2 * Alchemy Semi Au1000 IrDA driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/time.h>
29 #include <linux/types.h>
31 #include <net/irda/irda.h>
32 #include <net/irda/irmod.h>
33 #include <net/irda/wrapper.h>
34 #include <net/irda/irda_device.h>
35 #include <asm/mach-au1x00/au1000.h>
38 #define IR_RING_PTR_STATUS 0x00
39 #define IR_RING_BASE_ADDR_H 0x04
40 #define IR_RING_BASE_ADDR_L 0x08
41 #define IR_RING_SIZE 0x0C
42 #define IR_RING_PROMPT 0x10
43 #define IR_RING_ADDR_CMPR 0x14
44 #define IR_INT_CLEAR 0x18
45 #define IR_CONFIG_1 0x20
46 #define IR_SIR_FLAGS 0x24
47 #define IR_STATUS 0x28
48 #define IR_READ_PHY_CONFIG 0x2C
49 #define IR_WRITE_PHY_CONFIG 0x30
50 #define IR_MAX_PKT_LEN 0x34
51 #define IR_RX_BYTE_CNT 0x38
52 #define IR_CONFIG_2 0x3C
53 #define IR_ENABLE 0x40
56 #define IR_RX_INVERT_LED (1 << 0)
57 #define IR_TX_INVERT_LED (1 << 1)
58 #define IR_ST (1 << 2)
59 #define IR_SF (1 << 3)
60 #define IR_SIR (1 << 4)
61 #define IR_MIR (1 << 5)
62 #define IR_FIR (1 << 6)
63 #define IR_16CRC (1 << 7)
64 #define IR_TD (1 << 8)
65 #define IR_RX_ALL (1 << 9)
66 #define IR_DMA_ENABLE (1 << 10)
67 #define IR_RX_ENABLE (1 << 11)
68 #define IR_TX_ENABLE (1 << 12)
69 #define IR_LOOPBACK (1 << 14)
70 #define IR_SIR_MODE (IR_SIR | IR_DMA_ENABLE | \
71 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
75 #define IR_RX_STATUS (1 << 9)
76 #define IR_TX_STATUS (1 << 10)
77 #define IR_PHYEN (1 << 15)
79 /* ir_write_phy_config */
80 #define IR_BR(x) (((x) & 0x3f) << 10) /* baud rate */
81 #define IR_PW(x) (((x) & 0x1f) << 5) /* pulse width */
82 #define IR_P(x) ((x) & 0x1f) /* preamble bits */
85 #define IR_MODE_INV (1 << 0)
86 #define IR_ONE_PIN (1 << 1)
87 #define IR_PHYCLK_40MHZ (0 << 2)
88 #define IR_PHYCLK_48MHZ (1 << 2)
89 #define IR_PHYCLK_56MHZ (2 << 2)
90 #define IR_PHYCLK_64MHZ (3 << 2)
91 #define IR_DP (1 << 4)
92 #define IR_DA (1 << 5)
93 #define IR_FLT_HIGH (0 << 6)
94 #define IR_FLT_MEDHI (1 << 6)
95 #define IR_FLT_MEDLO (2 << 6)
96 #define IR_FLT_LO (3 << 6)
97 #define IR_IEN (1 << 8)
100 #define IR_HC (1 << 3) /* divide SBUS clock by 2 */
101 #define IR_CE (1 << 2) /* clock enable */
102 #define IR_C (1 << 1) /* coherency bit */
103 #define IR_BE (1 << 0) /* set in big endian mode */
105 #define NUM_IR_DESC 64
106 #define RING_SIZE_4 0x0
107 #define RING_SIZE_16 0x3
108 #define RING_SIZE_64 0xF
109 #define MAX_NUM_IR_DESC 64
110 #define MAX_BUF_SIZE 2048
112 /* Ring descriptor flags */
113 #define AU_OWN (1 << 7) /* tx,rx */
114 #define IR_DIS_CRC (1 << 6) /* tx */
115 #define IR_BAD_CRC (1 << 5) /* tx */
116 #define IR_NEED_PULSE (1 << 4) /* tx */
117 #define IR_FORCE_UNDER (1 << 3) /* tx */
118 #define IR_DISABLE_TX (1 << 2) /* tx */
119 #define IR_HW_UNDER (1 << 0) /* tx */
120 #define IR_TX_ERROR (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
122 #define IR_PHY_ERROR (1 << 6) /* rx */
123 #define IR_CRC_ERROR (1 << 5) /* rx */
124 #define IR_MAX_LEN (1 << 4) /* rx */
125 #define IR_FIFO_OVER (1 << 3) /* rx */
126 #define IR_SIR_ERROR (1 << 2) /* rx */
127 #define IR_RX_ERROR (IR_PHY_ERROR | IR_CRC_ERROR | \
128 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
131 struct db_dest
*pnext
;
137 u8 count_0
; /* 7:0 */
138 u8 count_1
; /* 12:8 */
142 u8 addr_1
; /* 15:8 */
143 u8 addr_2
; /* 23:16 */
144 u8 addr_3
; /* 31:24 */
147 /* Private data for each instance */
148 struct au1k_private
{
149 void __iomem
*iobase
;
152 struct db_dest
*pDBfree
;
153 struct db_dest db
[2 * NUM_IR_DESC
];
154 volatile struct ring_dest
*rx_ring
[NUM_IR_DESC
];
155 volatile struct ring_dest
*tx_ring
[NUM_IR_DESC
];
156 struct db_dest
*rx_db_inuse
[NUM_IR_DESC
];
157 struct db_dest
*tx_db_inuse
[NUM_IR_DESC
];
165 struct net_device
*netdev
;
166 struct timeval stamp
;
169 struct irlap_cb
*irlap
;
175 struct timer_list timer
;
177 struct resource
*ioarea
;
178 struct au1k_irda_platform_data
*platdata
;
181 static int qos_mtt_bits
= 0x07; /* 1 ms or more */
183 #define RUN_AT(x) (jiffies + (x))
185 static void au1k_irda_plat_set_phy_mode(struct au1k_private
*p
, int mode
)
187 if (p
->platdata
&& p
->platdata
->set_phy_mode
)
188 p
->platdata
->set_phy_mode(mode
);
191 static inline unsigned long irda_read(struct au1k_private
*p
,
195 * IrDA peripheral bug. You have to read the register
196 * twice to get the right value.
198 (void)__raw_readl(p
->iobase
+ ofs
);
199 return __raw_readl(p
->iobase
+ ofs
);
202 static inline void irda_write(struct au1k_private
*p
, unsigned long ofs
,
205 __raw_writel(val
, p
->iobase
+ ofs
);
210 * Buffer allocation/deallocation routines. The buffer descriptor returned
211 * has the virtual and dma address of a buffer suitable for
212 * both, receive and transmit operations.
214 static struct db_dest
*GetFreeDB(struct au1k_private
*aup
)
220 aup
->pDBfree
= db
->pnext
;
225 DMA memory allocation, derived from pci_alloc_consistent.
226 However, the Au1000 data cache is coherent (when programmed
227 so), therefore we return KSEG0 address, not KSEG1.
229 static void *dma_alloc(size_t size
, dma_addr_t
*dma_handle
)
232 int gfp
= GFP_ATOMIC
| GFP_DMA
;
234 ret
= (void *)__get_free_pages(gfp
, get_order(size
));
237 memset(ret
, 0, size
);
238 *dma_handle
= virt_to_bus(ret
);
239 ret
= (void *)KSEG0ADDR(ret
);
244 static void dma_free(void *vaddr
, size_t size
)
246 vaddr
= (void *)KSEG0ADDR(vaddr
);
247 free_pages((unsigned long) vaddr
, get_order(size
));
251 static void setup_hw_rings(struct au1k_private
*aup
, u32 rx_base
, u32 tx_base
)
254 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
255 aup
->rx_ring
[i
] = (volatile struct ring_dest
*)
256 (rx_base
+ sizeof(struct ring_dest
) * i
);
258 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
259 aup
->tx_ring
[i
] = (volatile struct ring_dest
*)
260 (tx_base
+ sizeof(struct ring_dest
) * i
);
264 static int au1k_irda_init_iobuf(iobuff_t
*io
, int size
)
266 io
->head
= kmalloc(size
, GFP_KERNEL
);
267 if (io
->head
!= NULL
) {
269 io
->in_frame
= FALSE
;
270 io
->state
= OUTSIDE_FRAME
;
273 return io
->head
? 0 : -ENOMEM
;
277 * Set the IrDA communications speed.
279 static int au1k_irda_set_speed(struct net_device
*dev
, int speed
)
281 struct au1k_private
*aup
= netdev_priv(dev
);
282 volatile struct ring_dest
*ptxd
;
283 unsigned long control
;
284 int ret
= 0, timeout
= 10, i
;
286 if (speed
== aup
->speed
)
289 /* disable PHY first */
290 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_OFF
);
291 irda_write(aup
, IR_STATUS
, irda_read(aup
, IR_STATUS
) & ~IR_PHYEN
);
294 irda_write(aup
, IR_CONFIG_1
,
295 irda_read(aup
, IR_CONFIG_1
) & ~(IR_RX_ENABLE
| IR_TX_ENABLE
));
297 while (irda_read(aup
, IR_STATUS
) & (IR_RX_STATUS
| IR_TX_STATUS
)) {
300 printk(KERN_ERR
"%s: rx/tx disable timeout\n",
307 irda_write(aup
, IR_CONFIG_1
,
308 irda_read(aup
, IR_CONFIG_1
) & ~IR_DMA_ENABLE
);
311 /* After we disable tx/rx. the index pointers go back to zero. */
312 aup
->tx_head
= aup
->tx_tail
= aup
->rx_head
= 0;
313 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
314 ptxd
= aup
->tx_ring
[i
];
320 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
321 ptxd
= aup
->rx_ring
[i
];
324 ptxd
->flags
= AU_OWN
;
327 if (speed
== 4000000)
328 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_FIR
);
330 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_SIR
);
334 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_BR(11) | IR_PW(12));
335 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
338 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_BR(5) | IR_PW(12));
339 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
342 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_BR(2) | IR_PW(12));
343 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
346 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_BR(1) | IR_PW(12));
347 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
350 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_PW(12));
351 irda_write(aup
, IR_CONFIG_1
, IR_SIR_MODE
);
354 irda_write(aup
, IR_WRITE_PHY_CONFIG
, IR_P(15));
355 irda_write(aup
, IR_CONFIG_1
, IR_FIR
| IR_DMA_ENABLE
|
359 printk(KERN_ERR
"%s unsupported speed %x\n", dev
->name
, speed
);
365 irda_write(aup
, IR_STATUS
, irda_read(aup
, IR_STATUS
) | IR_PHYEN
);
367 control
= irda_read(aup
, IR_STATUS
);
368 irda_write(aup
, IR_RING_PROMPT
, 0);
370 if (control
& (1 << 14)) {
371 printk(KERN_ERR
"%s: configuration error\n", dev
->name
);
373 if (control
& (1 << 11))
374 printk(KERN_DEBUG
"%s Valid SIR config\n", dev
->name
);
375 if (control
& (1 << 12))
376 printk(KERN_DEBUG
"%s Valid MIR config\n", dev
->name
);
377 if (control
& (1 << 13))
378 printk(KERN_DEBUG
"%s Valid FIR config\n", dev
->name
);
379 if (control
& (1 << 10))
380 printk(KERN_DEBUG
"%s TX enabled\n", dev
->name
);
381 if (control
& (1 << 9))
382 printk(KERN_DEBUG
"%s RX enabled\n", dev
->name
);
388 static void update_rx_stats(struct net_device
*dev
, u32 status
, u32 count
)
390 struct net_device_stats
*ps
= &dev
->stats
;
394 if (status
& IR_RX_ERROR
) {
396 if (status
& (IR_PHY_ERROR
| IR_FIFO_OVER
))
397 ps
->rx_missed_errors
++;
398 if (status
& IR_MAX_LEN
)
399 ps
->rx_length_errors
++;
400 if (status
& IR_CRC_ERROR
)
403 ps
->rx_bytes
+= count
;
406 static void update_tx_stats(struct net_device
*dev
, u32 status
, u32 pkt_len
)
408 struct net_device_stats
*ps
= &dev
->stats
;
411 ps
->tx_bytes
+= pkt_len
;
413 if (status
& IR_TX_ERROR
) {
415 ps
->tx_aborted_errors
++;
419 static void au1k_tx_ack(struct net_device
*dev
)
421 struct au1k_private
*aup
= netdev_priv(dev
);
422 volatile struct ring_dest
*ptxd
;
424 ptxd
= aup
->tx_ring
[aup
->tx_tail
];
425 while (!(ptxd
->flags
& AU_OWN
) && (aup
->tx_tail
!= aup
->tx_head
)) {
426 update_tx_stats(dev
, ptxd
->flags
,
427 (ptxd
->count_1
<< 8) | ptxd
->count_0
);
431 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_IR_DESC
- 1);
432 ptxd
= aup
->tx_ring
[aup
->tx_tail
];
436 netif_wake_queue(dev
);
440 if (aup
->tx_tail
== aup
->tx_head
) {
442 au1k_irda_set_speed(dev
, aup
->newspeed
);
445 irda_write(aup
, IR_CONFIG_1
,
446 irda_read(aup
, IR_CONFIG_1
) & ~IR_TX_ENABLE
);
447 irda_write(aup
, IR_CONFIG_1
,
448 irda_read(aup
, IR_CONFIG_1
) | IR_RX_ENABLE
);
449 irda_write(aup
, IR_RING_PROMPT
, 0);
454 static int au1k_irda_rx(struct net_device
*dev
)
456 struct au1k_private
*aup
= netdev_priv(dev
);
457 volatile struct ring_dest
*prxd
;
462 prxd
= aup
->rx_ring
[aup
->rx_head
];
465 while (!(flags
& AU_OWN
)) {
466 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
467 count
= (prxd
->count_1
<< 8) | prxd
->count_0
;
468 if (!(flags
& IR_RX_ERROR
)) {
470 update_rx_stats(dev
, flags
, count
);
471 skb
= alloc_skb(count
+ 1, GFP_ATOMIC
);
473 dev
->stats
.rx_dropped
++;
477 if (aup
->speed
== 4000000)
480 skb_put(skb
, count
- 2);
481 skb_copy_to_linear_data(skb
, (void *)pDB
->vaddr
,
484 skb_reset_mac_header(skb
);
485 skb
->protocol
= htons(ETH_P_IRDA
);
490 prxd
->flags
|= AU_OWN
;
491 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_IR_DESC
- 1);
492 irda_write(aup
, IR_RING_PROMPT
, 0);
494 /* next descriptor */
495 prxd
= aup
->rx_ring
[aup
->rx_head
];
502 static irqreturn_t
au1k_irda_interrupt(int dummy
, void *dev_id
)
504 struct net_device
*dev
= dev_id
;
505 struct au1k_private
*aup
= netdev_priv(dev
);
507 irda_write(aup
, IR_INT_CLEAR
, 0); /* ack irda interrupts */
515 static int au1k_init(struct net_device
*dev
)
517 struct au1k_private
*aup
= netdev_priv(dev
);
518 u32 enable
, ring_address
;
521 enable
= IR_HC
| IR_CE
| IR_C
;
522 #ifndef CONFIG_CPU_LITTLE_ENDIAN
529 for (i
= 0; i
< NUM_IR_DESC
; i
++)
530 aup
->rx_ring
[i
]->flags
= AU_OWN
;
532 irda_write(aup
, IR_ENABLE
, enable
);
536 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_OFF
);
537 irda_write(aup
, IR_STATUS
, irda_read(aup
, IR_STATUS
) & ~IR_PHYEN
);
540 irda_write(aup
, IR_MAX_PKT_LEN
, MAX_BUF_SIZE
);
542 ring_address
= (u32
)virt_to_phys((void *)aup
->rx_ring
[0]);
543 irda_write(aup
, IR_RING_BASE_ADDR_H
, ring_address
>> 26);
544 irda_write(aup
, IR_RING_BASE_ADDR_L
, (ring_address
>> 10) & 0xffff);
546 irda_write(aup
, IR_RING_SIZE
,
547 (RING_SIZE_64
<< 8) | (RING_SIZE_64
<< 12));
549 irda_write(aup
, IR_CONFIG_2
, IR_PHYCLK_48MHZ
| IR_ONE_PIN
);
550 irda_write(aup
, IR_RING_ADDR_CMPR
, 0);
552 au1k_irda_set_speed(dev
, 9600);
556 static int au1k_irda_start(struct net_device
*dev
)
558 struct au1k_private
*aup
= netdev_priv(dev
);
562 retval
= au1k_init(dev
);
564 printk(KERN_ERR
"%s: error in au1k_init\n", dev
->name
);
568 retval
= request_irq(aup
->irq_tx
, &au1k_irda_interrupt
, 0,
571 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
572 dev
->name
, dev
->irq
);
575 retval
= request_irq(aup
->irq_rx
, &au1k_irda_interrupt
, 0,
578 free_irq(aup
->irq_tx
, dev
);
579 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
580 dev
->name
, dev
->irq
);
584 /* Give self a hardware name */
585 sprintf(hwname
, "Au1000 SIR/FIR");
586 aup
->irlap
= irlap_open(dev
, &aup
->qos
, hwname
);
587 netif_start_queue(dev
);
590 irda_write(aup
, IR_CONFIG_2
, irda_read(aup
, IR_CONFIG_2
) | IR_IEN
);
593 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_SIR
);
595 aup
->timer
.expires
= RUN_AT((3 * HZ
));
596 aup
->timer
.data
= (unsigned long)dev
;
600 static int au1k_irda_stop(struct net_device
*dev
)
602 struct au1k_private
*aup
= netdev_priv(dev
);
604 au1k_irda_plat_set_phy_mode(aup
, AU1000_IRDA_PHY_MODE_OFF
);
606 /* disable interrupts */
607 irda_write(aup
, IR_CONFIG_2
, irda_read(aup
, IR_CONFIG_2
) & ~IR_IEN
);
608 irda_write(aup
, IR_CONFIG_1
, 0);
609 irda_write(aup
, IR_ENABLE
, 0); /* disable clock */
612 irlap_close(aup
->irlap
);
616 netif_stop_queue(dev
);
617 del_timer(&aup
->timer
);
619 /* disable the interrupt */
620 free_irq(aup
->irq_tx
, dev
);
621 free_irq(aup
->irq_rx
, dev
);
627 * Au1000 transmit routine.
629 static int au1k_irda_hard_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
631 struct au1k_private
*aup
= netdev_priv(dev
);
632 int speed
= irda_get_next_speed(skb
);
633 volatile struct ring_dest
*ptxd
;
637 if (speed
!= aup
->speed
&& speed
!= -1)
638 aup
->newspeed
= speed
;
640 if ((skb
->len
== 0) && (aup
->newspeed
)) {
641 if (aup
->tx_tail
== aup
->tx_head
) {
642 au1k_irda_set_speed(dev
, speed
);
649 ptxd
= aup
->tx_ring
[aup
->tx_head
];
652 if (flags
& AU_OWN
) {
653 printk(KERN_DEBUG
"%s: tx_full\n", dev
->name
);
654 netif_stop_queue(dev
);
657 } else if (((aup
->tx_head
+ 1) & (NUM_IR_DESC
- 1)) == aup
->tx_tail
) {
658 printk(KERN_DEBUG
"%s: tx_full\n", dev
->name
);
659 netif_stop_queue(dev
);
664 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
667 if (irda_read(aup
, IR_RX_BYTE_CNT
) != 0) {
668 printk(KERN_DEBUG
"tx warning: rx byte cnt %x\n",
669 irda_read(aup
, IR_RX_BYTE_CNT
));
673 if (aup
->speed
== 4000000) {
675 skb_copy_from_linear_data(skb
, (void *)pDB
->vaddr
, skb
->len
);
676 ptxd
->count_0
= skb
->len
& 0xff;
677 ptxd
->count_1
= (skb
->len
>> 8) & 0xff;
680 len
= async_wrap_skb(skb
, (u8
*)pDB
->vaddr
, MAX_BUF_SIZE
);
681 ptxd
->count_0
= len
& 0xff;
682 ptxd
->count_1
= (len
>> 8) & 0xff;
683 ptxd
->flags
|= IR_DIS_CRC
;
685 ptxd
->flags
|= AU_OWN
;
688 irda_write(aup
, IR_CONFIG_1
,
689 irda_read(aup
, IR_CONFIG_1
) | IR_TX_ENABLE
);
690 irda_write(aup
, IR_RING_PROMPT
, 0);
693 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_IR_DESC
- 1);
698 * The Tx ring has been full longer than the watchdog timeout
699 * value. The transmitter must be hung?
701 static void au1k_tx_timeout(struct net_device
*dev
)
704 struct au1k_private
*aup
= netdev_priv(dev
);
706 printk(KERN_ERR
"%s: tx timeout\n", dev
->name
);
709 au1k_irda_set_speed(dev
, speed
);
711 netif_wake_queue(dev
);
714 static int au1k_irda_ioctl(struct net_device
*dev
, struct ifreq
*ifreq
, int cmd
)
716 struct if_irda_req
*rq
= (struct if_irda_req
*)ifreq
;
717 struct au1k_private
*aup
= netdev_priv(dev
);
718 int ret
= -EOPNOTSUPP
;
722 if (capable(CAP_NET_ADMIN
)) {
724 * We are unable to set the speed if the
725 * device is not running.
728 ret
= au1k_irda_set_speed(dev
,
731 printk(KERN_ERR
"%s ioctl: !netif_running\n",
740 if (capable(CAP_NET_ADMIN
)) {
741 irda_device_set_media_busy(dev
, TRUE
);
747 rq
->ifr_receiving
= 0;
755 static const struct net_device_ops au1k_irda_netdev_ops
= {
756 .ndo_open
= au1k_irda_start
,
757 .ndo_stop
= au1k_irda_stop
,
758 .ndo_start_xmit
= au1k_irda_hard_xmit
,
759 .ndo_tx_timeout
= au1k_tx_timeout
,
760 .ndo_do_ioctl
= au1k_irda_ioctl
,
763 static int __devinit
au1k_irda_net_init(struct net_device
*dev
)
765 struct au1k_private
*aup
= netdev_priv(dev
);
766 struct db_dest
*pDB
, *pDBfree
;
767 int i
, err
, retval
= 0;
770 err
= au1k_irda_init_iobuf(&aup
->rx_buff
, 14384);
774 dev
->netdev_ops
= &au1k_irda_netdev_ops
;
776 irda_init_max_qos_capabilies(&aup
->qos
);
778 /* The only value we must override it the baudrate */
779 aup
->qos
.baud_rate
.bits
= IR_9600
| IR_19200
| IR_38400
|
780 IR_57600
| IR_115200
| IR_576000
| (IR_4000000
<< 8);
782 aup
->qos
.min_turn_time
.bits
= qos_mtt_bits
;
783 irda_qos_bits_to_value(&aup
->qos
);
787 /* Tx ring follows rx ring + 512 bytes */
788 /* we need a 1k aligned buffer */
789 aup
->rx_ring
[0] = (struct ring_dest
*)
790 dma_alloc(2 * MAX_NUM_IR_DESC
* (sizeof(struct ring_dest
)),
792 if (!aup
->rx_ring
[0])
795 /* allocate the data buffers */
797 (void *)dma_alloc(MAX_BUF_SIZE
* 2 * NUM_IR_DESC
, &temp
);
798 if (!aup
->db
[0].vaddr
)
801 setup_hw_rings(aup
, (u32
)aup
->rx_ring
[0], (u32
)aup
->rx_ring
[0] + 512);
805 for (i
= 0; i
< (2 * NUM_IR_DESC
); i
++) {
806 pDB
->pnext
= pDBfree
;
809 (u32
*)((unsigned)aup
->db
[0].vaddr
+ (MAX_BUF_SIZE
* i
));
810 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
813 aup
->pDBfree
= pDBfree
;
815 /* attach a data buffer to each descriptor */
816 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
817 pDB
= GetFreeDB(aup
);
820 aup
->rx_ring
[i
]->addr_0
= (u8
)(pDB
->dma_addr
& 0xff);
821 aup
->rx_ring
[i
]->addr_1
= (u8
)((pDB
->dma_addr
>> 8) & 0xff);
822 aup
->rx_ring
[i
]->addr_2
= (u8
)((pDB
->dma_addr
>> 16) & 0xff);
823 aup
->rx_ring
[i
]->addr_3
= (u8
)((pDB
->dma_addr
>> 24) & 0xff);
824 aup
->rx_db_inuse
[i
] = pDB
;
826 for (i
= 0; i
< NUM_IR_DESC
; i
++) {
827 pDB
= GetFreeDB(aup
);
830 aup
->tx_ring
[i
]->addr_0
= (u8
)(pDB
->dma_addr
& 0xff);
831 aup
->tx_ring
[i
]->addr_1
= (u8
)((pDB
->dma_addr
>> 8) & 0xff);
832 aup
->tx_ring
[i
]->addr_2
= (u8
)((pDB
->dma_addr
>> 16) & 0xff);
833 aup
->tx_ring
[i
]->addr_3
= (u8
)((pDB
->dma_addr
>> 24) & 0xff);
834 aup
->tx_ring
[i
]->count_0
= 0;
835 aup
->tx_ring
[i
]->count_1
= 0;
836 aup
->tx_ring
[i
]->flags
= 0;
837 aup
->tx_db_inuse
[i
] = pDB
;
843 dma_free((void *)aup
->rx_ring
[0],
844 2 * MAX_NUM_IR_DESC
* (sizeof(struct ring_dest
)));
846 kfree(aup
->rx_buff
.head
);
848 printk(KERN_ERR
"au1k_irda_net_init() failed. Returns %d\n", retval
);
852 static int __devinit
au1k_irda_probe(struct platform_device
*pdev
)
854 struct au1k_private
*aup
;
855 struct net_device
*dev
;
859 dev
= alloc_irdadev(sizeof(struct au1k_private
));
863 aup
= netdev_priv(dev
);
865 aup
->platdata
= pdev
->dev
.platform_data
;
868 r
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
872 aup
->irq_tx
= r
->start
;
874 r
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 1);
878 aup
->irq_rx
= r
->start
;
880 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
885 aup
->ioarea
= request_mem_region(r
->start
, r
->end
- r
->start
+ 1,
890 aup
->iobase
= ioremap_nocache(r
->start
, r
->end
- r
->start
+ 1);
894 dev
->irq
= aup
->irq_rx
;
896 err
= au1k_irda_net_init(dev
);
899 err
= register_netdev(dev
);
903 platform_set_drvdata(pdev
, dev
);
905 printk(KERN_INFO
"IrDA: Registered device %s\n", dev
->name
);
909 dma_free((void *)aup
->db
[0].vaddr
,
910 MAX_BUF_SIZE
* 2 * NUM_IR_DESC
);
911 dma_free((void *)aup
->rx_ring
[0],
912 2 * MAX_NUM_IR_DESC
* (sizeof(struct ring_dest
)));
913 kfree(aup
->rx_buff
.head
);
915 iounmap(aup
->iobase
);
917 release_resource(aup
->ioarea
);
924 static int __devexit
au1k_irda_remove(struct platform_device
*pdev
)
926 struct net_device
*dev
= platform_get_drvdata(pdev
);
927 struct au1k_private
*aup
= netdev_priv(dev
);
929 unregister_netdev(dev
);
931 dma_free((void *)aup
->db
[0].vaddr
,
932 MAX_BUF_SIZE
* 2 * NUM_IR_DESC
);
933 dma_free((void *)aup
->rx_ring
[0],
934 2 * MAX_NUM_IR_DESC
* (sizeof(struct ring_dest
)));
935 kfree(aup
->rx_buff
.head
);
937 iounmap(aup
->iobase
);
938 release_resource(aup
->ioarea
);
946 static struct platform_driver au1k_irda_driver
= {
948 .name
= "au1000-irda",
949 .owner
= THIS_MODULE
,
951 .probe
= au1k_irda_probe
,
952 .remove
= __devexit_p(au1k_irda_remove
),
955 static int __init
au1k_irda_load(void)
957 return platform_driver_register(&au1k_irda_driver
);
960 static void __exit
au1k_irda_unload(void)
962 return platform_driver_unregister(&au1k_irda_driver
);
965 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
966 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
968 module_init(au1k_irda_load
);
969 module_exit(au1k_irda_unload
);