ptracer will get
2093 * its notification when this task transitions into
2097 read_lock(&tasklist_lock
);
2098 do_notify_parent_cldstop(current
, false, notify
);
2099 read_unlock(&tasklist_lock
);
2102 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2107 * While ptraced, group stop is handled by STOP trap.
2108 * Schedule it and let the caller deal with it.
2110 task_set_jobctl_pending(current
, JOBCTL_TRAP_STOP
);
2116 * do_jobctl_trap - take care of ptrace jobctl traps
2118 * When PT_SEIZED, it's used for both group stop and explicit
2119 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2120 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2121 * the stop signal; otherwise, %SIGTRAP.
2123 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2124 * number as exit_code and no siginfo.
2127 * Must be called with @current->sighand->siglock held, which may be
2128 * released and re-acquired before returning with intervening sleep.
2130 static void do_jobctl_trap(void)
2132 struct signal_struct
*signal
= current
->signal
;
2133 int signr
= current
->jobctl
& JOBCTL_STOP_SIGMASK
;
2135 if (current
->ptrace
& PT_SEIZED
) {
2136 if (!signal
->group_stop_count
&&
2137 !(signal
->flags
& SIGNAL_STOP_STOPPED
))
2139 WARN_ON_ONCE(!signr
);
2140 ptrace_do_notify(signr
, signr
| (PTRACE_EVENT_STOP
<< 8),
2143 WARN_ON_ONCE(!signr
);
2144 ptrace_stop(signr
, CLD_STOPPED
, 0, NULL
);
2145 current
->exit_code
= 0;
2149 static int ptrace_signal(int signr
, siginfo_t
*info
,
2150 struct pt_regs
*regs
, void *cookie
)
2152 ptrace_signal_deliver(regs
, cookie
);
2154 * We do not check sig_kernel_stop(signr) but set this marker
2155 * unconditionally because we do not know whether debugger will
2156 * change signr. This flag has no meaning unless we are going
2157 * to stop after return from ptrace_stop(). In this case it will
2158 * be checked in do_signal_stop(), we should only stop if it was
2159 * not cleared by SIGCONT while we were sleeping. See also the
2160 * comment in dequeue_signal().
2162 current
->jobctl
|= JOBCTL_STOP_DEQUEUED
;
2163 ptrace_stop(signr
, CLD_TRAPPED
, 0, info
);
2165 /* We're back. Did the debugger cancel the sig? */
2166 signr
= current
->exit_code
;
2170 current
->exit_code
= 0;
2173 * Update the siginfo structure if the signal has
2174 * changed. If the debugger wanted something
2175 * specific in the siginfo structure then it should
2176 * have updated *info via PTRACE_SETSIGINFO.
2178 if (signr
!= info
->si_signo
) {
2179 info
->si_signo
= signr
;
2181 info
->si_code
= SI_USER
;
2183 info
->si_pid
= task_pid_vnr(current
->parent
);
2184 info
->si_uid
= map_cred_ns(__task_cred(current
->parent
),
2189 /* If the (new) signal is now blocked, requeue it. */
2190 if (sigismember(¤t
->blocked
, signr
)) {
2191 specific_send_sig_info(signr
, info
, current
);
2198 int get_signal_to_deliver(siginfo_t
*info
, struct k_sigaction
*return_ka
,
2199 struct pt_regs
*regs
, void *cookie
)
2201 struct sighand_struct
*sighand
= current
->sighand
;
2202 struct signal_struct
*signal
= current
->signal
;
2207 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2208 * While in TASK_STOPPED, we were considered "frozen enough".
2209 * Now that we woke up, it's crucial if we're supposed to be
2210 * frozen that we freeze now before running anything substantial.
2214 spin_lock_irq(&sighand
->siglock
);
2216 * Every stopped thread goes here after wakeup. Check to see if
2217 * we should notify the parent, prepare_signal(SIGCONT) encodes
2218 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2220 if (unlikely(signal
->flags
& SIGNAL_CLD_MASK
)) {
2223 if (signal
->flags
& SIGNAL_CLD_CONTINUED
)
2224 why
= CLD_CONTINUED
;
2228 signal
->flags
&= ~SIGNAL_CLD_MASK
;
2230 spin_unlock_irq(&sighand
->siglock
);
2233 * Notify the parent that we're continuing. This event is
2234 * always per-process and doesn't make whole lot of sense
2235 * for ptracers, who shouldn't consume the state via
2236 * wait(2) either, but, for backward compatibility, notify
2237 * the ptracer of the group leader too unless it's gonna be
2240 read_lock(&tasklist_lock
);
2241 do_notify_parent_cldstop(current
, false, why
);
2243 if (ptrace_reparented(current
->group_leader
))
2244 do_notify_parent_cldstop(current
->group_leader
,
2246 read_unlock(&tasklist_lock
);
2252 struct k_sigaction
*ka
;
2254 if (unlikely(current
->jobctl
& JOBCTL_STOP_PENDING
) &&
2258 if (unlikely(current
->jobctl
& JOBCTL_TRAP_MASK
)) {
2260 spin_unlock_irq(&sighand
->siglock
);
2264 signr
= dequeue_signal(current
, ¤t
->blocked
, info
);
2267 break; /* will return 0 */
2269 if (unlikely(current
->ptrace
) && signr
!= SIGKILL
) {
2270 signr
= ptrace_signal(signr
, info
,
2276 ka
= &sighand
->action
[signr
-1];
2278 /* Trace actually delivered signals. */
2279 trace_signal_deliver(signr
, info
, ka
);
2281 if (ka
->sa
.sa_handler
== SIG_IGN
) /* Do nothing. */
2283 if (ka
->sa
.sa_handler
!= SIG_DFL
) {
2284 /* Run the handler. */
2287 if (ka
->sa
.sa_flags
& SA_ONESHOT
)
2288 ka
->sa
.sa_handler
= SIG_DFL
;
2290 break; /* will return non-zero "signr" value */
2294 * Now we are doing the default action for this signal.
2296 if (sig_kernel_ignore(signr
)) /* Default is nothing. */
2300 * Global init gets no signals it doesn't want.
2301 * Container-init gets no signals it doesn't want from same
2304 * Note that if global/container-init sees a sig_kernel_only()
2305 * signal here, the signal must have been generated internally
2306 * or must have come from an ancestor namespace. In either
2307 * case, the signal cannot be dropped.
2309 if (unlikely(signal
->flags
& SIGNAL_UNKILLABLE
) &&
2310 !sig_kernel_only(signr
))
2313 if (sig_kernel_stop(signr
)) {
2315 * The default action is to stop all threads in
2316 * the thread group. The job control signals
2317 * do nothing in an orphaned pgrp, but SIGSTOP
2318 * always works. Note that siglock needs to be
2319 * dropped during the call to is_orphaned_pgrp()
2320 * because of lock ordering with tasklist_lock.
2321 * This allows an intervening SIGCONT to be posted.
2322 * We need to check for that and bail out if necessary.
2324 if (signr
!= SIGSTOP
) {
2325 spin_unlock_irq(&sighand
->siglock
);
2327 /* signals can be posted during this window */
2329 if (is_current_pgrp_orphaned())
2332 spin_lock_irq(&sighand
->siglock
);
2335 if (likely(do_signal_stop(info
->si_signo
))) {
2336 /* It released the siglock. */
2341 * We didn't actually stop, due to a race
2342 * with SIGCONT or something like that.
2347 spin_unlock_irq(&sighand
->siglock
);
2350 * Anything else is fatal, maybe with a core dump.
2352 current
->flags
|= PF_SIGNALED
;
2354 if (sig_kernel_coredump(signr
)) {
2355 if (print_fatal_signals
)
2356 print_fatal_signal(regs
, info
->si_signo
);
2358 * If it was able to dump core, this kills all
2359 * other threads in the group and synchronizes with
2360 * their demise. If we lost the race with another
2361 * thread getting here, it set group_exit_code
2362 * first and our do_group_exit call below will use
2363 * that value and ignore the one we pass it.
2365 do_coredump(info
->si_signo
, info
->si_signo
, regs
);
2369 * Death signals, no core dump.
2371 do_group_exit(info
->si_signo
);
2374 spin_unlock_irq(&sighand
->siglock
);
2379 * block_sigmask - add @ka's signal mask to current->blocked
2380 * @ka: action for @signr
2381 * @signr: signal that has been successfully delivered
2383 * This function should be called when a signal has succesfully been
2384 * delivered. It adds the mask of signals for @ka to current->blocked
2385 * so that they are blocked during the execution of the signal
2386 * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2387 * set in @ka->sa.sa_flags.
2389 void block_sigmask(struct k_sigaction
*ka
, int signr
)
2393 sigorsets(&blocked
, ¤t
->blocked
, &ka
->sa
.sa_mask
);
2394 if (!(ka
->sa
.sa_flags
& SA_NODEFER
))
2395 sigaddset(&blocked
, signr
);
2396 set_current_blocked(&blocked
);
2400 * It could be that complete_signal() picked us to notify about the
2401 * group-wide signal. Other threads should be notified now to take
2402 * the shared signals in @which since we will not.
2404 static void retarget_shared_pending(struct task_struct
*tsk
, sigset_t
*which
)
2407 struct task_struct
*t
;
2409 sigandsets(&retarget
, &tsk
->signal
->shared_pending
.signal
, which
);
2410 if (sigisemptyset(&retarget
))
2414 while_each_thread(tsk
, t
) {
2415 if (t
->flags
& PF_EXITING
)
2418 if (!has_pending_signals(&retarget
, &t
->blocked
))
2420 /* Remove the signals this thread can handle. */
2421 sigandsets(&retarget
, &retarget
, &t
->blocked
);
2423 if (!signal_pending(t
))
2424 signal_wake_up(t
, 0);
2426 if (sigisemptyset(&retarget
))
2431 void exit_signals(struct task_struct
*tsk
)
2437 * @tsk is about to have PF_EXITING set - lock out users which
2438 * expect stable threadgroup.
2440 threadgroup_change_begin(tsk
);
2442 if (thread_group_empty(tsk
) || signal_group_exit(tsk
->signal
)) {
2443 tsk
->flags
|= PF_EXITING
;
2444 threadgroup_change_end(tsk
);
2448 spin_lock_irq(&tsk
->sighand
->siglock
);
2450 * From now this task is not visible for group-wide signals,
2451 * see wants_signal(), do_signal_stop().
2453 tsk
->flags
|= PF_EXITING
;
2455 threadgroup_change_end(tsk
);
2457 if (!signal_pending(tsk
))
2460 unblocked
= tsk
->blocked
;
2461 signotset(&unblocked
);
2462 retarget_shared_pending(tsk
, &unblocked
);
2464 if (unlikely(tsk
->jobctl
& JOBCTL_STOP_PENDING
) &&
2465 task_participate_group_stop(tsk
))
2466 group_stop
= CLD_STOPPED
;
2468 spin_unlock_irq(&tsk
->sighand
->siglock
);
2471 * If group stop has completed, deliver the notification. This
2472 * should always go to the real parent of the group leader.
2474 if (unlikely(group_stop
)) {
2475 read_lock(&tasklist_lock
);
2476 do_notify_parent_cldstop(tsk
, false, group_stop
);
2477 read_unlock(&tasklist_lock
);
2481 EXPORT_SYMBOL(recalc_sigpending
);
2482 EXPORT_SYMBOL_GPL(dequeue_signal
);
2483 EXPORT_SYMBOL(flush_signals
);
2484 EXPORT_SYMBOL(force_sig
);
2485 EXPORT_SYMBOL(send_sig
);
2486 EXPORT_SYMBOL(send_sig_info
);
2487 EXPORT_SYMBOL(sigprocmask
);
2488 EXPORT_SYMBOL(block_all_signals
);
2489 EXPORT_SYMBOL(unblock_all_signals
);
2493 * System call entry points.
2497 * sys_restart_syscall - restart a system call
2499 SYSCALL_DEFINE0(restart_syscall
)
2501 struct restart_block
*restart
= ¤t_thread_info()->restart_block
;
2502 return restart
->fn(restart
);
2505 long do_no_restart_syscall(struct restart_block
*param
)
2510 static void __set_task_blocked(struct task_struct
*tsk
, const sigset_t
*newset
)
2512 if (signal_pending(tsk
) && !thread_group_empty(tsk
)) {
2513 sigset_t newblocked
;
2514 /* A set of now blocked but previously unblocked signals. */
2515 sigandnsets(&newblocked
, newset
, ¤t
->blocked
);
2516 retarget_shared_pending(tsk
, &newblocked
);
2518 tsk
->blocked
= *newset
;
2519 recalc_sigpending();
2523 * set_current_blocked - change current->blocked mask
2526 * It is wrong to change ->blocked directly, this helper should be used
2527 * to ensure the process can't miss a shared signal we are going to block.
2529 void set_current_blocked(const sigset_t
*newset
)
2531 struct task_struct
*tsk
= current
;
2533 spin_lock_irq(&tsk
->sighand
->siglock
);
2534 __set_task_blocked(tsk
, newset
);
2535 spin_unlock_irq(&tsk
->sighand
->siglock
);
2539 * This is also useful for kernel threads that want to temporarily
2540 * (or permanently) block certain signals.
2542 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2543 * interface happily blocks "unblockable" signals like SIGKILL
2546 int sigprocmask(int how
, sigset_t
*set
, sigset_t
*oldset
)
2548 struct task_struct
*tsk
= current
;
2551 /* Lockless, only current can change ->blocked, never from irq */
2553 *oldset
= tsk
->blocked
;
2557 sigorsets(&newset
, &tsk
->blocked
, set
);
2560 sigandnsets(&newset
, &tsk
->blocked
, set
);
2569 set_current_blocked(&newset
);
2574 * sys_rt_sigprocmask - change the list of currently blocked signals
2575 * @how: whether to add, remove, or set signals
2576 * @nset: stores pending signals
2577 * @oset: previous value of signal mask if non-null
2578 * @sigsetsize: size of sigset_t type
2580 SYSCALL_DEFINE4(rt_sigprocmask
, int, how
, sigset_t __user
*, nset
,
2581 sigset_t __user
*, oset
, size_t, sigsetsize
)
2583 sigset_t old_set
, new_set
;
2586 /* XXX: Don't preclude handling different sized sigset_t's. */
2587 if (sigsetsize
!= sizeof(sigset_t
))
2590 old_set
= current
->blocked
;
2593 if (copy_from_user(&new_set
, nset
, sizeof(sigset_t
)))
2595 sigdelsetmask(&new_set
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2597 error
= sigprocmask(how
, &new_set
, NULL
);
2603 if (copy_to_user(oset
, &old_set
, sizeof(sigset_t
)))
2610 long do_sigpending(void __user
*set
, unsigned long sigsetsize
)
2612 long error
= -EINVAL
;
2615 if (sigsetsize
> sizeof(sigset_t
))
2618 spin_lock_irq(¤t
->sighand
->siglock
);
2619 sigorsets(&pending
, ¤t
->pending
.signal
,
2620 ¤t
->signal
->shared_pending
.signal
);
2621 spin_unlock_irq(¤t
->sighand
->siglock
);
2623 /* Outside the lock because only this thread touches it. */
2624 sigandsets(&pending
, ¤t
->blocked
, &pending
);
2627 if (!copy_to_user(set
, &pending
, sigsetsize
))
2635 * sys_rt_sigpending - examine a pending signal that has been raised
2637 * @set: stores pending signals
2638 * @sigsetsize: size of sigset_t type or larger
2640 SYSCALL_DEFINE2(rt_sigpending
, sigset_t __user
*, set
, size_t, sigsetsize
)
2642 return do_sigpending(set
, sigsetsize
);
2645 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2647 int copy_siginfo_to_user(siginfo_t __user
*to
, siginfo_t
*from
)
2651 if (!access_ok (VERIFY_WRITE
, to
, sizeof(siginfo_t
)))
2653 if (from
->si_code
< 0)
2654 return __copy_to_user(to
, from
, sizeof(siginfo_t
))
2657 * If you change siginfo_t structure, please be sure
2658 * this code is fixed accordingly.
2659 * Please remember to update the signalfd_copyinfo() function
2660 * inside fs/signalfd.c too, in case siginfo_t changes.
2661 * It should never copy any pad contained in the structure
2662 * to avoid security leaks, but must copy the generic
2663 * 3 ints plus the relevant union member.
2665 err
= __put_user(from
->si_signo
, &to
->si_signo
);
2666 err
|= __put_user(from
->si_errno
, &to
->si_errno
);
2667 err
|= __put_user((short)from
->si_code
, &to
->si_code
);
2668 switch (from
->si_code
& __SI_MASK
) {
2670 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2671 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2674 err
|= __put_user(from
->si_tid
, &to
->si_tid
);
2675 err
|= __put_user(from
->si_overrun
, &to
->si_overrun
);
2676 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2679 err
|= __put_user(from
->si_band
, &to
->si_band
);
2680 err
|= __put_user(from
->si_fd
, &to
->si_fd
);
2683 err
|= __put_user(from
->si_addr
, &to
->si_addr
);
2684 #ifdef __ARCH_SI_TRAPNO
2685 err
|= __put_user(from
->si_trapno
, &to
->si_trapno
);
2687 #ifdef BUS_MCEERR_AO
2689 * Other callers might not initialize the si_lsb field,
2690 * so check explicitly for the right codes here.
2692 if (from
->si_code
== BUS_MCEERR_AR
|| from
->si_code
== BUS_MCEERR_AO
)
2693 err
|= __put_user(from
->si_addr_lsb
, &to
->si_addr_lsb
);
2697 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2698 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2699 err
|= __put_user(from
->si_status
, &to
->si_status
);
2700 err
|= __put_user(from
->si_utime
, &to
->si_utime
);
2701 err
|= __put_user(from
->si_stime
, &to
->si_stime
);
2703 case __SI_RT
: /* This is not generated by the kernel as of now. */
2704 case __SI_MESGQ
: /* But this is */
2705 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2706 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2707 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2709 default: /* this is just in case for now ... */
2710 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2711 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2720 * do_sigtimedwait - wait for queued signals specified in @which
2721 * @which: queued signals to wait for
2722 * @info: if non-null, the signal's siginfo is returned here
2723 * @ts: upper bound on process time suspension
2725 int do_sigtimedwait(const sigset_t
*which
, siginfo_t
*info
,
2726 const struct timespec
*ts
)
2728 struct task_struct
*tsk
= current
;
2729 long timeout
= MAX_SCHEDULE_TIMEOUT
;
2730 sigset_t mask
= *which
;
2734 if (!timespec_valid(ts
))
2736 timeout
= timespec_to_jiffies(ts
);
2738 * We can be close to the next tick, add another one
2739 * to ensure we will wait at least the time asked for.
2741 if (ts
->tv_sec
|| ts
->tv_nsec
)
2746 * Invert the set of allowed signals to get those we want to block.
2748 sigdelsetmask(&mask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2751 spin_lock_irq(&tsk
->sighand
->siglock
);
2752 sig
= dequeue_signal(tsk
, &mask
, info
);
2753 if (!sig
&& timeout
) {
2755 * None ready, temporarily unblock those we're interested
2756 * while we are sleeping in so that we'll be awakened when
2757 * they arrive. Unblocking is always fine, we can avoid
2758 * set_current_blocked().
2760 tsk
->real_blocked
= tsk
->blocked
;
2761 sigandsets(&tsk
->blocked
, &tsk
->blocked
, &mask
);
2762 recalc_sigpending();
2763 spin_unlock_irq(&tsk
->sighand
->siglock
);
2765 timeout
= schedule_timeout_interruptible(timeout
);
2767 spin_lock_irq(&tsk
->sighand
->siglock
);
2768 __set_task_blocked(tsk
, &tsk
->real_blocked
);
2769 siginitset(&tsk
->real_blocked
, 0);
2770 sig
= dequeue_signal(tsk
, &mask
, info
);
2772 spin_unlock_irq(&tsk
->sighand
->siglock
);
2776 return timeout
? -EINTR
: -EAGAIN
;
2780 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2782 * @uthese: queued signals to wait for
2783 * @uinfo: if non-null, the signal's siginfo is returned here
2784 * @uts: upper bound on process time suspension
2785 * @sigsetsize: size of sigset_t type
2787 SYSCALL_DEFINE4(rt_sigtimedwait
, const sigset_t __user
*, uthese
,
2788 siginfo_t __user
*, uinfo
, const struct timespec __user
*, uts
,
2796 /* XXX: Don't preclude handling different sized sigset_t's. */
2797 if (sigsetsize
!= sizeof(sigset_t
))
2800 if (copy_from_user(&these
, uthese
, sizeof(these
)))
2804 if (copy_from_user(&ts
, uts
, sizeof(ts
)))
2808 ret
= do_sigtimedwait(&these
, &info
, uts
? &ts
: NULL
);
2810 if (ret
> 0 && uinfo
) {
2811 if (copy_siginfo_to_user(uinfo
, &info
))
2819 * sys_kill - send a signal to a process
2820 * @pid: the PID of the process
2821 * @sig: signal to be sent
2823 SYSCALL_DEFINE2(kill
, pid_t
, pid
, int, sig
)
2825 struct siginfo info
;
2827 info
.si_signo
= sig
;
2829 info
.si_code
= SI_USER
;
2830 info
.si_pid
= task_tgid_vnr(current
);
2831 info
.si_uid
= current_uid();
2833 return kill_something_info(sig
, &info
, pid
);
2837 do_send_specific(pid_t tgid
, pid_t pid
, int sig
, struct siginfo
*info
)
2839 struct task_struct
*p
;
2843 p
= find_task_by_vpid(pid
);
2844 if (p
&& (tgid
<= 0 || task_tgid_vnr(p
) == tgid
)) {
2845 error
= check_kill_permission(sig
, info
, p
);
2847 * The null signal is a permissions and process existence
2848 * probe. No signal is actually delivered.
2850 if (!error
&& sig
) {
2851 error
= do_send_sig_info(sig
, info
, p
, false);
2853 * If lock_task_sighand() failed we pretend the task
2854 * dies after receiving the signal. The window is tiny,
2855 * and the signal is private anyway.
2857 if (unlikely(error
== -ESRCH
))
2866 static int do_tkill(pid_t tgid
, pid_t pid
, int sig
)
2868 struct siginfo info
;
2870 info
.si_signo
= sig
;
2872 info
.si_code
= SI_TKILL
;
2873 info
.si_pid
= task_tgid_vnr(current
);
2874 info
.si_uid
= current_uid();
2876 return do_send_specific(tgid
, pid
, sig
, &info
);
2880 * sys_tgkill - send signal to one specific thread
2881 * @tgid: the thread group ID of the thread
2882 * @pid: the PID of the thread
2883 * @sig: signal to be sent
2885 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2886 * exists but it's not belonging to the target process anymore. This
2887 * method solves the problem of threads exiting and PIDs getting reused.
2889 SYSCALL_DEFINE3(tgkill
, pid_t
, tgid
, pid_t
, pid
, int, sig
)
2891 /* This is only valid for single tasks */
2892 if (pid
<= 0 || tgid
<= 0)
2895 return do_tkill(tgid
, pid
, sig
);
2899 * sys_tkill - send signal to one specific task
2900 * @pid: the PID of the task
2901 * @sig: signal to be sent
2903 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2905 SYSCALL_DEFINE2(tkill
, pid_t
, pid
, int, sig
)
2907 /* This is only valid for single tasks */
2911 return do_tkill(0, pid
, sig
);
2915 * sys_rt_sigqueueinfo - send signal information to a signal
2916 * @pid: the PID of the thread
2917 * @sig: signal to be sent
2918 * @uinfo: signal info to be sent
2920 SYSCALL_DEFINE3(rt_sigqueueinfo
, pid_t
, pid
, int, sig
,
2921 siginfo_t __user
*, uinfo
)
2925 if (copy_from_user(&info
, uinfo
, sizeof(siginfo_t
)))
2928 /* Not even root can pretend to send signals from the kernel.
2929 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2931 if (info
.si_code
>= 0 || info
.si_code
== SI_TKILL
) {
2932 /* We used to allow any < 0 si_code */
2933 WARN_ON_ONCE(info
.si_code
< 0);
2936 info
.si_signo
= sig
;
2938 /* POSIX.1b doesn't mention process groups. */
2939 return kill_proc_info(sig
, &info
, pid
);
2942 long do_rt_tgsigqueueinfo(pid_t tgid
, pid_t pid
, int sig
, siginfo_t
*info
)
2944 /* This is only valid for single tasks */
2945 if (pid
<= 0 || tgid
<= 0)
2948 /* Not even root can pretend to send signals from the kernel.
2949 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2951 if (info
->si_code
>= 0 || info
->si_code
== SI_TKILL
) {
2952 /* We used to allow any < 0 si_code */
2953 WARN_ON_ONCE(info
->si_code
< 0);
2956 info
->si_signo
= sig
;
2958 return do_send_specific(tgid
, pid
, sig
, info
);
2961 SYSCALL_DEFINE4(rt_tgsigqueueinfo
, pid_t
, tgid
, pid_t
, pid
, int, sig
,
2962 siginfo_t __user
*, uinfo
)
2966 if (copy_from_user(&info
, uinfo
, sizeof(siginfo_t
)))
2969 return do_rt_tgsigqueueinfo(tgid
, pid
, sig
, &info
);
2972 int do_sigaction(int sig
, struct k_sigaction
*act
, struct k_sigaction
*oact
)
2974 struct task_struct
*t
= current
;
2975 struct k_sigaction
*k
;
2978 if (!valid_signal(sig
) || sig
< 1 || (act
&& sig_kernel_only(sig
)))
2981 k
= &t
->sighand
->action
[sig
-1];
2983 spin_lock_irq(¤t
->sighand
->siglock
);
2988 sigdelsetmask(&act
->sa
.sa_mask
,
2989 sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2993 * "Setting a signal action to SIG_IGN for a signal that is
2994 * pending shall cause the pending signal to be discarded,
2995 * whether or not it is blocked."
2997 * "Setting a signal action to SIG_DFL for a signal that is
2998 * pending and whose default action is to ignore the signal
2999 * (for example, SIGCHLD), shall cause the pending signal to
3000 * be discarded, whether or not it is blocked"
3002 if (sig_handler_ignored(sig_handler(t
, sig
), sig
)) {
3004 sigaddset(&mask
, sig
);
3005 rm_from_queue_full(&mask
, &t
->signal
->shared_pending
);
3007 rm_from_queue_full(&mask
, &t
->pending
);
3009 } while (t
!= current
);
3013 spin_unlock_irq(¤t
->sighand
->siglock
);
3018 do_sigaltstack (const stack_t __user
*uss
, stack_t __user
*uoss
, unsigned long sp
)
3023 oss
.ss_sp
= (void __user
*) current
->sas_ss_sp
;
3024 oss
.ss_size
= current
->sas_ss_size
;
3025 oss
.ss_flags
= sas_ss_flags(sp
);
3033 if (!access_ok(VERIFY_READ
, uss
, sizeof(*uss
)))
3035 error
= __get_user(ss_sp
, &uss
->ss_sp
) |
3036 __get_user(ss_flags
, &uss
->ss_flags
) |
3037 __get_user(ss_size
, &uss
->ss_size
);
3042 if (on_sig_stack(sp
))
3047 * Note - this code used to test ss_flags incorrectly:
3048 * old code may have been written using ss_flags==0
3049 * to mean ss_flags==SS_ONSTACK (as this was the only
3050 * way that worked) - this fix preserves that older
3053 if (ss_flags
!= SS_DISABLE
&& ss_flags
!= SS_ONSTACK
&& ss_flags
!= 0)
3056 if (ss_flags
== SS_DISABLE
) {
3061 if (ss_size
< MINSIGSTKSZ
)
3065 current
->sas_ss_sp
= (unsigned long) ss_sp
;
3066 current
->sas_ss_size
= ss_size
;
3072 if (!access_ok(VERIFY_WRITE
, uoss
, sizeof(*uoss
)))
3074 error
= __put_user(oss
.ss_sp
, &uoss
->ss_sp
) |
3075 __put_user(oss
.ss_size
, &uoss
->ss_size
) |
3076 __put_user(oss
.ss_flags
, &uoss
->ss_flags
);
3083 #ifdef __ARCH_WANT_SYS_SIGPENDING
3086 * sys_sigpending - examine pending signals
3087 * @set: where mask of pending signal is returned
3089 SYSCALL_DEFINE1(sigpending
, old_sigset_t __user
*, set
)
3091 return do_sigpending(set
, sizeof(*set
));
3096 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3098 * sys_sigprocmask - examine and change blocked signals
3099 * @how: whether to add, remove, or set signals
3100 * @nset: signals to add or remove (if non-null)
3101 * @oset: previous value of signal mask if non-null
3103 * Some platforms have their own version with special arguments;
3104 * others support only sys_rt_sigprocmask.
3107 SYSCALL_DEFINE3(sigprocmask
, int, how
, old_sigset_t __user
*, nset
,
3108 old_sigset_t __user
*, oset
)
3110 old_sigset_t old_set
, new_set
;
3111 sigset_t new_blocked
;
3113 old_set
= current
->blocked
.sig
[0];
3116 if (copy_from_user(&new_set
, nset
, sizeof(*nset
)))
3118 new_set
&= ~(sigmask(SIGKILL
) | sigmask(SIGSTOP
));
3120 new_blocked
= current
->blocked
;
3124 sigaddsetmask(&new_blocked
, new_set
);
3127 sigdelsetmask(&new_blocked
, new_set
);
3130 new_blocked
.sig
[0] = new_set
;
3136 set_current_blocked(&new_blocked
);
3140 if (copy_to_user(oset
, &old_set
, sizeof(*oset
)))
3146 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3148 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3150 * sys_rt_sigaction - alter an action taken by a process
3151 * @sig: signal to be sent
3152 * @act: new sigaction
3153 * @oact: used to save the previous sigaction
3154 * @sigsetsize: size of sigset_t type
3156 SYSCALL_DEFINE4(rt_sigaction
, int, sig
,
3157 const struct sigaction __user
*, act
,
3158 struct sigaction __user
*, oact
,
3161 struct k_sigaction new_sa
, old_sa
;
3164 /* XXX: Don't preclude handling different sized sigset_t's. */
3165 if (sigsetsize
!= sizeof(sigset_t
))
3169 if (copy_from_user(&new_sa
.sa
, act
, sizeof(new_sa
.sa
)))
3173 ret
= do_sigaction(sig
, act
? &new_sa
: NULL
, oact
? &old_sa
: NULL
);
3176 if (copy_to_user(oact
, &old_sa
.sa
, sizeof(old_sa
.sa
)))
3182 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3184 #ifdef __ARCH_WANT_SYS_SGETMASK
3187 * For backwards compatibility. Functionality superseded by sigprocmask.
3189 SYSCALL_DEFINE0(sgetmask
)
3192 return current
->blocked
.sig
[0];
3195 SYSCALL_DEFINE1(ssetmask
, int, newmask
)
3197 int old
= current
->blocked
.sig
[0];
3200 siginitset(&newset
, newmask
& ~(sigmask(SIGKILL
) | sigmask(SIGSTOP
)));
3201 set_current_blocked(&newset
);
3205 #endif /* __ARCH_WANT_SGETMASK */
3207 #ifdef __ARCH_WANT_SYS_SIGNAL
3209 * For backwards compatibility. Functionality superseded by sigaction.
3211 SYSCALL_DEFINE2(signal
, int, sig
, __sighandler_t
, handler
)
3213 struct k_sigaction new_sa
, old_sa
;
3216 new_sa
.sa
.sa_handler
= handler
;
3217 new_sa
.sa
.sa_flags
= SA_ONESHOT
| SA_NOMASK
;
3218 sigemptyset(&new_sa
.sa
.sa_mask
);
3220 ret
= do_sigaction(sig
, &new_sa
, &old_sa
);
3222 return ret
? ret
: (unsigned long)old_sa
.sa
.sa_handler
;
3224 #endif /* __ARCH_WANT_SYS_SIGNAL */
3226 #ifdef __ARCH_WANT_SYS_PAUSE
3228 SYSCALL_DEFINE0(pause
)
3230 while (!signal_pending(current
)) {
3231 current
->state
= TASK_INTERRUPTIBLE
;
3234 return -ERESTARTNOHAND
;
3239 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3241 * sys_rt_sigsuspend - replace the signal mask for a value with the
3242 * @unewset value until a signal is received
3243 * @unewset: new signal mask value
3244 * @sigsetsize: size of sigset_t type
3246 SYSCALL_DEFINE2(rt_sigsuspend
, sigset_t __user
*, unewset
, size_t, sigsetsize
)
3250 /* XXX: Don't preclude handling different sized sigset_t's. */
3251 if (sigsetsize
!= sizeof(sigset_t
))
3254 if (copy_from_user(&newset
, unewset
, sizeof(newset
)))
3256 sigdelsetmask(&newset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
3258 current
->saved_sigmask
= current
->blocked
;
3259 set_current_blocked(&newset
);
3261 current
->state
= TASK_INTERRUPTIBLE
;
3263 set_restore_sigmask();
3264 return -ERESTARTNOHAND
;
3266 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3268 __attribute__((weak
)) const char *arch_vma_name(struct vm_area_struct
*vma
)
3273 void __init
signals_init(void)
3275 sigqueue_cachep
= KMEM_CACHE(sigqueue
, SLAB_PANIC
);
3278 #ifdef CONFIG_KGDB_KDB
3279 #include <linux/kdb.h>
3281 * kdb_send_sig_info - Allows kdb to send signals without exposing
3282 * signal internals. This function checks if the required locks are
3283 * available before calling the main signal code, to avoid kdb
3287 kdb_send_sig_info(struct task_struct
*t
, struct siginfo
*info
)
3289 static struct task_struct
*kdb_prev_t
;
3291 if (!spin_trylock(&t
->sighand
->siglock
)) {
3292 kdb_printf("Can't do kill command now.\n"
3293 "The sigmask lock is held somewhere else in "
3294 "kernel, try again later\n");
3297 spin_unlock(&t
->sighand
->siglock
);
3298 new_t
= kdb_prev_t
!= t
;
3300 if (t
->state
!= TASK_RUNNING
&& new_t
) {
3301 kdb_printf("Process is not RUNNING, sending a signal from "
3302 "kdb risks deadlock\n"
3303 "on the run queue locks. "
3304 "The signal has _not_ been sent.\n"
3305 "Reissue the kill command if you want to risk "
3309 sig
= info
->si_signo
;
3310 if (send_sig_info(sig
, info
, t
))
3311 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3314 kdb_printf("Signal %d is sent to process %d.\n", sig
, t
->pid
);
3316 #endif /* CONFIG_KGDB_KDB */