[PATCH] collect sid of those who send signals to auditd
[linux-2.6/libata-dev.git] / kernel / audit.c
blobbb20922d08ccb1d363a472041105557b99d41e1e
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 * Goals: 1) Integrate fully with SELinux.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
52 #include <linux/audit.h>
54 #include <net/sock.h>
55 #include <net/netlink.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/selinux.h>
60 #include "audit.h"
62 /* No auditing will take place until audit_initialized != 0.
63 * (Initialization happens after skb_init is called.) */
64 static int audit_initialized;
66 /* No syscall auditing will take place unless audit_enabled != 0. */
67 int audit_enabled;
69 /* Default state when kernel boots without any parameters. */
70 static int audit_default;
72 /* If auditing cannot proceed, audit_failure selects what happens. */
73 static int audit_failure = AUDIT_FAIL_PRINTK;
75 /* If audit records are to be written to the netlink socket, audit_pid
76 * contains the (non-zero) pid. */
77 int audit_pid;
79 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
80 * to that number per second. This prevents DoS attacks, but results in
81 * audit records being dropped. */
82 static int audit_rate_limit;
84 /* Number of outstanding audit_buffers allowed. */
85 static int audit_backlog_limit = 64;
86 static int audit_backlog_wait_time = 60 * HZ;
87 static int audit_backlog_wait_overflow = 0;
89 /* The identity of the user shutting down the audit system. */
90 uid_t audit_sig_uid = -1;
91 pid_t audit_sig_pid = -1;
92 u32 audit_sig_sid = 0;
94 /* Records can be lost in several ways:
95 0) [suppressed in audit_alloc]
96 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
97 2) out of memory in audit_log_move [alloc_skb]
98 3) suppressed due to audit_rate_limit
99 4) suppressed due to audit_backlog_limit
101 static atomic_t audit_lost = ATOMIC_INIT(0);
103 /* The netlink socket. */
104 static struct sock *audit_sock;
106 /* The audit_freelist is a list of pre-allocated audit buffers (if more
107 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
108 * being placed on the freelist). */
109 static DEFINE_SPINLOCK(audit_freelist_lock);
110 static int audit_freelist_count;
111 static LIST_HEAD(audit_freelist);
113 static struct sk_buff_head audit_skb_queue;
114 static struct task_struct *kauditd_task;
115 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
116 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
118 /* The netlink socket is only to be read by 1 CPU, which lets us assume
119 * that list additions and deletions never happen simultaneously in
120 * auditsc.c */
121 DEFINE_MUTEX(audit_netlink_mutex);
123 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
124 * audit records. Since printk uses a 1024 byte buffer, this buffer
125 * should be at least that large. */
126 #define AUDIT_BUFSIZ 1024
128 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
129 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
130 #define AUDIT_MAXFREE (2*NR_CPUS)
132 /* The audit_buffer is used when formatting an audit record. The caller
133 * locks briefly to get the record off the freelist or to allocate the
134 * buffer, and locks briefly to send the buffer to the netlink layer or
135 * to place it on a transmit queue. Multiple audit_buffers can be in
136 * use simultaneously. */
137 struct audit_buffer {
138 struct list_head list;
139 struct sk_buff *skb; /* formatted skb ready to send */
140 struct audit_context *ctx; /* NULL or associated context */
141 gfp_t gfp_mask;
144 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
146 struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
147 nlh->nlmsg_pid = pid;
150 void audit_panic(const char *message)
152 switch (audit_failure)
154 case AUDIT_FAIL_SILENT:
155 break;
156 case AUDIT_FAIL_PRINTK:
157 printk(KERN_ERR "audit: %s\n", message);
158 break;
159 case AUDIT_FAIL_PANIC:
160 panic("audit: %s\n", message);
161 break;
165 static inline int audit_rate_check(void)
167 static unsigned long last_check = 0;
168 static int messages = 0;
169 static DEFINE_SPINLOCK(lock);
170 unsigned long flags;
171 unsigned long now;
172 unsigned long elapsed;
173 int retval = 0;
175 if (!audit_rate_limit) return 1;
177 spin_lock_irqsave(&lock, flags);
178 if (++messages < audit_rate_limit) {
179 retval = 1;
180 } else {
181 now = jiffies;
182 elapsed = now - last_check;
183 if (elapsed > HZ) {
184 last_check = now;
185 messages = 0;
186 retval = 1;
189 spin_unlock_irqrestore(&lock, flags);
191 return retval;
195 * audit_log_lost - conditionally log lost audit message event
196 * @message: the message stating reason for lost audit message
198 * Emit at least 1 message per second, even if audit_rate_check is
199 * throttling.
200 * Always increment the lost messages counter.
202 void audit_log_lost(const char *message)
204 static unsigned long last_msg = 0;
205 static DEFINE_SPINLOCK(lock);
206 unsigned long flags;
207 unsigned long now;
208 int print;
210 atomic_inc(&audit_lost);
212 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
214 if (!print) {
215 spin_lock_irqsave(&lock, flags);
216 now = jiffies;
217 if (now - last_msg > HZ) {
218 print = 1;
219 last_msg = now;
221 spin_unlock_irqrestore(&lock, flags);
224 if (print) {
225 printk(KERN_WARNING
226 "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n",
227 atomic_read(&audit_lost),
228 audit_rate_limit,
229 audit_backlog_limit);
230 audit_panic(message);
234 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid)
236 int old = audit_rate_limit;
238 if (sid) {
239 char *ctx = NULL;
240 u32 len;
241 int rc;
242 if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
243 return rc;
244 else
245 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
246 "audit_rate_limit=%d old=%d by auid=%u subj=%s",
247 limit, old, loginuid, ctx);
248 kfree(ctx);
249 } else
250 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
251 "audit_rate_limit=%d old=%d by auid=%u",
252 limit, old, loginuid);
253 audit_rate_limit = limit;
254 return old;
257 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid)
259 int old = audit_backlog_limit;
261 if (sid) {
262 char *ctx = NULL;
263 u32 len;
264 int rc;
265 if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
266 return rc;
267 else
268 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
269 "audit_backlog_limit=%d old=%d by auid=%u subj=%s",
270 limit, old, loginuid, ctx);
271 kfree(ctx);
272 } else
273 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
274 "audit_backlog_limit=%d old=%d by auid=%u",
275 limit, old, loginuid);
276 audit_backlog_limit = limit;
277 return old;
280 static int audit_set_enabled(int state, uid_t loginuid, u32 sid)
282 int old = audit_enabled;
284 if (state != 0 && state != 1)
285 return -EINVAL;
287 if (sid) {
288 char *ctx = NULL;
289 u32 len;
290 int rc;
291 if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
292 return rc;
293 else
294 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
295 "audit_enabled=%d old=%d by auid=%u subj=%s",
296 state, old, loginuid, ctx);
297 kfree(ctx);
298 } else
299 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
300 "audit_enabled=%d old=%d by auid=%u",
301 state, old, loginuid);
302 audit_enabled = state;
303 return old;
306 static int audit_set_failure(int state, uid_t loginuid, u32 sid)
308 int old = audit_failure;
310 if (state != AUDIT_FAIL_SILENT
311 && state != AUDIT_FAIL_PRINTK
312 && state != AUDIT_FAIL_PANIC)
313 return -EINVAL;
315 if (sid) {
316 char *ctx = NULL;
317 u32 len;
318 int rc;
319 if ((rc = selinux_ctxid_to_string(sid, &ctx, &len)))
320 return rc;
321 else
322 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
323 "audit_failure=%d old=%d by auid=%u subj=%s",
324 state, old, loginuid, ctx);
325 kfree(ctx);
326 } else
327 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
328 "audit_failure=%d old=%d by auid=%u",
329 state, old, loginuid);
330 audit_failure = state;
331 return old;
334 static int kauditd_thread(void *dummy)
336 struct sk_buff *skb;
338 while (1) {
339 skb = skb_dequeue(&audit_skb_queue);
340 wake_up(&audit_backlog_wait);
341 if (skb) {
342 if (audit_pid) {
343 int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
344 if (err < 0) {
345 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
346 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
347 audit_pid = 0;
349 } else {
350 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
351 kfree_skb(skb);
353 } else {
354 DECLARE_WAITQUEUE(wait, current);
355 set_current_state(TASK_INTERRUPTIBLE);
356 add_wait_queue(&kauditd_wait, &wait);
358 if (!skb_queue_len(&audit_skb_queue)) {
359 try_to_freeze();
360 schedule();
363 __set_current_state(TASK_RUNNING);
364 remove_wait_queue(&kauditd_wait, &wait);
367 return 0;
370 int audit_send_list(void *_dest)
372 struct audit_netlink_list *dest = _dest;
373 int pid = dest->pid;
374 struct sk_buff *skb;
376 /* wait for parent to finish and send an ACK */
377 mutex_lock(&audit_netlink_mutex);
378 mutex_unlock(&audit_netlink_mutex);
380 while ((skb = __skb_dequeue(&dest->q)) != NULL)
381 netlink_unicast(audit_sock, skb, pid, 0);
383 kfree(dest);
385 return 0;
388 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
389 int multi, void *payload, int size)
391 struct sk_buff *skb;
392 struct nlmsghdr *nlh;
393 int len = NLMSG_SPACE(size);
394 void *data;
395 int flags = multi ? NLM_F_MULTI : 0;
396 int t = done ? NLMSG_DONE : type;
398 skb = alloc_skb(len, GFP_KERNEL);
399 if (!skb)
400 return NULL;
402 nlh = NLMSG_PUT(skb, pid, seq, t, size);
403 nlh->nlmsg_flags = flags;
404 data = NLMSG_DATA(nlh);
405 memcpy(data, payload, size);
406 return skb;
408 nlmsg_failure: /* Used by NLMSG_PUT */
409 if (skb)
410 kfree_skb(skb);
411 return NULL;
415 * audit_send_reply - send an audit reply message via netlink
416 * @pid: process id to send reply to
417 * @seq: sequence number
418 * @type: audit message type
419 * @done: done (last) flag
420 * @multi: multi-part message flag
421 * @payload: payload data
422 * @size: payload size
424 * Allocates an skb, builds the netlink message, and sends it to the pid.
425 * No failure notifications.
427 void audit_send_reply(int pid, int seq, int type, int done, int multi,
428 void *payload, int size)
430 struct sk_buff *skb;
431 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
432 if (!skb)
433 return;
434 /* Ignore failure. It'll only happen if the sender goes away,
435 because our timeout is set to infinite. */
436 netlink_unicast(audit_sock, skb, pid, 0);
437 return;
441 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
442 * control messages.
444 static int audit_netlink_ok(kernel_cap_t eff_cap, u16 msg_type)
446 int err = 0;
448 switch (msg_type) {
449 case AUDIT_GET:
450 case AUDIT_LIST:
451 case AUDIT_LIST_RULES:
452 case AUDIT_SET:
453 case AUDIT_ADD:
454 case AUDIT_ADD_RULE:
455 case AUDIT_DEL:
456 case AUDIT_DEL_RULE:
457 case AUDIT_SIGNAL_INFO:
458 if (!cap_raised(eff_cap, CAP_AUDIT_CONTROL))
459 err = -EPERM;
460 break;
461 case AUDIT_USER:
462 case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
463 case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
464 if (!cap_raised(eff_cap, CAP_AUDIT_WRITE))
465 err = -EPERM;
466 break;
467 default: /* bad msg */
468 err = -EINVAL;
471 return err;
474 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
476 u32 uid, pid, seq, sid;
477 void *data;
478 struct audit_status *status_get, status_set;
479 int err;
480 struct audit_buffer *ab;
481 u16 msg_type = nlh->nlmsg_type;
482 uid_t loginuid; /* loginuid of sender */
483 struct audit_sig_info *sig_data;
484 char *ctx;
485 u32 len;
487 err = audit_netlink_ok(NETLINK_CB(skb).eff_cap, msg_type);
488 if (err)
489 return err;
491 /* As soon as there's any sign of userspace auditd,
492 * start kauditd to talk to it */
493 if (!kauditd_task)
494 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
495 if (IS_ERR(kauditd_task)) {
496 err = PTR_ERR(kauditd_task);
497 kauditd_task = NULL;
498 return err;
501 pid = NETLINK_CREDS(skb)->pid;
502 uid = NETLINK_CREDS(skb)->uid;
503 loginuid = NETLINK_CB(skb).loginuid;
504 sid = NETLINK_CB(skb).sid;
505 seq = nlh->nlmsg_seq;
506 data = NLMSG_DATA(nlh);
508 switch (msg_type) {
509 case AUDIT_GET:
510 status_set.enabled = audit_enabled;
511 status_set.failure = audit_failure;
512 status_set.pid = audit_pid;
513 status_set.rate_limit = audit_rate_limit;
514 status_set.backlog_limit = audit_backlog_limit;
515 status_set.lost = atomic_read(&audit_lost);
516 status_set.backlog = skb_queue_len(&audit_skb_queue);
517 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
518 &status_set, sizeof(status_set));
519 break;
520 case AUDIT_SET:
521 if (nlh->nlmsg_len < sizeof(struct audit_status))
522 return -EINVAL;
523 status_get = (struct audit_status *)data;
524 if (status_get->mask & AUDIT_STATUS_ENABLED) {
525 err = audit_set_enabled(status_get->enabled,
526 loginuid, sid);
527 if (err < 0) return err;
529 if (status_get->mask & AUDIT_STATUS_FAILURE) {
530 err = audit_set_failure(status_get->failure,
531 loginuid, sid);
532 if (err < 0) return err;
534 if (status_get->mask & AUDIT_STATUS_PID) {
535 int old = audit_pid;
536 if (sid) {
537 if ((err = selinux_ctxid_to_string(
538 sid, &ctx, &len)))
539 return err;
540 else
541 audit_log(NULL, GFP_KERNEL,
542 AUDIT_CONFIG_CHANGE,
543 "audit_pid=%d old=%d by auid=%u subj=%s",
544 status_get->pid, old,
545 loginuid, ctx);
546 kfree(ctx);
547 } else
548 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
549 "audit_pid=%d old=%d by auid=%u",
550 status_get->pid, old, loginuid);
551 audit_pid = status_get->pid;
553 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
554 audit_set_rate_limit(status_get->rate_limit,
555 loginuid, sid);
556 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
557 audit_set_backlog_limit(status_get->backlog_limit,
558 loginuid, sid);
559 break;
560 case AUDIT_USER:
561 case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
562 case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
563 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
564 return 0;
566 err = audit_filter_user(&NETLINK_CB(skb), msg_type);
567 if (err == 1) {
568 err = 0;
569 ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
570 if (ab) {
571 audit_log_format(ab,
572 "user pid=%d uid=%u auid=%u",
573 pid, uid, loginuid);
574 if (sid) {
575 if (selinux_ctxid_to_string(
576 sid, &ctx, &len)) {
577 audit_log_format(ab,
578 " ssid=%u", sid);
579 /* Maybe call audit_panic? */
580 } else
581 audit_log_format(ab,
582 " subj=%s", ctx);
583 kfree(ctx);
585 audit_log_format(ab, " msg='%.1024s'",
586 (char *)data);
587 audit_set_pid(ab, pid);
588 audit_log_end(ab);
591 break;
592 case AUDIT_ADD:
593 case AUDIT_DEL:
594 if (nlmsg_len(nlh) < sizeof(struct audit_rule))
595 return -EINVAL;
596 /* fallthrough */
597 case AUDIT_LIST:
598 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
599 uid, seq, data, nlmsg_len(nlh),
600 loginuid, sid);
601 break;
602 case AUDIT_ADD_RULE:
603 case AUDIT_DEL_RULE:
604 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
605 return -EINVAL;
606 /* fallthrough */
607 case AUDIT_LIST_RULES:
608 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
609 uid, seq, data, nlmsg_len(nlh),
610 loginuid, sid);
611 break;
612 case AUDIT_SIGNAL_INFO:
613 err = selinux_ctxid_to_string(audit_sig_sid, &ctx, &len);
614 if (err)
615 return err;
616 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
617 if (!sig_data) {
618 kfree(ctx);
619 return -ENOMEM;
621 sig_data->uid = audit_sig_uid;
622 sig_data->pid = audit_sig_pid;
623 memcpy(sig_data->ctx, ctx, len);
624 kfree(ctx);
625 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
626 0, 0, sig_data, sizeof(*sig_data) + len);
627 kfree(sig_data);
628 break;
629 default:
630 err = -EINVAL;
631 break;
634 return err < 0 ? err : 0;
638 * Get message from skb (based on rtnetlink_rcv_skb). Each message is
639 * processed by audit_receive_msg. Malformed skbs with wrong length are
640 * discarded silently.
642 static void audit_receive_skb(struct sk_buff *skb)
644 int err;
645 struct nlmsghdr *nlh;
646 u32 rlen;
648 while (skb->len >= NLMSG_SPACE(0)) {
649 nlh = (struct nlmsghdr *)skb->data;
650 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
651 return;
652 rlen = NLMSG_ALIGN(nlh->nlmsg_len);
653 if (rlen > skb->len)
654 rlen = skb->len;
655 if ((err = audit_receive_msg(skb, nlh))) {
656 netlink_ack(skb, nlh, err);
657 } else if (nlh->nlmsg_flags & NLM_F_ACK)
658 netlink_ack(skb, nlh, 0);
659 skb_pull(skb, rlen);
663 /* Receive messages from netlink socket. */
664 static void audit_receive(struct sock *sk, int length)
666 struct sk_buff *skb;
667 unsigned int qlen;
669 mutex_lock(&audit_netlink_mutex);
671 for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) {
672 skb = skb_dequeue(&sk->sk_receive_queue);
673 audit_receive_skb(skb);
674 kfree_skb(skb);
676 mutex_unlock(&audit_netlink_mutex);
680 /* Initialize audit support at boot time. */
681 static int __init audit_init(void)
683 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
684 audit_default ? "enabled" : "disabled");
685 audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive,
686 THIS_MODULE);
687 if (!audit_sock)
688 audit_panic("cannot initialize netlink socket");
689 else
690 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
692 skb_queue_head_init(&audit_skb_queue);
693 audit_initialized = 1;
694 audit_enabled = audit_default;
696 /* Register the callback with selinux. This callback will be invoked
697 * when a new policy is loaded. */
698 selinux_audit_set_callback(&selinux_audit_rule_update);
700 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
701 return 0;
703 __initcall(audit_init);
705 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
706 static int __init audit_enable(char *str)
708 audit_default = !!simple_strtol(str, NULL, 0);
709 printk(KERN_INFO "audit: %s%s\n",
710 audit_default ? "enabled" : "disabled",
711 audit_initialized ? "" : " (after initialization)");
712 if (audit_initialized)
713 audit_enabled = audit_default;
714 return 1;
717 __setup("audit=", audit_enable);
719 static void audit_buffer_free(struct audit_buffer *ab)
721 unsigned long flags;
723 if (!ab)
724 return;
726 if (ab->skb)
727 kfree_skb(ab->skb);
729 spin_lock_irqsave(&audit_freelist_lock, flags);
730 if (++audit_freelist_count > AUDIT_MAXFREE)
731 kfree(ab);
732 else
733 list_add(&ab->list, &audit_freelist);
734 spin_unlock_irqrestore(&audit_freelist_lock, flags);
737 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
738 gfp_t gfp_mask, int type)
740 unsigned long flags;
741 struct audit_buffer *ab = NULL;
742 struct nlmsghdr *nlh;
744 spin_lock_irqsave(&audit_freelist_lock, flags);
745 if (!list_empty(&audit_freelist)) {
746 ab = list_entry(audit_freelist.next,
747 struct audit_buffer, list);
748 list_del(&ab->list);
749 --audit_freelist_count;
751 spin_unlock_irqrestore(&audit_freelist_lock, flags);
753 if (!ab) {
754 ab = kmalloc(sizeof(*ab), gfp_mask);
755 if (!ab)
756 goto err;
759 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
760 if (!ab->skb)
761 goto err;
763 ab->ctx = ctx;
764 ab->gfp_mask = gfp_mask;
765 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
766 nlh->nlmsg_type = type;
767 nlh->nlmsg_flags = 0;
768 nlh->nlmsg_pid = 0;
769 nlh->nlmsg_seq = 0;
770 return ab;
771 err:
772 audit_buffer_free(ab);
773 return NULL;
777 * audit_serial - compute a serial number for the audit record
779 * Compute a serial number for the audit record. Audit records are
780 * written to user-space as soon as they are generated, so a complete
781 * audit record may be written in several pieces. The timestamp of the
782 * record and this serial number are used by the user-space tools to
783 * determine which pieces belong to the same audit record. The
784 * (timestamp,serial) tuple is unique for each syscall and is live from
785 * syscall entry to syscall exit.
787 * NOTE: Another possibility is to store the formatted records off the
788 * audit context (for those records that have a context), and emit them
789 * all at syscall exit. However, this could delay the reporting of
790 * significant errors until syscall exit (or never, if the system
791 * halts).
793 unsigned int audit_serial(void)
795 static spinlock_t serial_lock = SPIN_LOCK_UNLOCKED;
796 static unsigned int serial = 0;
798 unsigned long flags;
799 unsigned int ret;
801 spin_lock_irqsave(&serial_lock, flags);
802 do {
803 ret = ++serial;
804 } while (unlikely(!ret));
805 spin_unlock_irqrestore(&serial_lock, flags);
807 return ret;
810 static inline void audit_get_stamp(struct audit_context *ctx,
811 struct timespec *t, unsigned int *serial)
813 if (ctx)
814 auditsc_get_stamp(ctx, t, serial);
815 else {
816 *t = CURRENT_TIME;
817 *serial = audit_serial();
821 /* Obtain an audit buffer. This routine does locking to obtain the
822 * audit buffer, but then no locking is required for calls to
823 * audit_log_*format. If the tsk is a task that is currently in a
824 * syscall, then the syscall is marked as auditable and an audit record
825 * will be written at syscall exit. If there is no associated task, tsk
826 * should be NULL. */
829 * audit_log_start - obtain an audit buffer
830 * @ctx: audit_context (may be NULL)
831 * @gfp_mask: type of allocation
832 * @type: audit message type
834 * Returns audit_buffer pointer on success or NULL on error.
836 * Obtain an audit buffer. This routine does locking to obtain the
837 * audit buffer, but then no locking is required for calls to
838 * audit_log_*format. If the task (ctx) is a task that is currently in a
839 * syscall, then the syscall is marked as auditable and an audit record
840 * will be written at syscall exit. If there is no associated task, then
841 * task context (ctx) should be NULL.
843 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
844 int type)
846 struct audit_buffer *ab = NULL;
847 struct timespec t;
848 unsigned int serial;
849 int reserve;
850 unsigned long timeout_start = jiffies;
852 if (!audit_initialized)
853 return NULL;
855 if (unlikely(audit_filter_type(type)))
856 return NULL;
858 if (gfp_mask & __GFP_WAIT)
859 reserve = 0;
860 else
861 reserve = 5; /* Allow atomic callers to go up to five
862 entries over the normal backlog limit */
864 while (audit_backlog_limit
865 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
866 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
867 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
869 /* Wait for auditd to drain the queue a little */
870 DECLARE_WAITQUEUE(wait, current);
871 set_current_state(TASK_INTERRUPTIBLE);
872 add_wait_queue(&audit_backlog_wait, &wait);
874 if (audit_backlog_limit &&
875 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
876 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
878 __set_current_state(TASK_RUNNING);
879 remove_wait_queue(&audit_backlog_wait, &wait);
880 continue;
882 if (audit_rate_check())
883 printk(KERN_WARNING
884 "audit: audit_backlog=%d > "
885 "audit_backlog_limit=%d\n",
886 skb_queue_len(&audit_skb_queue),
887 audit_backlog_limit);
888 audit_log_lost("backlog limit exceeded");
889 audit_backlog_wait_time = audit_backlog_wait_overflow;
890 wake_up(&audit_backlog_wait);
891 return NULL;
894 ab = audit_buffer_alloc(ctx, gfp_mask, type);
895 if (!ab) {
896 audit_log_lost("out of memory in audit_log_start");
897 return NULL;
900 audit_get_stamp(ab->ctx, &t, &serial);
902 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
903 t.tv_sec, t.tv_nsec/1000000, serial);
904 return ab;
908 * audit_expand - expand skb in the audit buffer
909 * @ab: audit_buffer
910 * @extra: space to add at tail of the skb
912 * Returns 0 (no space) on failed expansion, or available space if
913 * successful.
915 static inline int audit_expand(struct audit_buffer *ab, int extra)
917 struct sk_buff *skb = ab->skb;
918 int ret = pskb_expand_head(skb, skb_headroom(skb), extra,
919 ab->gfp_mask);
920 if (ret < 0) {
921 audit_log_lost("out of memory in audit_expand");
922 return 0;
924 return skb_tailroom(skb);
928 * Format an audit message into the audit buffer. If there isn't enough
929 * room in the audit buffer, more room will be allocated and vsnprint
930 * will be called a second time. Currently, we assume that a printk
931 * can't format message larger than 1024 bytes, so we don't either.
933 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
934 va_list args)
936 int len, avail;
937 struct sk_buff *skb;
938 va_list args2;
940 if (!ab)
941 return;
943 BUG_ON(!ab->skb);
944 skb = ab->skb;
945 avail = skb_tailroom(skb);
946 if (avail == 0) {
947 avail = audit_expand(ab, AUDIT_BUFSIZ);
948 if (!avail)
949 goto out;
951 va_copy(args2, args);
952 len = vsnprintf(skb->tail, avail, fmt, args);
953 if (len >= avail) {
954 /* The printk buffer is 1024 bytes long, so if we get
955 * here and AUDIT_BUFSIZ is at least 1024, then we can
956 * log everything that printk could have logged. */
957 avail = audit_expand(ab,
958 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
959 if (!avail)
960 goto out;
961 len = vsnprintf(skb->tail, avail, fmt, args2);
963 if (len > 0)
964 skb_put(skb, len);
965 out:
966 return;
970 * audit_log_format - format a message into the audit buffer.
971 * @ab: audit_buffer
972 * @fmt: format string
973 * @...: optional parameters matching @fmt string
975 * All the work is done in audit_log_vformat.
977 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
979 va_list args;
981 if (!ab)
982 return;
983 va_start(args, fmt);
984 audit_log_vformat(ab, fmt, args);
985 va_end(args);
989 * audit_log_hex - convert a buffer to hex and append it to the audit skb
990 * @ab: the audit_buffer
991 * @buf: buffer to convert to hex
992 * @len: length of @buf to be converted
994 * No return value; failure to expand is silently ignored.
996 * This function will take the passed buf and convert it into a string of
997 * ascii hex digits. The new string is placed onto the skb.
999 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
1000 size_t len)
1002 int i, avail, new_len;
1003 unsigned char *ptr;
1004 struct sk_buff *skb;
1005 static const unsigned char *hex = "0123456789ABCDEF";
1007 BUG_ON(!ab->skb);
1008 skb = ab->skb;
1009 avail = skb_tailroom(skb);
1010 new_len = len<<1;
1011 if (new_len >= avail) {
1012 /* Round the buffer request up to the next multiple */
1013 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1014 avail = audit_expand(ab, new_len);
1015 if (!avail)
1016 return;
1019 ptr = skb->tail;
1020 for (i=0; i<len; i++) {
1021 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1022 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1024 *ptr = 0;
1025 skb_put(skb, len << 1); /* new string is twice the old string */
1029 * audit_log_unstrustedstring - log a string that may contain random characters
1030 * @ab: audit_buffer
1031 * @string: string to be logged
1033 * This code will escape a string that is passed to it if the string
1034 * contains a control character, unprintable character, double quote mark,
1035 * or a space. Unescaped strings will start and end with a double quote mark.
1036 * Strings that are escaped are printed in hex (2 digits per char).
1038 const char *audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1040 const unsigned char *p = string;
1041 size_t len = strlen(string);
1043 while (*p) {
1044 if (*p == '"' || *p < 0x21 || *p > 0x7f) {
1045 audit_log_hex(ab, string, len);
1046 return string + len + 1;
1048 p++;
1050 audit_log_format(ab, "\"%s\"", string);
1051 return p + 1;
1054 /* This is a helper-function to print the escaped d_path */
1055 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1056 struct dentry *dentry, struct vfsmount *vfsmnt)
1058 char *p, *path;
1060 if (prefix)
1061 audit_log_format(ab, " %s", prefix);
1063 /* We will allow 11 spaces for ' (deleted)' to be appended */
1064 path = kmalloc(PATH_MAX+11, ab->gfp_mask);
1065 if (!path) {
1066 audit_log_format(ab, "<no memory>");
1067 return;
1069 p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
1070 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1071 /* FIXME: can we save some information here? */
1072 audit_log_format(ab, "<too long>");
1073 } else
1074 audit_log_untrustedstring(ab, p);
1075 kfree(path);
1079 * audit_log_end - end one audit record
1080 * @ab: the audit_buffer
1082 * The netlink_* functions cannot be called inside an irq context, so
1083 * the audit buffer is placed on a queue and a tasklet is scheduled to
1084 * remove them from the queue outside the irq context. May be called in
1085 * any context.
1087 void audit_log_end(struct audit_buffer *ab)
1089 if (!ab)
1090 return;
1091 if (!audit_rate_check()) {
1092 audit_log_lost("rate limit exceeded");
1093 } else {
1094 if (audit_pid) {
1095 struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
1096 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1097 skb_queue_tail(&audit_skb_queue, ab->skb);
1098 ab->skb = NULL;
1099 wake_up_interruptible(&kauditd_wait);
1100 } else {
1101 printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0));
1104 audit_buffer_free(ab);
1108 * audit_log - Log an audit record
1109 * @ctx: audit context
1110 * @gfp_mask: type of allocation
1111 * @type: audit message type
1112 * @fmt: format string to use
1113 * @...: variable parameters matching the format string
1115 * This is a convenience function that calls audit_log_start,
1116 * audit_log_vformat, and audit_log_end. It may be called
1117 * in any context.
1119 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1120 const char *fmt, ...)
1122 struct audit_buffer *ab;
1123 va_list args;
1125 ab = audit_log_start(ctx, gfp_mask, type);
1126 if (ab) {
1127 va_start(args, fmt);
1128 audit_log_vformat(ab, fmt, args);
1129 va_end(args);
1130 audit_log_end(ab);
1134 EXPORT_SYMBOL(audit_log_start);
1135 EXPORT_SYMBOL(audit_log_end);
1136 EXPORT_SYMBOL(audit_log_format);
1137 EXPORT_SYMBOL(audit_log);