md: md_stop_writes requires mddev_lock.
[linux-2.6/libata-dev.git] / drivers / md / md.c
blobf43ff2962b2b23ce655e9e9f2bda81e1400f9f3a
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
67 static void md_print_devices(void);
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 * Default number of read corrections we'll attempt on an rdev
77 * before ejecting it from the array. We divide the read error
78 * count by 2 for every hour elapsed between read errors.
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
102 static inline int speed_max(mddev_t *mddev)
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
108 static struct ctl_table_header *raid_table_header;
110 static ctl_table raid_table[] = {
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = S_IRUGO|S_IWUSR,
116 .proc_handler = proc_dointvec,
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
128 static ctl_table raid_dir_table[] = {
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
138 static ctl_table raid_root_table[] = {
140 .procname = "dev",
141 .maxlen = 0,
142 .mode = 0555,
143 .child = raid_dir_table,
148 static const struct block_device_operations md_fops;
150 static int start_readonly;
152 /* bio_clone_mddev
153 * like bio_clone, but with a local bio set
156 static void mddev_bio_destructor(struct bio *bio)
158 mddev_t *mddev, **mddevp;
160 mddevp = (void*)bio;
161 mddev = mddevp[-1];
163 bio_free(bio, mddev->bio_set);
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 mddev_t *mddev)
169 struct bio *b;
170 mddev_t **mddevp;
172 if (!mddev || !mddev->bio_set)
173 return bio_alloc(gfp_mask, nr_iovecs);
175 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 mddev->bio_set);
177 if (!b)
178 return NULL;
179 mddevp = (void*)b;
180 mddevp[-1] = mddev;
181 b->bi_destructor = mddev_bio_destructor;
182 return b;
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 mddev_t *mddev)
189 struct bio *b;
190 mddev_t **mddevp;
192 if (!mddev || !mddev->bio_set)
193 return bio_clone(bio, gfp_mask);
195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 mddev->bio_set);
197 if (!b)
198 return NULL;
199 mddevp = (void*)b;
200 mddevp[-1] = mddev;
201 b->bi_destructor = mddev_bio_destructor;
202 __bio_clone(b, bio);
203 if (bio_integrity(bio)) {
204 int ret;
206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
208 if (ret < 0) {
209 bio_put(b);
210 return NULL;
214 return b;
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219 * We have a system wide 'event count' that is incremented
220 * on any 'interesting' event, and readers of /proc/mdstat
221 * can use 'poll' or 'select' to find out when the event
222 * count increases.
224 * Events are:
225 * start array, stop array, error, add device, remove device,
226 * start build, activate spare
228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
229 static atomic_t md_event_count;
230 void md_new_event(mddev_t *mddev)
232 atomic_inc(&md_event_count);
233 wake_up(&md_event_waiters);
235 EXPORT_SYMBOL_GPL(md_new_event);
237 /* Alternate version that can be called from interrupts
238 * when calling sysfs_notify isn't needed.
240 static void md_new_event_inintr(mddev_t *mddev)
242 atomic_inc(&md_event_count);
243 wake_up(&md_event_waiters);
247 * Enables to iterate over all existing md arrays
248 * all_mddevs_lock protects this list.
250 static LIST_HEAD(all_mddevs);
251 static DEFINE_SPINLOCK(all_mddevs_lock);
255 * iterates through all used mddevs in the system.
256 * We take care to grab the all_mddevs_lock whenever navigating
257 * the list, and to always hold a refcount when unlocked.
258 * Any code which breaks out of this loop while own
259 * a reference to the current mddev and must mddev_put it.
261 #define for_each_mddev(mddev,tmp) \
263 for (({ spin_lock(&all_mddevs_lock); \
264 tmp = all_mddevs.next; \
265 mddev = NULL;}); \
266 ({ if (tmp != &all_mddevs) \
267 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
268 spin_unlock(&all_mddevs_lock); \
269 if (mddev) mddev_put(mddev); \
270 mddev = list_entry(tmp, mddev_t, all_mddevs); \
271 tmp != &all_mddevs;}); \
272 ({ spin_lock(&all_mddevs_lock); \
273 tmp = tmp->next;}) \
277 /* Rather than calling directly into the personality make_request function,
278 * IO requests come here first so that we can check if the device is
279 * being suspended pending a reconfiguration.
280 * We hold a refcount over the call to ->make_request. By the time that
281 * call has finished, the bio has been linked into some internal structure
282 * and so is visible to ->quiesce(), so we don't need the refcount any more.
284 static int md_make_request(struct request_queue *q, struct bio *bio)
286 const int rw = bio_data_dir(bio);
287 mddev_t *mddev = q->queuedata;
288 int rv;
289 int cpu;
291 if (mddev == NULL || mddev->pers == NULL
292 || !mddev->ready) {
293 bio_io_error(bio);
294 return 0;
296 smp_rmb(); /* Ensure implications of 'active' are visible */
297 rcu_read_lock();
298 if (mddev->suspended) {
299 DEFINE_WAIT(__wait);
300 for (;;) {
301 prepare_to_wait(&mddev->sb_wait, &__wait,
302 TASK_UNINTERRUPTIBLE);
303 if (!mddev->suspended)
304 break;
305 rcu_read_unlock();
306 schedule();
307 rcu_read_lock();
309 finish_wait(&mddev->sb_wait, &__wait);
311 atomic_inc(&mddev->active_io);
312 rcu_read_unlock();
314 rv = mddev->pers->make_request(mddev, bio);
316 cpu = part_stat_lock();
317 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
318 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
319 bio_sectors(bio));
320 part_stat_unlock();
322 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
323 wake_up(&mddev->sb_wait);
325 return rv;
328 /* mddev_suspend makes sure no new requests are submitted
329 * to the device, and that any requests that have been submitted
330 * are completely handled.
331 * Once ->stop is called and completes, the module will be completely
332 * unused.
334 void mddev_suspend(mddev_t *mddev)
336 BUG_ON(mddev->suspended);
337 mddev->suspended = 1;
338 synchronize_rcu();
339 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
340 mddev->pers->quiesce(mddev, 1);
342 EXPORT_SYMBOL_GPL(mddev_suspend);
344 void mddev_resume(mddev_t *mddev)
346 mddev->suspended = 0;
347 wake_up(&mddev->sb_wait);
348 mddev->pers->quiesce(mddev, 0);
350 EXPORT_SYMBOL_GPL(mddev_resume);
352 int mddev_congested(mddev_t *mddev, int bits)
354 return mddev->suspended;
356 EXPORT_SYMBOL(mddev_congested);
359 * Generic flush handling for md
362 static void md_end_flush(struct bio *bio, int err)
364 mdk_rdev_t *rdev = bio->bi_private;
365 mddev_t *mddev = rdev->mddev;
367 rdev_dec_pending(rdev, mddev);
369 if (atomic_dec_and_test(&mddev->flush_pending)) {
370 /* The pre-request flush has finished */
371 queue_work(md_wq, &mddev->flush_work);
373 bio_put(bio);
376 static void md_submit_flush_data(struct work_struct *ws);
378 static void submit_flushes(struct work_struct *ws)
380 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
381 mdk_rdev_t *rdev;
383 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
384 atomic_set(&mddev->flush_pending, 1);
385 rcu_read_lock();
386 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
387 if (rdev->raid_disk >= 0 &&
388 !test_bit(Faulty, &rdev->flags)) {
389 /* Take two references, one is dropped
390 * when request finishes, one after
391 * we reclaim rcu_read_lock
393 struct bio *bi;
394 atomic_inc(&rdev->nr_pending);
395 atomic_inc(&rdev->nr_pending);
396 rcu_read_unlock();
397 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
398 bi->bi_end_io = md_end_flush;
399 bi->bi_private = rdev;
400 bi->bi_bdev = rdev->bdev;
401 atomic_inc(&mddev->flush_pending);
402 submit_bio(WRITE_FLUSH, bi);
403 rcu_read_lock();
404 rdev_dec_pending(rdev, mddev);
406 rcu_read_unlock();
407 if (atomic_dec_and_test(&mddev->flush_pending))
408 queue_work(md_wq, &mddev->flush_work);
411 static void md_submit_flush_data(struct work_struct *ws)
413 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
414 struct bio *bio = mddev->flush_bio;
416 if (bio->bi_size == 0)
417 /* an empty barrier - all done */
418 bio_endio(bio, 0);
419 else {
420 bio->bi_rw &= ~REQ_FLUSH;
421 if (mddev->pers->make_request(mddev, bio))
422 generic_make_request(bio);
425 mddev->flush_bio = NULL;
426 wake_up(&mddev->sb_wait);
429 void md_flush_request(mddev_t *mddev, struct bio *bio)
431 spin_lock_irq(&mddev->write_lock);
432 wait_event_lock_irq(mddev->sb_wait,
433 !mddev->flush_bio,
434 mddev->write_lock, /*nothing*/);
435 mddev->flush_bio = bio;
436 spin_unlock_irq(&mddev->write_lock);
438 INIT_WORK(&mddev->flush_work, submit_flushes);
439 queue_work(md_wq, &mddev->flush_work);
441 EXPORT_SYMBOL(md_flush_request);
443 /* Support for plugging.
444 * This mirrors the plugging support in request_queue, but does not
445 * require having a whole queue
447 static void plugger_work(struct work_struct *work)
449 struct plug_handle *plug =
450 container_of(work, struct plug_handle, unplug_work);
451 plug->unplug_fn(plug);
453 static void plugger_timeout(unsigned long data)
455 struct plug_handle *plug = (void *)data;
456 kblockd_schedule_work(NULL, &plug->unplug_work);
458 void plugger_init(struct plug_handle *plug,
459 void (*unplug_fn)(struct plug_handle *))
461 plug->unplug_flag = 0;
462 plug->unplug_fn = unplug_fn;
463 init_timer(&plug->unplug_timer);
464 plug->unplug_timer.function = plugger_timeout;
465 plug->unplug_timer.data = (unsigned long)plug;
466 INIT_WORK(&plug->unplug_work, plugger_work);
468 EXPORT_SYMBOL_GPL(plugger_init);
470 void plugger_set_plug(struct plug_handle *plug)
472 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
473 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
475 EXPORT_SYMBOL_GPL(plugger_set_plug);
477 int plugger_remove_plug(struct plug_handle *plug)
479 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
480 del_timer(&plug->unplug_timer);
481 return 1;
482 } else
483 return 0;
485 EXPORT_SYMBOL_GPL(plugger_remove_plug);
488 static inline mddev_t *mddev_get(mddev_t *mddev)
490 atomic_inc(&mddev->active);
491 return mddev;
494 static void mddev_delayed_delete(struct work_struct *ws);
496 static void mddev_put(mddev_t *mddev)
498 struct bio_set *bs = NULL;
500 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
501 return;
502 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
503 mddev->ctime == 0 && !mddev->hold_active) {
504 /* Array is not configured at all, and not held active,
505 * so destroy it */
506 list_del(&mddev->all_mddevs);
507 bs = mddev->bio_set;
508 mddev->bio_set = NULL;
509 if (mddev->gendisk) {
510 /* We did a probe so need to clean up. Call
511 * queue_work inside the spinlock so that
512 * flush_workqueue() after mddev_find will
513 * succeed in waiting for the work to be done.
515 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
516 queue_work(md_misc_wq, &mddev->del_work);
517 } else
518 kfree(mddev);
520 spin_unlock(&all_mddevs_lock);
521 if (bs)
522 bioset_free(bs);
525 void mddev_init(mddev_t *mddev)
527 mutex_init(&mddev->open_mutex);
528 mutex_init(&mddev->reconfig_mutex);
529 mutex_init(&mddev->bitmap_info.mutex);
530 INIT_LIST_HEAD(&mddev->disks);
531 INIT_LIST_HEAD(&mddev->all_mddevs);
532 init_timer(&mddev->safemode_timer);
533 atomic_set(&mddev->active, 1);
534 atomic_set(&mddev->openers, 0);
535 atomic_set(&mddev->active_io, 0);
536 spin_lock_init(&mddev->write_lock);
537 atomic_set(&mddev->flush_pending, 0);
538 init_waitqueue_head(&mddev->sb_wait);
539 init_waitqueue_head(&mddev->recovery_wait);
540 mddev->reshape_position = MaxSector;
541 mddev->resync_min = 0;
542 mddev->resync_max = MaxSector;
543 mddev->level = LEVEL_NONE;
545 EXPORT_SYMBOL_GPL(mddev_init);
547 static mddev_t * mddev_find(dev_t unit)
549 mddev_t *mddev, *new = NULL;
551 retry:
552 spin_lock(&all_mddevs_lock);
554 if (unit) {
555 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
556 if (mddev->unit == unit) {
557 mddev_get(mddev);
558 spin_unlock(&all_mddevs_lock);
559 kfree(new);
560 return mddev;
563 if (new) {
564 list_add(&new->all_mddevs, &all_mddevs);
565 spin_unlock(&all_mddevs_lock);
566 new->hold_active = UNTIL_IOCTL;
567 return new;
569 } else if (new) {
570 /* find an unused unit number */
571 static int next_minor = 512;
572 int start = next_minor;
573 int is_free = 0;
574 int dev = 0;
575 while (!is_free) {
576 dev = MKDEV(MD_MAJOR, next_minor);
577 next_minor++;
578 if (next_minor > MINORMASK)
579 next_minor = 0;
580 if (next_minor == start) {
581 /* Oh dear, all in use. */
582 spin_unlock(&all_mddevs_lock);
583 kfree(new);
584 return NULL;
587 is_free = 1;
588 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
589 if (mddev->unit == dev) {
590 is_free = 0;
591 break;
594 new->unit = dev;
595 new->md_minor = MINOR(dev);
596 new->hold_active = UNTIL_STOP;
597 list_add(&new->all_mddevs, &all_mddevs);
598 spin_unlock(&all_mddevs_lock);
599 return new;
601 spin_unlock(&all_mddevs_lock);
603 new = kzalloc(sizeof(*new), GFP_KERNEL);
604 if (!new)
605 return NULL;
607 new->unit = unit;
608 if (MAJOR(unit) == MD_MAJOR)
609 new->md_minor = MINOR(unit);
610 else
611 new->md_minor = MINOR(unit) >> MdpMinorShift;
613 mddev_init(new);
615 goto retry;
618 static inline int mddev_lock(mddev_t * mddev)
620 return mutex_lock_interruptible(&mddev->reconfig_mutex);
623 static inline int mddev_is_locked(mddev_t *mddev)
625 return mutex_is_locked(&mddev->reconfig_mutex);
628 static inline int mddev_trylock(mddev_t * mddev)
630 return mutex_trylock(&mddev->reconfig_mutex);
633 static struct attribute_group md_redundancy_group;
635 static void mddev_unlock(mddev_t * mddev)
637 if (mddev->to_remove) {
638 /* These cannot be removed under reconfig_mutex as
639 * an access to the files will try to take reconfig_mutex
640 * while holding the file unremovable, which leads to
641 * a deadlock.
642 * So hold set sysfs_active while the remove in happeing,
643 * and anything else which might set ->to_remove or my
644 * otherwise change the sysfs namespace will fail with
645 * -EBUSY if sysfs_active is still set.
646 * We set sysfs_active under reconfig_mutex and elsewhere
647 * test it under the same mutex to ensure its correct value
648 * is seen.
650 struct attribute_group *to_remove = mddev->to_remove;
651 mddev->to_remove = NULL;
652 mddev->sysfs_active = 1;
653 mutex_unlock(&mddev->reconfig_mutex);
655 if (mddev->kobj.sd) {
656 if (to_remove != &md_redundancy_group)
657 sysfs_remove_group(&mddev->kobj, to_remove);
658 if (mddev->pers == NULL ||
659 mddev->pers->sync_request == NULL) {
660 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
661 if (mddev->sysfs_action)
662 sysfs_put(mddev->sysfs_action);
663 mddev->sysfs_action = NULL;
666 mddev->sysfs_active = 0;
667 } else
668 mutex_unlock(&mddev->reconfig_mutex);
670 md_wakeup_thread(mddev->thread);
673 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
675 mdk_rdev_t *rdev;
677 list_for_each_entry(rdev, &mddev->disks, same_set)
678 if (rdev->desc_nr == nr)
679 return rdev;
681 return NULL;
684 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
686 mdk_rdev_t *rdev;
688 list_for_each_entry(rdev, &mddev->disks, same_set)
689 if (rdev->bdev->bd_dev == dev)
690 return rdev;
692 return NULL;
695 static struct mdk_personality *find_pers(int level, char *clevel)
697 struct mdk_personality *pers;
698 list_for_each_entry(pers, &pers_list, list) {
699 if (level != LEVEL_NONE && pers->level == level)
700 return pers;
701 if (strcmp(pers->name, clevel)==0)
702 return pers;
704 return NULL;
707 /* return the offset of the super block in 512byte sectors */
708 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
710 sector_t num_sectors = i_size_read(bdev->bd_inode) / 512;
711 return MD_NEW_SIZE_SECTORS(num_sectors);
714 static int alloc_disk_sb(mdk_rdev_t * rdev)
716 if (rdev->sb_page)
717 MD_BUG();
719 rdev->sb_page = alloc_page(GFP_KERNEL);
720 if (!rdev->sb_page) {
721 printk(KERN_ALERT "md: out of memory.\n");
722 return -ENOMEM;
725 return 0;
728 static void free_disk_sb(mdk_rdev_t * rdev)
730 if (rdev->sb_page) {
731 put_page(rdev->sb_page);
732 rdev->sb_loaded = 0;
733 rdev->sb_page = NULL;
734 rdev->sb_start = 0;
735 rdev->sectors = 0;
740 static void super_written(struct bio *bio, int error)
742 mdk_rdev_t *rdev = bio->bi_private;
743 mddev_t *mddev = rdev->mddev;
745 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
746 printk("md: super_written gets error=%d, uptodate=%d\n",
747 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
748 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
749 md_error(mddev, rdev);
752 if (atomic_dec_and_test(&mddev->pending_writes))
753 wake_up(&mddev->sb_wait);
754 bio_put(bio);
757 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
758 sector_t sector, int size, struct page *page)
760 /* write first size bytes of page to sector of rdev
761 * Increment mddev->pending_writes before returning
762 * and decrement it on completion, waking up sb_wait
763 * if zero is reached.
764 * If an error occurred, call md_error
766 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
768 bio->bi_bdev = rdev->bdev;
769 bio->bi_sector = sector;
770 bio_add_page(bio, page, size, 0);
771 bio->bi_private = rdev;
772 bio->bi_end_io = super_written;
774 atomic_inc(&mddev->pending_writes);
775 submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA,
776 bio);
779 void md_super_wait(mddev_t *mddev)
781 /* wait for all superblock writes that were scheduled to complete */
782 DEFINE_WAIT(wq);
783 for(;;) {
784 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
785 if (atomic_read(&mddev->pending_writes)==0)
786 break;
787 schedule();
789 finish_wait(&mddev->sb_wait, &wq);
792 static void bi_complete(struct bio *bio, int error)
794 complete((struct completion*)bio->bi_private);
797 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
798 struct page *page, int rw)
800 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
801 struct completion event;
802 int ret;
804 rw |= REQ_SYNC | REQ_UNPLUG;
806 bio->bi_bdev = rdev->bdev;
807 bio->bi_sector = sector;
808 bio_add_page(bio, page, size, 0);
809 init_completion(&event);
810 bio->bi_private = &event;
811 bio->bi_end_io = bi_complete;
812 submit_bio(rw, bio);
813 wait_for_completion(&event);
815 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
816 bio_put(bio);
817 return ret;
819 EXPORT_SYMBOL_GPL(sync_page_io);
821 static int read_disk_sb(mdk_rdev_t * rdev, int size)
823 char b[BDEVNAME_SIZE];
824 if (!rdev->sb_page) {
825 MD_BUG();
826 return -EINVAL;
828 if (rdev->sb_loaded)
829 return 0;
832 if (!sync_page_io(rdev, rdev->sb_start, size, rdev->sb_page, READ))
833 goto fail;
834 rdev->sb_loaded = 1;
835 return 0;
837 fail:
838 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
839 bdevname(rdev->bdev,b));
840 return -EINVAL;
843 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
845 return sb1->set_uuid0 == sb2->set_uuid0 &&
846 sb1->set_uuid1 == sb2->set_uuid1 &&
847 sb1->set_uuid2 == sb2->set_uuid2 &&
848 sb1->set_uuid3 == sb2->set_uuid3;
851 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
853 int ret;
854 mdp_super_t *tmp1, *tmp2;
856 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
857 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
859 if (!tmp1 || !tmp2) {
860 ret = 0;
861 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
862 goto abort;
865 *tmp1 = *sb1;
866 *tmp2 = *sb2;
869 * nr_disks is not constant
871 tmp1->nr_disks = 0;
872 tmp2->nr_disks = 0;
874 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
875 abort:
876 kfree(tmp1);
877 kfree(tmp2);
878 return ret;
882 static u32 md_csum_fold(u32 csum)
884 csum = (csum & 0xffff) + (csum >> 16);
885 return (csum & 0xffff) + (csum >> 16);
888 static unsigned int calc_sb_csum(mdp_super_t * sb)
890 u64 newcsum = 0;
891 u32 *sb32 = (u32*)sb;
892 int i;
893 unsigned int disk_csum, csum;
895 disk_csum = sb->sb_csum;
896 sb->sb_csum = 0;
898 for (i = 0; i < MD_SB_BYTES/4 ; i++)
899 newcsum += sb32[i];
900 csum = (newcsum & 0xffffffff) + (newcsum>>32);
903 #ifdef CONFIG_ALPHA
904 /* This used to use csum_partial, which was wrong for several
905 * reasons including that different results are returned on
906 * different architectures. It isn't critical that we get exactly
907 * the same return value as before (we always csum_fold before
908 * testing, and that removes any differences). However as we
909 * know that csum_partial always returned a 16bit value on
910 * alphas, do a fold to maximise conformity to previous behaviour.
912 sb->sb_csum = md_csum_fold(disk_csum);
913 #else
914 sb->sb_csum = disk_csum;
915 #endif
916 return csum;
921 * Handle superblock details.
922 * We want to be able to handle multiple superblock formats
923 * so we have a common interface to them all, and an array of
924 * different handlers.
925 * We rely on user-space to write the initial superblock, and support
926 * reading and updating of superblocks.
927 * Interface methods are:
928 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
929 * loads and validates a superblock on dev.
930 * if refdev != NULL, compare superblocks on both devices
931 * Return:
932 * 0 - dev has a superblock that is compatible with refdev
933 * 1 - dev has a superblock that is compatible and newer than refdev
934 * so dev should be used as the refdev in future
935 * -EINVAL superblock incompatible or invalid
936 * -othererror e.g. -EIO
938 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
939 * Verify that dev is acceptable into mddev.
940 * The first time, mddev->raid_disks will be 0, and data from
941 * dev should be merged in. Subsequent calls check that dev
942 * is new enough. Return 0 or -EINVAL
944 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
945 * Update the superblock for rdev with data in mddev
946 * This does not write to disc.
950 struct super_type {
951 char *name;
952 struct module *owner;
953 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
954 int minor_version);
955 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
956 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
957 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
958 sector_t num_sectors);
962 * Check that the given mddev has no bitmap.
964 * This function is called from the run method of all personalities that do not
965 * support bitmaps. It prints an error message and returns non-zero if mddev
966 * has a bitmap. Otherwise, it returns 0.
969 int md_check_no_bitmap(mddev_t *mddev)
971 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
972 return 0;
973 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
974 mdname(mddev), mddev->pers->name);
975 return 1;
977 EXPORT_SYMBOL(md_check_no_bitmap);
980 * load_super for 0.90.0
982 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
984 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
985 mdp_super_t *sb;
986 int ret;
989 * Calculate the position of the superblock (512byte sectors),
990 * it's at the end of the disk.
992 * It also happens to be a multiple of 4Kb.
994 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
996 ret = read_disk_sb(rdev, MD_SB_BYTES);
997 if (ret) return ret;
999 ret = -EINVAL;
1001 bdevname(rdev->bdev, b);
1002 sb = (mdp_super_t*)page_address(rdev->sb_page);
1004 if (sb->md_magic != MD_SB_MAGIC) {
1005 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1007 goto abort;
1010 if (sb->major_version != 0 ||
1011 sb->minor_version < 90 ||
1012 sb->minor_version > 91) {
1013 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1014 sb->major_version, sb->minor_version,
1016 goto abort;
1019 if (sb->raid_disks <= 0)
1020 goto abort;
1022 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1023 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1025 goto abort;
1028 rdev->preferred_minor = sb->md_minor;
1029 rdev->data_offset = 0;
1030 rdev->sb_size = MD_SB_BYTES;
1032 if (sb->level == LEVEL_MULTIPATH)
1033 rdev->desc_nr = -1;
1034 else
1035 rdev->desc_nr = sb->this_disk.number;
1037 if (!refdev) {
1038 ret = 1;
1039 } else {
1040 __u64 ev1, ev2;
1041 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1042 if (!uuid_equal(refsb, sb)) {
1043 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1044 b, bdevname(refdev->bdev,b2));
1045 goto abort;
1047 if (!sb_equal(refsb, sb)) {
1048 printk(KERN_WARNING "md: %s has same UUID"
1049 " but different superblock to %s\n",
1050 b, bdevname(refdev->bdev, b2));
1051 goto abort;
1053 ev1 = md_event(sb);
1054 ev2 = md_event(refsb);
1055 if (ev1 > ev2)
1056 ret = 1;
1057 else
1058 ret = 0;
1060 rdev->sectors = rdev->sb_start;
1062 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1063 /* "this cannot possibly happen" ... */
1064 ret = -EINVAL;
1066 abort:
1067 return ret;
1071 * validate_super for 0.90.0
1073 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1075 mdp_disk_t *desc;
1076 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1077 __u64 ev1 = md_event(sb);
1079 rdev->raid_disk = -1;
1080 clear_bit(Faulty, &rdev->flags);
1081 clear_bit(In_sync, &rdev->flags);
1082 clear_bit(WriteMostly, &rdev->flags);
1084 if (mddev->raid_disks == 0) {
1085 mddev->major_version = 0;
1086 mddev->minor_version = sb->minor_version;
1087 mddev->patch_version = sb->patch_version;
1088 mddev->external = 0;
1089 mddev->chunk_sectors = sb->chunk_size >> 9;
1090 mddev->ctime = sb->ctime;
1091 mddev->utime = sb->utime;
1092 mddev->level = sb->level;
1093 mddev->clevel[0] = 0;
1094 mddev->layout = sb->layout;
1095 mddev->raid_disks = sb->raid_disks;
1096 mddev->dev_sectors = sb->size * 2;
1097 mddev->events = ev1;
1098 mddev->bitmap_info.offset = 0;
1099 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1101 if (mddev->minor_version >= 91) {
1102 mddev->reshape_position = sb->reshape_position;
1103 mddev->delta_disks = sb->delta_disks;
1104 mddev->new_level = sb->new_level;
1105 mddev->new_layout = sb->new_layout;
1106 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1107 } else {
1108 mddev->reshape_position = MaxSector;
1109 mddev->delta_disks = 0;
1110 mddev->new_level = mddev->level;
1111 mddev->new_layout = mddev->layout;
1112 mddev->new_chunk_sectors = mddev->chunk_sectors;
1115 if (sb->state & (1<<MD_SB_CLEAN))
1116 mddev->recovery_cp = MaxSector;
1117 else {
1118 if (sb->events_hi == sb->cp_events_hi &&
1119 sb->events_lo == sb->cp_events_lo) {
1120 mddev->recovery_cp = sb->recovery_cp;
1121 } else
1122 mddev->recovery_cp = 0;
1125 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1126 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1127 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1128 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1130 mddev->max_disks = MD_SB_DISKS;
1132 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1133 mddev->bitmap_info.file == NULL)
1134 mddev->bitmap_info.offset =
1135 mddev->bitmap_info.default_offset;
1137 } else if (mddev->pers == NULL) {
1138 /* Insist on good event counter while assembling, except
1139 * for spares (which don't need an event count) */
1140 ++ev1;
1141 if (sb->disks[rdev->desc_nr].state & (
1142 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1143 if (ev1 < mddev->events)
1144 return -EINVAL;
1145 } else if (mddev->bitmap) {
1146 /* if adding to array with a bitmap, then we can accept an
1147 * older device ... but not too old.
1149 if (ev1 < mddev->bitmap->events_cleared)
1150 return 0;
1151 } else {
1152 if (ev1 < mddev->events)
1153 /* just a hot-add of a new device, leave raid_disk at -1 */
1154 return 0;
1157 if (mddev->level != LEVEL_MULTIPATH) {
1158 desc = sb->disks + rdev->desc_nr;
1160 if (desc->state & (1<<MD_DISK_FAULTY))
1161 set_bit(Faulty, &rdev->flags);
1162 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1163 desc->raid_disk < mddev->raid_disks */) {
1164 set_bit(In_sync, &rdev->flags);
1165 rdev->raid_disk = desc->raid_disk;
1166 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1167 /* active but not in sync implies recovery up to
1168 * reshape position. We don't know exactly where
1169 * that is, so set to zero for now */
1170 if (mddev->minor_version >= 91) {
1171 rdev->recovery_offset = 0;
1172 rdev->raid_disk = desc->raid_disk;
1175 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1176 set_bit(WriteMostly, &rdev->flags);
1177 } else /* MULTIPATH are always insync */
1178 set_bit(In_sync, &rdev->flags);
1179 return 0;
1183 * sync_super for 0.90.0
1185 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1187 mdp_super_t *sb;
1188 mdk_rdev_t *rdev2;
1189 int next_spare = mddev->raid_disks;
1192 /* make rdev->sb match mddev data..
1194 * 1/ zero out disks
1195 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1196 * 3/ any empty disks < next_spare become removed
1198 * disks[0] gets initialised to REMOVED because
1199 * we cannot be sure from other fields if it has
1200 * been initialised or not.
1202 int i;
1203 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1205 rdev->sb_size = MD_SB_BYTES;
1207 sb = (mdp_super_t*)page_address(rdev->sb_page);
1209 memset(sb, 0, sizeof(*sb));
1211 sb->md_magic = MD_SB_MAGIC;
1212 sb->major_version = mddev->major_version;
1213 sb->patch_version = mddev->patch_version;
1214 sb->gvalid_words = 0; /* ignored */
1215 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1216 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1217 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1218 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1220 sb->ctime = mddev->ctime;
1221 sb->level = mddev->level;
1222 sb->size = mddev->dev_sectors / 2;
1223 sb->raid_disks = mddev->raid_disks;
1224 sb->md_minor = mddev->md_minor;
1225 sb->not_persistent = 0;
1226 sb->utime = mddev->utime;
1227 sb->state = 0;
1228 sb->events_hi = (mddev->events>>32);
1229 sb->events_lo = (u32)mddev->events;
1231 if (mddev->reshape_position == MaxSector)
1232 sb->minor_version = 90;
1233 else {
1234 sb->minor_version = 91;
1235 sb->reshape_position = mddev->reshape_position;
1236 sb->new_level = mddev->new_level;
1237 sb->delta_disks = mddev->delta_disks;
1238 sb->new_layout = mddev->new_layout;
1239 sb->new_chunk = mddev->new_chunk_sectors << 9;
1241 mddev->minor_version = sb->minor_version;
1242 if (mddev->in_sync)
1244 sb->recovery_cp = mddev->recovery_cp;
1245 sb->cp_events_hi = (mddev->events>>32);
1246 sb->cp_events_lo = (u32)mddev->events;
1247 if (mddev->recovery_cp == MaxSector)
1248 sb->state = (1<< MD_SB_CLEAN);
1249 } else
1250 sb->recovery_cp = 0;
1252 sb->layout = mddev->layout;
1253 sb->chunk_size = mddev->chunk_sectors << 9;
1255 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1256 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1258 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1259 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1260 mdp_disk_t *d;
1261 int desc_nr;
1262 int is_active = test_bit(In_sync, &rdev2->flags);
1264 if (rdev2->raid_disk >= 0 &&
1265 sb->minor_version >= 91)
1266 /* we have nowhere to store the recovery_offset,
1267 * but if it is not below the reshape_position,
1268 * we can piggy-back on that.
1270 is_active = 1;
1271 if (rdev2->raid_disk < 0 ||
1272 test_bit(Faulty, &rdev2->flags))
1273 is_active = 0;
1274 if (is_active)
1275 desc_nr = rdev2->raid_disk;
1276 else
1277 desc_nr = next_spare++;
1278 rdev2->desc_nr = desc_nr;
1279 d = &sb->disks[rdev2->desc_nr];
1280 nr_disks++;
1281 d->number = rdev2->desc_nr;
1282 d->major = MAJOR(rdev2->bdev->bd_dev);
1283 d->minor = MINOR(rdev2->bdev->bd_dev);
1284 if (is_active)
1285 d->raid_disk = rdev2->raid_disk;
1286 else
1287 d->raid_disk = rdev2->desc_nr; /* compatibility */
1288 if (test_bit(Faulty, &rdev2->flags))
1289 d->state = (1<<MD_DISK_FAULTY);
1290 else if (is_active) {
1291 d->state = (1<<MD_DISK_ACTIVE);
1292 if (test_bit(In_sync, &rdev2->flags))
1293 d->state |= (1<<MD_DISK_SYNC);
1294 active++;
1295 working++;
1296 } else {
1297 d->state = 0;
1298 spare++;
1299 working++;
1301 if (test_bit(WriteMostly, &rdev2->flags))
1302 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1304 /* now set the "removed" and "faulty" bits on any missing devices */
1305 for (i=0 ; i < mddev->raid_disks ; i++) {
1306 mdp_disk_t *d = &sb->disks[i];
1307 if (d->state == 0 && d->number == 0) {
1308 d->number = i;
1309 d->raid_disk = i;
1310 d->state = (1<<MD_DISK_REMOVED);
1311 d->state |= (1<<MD_DISK_FAULTY);
1312 failed++;
1315 sb->nr_disks = nr_disks;
1316 sb->active_disks = active;
1317 sb->working_disks = working;
1318 sb->failed_disks = failed;
1319 sb->spare_disks = spare;
1321 sb->this_disk = sb->disks[rdev->desc_nr];
1322 sb->sb_csum = calc_sb_csum(sb);
1326 * rdev_size_change for 0.90.0
1328 static unsigned long long
1329 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1331 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1332 return 0; /* component must fit device */
1333 if (rdev->mddev->bitmap_info.offset)
1334 return 0; /* can't move bitmap */
1335 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1336 if (!num_sectors || num_sectors > rdev->sb_start)
1337 num_sectors = rdev->sb_start;
1338 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1339 rdev->sb_page);
1340 md_super_wait(rdev->mddev);
1341 return num_sectors;
1346 * version 1 superblock
1349 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1351 __le32 disk_csum;
1352 u32 csum;
1353 unsigned long long newcsum;
1354 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1355 __le32 *isuper = (__le32*)sb;
1356 int i;
1358 disk_csum = sb->sb_csum;
1359 sb->sb_csum = 0;
1360 newcsum = 0;
1361 for (i=0; size>=4; size -= 4 )
1362 newcsum += le32_to_cpu(*isuper++);
1364 if (size == 2)
1365 newcsum += le16_to_cpu(*(__le16*) isuper);
1367 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1368 sb->sb_csum = disk_csum;
1369 return cpu_to_le32(csum);
1372 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1374 struct mdp_superblock_1 *sb;
1375 int ret;
1376 sector_t sb_start;
1377 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1378 int bmask;
1381 * Calculate the position of the superblock in 512byte sectors.
1382 * It is always aligned to a 4K boundary and
1383 * depeding on minor_version, it can be:
1384 * 0: At least 8K, but less than 12K, from end of device
1385 * 1: At start of device
1386 * 2: 4K from start of device.
1388 switch(minor_version) {
1389 case 0:
1390 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1391 sb_start -= 8*2;
1392 sb_start &= ~(sector_t)(4*2-1);
1393 break;
1394 case 1:
1395 sb_start = 0;
1396 break;
1397 case 2:
1398 sb_start = 8;
1399 break;
1400 default:
1401 return -EINVAL;
1403 rdev->sb_start = sb_start;
1405 /* superblock is rarely larger than 1K, but it can be larger,
1406 * and it is safe to read 4k, so we do that
1408 ret = read_disk_sb(rdev, 4096);
1409 if (ret) return ret;
1412 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1414 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1415 sb->major_version != cpu_to_le32(1) ||
1416 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1417 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1418 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1419 return -EINVAL;
1421 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1422 printk("md: invalid superblock checksum on %s\n",
1423 bdevname(rdev->bdev,b));
1424 return -EINVAL;
1426 if (le64_to_cpu(sb->data_size) < 10) {
1427 printk("md: data_size too small on %s\n",
1428 bdevname(rdev->bdev,b));
1429 return -EINVAL;
1432 rdev->preferred_minor = 0xffff;
1433 rdev->data_offset = le64_to_cpu(sb->data_offset);
1434 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1436 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1437 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1438 if (rdev->sb_size & bmask)
1439 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1441 if (minor_version
1442 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1443 return -EINVAL;
1445 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1446 rdev->desc_nr = -1;
1447 else
1448 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1450 if (!refdev) {
1451 ret = 1;
1452 } else {
1453 __u64 ev1, ev2;
1454 struct mdp_superblock_1 *refsb =
1455 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1457 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1458 sb->level != refsb->level ||
1459 sb->layout != refsb->layout ||
1460 sb->chunksize != refsb->chunksize) {
1461 printk(KERN_WARNING "md: %s has strangely different"
1462 " superblock to %s\n",
1463 bdevname(rdev->bdev,b),
1464 bdevname(refdev->bdev,b2));
1465 return -EINVAL;
1467 ev1 = le64_to_cpu(sb->events);
1468 ev2 = le64_to_cpu(refsb->events);
1470 if (ev1 > ev2)
1471 ret = 1;
1472 else
1473 ret = 0;
1475 if (minor_version)
1476 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1477 le64_to_cpu(sb->data_offset);
1478 else
1479 rdev->sectors = rdev->sb_start;
1480 if (rdev->sectors < le64_to_cpu(sb->data_size))
1481 return -EINVAL;
1482 rdev->sectors = le64_to_cpu(sb->data_size);
1483 if (le64_to_cpu(sb->size) > rdev->sectors)
1484 return -EINVAL;
1485 return ret;
1488 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1490 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1491 __u64 ev1 = le64_to_cpu(sb->events);
1493 rdev->raid_disk = -1;
1494 clear_bit(Faulty, &rdev->flags);
1495 clear_bit(In_sync, &rdev->flags);
1496 clear_bit(WriteMostly, &rdev->flags);
1498 if (mddev->raid_disks == 0) {
1499 mddev->major_version = 1;
1500 mddev->patch_version = 0;
1501 mddev->external = 0;
1502 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1503 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1504 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1505 mddev->level = le32_to_cpu(sb->level);
1506 mddev->clevel[0] = 0;
1507 mddev->layout = le32_to_cpu(sb->layout);
1508 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1509 mddev->dev_sectors = le64_to_cpu(sb->size);
1510 mddev->events = ev1;
1511 mddev->bitmap_info.offset = 0;
1512 mddev->bitmap_info.default_offset = 1024 >> 9;
1514 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1515 memcpy(mddev->uuid, sb->set_uuid, 16);
1517 mddev->max_disks = (4096-256)/2;
1519 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1520 mddev->bitmap_info.file == NULL )
1521 mddev->bitmap_info.offset =
1522 (__s32)le32_to_cpu(sb->bitmap_offset);
1524 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1525 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1526 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1527 mddev->new_level = le32_to_cpu(sb->new_level);
1528 mddev->new_layout = le32_to_cpu(sb->new_layout);
1529 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1530 } else {
1531 mddev->reshape_position = MaxSector;
1532 mddev->delta_disks = 0;
1533 mddev->new_level = mddev->level;
1534 mddev->new_layout = mddev->layout;
1535 mddev->new_chunk_sectors = mddev->chunk_sectors;
1538 } else if (mddev->pers == NULL) {
1539 /* Insist of good event counter while assembling, except for
1540 * spares (which don't need an event count) */
1541 ++ev1;
1542 if (rdev->desc_nr >= 0 &&
1543 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1544 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1545 if (ev1 < mddev->events)
1546 return -EINVAL;
1547 } else if (mddev->bitmap) {
1548 /* If adding to array with a bitmap, then we can accept an
1549 * older device, but not too old.
1551 if (ev1 < mddev->bitmap->events_cleared)
1552 return 0;
1553 } else {
1554 if (ev1 < mddev->events)
1555 /* just a hot-add of a new device, leave raid_disk at -1 */
1556 return 0;
1558 if (mddev->level != LEVEL_MULTIPATH) {
1559 int role;
1560 if (rdev->desc_nr < 0 ||
1561 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1562 role = 0xffff;
1563 rdev->desc_nr = -1;
1564 } else
1565 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1566 switch(role) {
1567 case 0xffff: /* spare */
1568 break;
1569 case 0xfffe: /* faulty */
1570 set_bit(Faulty, &rdev->flags);
1571 break;
1572 default:
1573 if ((le32_to_cpu(sb->feature_map) &
1574 MD_FEATURE_RECOVERY_OFFSET))
1575 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1576 else
1577 set_bit(In_sync, &rdev->flags);
1578 rdev->raid_disk = role;
1579 break;
1581 if (sb->devflags & WriteMostly1)
1582 set_bit(WriteMostly, &rdev->flags);
1583 } else /* MULTIPATH are always insync */
1584 set_bit(In_sync, &rdev->flags);
1586 return 0;
1589 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1591 struct mdp_superblock_1 *sb;
1592 mdk_rdev_t *rdev2;
1593 int max_dev, i;
1594 /* make rdev->sb match mddev and rdev data. */
1596 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1598 sb->feature_map = 0;
1599 sb->pad0 = 0;
1600 sb->recovery_offset = cpu_to_le64(0);
1601 memset(sb->pad1, 0, sizeof(sb->pad1));
1602 memset(sb->pad2, 0, sizeof(sb->pad2));
1603 memset(sb->pad3, 0, sizeof(sb->pad3));
1605 sb->utime = cpu_to_le64((__u64)mddev->utime);
1606 sb->events = cpu_to_le64(mddev->events);
1607 if (mddev->in_sync)
1608 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1609 else
1610 sb->resync_offset = cpu_to_le64(0);
1612 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1614 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1615 sb->size = cpu_to_le64(mddev->dev_sectors);
1616 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1617 sb->level = cpu_to_le32(mddev->level);
1618 sb->layout = cpu_to_le32(mddev->layout);
1620 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1621 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1622 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1625 if (rdev->raid_disk >= 0 &&
1626 !test_bit(In_sync, &rdev->flags)) {
1627 sb->feature_map |=
1628 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1629 sb->recovery_offset =
1630 cpu_to_le64(rdev->recovery_offset);
1633 if (mddev->reshape_position != MaxSector) {
1634 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1635 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1636 sb->new_layout = cpu_to_le32(mddev->new_layout);
1637 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1638 sb->new_level = cpu_to_le32(mddev->new_level);
1639 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1642 max_dev = 0;
1643 list_for_each_entry(rdev2, &mddev->disks, same_set)
1644 if (rdev2->desc_nr+1 > max_dev)
1645 max_dev = rdev2->desc_nr+1;
1647 if (max_dev > le32_to_cpu(sb->max_dev)) {
1648 int bmask;
1649 sb->max_dev = cpu_to_le32(max_dev);
1650 rdev->sb_size = max_dev * 2 + 256;
1651 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1652 if (rdev->sb_size & bmask)
1653 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1654 } else
1655 max_dev = le32_to_cpu(sb->max_dev);
1657 for (i=0; i<max_dev;i++)
1658 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1660 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1661 i = rdev2->desc_nr;
1662 if (test_bit(Faulty, &rdev2->flags))
1663 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1664 else if (test_bit(In_sync, &rdev2->flags))
1665 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1666 else if (rdev2->raid_disk >= 0)
1667 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1668 else
1669 sb->dev_roles[i] = cpu_to_le16(0xffff);
1672 sb->sb_csum = calc_sb_1_csum(sb);
1675 static unsigned long long
1676 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1678 struct mdp_superblock_1 *sb;
1679 sector_t max_sectors;
1680 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1681 return 0; /* component must fit device */
1682 if (rdev->sb_start < rdev->data_offset) {
1683 /* minor versions 1 and 2; superblock before data */
1684 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1685 max_sectors -= rdev->data_offset;
1686 if (!num_sectors || num_sectors > max_sectors)
1687 num_sectors = max_sectors;
1688 } else if (rdev->mddev->bitmap_info.offset) {
1689 /* minor version 0 with bitmap we can't move */
1690 return 0;
1691 } else {
1692 /* minor version 0; superblock after data */
1693 sector_t sb_start;
1694 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1695 sb_start &= ~(sector_t)(4*2 - 1);
1696 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1697 if (!num_sectors || num_sectors > max_sectors)
1698 num_sectors = max_sectors;
1699 rdev->sb_start = sb_start;
1701 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1702 sb->data_size = cpu_to_le64(num_sectors);
1703 sb->super_offset = rdev->sb_start;
1704 sb->sb_csum = calc_sb_1_csum(sb);
1705 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1706 rdev->sb_page);
1707 md_super_wait(rdev->mddev);
1708 return num_sectors;
1711 static struct super_type super_types[] = {
1712 [0] = {
1713 .name = "0.90.0",
1714 .owner = THIS_MODULE,
1715 .load_super = super_90_load,
1716 .validate_super = super_90_validate,
1717 .sync_super = super_90_sync,
1718 .rdev_size_change = super_90_rdev_size_change,
1720 [1] = {
1721 .name = "md-1",
1722 .owner = THIS_MODULE,
1723 .load_super = super_1_load,
1724 .validate_super = super_1_validate,
1725 .sync_super = super_1_sync,
1726 .rdev_size_change = super_1_rdev_size_change,
1730 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1732 mdk_rdev_t *rdev, *rdev2;
1734 rcu_read_lock();
1735 rdev_for_each_rcu(rdev, mddev1)
1736 rdev_for_each_rcu(rdev2, mddev2)
1737 if (rdev->bdev->bd_contains ==
1738 rdev2->bdev->bd_contains) {
1739 rcu_read_unlock();
1740 return 1;
1742 rcu_read_unlock();
1743 return 0;
1746 static LIST_HEAD(pending_raid_disks);
1749 * Try to register data integrity profile for an mddev
1751 * This is called when an array is started and after a disk has been kicked
1752 * from the array. It only succeeds if all working and active component devices
1753 * are integrity capable with matching profiles.
1755 int md_integrity_register(mddev_t *mddev)
1757 mdk_rdev_t *rdev, *reference = NULL;
1759 if (list_empty(&mddev->disks))
1760 return 0; /* nothing to do */
1761 if (blk_get_integrity(mddev->gendisk))
1762 return 0; /* already registered */
1763 list_for_each_entry(rdev, &mddev->disks, same_set) {
1764 /* skip spares and non-functional disks */
1765 if (test_bit(Faulty, &rdev->flags))
1766 continue;
1767 if (rdev->raid_disk < 0)
1768 continue;
1770 * If at least one rdev is not integrity capable, we can not
1771 * enable data integrity for the md device.
1773 if (!bdev_get_integrity(rdev->bdev))
1774 return -EINVAL;
1775 if (!reference) {
1776 /* Use the first rdev as the reference */
1777 reference = rdev;
1778 continue;
1780 /* does this rdev's profile match the reference profile? */
1781 if (blk_integrity_compare(reference->bdev->bd_disk,
1782 rdev->bdev->bd_disk) < 0)
1783 return -EINVAL;
1786 * All component devices are integrity capable and have matching
1787 * profiles, register the common profile for the md device.
1789 if (blk_integrity_register(mddev->gendisk,
1790 bdev_get_integrity(reference->bdev)) != 0) {
1791 printk(KERN_ERR "md: failed to register integrity for %s\n",
1792 mdname(mddev));
1793 return -EINVAL;
1795 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1796 mdname(mddev));
1797 return 0;
1799 EXPORT_SYMBOL(md_integrity_register);
1801 /* Disable data integrity if non-capable/non-matching disk is being added */
1802 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1804 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1805 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1807 if (!bi_mddev) /* nothing to do */
1808 return;
1809 if (rdev->raid_disk < 0) /* skip spares */
1810 return;
1811 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1812 rdev->bdev->bd_disk) >= 0)
1813 return;
1814 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1815 blk_integrity_unregister(mddev->gendisk);
1817 EXPORT_SYMBOL(md_integrity_add_rdev);
1819 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1821 char b[BDEVNAME_SIZE];
1822 struct kobject *ko;
1823 char *s;
1824 int err;
1826 if (rdev->mddev) {
1827 MD_BUG();
1828 return -EINVAL;
1831 /* prevent duplicates */
1832 if (find_rdev(mddev, rdev->bdev->bd_dev))
1833 return -EEXIST;
1835 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1836 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1837 rdev->sectors < mddev->dev_sectors)) {
1838 if (mddev->pers) {
1839 /* Cannot change size, so fail
1840 * If mddev->level <= 0, then we don't care
1841 * about aligning sizes (e.g. linear)
1843 if (mddev->level > 0)
1844 return -ENOSPC;
1845 } else
1846 mddev->dev_sectors = rdev->sectors;
1849 /* Verify rdev->desc_nr is unique.
1850 * If it is -1, assign a free number, else
1851 * check number is not in use
1853 if (rdev->desc_nr < 0) {
1854 int choice = 0;
1855 if (mddev->pers) choice = mddev->raid_disks;
1856 while (find_rdev_nr(mddev, choice))
1857 choice++;
1858 rdev->desc_nr = choice;
1859 } else {
1860 if (find_rdev_nr(mddev, rdev->desc_nr))
1861 return -EBUSY;
1863 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1864 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1865 mdname(mddev), mddev->max_disks);
1866 return -EBUSY;
1868 bdevname(rdev->bdev,b);
1869 while ( (s=strchr(b, '/')) != NULL)
1870 *s = '!';
1872 rdev->mddev = mddev;
1873 printk(KERN_INFO "md: bind<%s>\n", b);
1875 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1876 goto fail;
1878 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1879 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1880 /* failure here is OK */;
1881 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1883 list_add_rcu(&rdev->same_set, &mddev->disks);
1884 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1886 /* May as well allow recovery to be retried once */
1887 mddev->recovery_disabled = 0;
1889 return 0;
1891 fail:
1892 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1893 b, mdname(mddev));
1894 return err;
1897 static void md_delayed_delete(struct work_struct *ws)
1899 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1900 kobject_del(&rdev->kobj);
1901 kobject_put(&rdev->kobj);
1904 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1906 char b[BDEVNAME_SIZE];
1907 if (!rdev->mddev) {
1908 MD_BUG();
1909 return;
1911 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1912 list_del_rcu(&rdev->same_set);
1913 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1914 rdev->mddev = NULL;
1915 sysfs_remove_link(&rdev->kobj, "block");
1916 sysfs_put(rdev->sysfs_state);
1917 rdev->sysfs_state = NULL;
1918 /* We need to delay this, otherwise we can deadlock when
1919 * writing to 'remove' to "dev/state". We also need
1920 * to delay it due to rcu usage.
1922 synchronize_rcu();
1923 INIT_WORK(&rdev->del_work, md_delayed_delete);
1924 kobject_get(&rdev->kobj);
1925 queue_work(md_misc_wq, &rdev->del_work);
1929 * prevent the device from being mounted, repartitioned or
1930 * otherwise reused by a RAID array (or any other kernel
1931 * subsystem), by bd_claiming the device.
1933 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1935 int err = 0;
1936 struct block_device *bdev;
1937 char b[BDEVNAME_SIZE];
1939 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1940 if (IS_ERR(bdev)) {
1941 printk(KERN_ERR "md: could not open %s.\n",
1942 __bdevname(dev, b));
1943 return PTR_ERR(bdev);
1945 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1946 if (err) {
1947 printk(KERN_ERR "md: could not bd_claim %s.\n",
1948 bdevname(bdev, b));
1949 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1950 return err;
1952 if (!shared)
1953 set_bit(AllReserved, &rdev->flags);
1954 rdev->bdev = bdev;
1955 return err;
1958 static void unlock_rdev(mdk_rdev_t *rdev)
1960 struct block_device *bdev = rdev->bdev;
1961 rdev->bdev = NULL;
1962 if (!bdev)
1963 MD_BUG();
1964 bd_release(bdev);
1965 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1968 void md_autodetect_dev(dev_t dev);
1970 static void export_rdev(mdk_rdev_t * rdev)
1972 char b[BDEVNAME_SIZE];
1973 printk(KERN_INFO "md: export_rdev(%s)\n",
1974 bdevname(rdev->bdev,b));
1975 if (rdev->mddev)
1976 MD_BUG();
1977 free_disk_sb(rdev);
1978 #ifndef MODULE
1979 if (test_bit(AutoDetected, &rdev->flags))
1980 md_autodetect_dev(rdev->bdev->bd_dev);
1981 #endif
1982 unlock_rdev(rdev);
1983 kobject_put(&rdev->kobj);
1986 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1988 unbind_rdev_from_array(rdev);
1989 export_rdev(rdev);
1992 static void export_array(mddev_t *mddev)
1994 mdk_rdev_t *rdev, *tmp;
1996 rdev_for_each(rdev, tmp, mddev) {
1997 if (!rdev->mddev) {
1998 MD_BUG();
1999 continue;
2001 kick_rdev_from_array(rdev);
2003 if (!list_empty(&mddev->disks))
2004 MD_BUG();
2005 mddev->raid_disks = 0;
2006 mddev->major_version = 0;
2009 static void print_desc(mdp_disk_t *desc)
2011 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2012 desc->major,desc->minor,desc->raid_disk,desc->state);
2015 static void print_sb_90(mdp_super_t *sb)
2017 int i;
2019 printk(KERN_INFO
2020 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2021 sb->major_version, sb->minor_version, sb->patch_version,
2022 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2023 sb->ctime);
2024 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2025 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2026 sb->md_minor, sb->layout, sb->chunk_size);
2027 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2028 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2029 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2030 sb->failed_disks, sb->spare_disks,
2031 sb->sb_csum, (unsigned long)sb->events_lo);
2033 printk(KERN_INFO);
2034 for (i = 0; i < MD_SB_DISKS; i++) {
2035 mdp_disk_t *desc;
2037 desc = sb->disks + i;
2038 if (desc->number || desc->major || desc->minor ||
2039 desc->raid_disk || (desc->state && (desc->state != 4))) {
2040 printk(" D %2d: ", i);
2041 print_desc(desc);
2044 printk(KERN_INFO "md: THIS: ");
2045 print_desc(&sb->this_disk);
2048 static void print_sb_1(struct mdp_superblock_1 *sb)
2050 __u8 *uuid;
2052 uuid = sb->set_uuid;
2053 printk(KERN_INFO
2054 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2055 "md: Name: \"%s\" CT:%llu\n",
2056 le32_to_cpu(sb->major_version),
2057 le32_to_cpu(sb->feature_map),
2058 uuid,
2059 sb->set_name,
2060 (unsigned long long)le64_to_cpu(sb->ctime)
2061 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2063 uuid = sb->device_uuid;
2064 printk(KERN_INFO
2065 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2066 " RO:%llu\n"
2067 "md: Dev:%08x UUID: %pU\n"
2068 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2069 "md: (MaxDev:%u) \n",
2070 le32_to_cpu(sb->level),
2071 (unsigned long long)le64_to_cpu(sb->size),
2072 le32_to_cpu(sb->raid_disks),
2073 le32_to_cpu(sb->layout),
2074 le32_to_cpu(sb->chunksize),
2075 (unsigned long long)le64_to_cpu(sb->data_offset),
2076 (unsigned long long)le64_to_cpu(sb->data_size),
2077 (unsigned long long)le64_to_cpu(sb->super_offset),
2078 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2079 le32_to_cpu(sb->dev_number),
2080 uuid,
2081 sb->devflags,
2082 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2083 (unsigned long long)le64_to_cpu(sb->events),
2084 (unsigned long long)le64_to_cpu(sb->resync_offset),
2085 le32_to_cpu(sb->sb_csum),
2086 le32_to_cpu(sb->max_dev)
2090 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2092 char b[BDEVNAME_SIZE];
2093 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2094 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2095 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2096 rdev->desc_nr);
2097 if (rdev->sb_loaded) {
2098 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2099 switch (major_version) {
2100 case 0:
2101 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2102 break;
2103 case 1:
2104 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2105 break;
2107 } else
2108 printk(KERN_INFO "md: no rdev superblock!\n");
2111 static void md_print_devices(void)
2113 struct list_head *tmp;
2114 mdk_rdev_t *rdev;
2115 mddev_t *mddev;
2116 char b[BDEVNAME_SIZE];
2118 printk("\n");
2119 printk("md: **********************************\n");
2120 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2121 printk("md: **********************************\n");
2122 for_each_mddev(mddev, tmp) {
2124 if (mddev->bitmap)
2125 bitmap_print_sb(mddev->bitmap);
2126 else
2127 printk("%s: ", mdname(mddev));
2128 list_for_each_entry(rdev, &mddev->disks, same_set)
2129 printk("<%s>", bdevname(rdev->bdev,b));
2130 printk("\n");
2132 list_for_each_entry(rdev, &mddev->disks, same_set)
2133 print_rdev(rdev, mddev->major_version);
2135 printk("md: **********************************\n");
2136 printk("\n");
2140 static void sync_sbs(mddev_t * mddev, int nospares)
2142 /* Update each superblock (in-memory image), but
2143 * if we are allowed to, skip spares which already
2144 * have the right event counter, or have one earlier
2145 * (which would mean they aren't being marked as dirty
2146 * with the rest of the array)
2148 mdk_rdev_t *rdev;
2149 list_for_each_entry(rdev, &mddev->disks, same_set) {
2150 if (rdev->sb_events == mddev->events ||
2151 (nospares &&
2152 rdev->raid_disk < 0 &&
2153 rdev->sb_events+1 == mddev->events)) {
2154 /* Don't update this superblock */
2155 rdev->sb_loaded = 2;
2156 } else {
2157 super_types[mddev->major_version].
2158 sync_super(mddev, rdev);
2159 rdev->sb_loaded = 1;
2164 static void md_update_sb(mddev_t * mddev, int force_change)
2166 mdk_rdev_t *rdev;
2167 int sync_req;
2168 int nospares = 0;
2170 repeat:
2171 /* First make sure individual recovery_offsets are correct */
2172 list_for_each_entry(rdev, &mddev->disks, same_set) {
2173 if (rdev->raid_disk >= 0 &&
2174 mddev->delta_disks >= 0 &&
2175 !test_bit(In_sync, &rdev->flags) &&
2176 mddev->curr_resync_completed > rdev->recovery_offset)
2177 rdev->recovery_offset = mddev->curr_resync_completed;
2180 if (!mddev->persistent) {
2181 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2182 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2183 if (!mddev->external)
2184 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2185 wake_up(&mddev->sb_wait);
2186 return;
2189 spin_lock_irq(&mddev->write_lock);
2191 mddev->utime = get_seconds();
2193 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2194 force_change = 1;
2195 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2196 /* just a clean<-> dirty transition, possibly leave spares alone,
2197 * though if events isn't the right even/odd, we will have to do
2198 * spares after all
2200 nospares = 1;
2201 if (force_change)
2202 nospares = 0;
2203 if (mddev->degraded)
2204 /* If the array is degraded, then skipping spares is both
2205 * dangerous and fairly pointless.
2206 * Dangerous because a device that was removed from the array
2207 * might have a event_count that still looks up-to-date,
2208 * so it can be re-added without a resync.
2209 * Pointless because if there are any spares to skip,
2210 * then a recovery will happen and soon that array won't
2211 * be degraded any more and the spare can go back to sleep then.
2213 nospares = 0;
2215 sync_req = mddev->in_sync;
2217 /* If this is just a dirty<->clean transition, and the array is clean
2218 * and 'events' is odd, we can roll back to the previous clean state */
2219 if (nospares
2220 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2221 && mddev->can_decrease_events
2222 && mddev->events != 1) {
2223 mddev->events--;
2224 mddev->can_decrease_events = 0;
2225 } else {
2226 /* otherwise we have to go forward and ... */
2227 mddev->events ++;
2228 mddev->can_decrease_events = nospares;
2231 if (!mddev->events) {
2233 * oops, this 64-bit counter should never wrap.
2234 * Either we are in around ~1 trillion A.C., assuming
2235 * 1 reboot per second, or we have a bug:
2237 MD_BUG();
2238 mddev->events --;
2240 sync_sbs(mddev, nospares);
2241 spin_unlock_irq(&mddev->write_lock);
2243 dprintk(KERN_INFO
2244 "md: updating %s RAID superblock on device (in sync %d)\n",
2245 mdname(mddev),mddev->in_sync);
2247 bitmap_update_sb(mddev->bitmap);
2248 list_for_each_entry(rdev, &mddev->disks, same_set) {
2249 char b[BDEVNAME_SIZE];
2250 dprintk(KERN_INFO "md: ");
2251 if (rdev->sb_loaded != 1)
2252 continue; /* no noise on spare devices */
2253 if (test_bit(Faulty, &rdev->flags))
2254 dprintk("(skipping faulty ");
2256 dprintk("%s ", bdevname(rdev->bdev,b));
2257 if (!test_bit(Faulty, &rdev->flags)) {
2258 md_super_write(mddev,rdev,
2259 rdev->sb_start, rdev->sb_size,
2260 rdev->sb_page);
2261 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2262 bdevname(rdev->bdev,b),
2263 (unsigned long long)rdev->sb_start);
2264 rdev->sb_events = mddev->events;
2266 } else
2267 dprintk(")\n");
2268 if (mddev->level == LEVEL_MULTIPATH)
2269 /* only need to write one superblock... */
2270 break;
2272 md_super_wait(mddev);
2273 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2275 spin_lock_irq(&mddev->write_lock);
2276 if (mddev->in_sync != sync_req ||
2277 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2278 /* have to write it out again */
2279 spin_unlock_irq(&mddev->write_lock);
2280 goto repeat;
2282 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2283 spin_unlock_irq(&mddev->write_lock);
2284 wake_up(&mddev->sb_wait);
2285 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2286 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2290 /* words written to sysfs files may, or may not, be \n terminated.
2291 * We want to accept with case. For this we use cmd_match.
2293 static int cmd_match(const char *cmd, const char *str)
2295 /* See if cmd, written into a sysfs file, matches
2296 * str. They must either be the same, or cmd can
2297 * have a trailing newline
2299 while (*cmd && *str && *cmd == *str) {
2300 cmd++;
2301 str++;
2303 if (*cmd == '\n')
2304 cmd++;
2305 if (*str || *cmd)
2306 return 0;
2307 return 1;
2310 struct rdev_sysfs_entry {
2311 struct attribute attr;
2312 ssize_t (*show)(mdk_rdev_t *, char *);
2313 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2316 static ssize_t
2317 state_show(mdk_rdev_t *rdev, char *page)
2319 char *sep = "";
2320 size_t len = 0;
2322 if (test_bit(Faulty, &rdev->flags)) {
2323 len+= sprintf(page+len, "%sfaulty",sep);
2324 sep = ",";
2326 if (test_bit(In_sync, &rdev->flags)) {
2327 len += sprintf(page+len, "%sin_sync",sep);
2328 sep = ",";
2330 if (test_bit(WriteMostly, &rdev->flags)) {
2331 len += sprintf(page+len, "%swrite_mostly",sep);
2332 sep = ",";
2334 if (test_bit(Blocked, &rdev->flags)) {
2335 len += sprintf(page+len, "%sblocked", sep);
2336 sep = ",";
2338 if (!test_bit(Faulty, &rdev->flags) &&
2339 !test_bit(In_sync, &rdev->flags)) {
2340 len += sprintf(page+len, "%sspare", sep);
2341 sep = ",";
2343 return len+sprintf(page+len, "\n");
2346 static ssize_t
2347 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2349 /* can write
2350 * faulty - simulates and error
2351 * remove - disconnects the device
2352 * writemostly - sets write_mostly
2353 * -writemostly - clears write_mostly
2354 * blocked - sets the Blocked flag
2355 * -blocked - clears the Blocked flag
2356 * insync - sets Insync providing device isn't active
2358 int err = -EINVAL;
2359 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2360 md_error(rdev->mddev, rdev);
2361 err = 0;
2362 } else if (cmd_match(buf, "remove")) {
2363 if (rdev->raid_disk >= 0)
2364 err = -EBUSY;
2365 else {
2366 mddev_t *mddev = rdev->mddev;
2367 kick_rdev_from_array(rdev);
2368 if (mddev->pers)
2369 md_update_sb(mddev, 1);
2370 md_new_event(mddev);
2371 err = 0;
2373 } else if (cmd_match(buf, "writemostly")) {
2374 set_bit(WriteMostly, &rdev->flags);
2375 err = 0;
2376 } else if (cmd_match(buf, "-writemostly")) {
2377 clear_bit(WriteMostly, &rdev->flags);
2378 err = 0;
2379 } else if (cmd_match(buf, "blocked")) {
2380 set_bit(Blocked, &rdev->flags);
2381 err = 0;
2382 } else if (cmd_match(buf, "-blocked")) {
2383 clear_bit(Blocked, &rdev->flags);
2384 wake_up(&rdev->blocked_wait);
2385 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2386 md_wakeup_thread(rdev->mddev->thread);
2388 err = 0;
2389 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2390 set_bit(In_sync, &rdev->flags);
2391 err = 0;
2393 if (!err)
2394 sysfs_notify_dirent_safe(rdev->sysfs_state);
2395 return err ? err : len;
2397 static struct rdev_sysfs_entry rdev_state =
2398 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2400 static ssize_t
2401 errors_show(mdk_rdev_t *rdev, char *page)
2403 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2406 static ssize_t
2407 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2409 char *e;
2410 unsigned long n = simple_strtoul(buf, &e, 10);
2411 if (*buf && (*e == 0 || *e == '\n')) {
2412 atomic_set(&rdev->corrected_errors, n);
2413 return len;
2415 return -EINVAL;
2417 static struct rdev_sysfs_entry rdev_errors =
2418 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2420 static ssize_t
2421 slot_show(mdk_rdev_t *rdev, char *page)
2423 if (rdev->raid_disk < 0)
2424 return sprintf(page, "none\n");
2425 else
2426 return sprintf(page, "%d\n", rdev->raid_disk);
2429 static ssize_t
2430 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2432 char *e;
2433 int err;
2434 char nm[20];
2435 int slot = simple_strtoul(buf, &e, 10);
2436 if (strncmp(buf, "none", 4)==0)
2437 slot = -1;
2438 else if (e==buf || (*e && *e!= '\n'))
2439 return -EINVAL;
2440 if (rdev->mddev->pers && slot == -1) {
2441 /* Setting 'slot' on an active array requires also
2442 * updating the 'rd%d' link, and communicating
2443 * with the personality with ->hot_*_disk.
2444 * For now we only support removing
2445 * failed/spare devices. This normally happens automatically,
2446 * but not when the metadata is externally managed.
2448 if (rdev->raid_disk == -1)
2449 return -EEXIST;
2450 /* personality does all needed checks */
2451 if (rdev->mddev->pers->hot_add_disk == NULL)
2452 return -EINVAL;
2453 err = rdev->mddev->pers->
2454 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2455 if (err)
2456 return err;
2457 sprintf(nm, "rd%d", rdev->raid_disk);
2458 sysfs_remove_link(&rdev->mddev->kobj, nm);
2459 rdev->raid_disk = -1;
2460 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2461 md_wakeup_thread(rdev->mddev->thread);
2462 } else if (rdev->mddev->pers) {
2463 mdk_rdev_t *rdev2;
2464 /* Activating a spare .. or possibly reactivating
2465 * if we ever get bitmaps working here.
2468 if (rdev->raid_disk != -1)
2469 return -EBUSY;
2471 if (rdev->mddev->pers->hot_add_disk == NULL)
2472 return -EINVAL;
2474 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2475 if (rdev2->raid_disk == slot)
2476 return -EEXIST;
2478 rdev->raid_disk = slot;
2479 if (test_bit(In_sync, &rdev->flags))
2480 rdev->saved_raid_disk = slot;
2481 else
2482 rdev->saved_raid_disk = -1;
2483 err = rdev->mddev->pers->
2484 hot_add_disk(rdev->mddev, rdev);
2485 if (err) {
2486 rdev->raid_disk = -1;
2487 return err;
2488 } else
2489 sysfs_notify_dirent_safe(rdev->sysfs_state);
2490 sprintf(nm, "rd%d", rdev->raid_disk);
2491 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2492 /* failure here is OK */;
2493 /* don't wakeup anyone, leave that to userspace. */
2494 } else {
2495 if (slot >= rdev->mddev->raid_disks)
2496 return -ENOSPC;
2497 rdev->raid_disk = slot;
2498 /* assume it is working */
2499 clear_bit(Faulty, &rdev->flags);
2500 clear_bit(WriteMostly, &rdev->flags);
2501 set_bit(In_sync, &rdev->flags);
2502 sysfs_notify_dirent_safe(rdev->sysfs_state);
2504 return len;
2508 static struct rdev_sysfs_entry rdev_slot =
2509 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2511 static ssize_t
2512 offset_show(mdk_rdev_t *rdev, char *page)
2514 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2517 static ssize_t
2518 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2520 char *e;
2521 unsigned long long offset = simple_strtoull(buf, &e, 10);
2522 if (e==buf || (*e && *e != '\n'))
2523 return -EINVAL;
2524 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2525 return -EBUSY;
2526 if (rdev->sectors && rdev->mddev->external)
2527 /* Must set offset before size, so overlap checks
2528 * can be sane */
2529 return -EBUSY;
2530 rdev->data_offset = offset;
2531 return len;
2534 static struct rdev_sysfs_entry rdev_offset =
2535 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2537 static ssize_t
2538 rdev_size_show(mdk_rdev_t *rdev, char *page)
2540 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2543 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2545 /* check if two start/length pairs overlap */
2546 if (s1+l1 <= s2)
2547 return 0;
2548 if (s2+l2 <= s1)
2549 return 0;
2550 return 1;
2553 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2555 unsigned long long blocks;
2556 sector_t new;
2558 if (strict_strtoull(buf, 10, &blocks) < 0)
2559 return -EINVAL;
2561 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2562 return -EINVAL; /* sector conversion overflow */
2564 new = blocks * 2;
2565 if (new != blocks * 2)
2566 return -EINVAL; /* unsigned long long to sector_t overflow */
2568 *sectors = new;
2569 return 0;
2572 static ssize_t
2573 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2575 mddev_t *my_mddev = rdev->mddev;
2576 sector_t oldsectors = rdev->sectors;
2577 sector_t sectors;
2579 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2580 return -EINVAL;
2581 if (my_mddev->pers && rdev->raid_disk >= 0) {
2582 if (my_mddev->persistent) {
2583 sectors = super_types[my_mddev->major_version].
2584 rdev_size_change(rdev, sectors);
2585 if (!sectors)
2586 return -EBUSY;
2587 } else if (!sectors)
2588 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2589 rdev->data_offset;
2591 if (sectors < my_mddev->dev_sectors)
2592 return -EINVAL; /* component must fit device */
2594 rdev->sectors = sectors;
2595 if (sectors > oldsectors && my_mddev->external) {
2596 /* need to check that all other rdevs with the same ->bdev
2597 * do not overlap. We need to unlock the mddev to avoid
2598 * a deadlock. We have already changed rdev->sectors, and if
2599 * we have to change it back, we will have the lock again.
2601 mddev_t *mddev;
2602 int overlap = 0;
2603 struct list_head *tmp;
2605 mddev_unlock(my_mddev);
2606 for_each_mddev(mddev, tmp) {
2607 mdk_rdev_t *rdev2;
2609 mddev_lock(mddev);
2610 list_for_each_entry(rdev2, &mddev->disks, same_set)
2611 if (test_bit(AllReserved, &rdev2->flags) ||
2612 (rdev->bdev == rdev2->bdev &&
2613 rdev != rdev2 &&
2614 overlaps(rdev->data_offset, rdev->sectors,
2615 rdev2->data_offset,
2616 rdev2->sectors))) {
2617 overlap = 1;
2618 break;
2620 mddev_unlock(mddev);
2621 if (overlap) {
2622 mddev_put(mddev);
2623 break;
2626 mddev_lock(my_mddev);
2627 if (overlap) {
2628 /* Someone else could have slipped in a size
2629 * change here, but doing so is just silly.
2630 * We put oldsectors back because we *know* it is
2631 * safe, and trust userspace not to race with
2632 * itself
2634 rdev->sectors = oldsectors;
2635 return -EBUSY;
2638 return len;
2641 static struct rdev_sysfs_entry rdev_size =
2642 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2645 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2647 unsigned long long recovery_start = rdev->recovery_offset;
2649 if (test_bit(In_sync, &rdev->flags) ||
2650 recovery_start == MaxSector)
2651 return sprintf(page, "none\n");
2653 return sprintf(page, "%llu\n", recovery_start);
2656 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2658 unsigned long long recovery_start;
2660 if (cmd_match(buf, "none"))
2661 recovery_start = MaxSector;
2662 else if (strict_strtoull(buf, 10, &recovery_start))
2663 return -EINVAL;
2665 if (rdev->mddev->pers &&
2666 rdev->raid_disk >= 0)
2667 return -EBUSY;
2669 rdev->recovery_offset = recovery_start;
2670 if (recovery_start == MaxSector)
2671 set_bit(In_sync, &rdev->flags);
2672 else
2673 clear_bit(In_sync, &rdev->flags);
2674 return len;
2677 static struct rdev_sysfs_entry rdev_recovery_start =
2678 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2680 static struct attribute *rdev_default_attrs[] = {
2681 &rdev_state.attr,
2682 &rdev_errors.attr,
2683 &rdev_slot.attr,
2684 &rdev_offset.attr,
2685 &rdev_size.attr,
2686 &rdev_recovery_start.attr,
2687 NULL,
2689 static ssize_t
2690 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2692 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2693 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2694 mddev_t *mddev = rdev->mddev;
2695 ssize_t rv;
2697 if (!entry->show)
2698 return -EIO;
2700 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2701 if (!rv) {
2702 if (rdev->mddev == NULL)
2703 rv = -EBUSY;
2704 else
2705 rv = entry->show(rdev, page);
2706 mddev_unlock(mddev);
2708 return rv;
2711 static ssize_t
2712 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2713 const char *page, size_t length)
2715 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2716 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2717 ssize_t rv;
2718 mddev_t *mddev = rdev->mddev;
2720 if (!entry->store)
2721 return -EIO;
2722 if (!capable(CAP_SYS_ADMIN))
2723 return -EACCES;
2724 rv = mddev ? mddev_lock(mddev): -EBUSY;
2725 if (!rv) {
2726 if (rdev->mddev == NULL)
2727 rv = -EBUSY;
2728 else
2729 rv = entry->store(rdev, page, length);
2730 mddev_unlock(mddev);
2732 return rv;
2735 static void rdev_free(struct kobject *ko)
2737 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2738 kfree(rdev);
2740 static const struct sysfs_ops rdev_sysfs_ops = {
2741 .show = rdev_attr_show,
2742 .store = rdev_attr_store,
2744 static struct kobj_type rdev_ktype = {
2745 .release = rdev_free,
2746 .sysfs_ops = &rdev_sysfs_ops,
2747 .default_attrs = rdev_default_attrs,
2750 void md_rdev_init(mdk_rdev_t *rdev)
2752 rdev->desc_nr = -1;
2753 rdev->saved_raid_disk = -1;
2754 rdev->raid_disk = -1;
2755 rdev->flags = 0;
2756 rdev->data_offset = 0;
2757 rdev->sb_events = 0;
2758 rdev->last_read_error.tv_sec = 0;
2759 rdev->last_read_error.tv_nsec = 0;
2760 atomic_set(&rdev->nr_pending, 0);
2761 atomic_set(&rdev->read_errors, 0);
2762 atomic_set(&rdev->corrected_errors, 0);
2764 INIT_LIST_HEAD(&rdev->same_set);
2765 init_waitqueue_head(&rdev->blocked_wait);
2767 EXPORT_SYMBOL_GPL(md_rdev_init);
2769 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2771 * mark the device faulty if:
2773 * - the device is nonexistent (zero size)
2774 * - the device has no valid superblock
2776 * a faulty rdev _never_ has rdev->sb set.
2778 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2780 char b[BDEVNAME_SIZE];
2781 int err;
2782 mdk_rdev_t *rdev;
2783 sector_t size;
2785 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2786 if (!rdev) {
2787 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2788 return ERR_PTR(-ENOMEM);
2791 md_rdev_init(rdev);
2792 if ((err = alloc_disk_sb(rdev)))
2793 goto abort_free;
2795 err = lock_rdev(rdev, newdev, super_format == -2);
2796 if (err)
2797 goto abort_free;
2799 kobject_init(&rdev->kobj, &rdev_ktype);
2801 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
2802 if (!size) {
2803 printk(KERN_WARNING
2804 "md: %s has zero or unknown size, marking faulty!\n",
2805 bdevname(rdev->bdev,b));
2806 err = -EINVAL;
2807 goto abort_free;
2810 if (super_format >= 0) {
2811 err = super_types[super_format].
2812 load_super(rdev, NULL, super_minor);
2813 if (err == -EINVAL) {
2814 printk(KERN_WARNING
2815 "md: %s does not have a valid v%d.%d "
2816 "superblock, not importing!\n",
2817 bdevname(rdev->bdev,b),
2818 super_format, super_minor);
2819 goto abort_free;
2821 if (err < 0) {
2822 printk(KERN_WARNING
2823 "md: could not read %s's sb, not importing!\n",
2824 bdevname(rdev->bdev,b));
2825 goto abort_free;
2829 return rdev;
2831 abort_free:
2832 if (rdev->sb_page) {
2833 if (rdev->bdev)
2834 unlock_rdev(rdev);
2835 free_disk_sb(rdev);
2837 kfree(rdev);
2838 return ERR_PTR(err);
2842 * Check a full RAID array for plausibility
2846 static void analyze_sbs(mddev_t * mddev)
2848 int i;
2849 mdk_rdev_t *rdev, *freshest, *tmp;
2850 char b[BDEVNAME_SIZE];
2852 freshest = NULL;
2853 rdev_for_each(rdev, tmp, mddev)
2854 switch (super_types[mddev->major_version].
2855 load_super(rdev, freshest, mddev->minor_version)) {
2856 case 1:
2857 freshest = rdev;
2858 break;
2859 case 0:
2860 break;
2861 default:
2862 printk( KERN_ERR \
2863 "md: fatal superblock inconsistency in %s"
2864 " -- removing from array\n",
2865 bdevname(rdev->bdev,b));
2866 kick_rdev_from_array(rdev);
2870 super_types[mddev->major_version].
2871 validate_super(mddev, freshest);
2873 i = 0;
2874 rdev_for_each(rdev, tmp, mddev) {
2875 if (mddev->max_disks &&
2876 (rdev->desc_nr >= mddev->max_disks ||
2877 i > mddev->max_disks)) {
2878 printk(KERN_WARNING
2879 "md: %s: %s: only %d devices permitted\n",
2880 mdname(mddev), bdevname(rdev->bdev, b),
2881 mddev->max_disks);
2882 kick_rdev_from_array(rdev);
2883 continue;
2885 if (rdev != freshest)
2886 if (super_types[mddev->major_version].
2887 validate_super(mddev, rdev)) {
2888 printk(KERN_WARNING "md: kicking non-fresh %s"
2889 " from array!\n",
2890 bdevname(rdev->bdev,b));
2891 kick_rdev_from_array(rdev);
2892 continue;
2894 if (mddev->level == LEVEL_MULTIPATH) {
2895 rdev->desc_nr = i++;
2896 rdev->raid_disk = rdev->desc_nr;
2897 set_bit(In_sync, &rdev->flags);
2898 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2899 rdev->raid_disk = -1;
2900 clear_bit(In_sync, &rdev->flags);
2905 /* Read a fixed-point number.
2906 * Numbers in sysfs attributes should be in "standard" units where
2907 * possible, so time should be in seconds.
2908 * However we internally use a a much smaller unit such as
2909 * milliseconds or jiffies.
2910 * This function takes a decimal number with a possible fractional
2911 * component, and produces an integer which is the result of
2912 * multiplying that number by 10^'scale'.
2913 * all without any floating-point arithmetic.
2915 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2917 unsigned long result = 0;
2918 long decimals = -1;
2919 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2920 if (*cp == '.')
2921 decimals = 0;
2922 else if (decimals < scale) {
2923 unsigned int value;
2924 value = *cp - '0';
2925 result = result * 10 + value;
2926 if (decimals >= 0)
2927 decimals++;
2929 cp++;
2931 if (*cp == '\n')
2932 cp++;
2933 if (*cp)
2934 return -EINVAL;
2935 if (decimals < 0)
2936 decimals = 0;
2937 while (decimals < scale) {
2938 result *= 10;
2939 decimals ++;
2941 *res = result;
2942 return 0;
2946 static void md_safemode_timeout(unsigned long data);
2948 static ssize_t
2949 safe_delay_show(mddev_t *mddev, char *page)
2951 int msec = (mddev->safemode_delay*1000)/HZ;
2952 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2954 static ssize_t
2955 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2957 unsigned long msec;
2959 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2960 return -EINVAL;
2961 if (msec == 0)
2962 mddev->safemode_delay = 0;
2963 else {
2964 unsigned long old_delay = mddev->safemode_delay;
2965 mddev->safemode_delay = (msec*HZ)/1000;
2966 if (mddev->safemode_delay == 0)
2967 mddev->safemode_delay = 1;
2968 if (mddev->safemode_delay < old_delay)
2969 md_safemode_timeout((unsigned long)mddev);
2971 return len;
2973 static struct md_sysfs_entry md_safe_delay =
2974 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2976 static ssize_t
2977 level_show(mddev_t *mddev, char *page)
2979 struct mdk_personality *p = mddev->pers;
2980 if (p)
2981 return sprintf(page, "%s\n", p->name);
2982 else if (mddev->clevel[0])
2983 return sprintf(page, "%s\n", mddev->clevel);
2984 else if (mddev->level != LEVEL_NONE)
2985 return sprintf(page, "%d\n", mddev->level);
2986 else
2987 return 0;
2990 static ssize_t
2991 level_store(mddev_t *mddev, const char *buf, size_t len)
2993 char clevel[16];
2994 ssize_t rv = len;
2995 struct mdk_personality *pers;
2996 long level;
2997 void *priv;
2998 mdk_rdev_t *rdev;
3000 if (mddev->pers == NULL) {
3001 if (len == 0)
3002 return 0;
3003 if (len >= sizeof(mddev->clevel))
3004 return -ENOSPC;
3005 strncpy(mddev->clevel, buf, len);
3006 if (mddev->clevel[len-1] == '\n')
3007 len--;
3008 mddev->clevel[len] = 0;
3009 mddev->level = LEVEL_NONE;
3010 return rv;
3013 /* request to change the personality. Need to ensure:
3014 * - array is not engaged in resync/recovery/reshape
3015 * - old personality can be suspended
3016 * - new personality will access other array.
3019 if (mddev->sync_thread ||
3020 mddev->reshape_position != MaxSector ||
3021 mddev->sysfs_active)
3022 return -EBUSY;
3024 if (!mddev->pers->quiesce) {
3025 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3026 mdname(mddev), mddev->pers->name);
3027 return -EINVAL;
3030 /* Now find the new personality */
3031 if (len == 0 || len >= sizeof(clevel))
3032 return -EINVAL;
3033 strncpy(clevel, buf, len);
3034 if (clevel[len-1] == '\n')
3035 len--;
3036 clevel[len] = 0;
3037 if (strict_strtol(clevel, 10, &level))
3038 level = LEVEL_NONE;
3040 if (request_module("md-%s", clevel) != 0)
3041 request_module("md-level-%s", clevel);
3042 spin_lock(&pers_lock);
3043 pers = find_pers(level, clevel);
3044 if (!pers || !try_module_get(pers->owner)) {
3045 spin_unlock(&pers_lock);
3046 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3047 return -EINVAL;
3049 spin_unlock(&pers_lock);
3051 if (pers == mddev->pers) {
3052 /* Nothing to do! */
3053 module_put(pers->owner);
3054 return rv;
3056 if (!pers->takeover) {
3057 module_put(pers->owner);
3058 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3059 mdname(mddev), clevel);
3060 return -EINVAL;
3063 list_for_each_entry(rdev, &mddev->disks, same_set)
3064 rdev->new_raid_disk = rdev->raid_disk;
3066 /* ->takeover must set new_* and/or delta_disks
3067 * if it succeeds, and may set them when it fails.
3069 priv = pers->takeover(mddev);
3070 if (IS_ERR(priv)) {
3071 mddev->new_level = mddev->level;
3072 mddev->new_layout = mddev->layout;
3073 mddev->new_chunk_sectors = mddev->chunk_sectors;
3074 mddev->raid_disks -= mddev->delta_disks;
3075 mddev->delta_disks = 0;
3076 module_put(pers->owner);
3077 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3078 mdname(mddev), clevel);
3079 return PTR_ERR(priv);
3082 /* Looks like we have a winner */
3083 mddev_suspend(mddev);
3084 mddev->pers->stop(mddev);
3086 if (mddev->pers->sync_request == NULL &&
3087 pers->sync_request != NULL) {
3088 /* need to add the md_redundancy_group */
3089 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3090 printk(KERN_WARNING
3091 "md: cannot register extra attributes for %s\n",
3092 mdname(mddev));
3093 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3095 if (mddev->pers->sync_request != NULL &&
3096 pers->sync_request == NULL) {
3097 /* need to remove the md_redundancy_group */
3098 if (mddev->to_remove == NULL)
3099 mddev->to_remove = &md_redundancy_group;
3102 if (mddev->pers->sync_request == NULL &&
3103 mddev->external) {
3104 /* We are converting from a no-redundancy array
3105 * to a redundancy array and metadata is managed
3106 * externally so we need to be sure that writes
3107 * won't block due to a need to transition
3108 * clean->dirty
3109 * until external management is started.
3111 mddev->in_sync = 0;
3112 mddev->safemode_delay = 0;
3113 mddev->safemode = 0;
3116 list_for_each_entry(rdev, &mddev->disks, same_set) {
3117 char nm[20];
3118 if (rdev->raid_disk < 0)
3119 continue;
3120 if (rdev->new_raid_disk > mddev->raid_disks)
3121 rdev->new_raid_disk = -1;
3122 if (rdev->new_raid_disk == rdev->raid_disk)
3123 continue;
3124 sprintf(nm, "rd%d", rdev->raid_disk);
3125 sysfs_remove_link(&mddev->kobj, nm);
3127 list_for_each_entry(rdev, &mddev->disks, same_set) {
3128 if (rdev->raid_disk < 0)
3129 continue;
3130 if (rdev->new_raid_disk == rdev->raid_disk)
3131 continue;
3132 rdev->raid_disk = rdev->new_raid_disk;
3133 if (rdev->raid_disk < 0)
3134 clear_bit(In_sync, &rdev->flags);
3135 else {
3136 char nm[20];
3137 sprintf(nm, "rd%d", rdev->raid_disk);
3138 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3139 printk("md: cannot register %s for %s after level change\n",
3140 nm, mdname(mddev));
3144 module_put(mddev->pers->owner);
3145 mddev->pers = pers;
3146 mddev->private = priv;
3147 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3148 mddev->level = mddev->new_level;
3149 mddev->layout = mddev->new_layout;
3150 mddev->chunk_sectors = mddev->new_chunk_sectors;
3151 mddev->delta_disks = 0;
3152 if (mddev->pers->sync_request == NULL) {
3153 /* this is now an array without redundancy, so
3154 * it must always be in_sync
3156 mddev->in_sync = 1;
3157 del_timer_sync(&mddev->safemode_timer);
3159 pers->run(mddev);
3160 mddev_resume(mddev);
3161 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3162 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3163 md_wakeup_thread(mddev->thread);
3164 sysfs_notify(&mddev->kobj, NULL, "level");
3165 md_new_event(mddev);
3166 return rv;
3169 static struct md_sysfs_entry md_level =
3170 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3173 static ssize_t
3174 layout_show(mddev_t *mddev, char *page)
3176 /* just a number, not meaningful for all levels */
3177 if (mddev->reshape_position != MaxSector &&
3178 mddev->layout != mddev->new_layout)
3179 return sprintf(page, "%d (%d)\n",
3180 mddev->new_layout, mddev->layout);
3181 return sprintf(page, "%d\n", mddev->layout);
3184 static ssize_t
3185 layout_store(mddev_t *mddev, const char *buf, size_t len)
3187 char *e;
3188 unsigned long n = simple_strtoul(buf, &e, 10);
3190 if (!*buf || (*e && *e != '\n'))
3191 return -EINVAL;
3193 if (mddev->pers) {
3194 int err;
3195 if (mddev->pers->check_reshape == NULL)
3196 return -EBUSY;
3197 mddev->new_layout = n;
3198 err = mddev->pers->check_reshape(mddev);
3199 if (err) {
3200 mddev->new_layout = mddev->layout;
3201 return err;
3203 } else {
3204 mddev->new_layout = n;
3205 if (mddev->reshape_position == MaxSector)
3206 mddev->layout = n;
3208 return len;
3210 static struct md_sysfs_entry md_layout =
3211 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3214 static ssize_t
3215 raid_disks_show(mddev_t *mddev, char *page)
3217 if (mddev->raid_disks == 0)
3218 return 0;
3219 if (mddev->reshape_position != MaxSector &&
3220 mddev->delta_disks != 0)
3221 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3222 mddev->raid_disks - mddev->delta_disks);
3223 return sprintf(page, "%d\n", mddev->raid_disks);
3226 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3228 static ssize_t
3229 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3231 char *e;
3232 int rv = 0;
3233 unsigned long n = simple_strtoul(buf, &e, 10);
3235 if (!*buf || (*e && *e != '\n'))
3236 return -EINVAL;
3238 if (mddev->pers)
3239 rv = update_raid_disks(mddev, n);
3240 else if (mddev->reshape_position != MaxSector) {
3241 int olddisks = mddev->raid_disks - mddev->delta_disks;
3242 mddev->delta_disks = n - olddisks;
3243 mddev->raid_disks = n;
3244 } else
3245 mddev->raid_disks = n;
3246 return rv ? rv : len;
3248 static struct md_sysfs_entry md_raid_disks =
3249 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3251 static ssize_t
3252 chunk_size_show(mddev_t *mddev, char *page)
3254 if (mddev->reshape_position != MaxSector &&
3255 mddev->chunk_sectors != mddev->new_chunk_sectors)
3256 return sprintf(page, "%d (%d)\n",
3257 mddev->new_chunk_sectors << 9,
3258 mddev->chunk_sectors << 9);
3259 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3262 static ssize_t
3263 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3265 char *e;
3266 unsigned long n = simple_strtoul(buf, &e, 10);
3268 if (!*buf || (*e && *e != '\n'))
3269 return -EINVAL;
3271 if (mddev->pers) {
3272 int err;
3273 if (mddev->pers->check_reshape == NULL)
3274 return -EBUSY;
3275 mddev->new_chunk_sectors = n >> 9;
3276 err = mddev->pers->check_reshape(mddev);
3277 if (err) {
3278 mddev->new_chunk_sectors = mddev->chunk_sectors;
3279 return err;
3281 } else {
3282 mddev->new_chunk_sectors = n >> 9;
3283 if (mddev->reshape_position == MaxSector)
3284 mddev->chunk_sectors = n >> 9;
3286 return len;
3288 static struct md_sysfs_entry md_chunk_size =
3289 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3291 static ssize_t
3292 resync_start_show(mddev_t *mddev, char *page)
3294 if (mddev->recovery_cp == MaxSector)
3295 return sprintf(page, "none\n");
3296 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3299 static ssize_t
3300 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3302 char *e;
3303 unsigned long long n = simple_strtoull(buf, &e, 10);
3305 if (mddev->pers)
3306 return -EBUSY;
3307 if (cmd_match(buf, "none"))
3308 n = MaxSector;
3309 else if (!*buf || (*e && *e != '\n'))
3310 return -EINVAL;
3312 mddev->recovery_cp = n;
3313 return len;
3315 static struct md_sysfs_entry md_resync_start =
3316 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3319 * The array state can be:
3321 * clear
3322 * No devices, no size, no level
3323 * Equivalent to STOP_ARRAY ioctl
3324 * inactive
3325 * May have some settings, but array is not active
3326 * all IO results in error
3327 * When written, doesn't tear down array, but just stops it
3328 * suspended (not supported yet)
3329 * All IO requests will block. The array can be reconfigured.
3330 * Writing this, if accepted, will block until array is quiescent
3331 * readonly
3332 * no resync can happen. no superblocks get written.
3333 * write requests fail
3334 * read-auto
3335 * like readonly, but behaves like 'clean' on a write request.
3337 * clean - no pending writes, but otherwise active.
3338 * When written to inactive array, starts without resync
3339 * If a write request arrives then
3340 * if metadata is known, mark 'dirty' and switch to 'active'.
3341 * if not known, block and switch to write-pending
3342 * If written to an active array that has pending writes, then fails.
3343 * active
3344 * fully active: IO and resync can be happening.
3345 * When written to inactive array, starts with resync
3347 * write-pending
3348 * clean, but writes are blocked waiting for 'active' to be written.
3350 * active-idle
3351 * like active, but no writes have been seen for a while (100msec).
3354 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3355 write_pending, active_idle, bad_word};
3356 static char *array_states[] = {
3357 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3358 "write-pending", "active-idle", NULL };
3360 static int match_word(const char *word, char **list)
3362 int n;
3363 for (n=0; list[n]; n++)
3364 if (cmd_match(word, list[n]))
3365 break;
3366 return n;
3369 static ssize_t
3370 array_state_show(mddev_t *mddev, char *page)
3372 enum array_state st = inactive;
3374 if (mddev->pers)
3375 switch(mddev->ro) {
3376 case 1:
3377 st = readonly;
3378 break;
3379 case 2:
3380 st = read_auto;
3381 break;
3382 case 0:
3383 if (mddev->in_sync)
3384 st = clean;
3385 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3386 st = write_pending;
3387 else if (mddev->safemode)
3388 st = active_idle;
3389 else
3390 st = active;
3392 else {
3393 if (list_empty(&mddev->disks) &&
3394 mddev->raid_disks == 0 &&
3395 mddev->dev_sectors == 0)
3396 st = clear;
3397 else
3398 st = inactive;
3400 return sprintf(page, "%s\n", array_states[st]);
3403 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3404 static int md_set_readonly(mddev_t * mddev, int is_open);
3405 static int do_md_run(mddev_t * mddev);
3406 static int restart_array(mddev_t *mddev);
3408 static ssize_t
3409 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3411 int err = -EINVAL;
3412 enum array_state st = match_word(buf, array_states);
3413 switch(st) {
3414 case bad_word:
3415 break;
3416 case clear:
3417 /* stopping an active array */
3418 if (atomic_read(&mddev->openers) > 0)
3419 return -EBUSY;
3420 err = do_md_stop(mddev, 0, 0);
3421 break;
3422 case inactive:
3423 /* stopping an active array */
3424 if (mddev->pers) {
3425 if (atomic_read(&mddev->openers) > 0)
3426 return -EBUSY;
3427 err = do_md_stop(mddev, 2, 0);
3428 } else
3429 err = 0; /* already inactive */
3430 break;
3431 case suspended:
3432 break; /* not supported yet */
3433 case readonly:
3434 if (mddev->pers)
3435 err = md_set_readonly(mddev, 0);
3436 else {
3437 mddev->ro = 1;
3438 set_disk_ro(mddev->gendisk, 1);
3439 err = do_md_run(mddev);
3441 break;
3442 case read_auto:
3443 if (mddev->pers) {
3444 if (mddev->ro == 0)
3445 err = md_set_readonly(mddev, 0);
3446 else if (mddev->ro == 1)
3447 err = restart_array(mddev);
3448 if (err == 0) {
3449 mddev->ro = 2;
3450 set_disk_ro(mddev->gendisk, 0);
3452 } else {
3453 mddev->ro = 2;
3454 err = do_md_run(mddev);
3456 break;
3457 case clean:
3458 if (mddev->pers) {
3459 restart_array(mddev);
3460 spin_lock_irq(&mddev->write_lock);
3461 if (atomic_read(&mddev->writes_pending) == 0) {
3462 if (mddev->in_sync == 0) {
3463 mddev->in_sync = 1;
3464 if (mddev->safemode == 1)
3465 mddev->safemode = 0;
3466 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3468 err = 0;
3469 } else
3470 err = -EBUSY;
3471 spin_unlock_irq(&mddev->write_lock);
3472 } else
3473 err = -EINVAL;
3474 break;
3475 case active:
3476 if (mddev->pers) {
3477 restart_array(mddev);
3478 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3479 wake_up(&mddev->sb_wait);
3480 err = 0;
3481 } else {
3482 mddev->ro = 0;
3483 set_disk_ro(mddev->gendisk, 0);
3484 err = do_md_run(mddev);
3486 break;
3487 case write_pending:
3488 case active_idle:
3489 /* these cannot be set */
3490 break;
3492 if (err)
3493 return err;
3494 else {
3495 sysfs_notify_dirent_safe(mddev->sysfs_state);
3496 return len;
3499 static struct md_sysfs_entry md_array_state =
3500 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3502 static ssize_t
3503 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3504 return sprintf(page, "%d\n",
3505 atomic_read(&mddev->max_corr_read_errors));
3508 static ssize_t
3509 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3511 char *e;
3512 unsigned long n = simple_strtoul(buf, &e, 10);
3514 if (*buf && (*e == 0 || *e == '\n')) {
3515 atomic_set(&mddev->max_corr_read_errors, n);
3516 return len;
3518 return -EINVAL;
3521 static struct md_sysfs_entry max_corr_read_errors =
3522 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3523 max_corrected_read_errors_store);
3525 static ssize_t
3526 null_show(mddev_t *mddev, char *page)
3528 return -EINVAL;
3531 static ssize_t
3532 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3534 /* buf must be %d:%d\n? giving major and minor numbers */
3535 /* The new device is added to the array.
3536 * If the array has a persistent superblock, we read the
3537 * superblock to initialise info and check validity.
3538 * Otherwise, only checking done is that in bind_rdev_to_array,
3539 * which mainly checks size.
3541 char *e;
3542 int major = simple_strtoul(buf, &e, 10);
3543 int minor;
3544 dev_t dev;
3545 mdk_rdev_t *rdev;
3546 int err;
3548 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3549 return -EINVAL;
3550 minor = simple_strtoul(e+1, &e, 10);
3551 if (*e && *e != '\n')
3552 return -EINVAL;
3553 dev = MKDEV(major, minor);
3554 if (major != MAJOR(dev) ||
3555 minor != MINOR(dev))
3556 return -EOVERFLOW;
3559 if (mddev->persistent) {
3560 rdev = md_import_device(dev, mddev->major_version,
3561 mddev->minor_version);
3562 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3563 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3564 mdk_rdev_t, same_set);
3565 err = super_types[mddev->major_version]
3566 .load_super(rdev, rdev0, mddev->minor_version);
3567 if (err < 0)
3568 goto out;
3570 } else if (mddev->external)
3571 rdev = md_import_device(dev, -2, -1);
3572 else
3573 rdev = md_import_device(dev, -1, -1);
3575 if (IS_ERR(rdev))
3576 return PTR_ERR(rdev);
3577 err = bind_rdev_to_array(rdev, mddev);
3578 out:
3579 if (err)
3580 export_rdev(rdev);
3581 return err ? err : len;
3584 static struct md_sysfs_entry md_new_device =
3585 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3587 static ssize_t
3588 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3590 char *end;
3591 unsigned long chunk, end_chunk;
3593 if (!mddev->bitmap)
3594 goto out;
3595 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3596 while (*buf) {
3597 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3598 if (buf == end) break;
3599 if (*end == '-') { /* range */
3600 buf = end + 1;
3601 end_chunk = simple_strtoul(buf, &end, 0);
3602 if (buf == end) break;
3604 if (*end && !isspace(*end)) break;
3605 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3606 buf = skip_spaces(end);
3608 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3609 out:
3610 return len;
3613 static struct md_sysfs_entry md_bitmap =
3614 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3616 static ssize_t
3617 size_show(mddev_t *mddev, char *page)
3619 return sprintf(page, "%llu\n",
3620 (unsigned long long)mddev->dev_sectors / 2);
3623 static int update_size(mddev_t *mddev, sector_t num_sectors);
3625 static ssize_t
3626 size_store(mddev_t *mddev, const char *buf, size_t len)
3628 /* If array is inactive, we can reduce the component size, but
3629 * not increase it (except from 0).
3630 * If array is active, we can try an on-line resize
3632 sector_t sectors;
3633 int err = strict_blocks_to_sectors(buf, &sectors);
3635 if (err < 0)
3636 return err;
3637 if (mddev->pers) {
3638 err = update_size(mddev, sectors);
3639 md_update_sb(mddev, 1);
3640 } else {
3641 if (mddev->dev_sectors == 0 ||
3642 mddev->dev_sectors > sectors)
3643 mddev->dev_sectors = sectors;
3644 else
3645 err = -ENOSPC;
3647 return err ? err : len;
3650 static struct md_sysfs_entry md_size =
3651 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3654 /* Metdata version.
3655 * This is one of
3656 * 'none' for arrays with no metadata (good luck...)
3657 * 'external' for arrays with externally managed metadata,
3658 * or N.M for internally known formats
3660 static ssize_t
3661 metadata_show(mddev_t *mddev, char *page)
3663 if (mddev->persistent)
3664 return sprintf(page, "%d.%d\n",
3665 mddev->major_version, mddev->minor_version);
3666 else if (mddev->external)
3667 return sprintf(page, "external:%s\n", mddev->metadata_type);
3668 else
3669 return sprintf(page, "none\n");
3672 static ssize_t
3673 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3675 int major, minor;
3676 char *e;
3677 /* Changing the details of 'external' metadata is
3678 * always permitted. Otherwise there must be
3679 * no devices attached to the array.
3681 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3683 else if (!list_empty(&mddev->disks))
3684 return -EBUSY;
3686 if (cmd_match(buf, "none")) {
3687 mddev->persistent = 0;
3688 mddev->external = 0;
3689 mddev->major_version = 0;
3690 mddev->minor_version = 90;
3691 return len;
3693 if (strncmp(buf, "external:", 9) == 0) {
3694 size_t namelen = len-9;
3695 if (namelen >= sizeof(mddev->metadata_type))
3696 namelen = sizeof(mddev->metadata_type)-1;
3697 strncpy(mddev->metadata_type, buf+9, namelen);
3698 mddev->metadata_type[namelen] = 0;
3699 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3700 mddev->metadata_type[--namelen] = 0;
3701 mddev->persistent = 0;
3702 mddev->external = 1;
3703 mddev->major_version = 0;
3704 mddev->minor_version = 90;
3705 return len;
3707 major = simple_strtoul(buf, &e, 10);
3708 if (e==buf || *e != '.')
3709 return -EINVAL;
3710 buf = e+1;
3711 minor = simple_strtoul(buf, &e, 10);
3712 if (e==buf || (*e && *e != '\n') )
3713 return -EINVAL;
3714 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3715 return -ENOENT;
3716 mddev->major_version = major;
3717 mddev->minor_version = minor;
3718 mddev->persistent = 1;
3719 mddev->external = 0;
3720 return len;
3723 static struct md_sysfs_entry md_metadata =
3724 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3726 static ssize_t
3727 action_show(mddev_t *mddev, char *page)
3729 char *type = "idle";
3730 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3731 type = "frozen";
3732 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3733 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3734 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3735 type = "reshape";
3736 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3737 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3738 type = "resync";
3739 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3740 type = "check";
3741 else
3742 type = "repair";
3743 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3744 type = "recover";
3746 return sprintf(page, "%s\n", type);
3749 static ssize_t
3750 action_store(mddev_t *mddev, const char *page, size_t len)
3752 if (!mddev->pers || !mddev->pers->sync_request)
3753 return -EINVAL;
3755 if (cmd_match(page, "frozen"))
3756 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3757 else
3758 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3760 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3761 if (mddev->sync_thread) {
3762 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3763 md_unregister_thread(mddev->sync_thread);
3764 mddev->sync_thread = NULL;
3765 mddev->recovery = 0;
3767 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3768 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3769 return -EBUSY;
3770 else if (cmd_match(page, "resync"))
3771 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3772 else if (cmd_match(page, "recover")) {
3773 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3774 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3775 } else if (cmd_match(page, "reshape")) {
3776 int err;
3777 if (mddev->pers->start_reshape == NULL)
3778 return -EINVAL;
3779 err = mddev->pers->start_reshape(mddev);
3780 if (err)
3781 return err;
3782 sysfs_notify(&mddev->kobj, NULL, "degraded");
3783 } else {
3784 if (cmd_match(page, "check"))
3785 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3786 else if (!cmd_match(page, "repair"))
3787 return -EINVAL;
3788 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3789 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3792 md_wakeup_thread(mddev->thread);
3793 sysfs_notify_dirent_safe(mddev->sysfs_action);
3794 return len;
3797 static ssize_t
3798 mismatch_cnt_show(mddev_t *mddev, char *page)
3800 return sprintf(page, "%llu\n",
3801 (unsigned long long) mddev->resync_mismatches);
3804 static struct md_sysfs_entry md_scan_mode =
3805 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3808 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3810 static ssize_t
3811 sync_min_show(mddev_t *mddev, char *page)
3813 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3814 mddev->sync_speed_min ? "local": "system");
3817 static ssize_t
3818 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3820 int min;
3821 char *e;
3822 if (strncmp(buf, "system", 6)==0) {
3823 mddev->sync_speed_min = 0;
3824 return len;
3826 min = simple_strtoul(buf, &e, 10);
3827 if (buf == e || (*e && *e != '\n') || min <= 0)
3828 return -EINVAL;
3829 mddev->sync_speed_min = min;
3830 return len;
3833 static struct md_sysfs_entry md_sync_min =
3834 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3836 static ssize_t
3837 sync_max_show(mddev_t *mddev, char *page)
3839 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3840 mddev->sync_speed_max ? "local": "system");
3843 static ssize_t
3844 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3846 int max;
3847 char *e;
3848 if (strncmp(buf, "system", 6)==0) {
3849 mddev->sync_speed_max = 0;
3850 return len;
3852 max = simple_strtoul(buf, &e, 10);
3853 if (buf == e || (*e && *e != '\n') || max <= 0)
3854 return -EINVAL;
3855 mddev->sync_speed_max = max;
3856 return len;
3859 static struct md_sysfs_entry md_sync_max =
3860 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3862 static ssize_t
3863 degraded_show(mddev_t *mddev, char *page)
3865 return sprintf(page, "%d\n", mddev->degraded);
3867 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3869 static ssize_t
3870 sync_force_parallel_show(mddev_t *mddev, char *page)
3872 return sprintf(page, "%d\n", mddev->parallel_resync);
3875 static ssize_t
3876 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3878 long n;
3880 if (strict_strtol(buf, 10, &n))
3881 return -EINVAL;
3883 if (n != 0 && n != 1)
3884 return -EINVAL;
3886 mddev->parallel_resync = n;
3888 if (mddev->sync_thread)
3889 wake_up(&resync_wait);
3891 return len;
3894 /* force parallel resync, even with shared block devices */
3895 static struct md_sysfs_entry md_sync_force_parallel =
3896 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3897 sync_force_parallel_show, sync_force_parallel_store);
3899 static ssize_t
3900 sync_speed_show(mddev_t *mddev, char *page)
3902 unsigned long resync, dt, db;
3903 if (mddev->curr_resync == 0)
3904 return sprintf(page, "none\n");
3905 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3906 dt = (jiffies - mddev->resync_mark) / HZ;
3907 if (!dt) dt++;
3908 db = resync - mddev->resync_mark_cnt;
3909 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3912 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3914 static ssize_t
3915 sync_completed_show(mddev_t *mddev, char *page)
3917 unsigned long max_sectors, resync;
3919 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3920 return sprintf(page, "none\n");
3922 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3923 max_sectors = mddev->resync_max_sectors;
3924 else
3925 max_sectors = mddev->dev_sectors;
3927 resync = mddev->curr_resync_completed;
3928 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3931 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3933 static ssize_t
3934 min_sync_show(mddev_t *mddev, char *page)
3936 return sprintf(page, "%llu\n",
3937 (unsigned long long)mddev->resync_min);
3939 static ssize_t
3940 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3942 unsigned long long min;
3943 if (strict_strtoull(buf, 10, &min))
3944 return -EINVAL;
3945 if (min > mddev->resync_max)
3946 return -EINVAL;
3947 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3948 return -EBUSY;
3950 /* Must be a multiple of chunk_size */
3951 if (mddev->chunk_sectors) {
3952 sector_t temp = min;
3953 if (sector_div(temp, mddev->chunk_sectors))
3954 return -EINVAL;
3956 mddev->resync_min = min;
3958 return len;
3961 static struct md_sysfs_entry md_min_sync =
3962 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3964 static ssize_t
3965 max_sync_show(mddev_t *mddev, char *page)
3967 if (mddev->resync_max == MaxSector)
3968 return sprintf(page, "max\n");
3969 else
3970 return sprintf(page, "%llu\n",
3971 (unsigned long long)mddev->resync_max);
3973 static ssize_t
3974 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3976 if (strncmp(buf, "max", 3) == 0)
3977 mddev->resync_max = MaxSector;
3978 else {
3979 unsigned long long max;
3980 if (strict_strtoull(buf, 10, &max))
3981 return -EINVAL;
3982 if (max < mddev->resync_min)
3983 return -EINVAL;
3984 if (max < mddev->resync_max &&
3985 mddev->ro == 0 &&
3986 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3987 return -EBUSY;
3989 /* Must be a multiple of chunk_size */
3990 if (mddev->chunk_sectors) {
3991 sector_t temp = max;
3992 if (sector_div(temp, mddev->chunk_sectors))
3993 return -EINVAL;
3995 mddev->resync_max = max;
3997 wake_up(&mddev->recovery_wait);
3998 return len;
4001 static struct md_sysfs_entry md_max_sync =
4002 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4004 static ssize_t
4005 suspend_lo_show(mddev_t *mddev, char *page)
4007 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4010 static ssize_t
4011 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4013 char *e;
4014 unsigned long long new = simple_strtoull(buf, &e, 10);
4016 if (mddev->pers == NULL ||
4017 mddev->pers->quiesce == NULL)
4018 return -EINVAL;
4019 if (buf == e || (*e && *e != '\n'))
4020 return -EINVAL;
4021 if (new >= mddev->suspend_hi ||
4022 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4023 mddev->suspend_lo = new;
4024 mddev->pers->quiesce(mddev, 2);
4025 return len;
4026 } else
4027 return -EINVAL;
4029 static struct md_sysfs_entry md_suspend_lo =
4030 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4033 static ssize_t
4034 suspend_hi_show(mddev_t *mddev, char *page)
4036 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4039 static ssize_t
4040 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4042 char *e;
4043 unsigned long long new = simple_strtoull(buf, &e, 10);
4045 if (mddev->pers == NULL ||
4046 mddev->pers->quiesce == NULL)
4047 return -EINVAL;
4048 if (buf == e || (*e && *e != '\n'))
4049 return -EINVAL;
4050 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4051 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4052 mddev->suspend_hi = new;
4053 mddev->pers->quiesce(mddev, 1);
4054 mddev->pers->quiesce(mddev, 0);
4055 return len;
4056 } else
4057 return -EINVAL;
4059 static struct md_sysfs_entry md_suspend_hi =
4060 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4062 static ssize_t
4063 reshape_position_show(mddev_t *mddev, char *page)
4065 if (mddev->reshape_position != MaxSector)
4066 return sprintf(page, "%llu\n",
4067 (unsigned long long)mddev->reshape_position);
4068 strcpy(page, "none\n");
4069 return 5;
4072 static ssize_t
4073 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4075 char *e;
4076 unsigned long long new = simple_strtoull(buf, &e, 10);
4077 if (mddev->pers)
4078 return -EBUSY;
4079 if (buf == e || (*e && *e != '\n'))
4080 return -EINVAL;
4081 mddev->reshape_position = new;
4082 mddev->delta_disks = 0;
4083 mddev->new_level = mddev->level;
4084 mddev->new_layout = mddev->layout;
4085 mddev->new_chunk_sectors = mddev->chunk_sectors;
4086 return len;
4089 static struct md_sysfs_entry md_reshape_position =
4090 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4091 reshape_position_store);
4093 static ssize_t
4094 array_size_show(mddev_t *mddev, char *page)
4096 if (mddev->external_size)
4097 return sprintf(page, "%llu\n",
4098 (unsigned long long)mddev->array_sectors/2);
4099 else
4100 return sprintf(page, "default\n");
4103 static ssize_t
4104 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4106 sector_t sectors;
4108 if (strncmp(buf, "default", 7) == 0) {
4109 if (mddev->pers)
4110 sectors = mddev->pers->size(mddev, 0, 0);
4111 else
4112 sectors = mddev->array_sectors;
4114 mddev->external_size = 0;
4115 } else {
4116 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4117 return -EINVAL;
4118 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4119 return -E2BIG;
4121 mddev->external_size = 1;
4124 mddev->array_sectors = sectors;
4125 set_capacity(mddev->gendisk, mddev->array_sectors);
4126 if (mddev->pers)
4127 revalidate_disk(mddev->gendisk);
4129 return len;
4132 static struct md_sysfs_entry md_array_size =
4133 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4134 array_size_store);
4136 static struct attribute *md_default_attrs[] = {
4137 &md_level.attr,
4138 &md_layout.attr,
4139 &md_raid_disks.attr,
4140 &md_chunk_size.attr,
4141 &md_size.attr,
4142 &md_resync_start.attr,
4143 &md_metadata.attr,
4144 &md_new_device.attr,
4145 &md_safe_delay.attr,
4146 &md_array_state.attr,
4147 &md_reshape_position.attr,
4148 &md_array_size.attr,
4149 &max_corr_read_errors.attr,
4150 NULL,
4153 static struct attribute *md_redundancy_attrs[] = {
4154 &md_scan_mode.attr,
4155 &md_mismatches.attr,
4156 &md_sync_min.attr,
4157 &md_sync_max.attr,
4158 &md_sync_speed.attr,
4159 &md_sync_force_parallel.attr,
4160 &md_sync_completed.attr,
4161 &md_min_sync.attr,
4162 &md_max_sync.attr,
4163 &md_suspend_lo.attr,
4164 &md_suspend_hi.attr,
4165 &md_bitmap.attr,
4166 &md_degraded.attr,
4167 NULL,
4169 static struct attribute_group md_redundancy_group = {
4170 .name = NULL,
4171 .attrs = md_redundancy_attrs,
4175 static ssize_t
4176 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4178 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4179 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4180 ssize_t rv;
4182 if (!entry->show)
4183 return -EIO;
4184 rv = mddev_lock(mddev);
4185 if (!rv) {
4186 rv = entry->show(mddev, page);
4187 mddev_unlock(mddev);
4189 return rv;
4192 static ssize_t
4193 md_attr_store(struct kobject *kobj, struct attribute *attr,
4194 const char *page, size_t length)
4196 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4197 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4198 ssize_t rv;
4200 if (!entry->store)
4201 return -EIO;
4202 if (!capable(CAP_SYS_ADMIN))
4203 return -EACCES;
4204 rv = mddev_lock(mddev);
4205 if (mddev->hold_active == UNTIL_IOCTL)
4206 mddev->hold_active = 0;
4207 if (!rv) {
4208 rv = entry->store(mddev, page, length);
4209 mddev_unlock(mddev);
4211 return rv;
4214 static void md_free(struct kobject *ko)
4216 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4218 if (mddev->sysfs_state)
4219 sysfs_put(mddev->sysfs_state);
4221 if (mddev->gendisk) {
4222 del_gendisk(mddev->gendisk);
4223 put_disk(mddev->gendisk);
4225 if (mddev->queue)
4226 blk_cleanup_queue(mddev->queue);
4228 kfree(mddev);
4231 static const struct sysfs_ops md_sysfs_ops = {
4232 .show = md_attr_show,
4233 .store = md_attr_store,
4235 static struct kobj_type md_ktype = {
4236 .release = md_free,
4237 .sysfs_ops = &md_sysfs_ops,
4238 .default_attrs = md_default_attrs,
4241 int mdp_major = 0;
4243 static void mddev_delayed_delete(struct work_struct *ws)
4245 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4247 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4248 kobject_del(&mddev->kobj);
4249 kobject_put(&mddev->kobj);
4252 static int md_alloc(dev_t dev, char *name)
4254 static DEFINE_MUTEX(disks_mutex);
4255 mddev_t *mddev = mddev_find(dev);
4256 struct gendisk *disk;
4257 int partitioned;
4258 int shift;
4259 int unit;
4260 int error;
4262 if (!mddev)
4263 return -ENODEV;
4265 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4266 shift = partitioned ? MdpMinorShift : 0;
4267 unit = MINOR(mddev->unit) >> shift;
4269 /* wait for any previous instance of this device to be
4270 * completely removed (mddev_delayed_delete).
4272 flush_workqueue(md_misc_wq);
4274 mutex_lock(&disks_mutex);
4275 error = -EEXIST;
4276 if (mddev->gendisk)
4277 goto abort;
4279 if (name) {
4280 /* Need to ensure that 'name' is not a duplicate.
4282 mddev_t *mddev2;
4283 spin_lock(&all_mddevs_lock);
4285 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4286 if (mddev2->gendisk &&
4287 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4288 spin_unlock(&all_mddevs_lock);
4289 goto abort;
4291 spin_unlock(&all_mddevs_lock);
4294 error = -ENOMEM;
4295 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4296 if (!mddev->queue)
4297 goto abort;
4298 mddev->queue->queuedata = mddev;
4300 blk_queue_make_request(mddev->queue, md_make_request);
4302 disk = alloc_disk(1 << shift);
4303 if (!disk) {
4304 blk_cleanup_queue(mddev->queue);
4305 mddev->queue = NULL;
4306 goto abort;
4308 disk->major = MAJOR(mddev->unit);
4309 disk->first_minor = unit << shift;
4310 if (name)
4311 strcpy(disk->disk_name, name);
4312 else if (partitioned)
4313 sprintf(disk->disk_name, "md_d%d", unit);
4314 else
4315 sprintf(disk->disk_name, "md%d", unit);
4316 disk->fops = &md_fops;
4317 disk->private_data = mddev;
4318 disk->queue = mddev->queue;
4319 /* Allow extended partitions. This makes the
4320 * 'mdp' device redundant, but we can't really
4321 * remove it now.
4323 disk->flags |= GENHD_FL_EXT_DEVT;
4324 add_disk(disk);
4325 mddev->gendisk = disk;
4326 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4327 &disk_to_dev(disk)->kobj, "%s", "md");
4328 if (error) {
4329 /* This isn't possible, but as kobject_init_and_add is marked
4330 * __must_check, we must do something with the result
4332 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4333 disk->disk_name);
4334 error = 0;
4336 if (mddev->kobj.sd &&
4337 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4338 printk(KERN_DEBUG "pointless warning\n");
4340 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4341 abort:
4342 mutex_unlock(&disks_mutex);
4343 if (!error && mddev->kobj.sd) {
4344 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4345 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4347 mddev_put(mddev);
4348 return error;
4351 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4353 md_alloc(dev, NULL);
4354 return NULL;
4357 static int add_named_array(const char *val, struct kernel_param *kp)
4359 /* val must be "md_*" where * is not all digits.
4360 * We allocate an array with a large free minor number, and
4361 * set the name to val. val must not already be an active name.
4363 int len = strlen(val);
4364 char buf[DISK_NAME_LEN];
4366 while (len && val[len-1] == '\n')
4367 len--;
4368 if (len >= DISK_NAME_LEN)
4369 return -E2BIG;
4370 strlcpy(buf, val, len+1);
4371 if (strncmp(buf, "md_", 3) != 0)
4372 return -EINVAL;
4373 return md_alloc(0, buf);
4376 static void md_safemode_timeout(unsigned long data)
4378 mddev_t *mddev = (mddev_t *) data;
4380 if (!atomic_read(&mddev->writes_pending)) {
4381 mddev->safemode = 1;
4382 if (mddev->external)
4383 sysfs_notify_dirent_safe(mddev->sysfs_state);
4385 md_wakeup_thread(mddev->thread);
4388 static int start_dirty_degraded;
4390 int md_run(mddev_t *mddev)
4392 int err;
4393 mdk_rdev_t *rdev;
4394 struct mdk_personality *pers;
4396 if (list_empty(&mddev->disks))
4397 /* cannot run an array with no devices.. */
4398 return -EINVAL;
4400 if (mddev->pers)
4401 return -EBUSY;
4402 /* Cannot run until previous stop completes properly */
4403 if (mddev->sysfs_active)
4404 return -EBUSY;
4407 * Analyze all RAID superblock(s)
4409 if (!mddev->raid_disks) {
4410 if (!mddev->persistent)
4411 return -EINVAL;
4412 analyze_sbs(mddev);
4415 if (mddev->level != LEVEL_NONE)
4416 request_module("md-level-%d", mddev->level);
4417 else if (mddev->clevel[0])
4418 request_module("md-%s", mddev->clevel);
4421 * Drop all container device buffers, from now on
4422 * the only valid external interface is through the md
4423 * device.
4425 list_for_each_entry(rdev, &mddev->disks, same_set) {
4426 if (test_bit(Faulty, &rdev->flags))
4427 continue;
4428 sync_blockdev(rdev->bdev);
4429 invalidate_bdev(rdev->bdev);
4431 /* perform some consistency tests on the device.
4432 * We don't want the data to overlap the metadata,
4433 * Internal Bitmap issues have been handled elsewhere.
4435 if (rdev->data_offset < rdev->sb_start) {
4436 if (mddev->dev_sectors &&
4437 rdev->data_offset + mddev->dev_sectors
4438 > rdev->sb_start) {
4439 printk("md: %s: data overlaps metadata\n",
4440 mdname(mddev));
4441 return -EINVAL;
4443 } else {
4444 if (rdev->sb_start + rdev->sb_size/512
4445 > rdev->data_offset) {
4446 printk("md: %s: metadata overlaps data\n",
4447 mdname(mddev));
4448 return -EINVAL;
4451 sysfs_notify_dirent_safe(rdev->sysfs_state);
4454 if (mddev->bio_set == NULL)
4455 mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev));
4457 spin_lock(&pers_lock);
4458 pers = find_pers(mddev->level, mddev->clevel);
4459 if (!pers || !try_module_get(pers->owner)) {
4460 spin_unlock(&pers_lock);
4461 if (mddev->level != LEVEL_NONE)
4462 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4463 mddev->level);
4464 else
4465 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4466 mddev->clevel);
4467 return -EINVAL;
4469 mddev->pers = pers;
4470 spin_unlock(&pers_lock);
4471 if (mddev->level != pers->level) {
4472 mddev->level = pers->level;
4473 mddev->new_level = pers->level;
4475 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4477 if (mddev->reshape_position != MaxSector &&
4478 pers->start_reshape == NULL) {
4479 /* This personality cannot handle reshaping... */
4480 mddev->pers = NULL;
4481 module_put(pers->owner);
4482 return -EINVAL;
4485 if (pers->sync_request) {
4486 /* Warn if this is a potentially silly
4487 * configuration.
4489 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4490 mdk_rdev_t *rdev2;
4491 int warned = 0;
4493 list_for_each_entry(rdev, &mddev->disks, same_set)
4494 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4495 if (rdev < rdev2 &&
4496 rdev->bdev->bd_contains ==
4497 rdev2->bdev->bd_contains) {
4498 printk(KERN_WARNING
4499 "%s: WARNING: %s appears to be"
4500 " on the same physical disk as"
4501 " %s.\n",
4502 mdname(mddev),
4503 bdevname(rdev->bdev,b),
4504 bdevname(rdev2->bdev,b2));
4505 warned = 1;
4509 if (warned)
4510 printk(KERN_WARNING
4511 "True protection against single-disk"
4512 " failure might be compromised.\n");
4515 mddev->recovery = 0;
4516 /* may be over-ridden by personality */
4517 mddev->resync_max_sectors = mddev->dev_sectors;
4519 mddev->ok_start_degraded = start_dirty_degraded;
4521 if (start_readonly && mddev->ro == 0)
4522 mddev->ro = 2; /* read-only, but switch on first write */
4524 err = mddev->pers->run(mddev);
4525 if (err)
4526 printk(KERN_ERR "md: pers->run() failed ...\n");
4527 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4528 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4529 " but 'external_size' not in effect?\n", __func__);
4530 printk(KERN_ERR
4531 "md: invalid array_size %llu > default size %llu\n",
4532 (unsigned long long)mddev->array_sectors / 2,
4533 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4534 err = -EINVAL;
4535 mddev->pers->stop(mddev);
4537 if (err == 0 && mddev->pers->sync_request) {
4538 err = bitmap_create(mddev);
4539 if (err) {
4540 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4541 mdname(mddev), err);
4542 mddev->pers->stop(mddev);
4545 if (err) {
4546 module_put(mddev->pers->owner);
4547 mddev->pers = NULL;
4548 bitmap_destroy(mddev);
4549 return err;
4551 if (mddev->pers->sync_request) {
4552 if (mddev->kobj.sd &&
4553 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4554 printk(KERN_WARNING
4555 "md: cannot register extra attributes for %s\n",
4556 mdname(mddev));
4557 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4558 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4559 mddev->ro = 0;
4561 atomic_set(&mddev->writes_pending,0);
4562 atomic_set(&mddev->max_corr_read_errors,
4563 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4564 mddev->safemode = 0;
4565 mddev->safemode_timer.function = md_safemode_timeout;
4566 mddev->safemode_timer.data = (unsigned long) mddev;
4567 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4568 mddev->in_sync = 1;
4569 smp_wmb();
4570 mddev->ready = 1;
4571 list_for_each_entry(rdev, &mddev->disks, same_set)
4572 if (rdev->raid_disk >= 0) {
4573 char nm[20];
4574 sprintf(nm, "rd%d", rdev->raid_disk);
4575 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4576 /* failure here is OK */;
4579 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4581 if (mddev->flags)
4582 md_update_sb(mddev, 0);
4584 md_wakeup_thread(mddev->thread);
4585 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4587 md_new_event(mddev);
4588 sysfs_notify_dirent_safe(mddev->sysfs_state);
4589 sysfs_notify_dirent_safe(mddev->sysfs_action);
4590 sysfs_notify(&mddev->kobj, NULL, "degraded");
4591 return 0;
4593 EXPORT_SYMBOL_GPL(md_run);
4595 static int do_md_run(mddev_t *mddev)
4597 int err;
4599 err = md_run(mddev);
4600 if (err)
4601 goto out;
4602 err = bitmap_load(mddev);
4603 if (err) {
4604 bitmap_destroy(mddev);
4605 goto out;
4607 set_capacity(mddev->gendisk, mddev->array_sectors);
4608 revalidate_disk(mddev->gendisk);
4609 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4610 out:
4611 return err;
4614 static int restart_array(mddev_t *mddev)
4616 struct gendisk *disk = mddev->gendisk;
4618 /* Complain if it has no devices */
4619 if (list_empty(&mddev->disks))
4620 return -ENXIO;
4621 if (!mddev->pers)
4622 return -EINVAL;
4623 if (!mddev->ro)
4624 return -EBUSY;
4625 mddev->safemode = 0;
4626 mddev->ro = 0;
4627 set_disk_ro(disk, 0);
4628 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4629 mdname(mddev));
4630 /* Kick recovery or resync if necessary */
4631 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4632 md_wakeup_thread(mddev->thread);
4633 md_wakeup_thread(mddev->sync_thread);
4634 sysfs_notify_dirent_safe(mddev->sysfs_state);
4635 return 0;
4638 /* similar to deny_write_access, but accounts for our holding a reference
4639 * to the file ourselves */
4640 static int deny_bitmap_write_access(struct file * file)
4642 struct inode *inode = file->f_mapping->host;
4644 spin_lock(&inode->i_lock);
4645 if (atomic_read(&inode->i_writecount) > 1) {
4646 spin_unlock(&inode->i_lock);
4647 return -ETXTBSY;
4649 atomic_set(&inode->i_writecount, -1);
4650 spin_unlock(&inode->i_lock);
4652 return 0;
4655 void restore_bitmap_write_access(struct file *file)
4657 struct inode *inode = file->f_mapping->host;
4659 spin_lock(&inode->i_lock);
4660 atomic_set(&inode->i_writecount, 1);
4661 spin_unlock(&inode->i_lock);
4664 static void md_clean(mddev_t *mddev)
4666 mddev->array_sectors = 0;
4667 mddev->external_size = 0;
4668 mddev->dev_sectors = 0;
4669 mddev->raid_disks = 0;
4670 mddev->recovery_cp = 0;
4671 mddev->resync_min = 0;
4672 mddev->resync_max = MaxSector;
4673 mddev->reshape_position = MaxSector;
4674 mddev->external = 0;
4675 mddev->persistent = 0;
4676 mddev->level = LEVEL_NONE;
4677 mddev->clevel[0] = 0;
4678 mddev->flags = 0;
4679 mddev->ro = 0;
4680 mddev->metadata_type[0] = 0;
4681 mddev->chunk_sectors = 0;
4682 mddev->ctime = mddev->utime = 0;
4683 mddev->layout = 0;
4684 mddev->max_disks = 0;
4685 mddev->events = 0;
4686 mddev->can_decrease_events = 0;
4687 mddev->delta_disks = 0;
4688 mddev->new_level = LEVEL_NONE;
4689 mddev->new_layout = 0;
4690 mddev->new_chunk_sectors = 0;
4691 mddev->curr_resync = 0;
4692 mddev->resync_mismatches = 0;
4693 mddev->suspend_lo = mddev->suspend_hi = 0;
4694 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4695 mddev->recovery = 0;
4696 mddev->in_sync = 0;
4697 mddev->degraded = 0;
4698 mddev->safemode = 0;
4699 mddev->bitmap_info.offset = 0;
4700 mddev->bitmap_info.default_offset = 0;
4701 mddev->bitmap_info.chunksize = 0;
4702 mddev->bitmap_info.daemon_sleep = 0;
4703 mddev->bitmap_info.max_write_behind = 0;
4704 mddev->plug = NULL;
4707 static void __md_stop_writes(mddev_t *mddev)
4709 if (mddev->sync_thread) {
4710 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4711 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4712 md_unregister_thread(mddev->sync_thread);
4713 mddev->sync_thread = NULL;
4716 del_timer_sync(&mddev->safemode_timer);
4718 bitmap_flush(mddev);
4719 md_super_wait(mddev);
4721 if (!mddev->in_sync || mddev->flags) {
4722 /* mark array as shutdown cleanly */
4723 mddev->in_sync = 1;
4724 md_update_sb(mddev, 1);
4728 void md_stop_writes(mddev_t *mddev)
4730 mddev_lock(mddev);
4731 __md_stop_writes(mddev);
4732 mddev_unlock(mddev);
4734 EXPORT_SYMBOL_GPL(md_stop_writes);
4736 void md_stop(mddev_t *mddev)
4738 mddev->ready = 0;
4739 mddev->pers->stop(mddev);
4740 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4741 mddev->to_remove = &md_redundancy_group;
4742 module_put(mddev->pers->owner);
4743 mddev->pers = NULL;
4744 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4746 EXPORT_SYMBOL_GPL(md_stop);
4748 static int md_set_readonly(mddev_t *mddev, int is_open)
4750 int err = 0;
4751 mutex_lock(&mddev->open_mutex);
4752 if (atomic_read(&mddev->openers) > is_open) {
4753 printk("md: %s still in use.\n",mdname(mddev));
4754 err = -EBUSY;
4755 goto out;
4757 if (mddev->pers) {
4758 __md_stop_writes(mddev);
4760 err = -ENXIO;
4761 if (mddev->ro==1)
4762 goto out;
4763 mddev->ro = 1;
4764 set_disk_ro(mddev->gendisk, 1);
4765 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4766 sysfs_notify_dirent_safe(mddev->sysfs_state);
4767 err = 0;
4769 out:
4770 mutex_unlock(&mddev->open_mutex);
4771 return err;
4774 /* mode:
4775 * 0 - completely stop and dis-assemble array
4776 * 2 - stop but do not disassemble array
4778 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4780 struct gendisk *disk = mddev->gendisk;
4781 mdk_rdev_t *rdev;
4783 mutex_lock(&mddev->open_mutex);
4784 if (atomic_read(&mddev->openers) > is_open ||
4785 mddev->sysfs_active) {
4786 printk("md: %s still in use.\n",mdname(mddev));
4787 mutex_unlock(&mddev->open_mutex);
4788 return -EBUSY;
4791 if (mddev->pers) {
4792 if (mddev->ro)
4793 set_disk_ro(disk, 0);
4795 __md_stop_writes(mddev);
4796 md_stop(mddev);
4797 mddev->queue->merge_bvec_fn = NULL;
4798 mddev->queue->unplug_fn = NULL;
4799 mddev->queue->backing_dev_info.congested_fn = NULL;
4801 /* tell userspace to handle 'inactive' */
4802 sysfs_notify_dirent_safe(mddev->sysfs_state);
4804 list_for_each_entry(rdev, &mddev->disks, same_set)
4805 if (rdev->raid_disk >= 0) {
4806 char nm[20];
4807 sprintf(nm, "rd%d", rdev->raid_disk);
4808 sysfs_remove_link(&mddev->kobj, nm);
4811 set_capacity(disk, 0);
4812 mutex_unlock(&mddev->open_mutex);
4813 revalidate_disk(disk);
4815 if (mddev->ro)
4816 mddev->ro = 0;
4817 } else
4818 mutex_unlock(&mddev->open_mutex);
4820 * Free resources if final stop
4822 if (mode == 0) {
4823 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4825 bitmap_destroy(mddev);
4826 if (mddev->bitmap_info.file) {
4827 restore_bitmap_write_access(mddev->bitmap_info.file);
4828 fput(mddev->bitmap_info.file);
4829 mddev->bitmap_info.file = NULL;
4831 mddev->bitmap_info.offset = 0;
4833 export_array(mddev);
4835 md_clean(mddev);
4836 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4837 if (mddev->hold_active == UNTIL_STOP)
4838 mddev->hold_active = 0;
4840 blk_integrity_unregister(disk);
4841 md_new_event(mddev);
4842 sysfs_notify_dirent_safe(mddev->sysfs_state);
4843 return 0;
4846 #ifndef MODULE
4847 static void autorun_array(mddev_t *mddev)
4849 mdk_rdev_t *rdev;
4850 int err;
4852 if (list_empty(&mddev->disks))
4853 return;
4855 printk(KERN_INFO "md: running: ");
4857 list_for_each_entry(rdev, &mddev->disks, same_set) {
4858 char b[BDEVNAME_SIZE];
4859 printk("<%s>", bdevname(rdev->bdev,b));
4861 printk("\n");
4863 err = do_md_run(mddev);
4864 if (err) {
4865 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4866 do_md_stop(mddev, 0, 0);
4871 * lets try to run arrays based on all disks that have arrived
4872 * until now. (those are in pending_raid_disks)
4874 * the method: pick the first pending disk, collect all disks with
4875 * the same UUID, remove all from the pending list and put them into
4876 * the 'same_array' list. Then order this list based on superblock
4877 * update time (freshest comes first), kick out 'old' disks and
4878 * compare superblocks. If everything's fine then run it.
4880 * If "unit" is allocated, then bump its reference count
4882 static void autorun_devices(int part)
4884 mdk_rdev_t *rdev0, *rdev, *tmp;
4885 mddev_t *mddev;
4886 char b[BDEVNAME_SIZE];
4888 printk(KERN_INFO "md: autorun ...\n");
4889 while (!list_empty(&pending_raid_disks)) {
4890 int unit;
4891 dev_t dev;
4892 LIST_HEAD(candidates);
4893 rdev0 = list_entry(pending_raid_disks.next,
4894 mdk_rdev_t, same_set);
4896 printk(KERN_INFO "md: considering %s ...\n",
4897 bdevname(rdev0->bdev,b));
4898 INIT_LIST_HEAD(&candidates);
4899 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4900 if (super_90_load(rdev, rdev0, 0) >= 0) {
4901 printk(KERN_INFO "md: adding %s ...\n",
4902 bdevname(rdev->bdev,b));
4903 list_move(&rdev->same_set, &candidates);
4906 * now we have a set of devices, with all of them having
4907 * mostly sane superblocks. It's time to allocate the
4908 * mddev.
4910 if (part) {
4911 dev = MKDEV(mdp_major,
4912 rdev0->preferred_minor << MdpMinorShift);
4913 unit = MINOR(dev) >> MdpMinorShift;
4914 } else {
4915 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4916 unit = MINOR(dev);
4918 if (rdev0->preferred_minor != unit) {
4919 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4920 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4921 break;
4924 md_probe(dev, NULL, NULL);
4925 mddev = mddev_find(dev);
4926 if (!mddev || !mddev->gendisk) {
4927 if (mddev)
4928 mddev_put(mddev);
4929 printk(KERN_ERR
4930 "md: cannot allocate memory for md drive.\n");
4931 break;
4933 if (mddev_lock(mddev))
4934 printk(KERN_WARNING "md: %s locked, cannot run\n",
4935 mdname(mddev));
4936 else if (mddev->raid_disks || mddev->major_version
4937 || !list_empty(&mddev->disks)) {
4938 printk(KERN_WARNING
4939 "md: %s already running, cannot run %s\n",
4940 mdname(mddev), bdevname(rdev0->bdev,b));
4941 mddev_unlock(mddev);
4942 } else {
4943 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4944 mddev->persistent = 1;
4945 rdev_for_each_list(rdev, tmp, &candidates) {
4946 list_del_init(&rdev->same_set);
4947 if (bind_rdev_to_array(rdev, mddev))
4948 export_rdev(rdev);
4950 autorun_array(mddev);
4951 mddev_unlock(mddev);
4953 /* on success, candidates will be empty, on error
4954 * it won't...
4956 rdev_for_each_list(rdev, tmp, &candidates) {
4957 list_del_init(&rdev->same_set);
4958 export_rdev(rdev);
4960 mddev_put(mddev);
4962 printk(KERN_INFO "md: ... autorun DONE.\n");
4964 #endif /* !MODULE */
4966 static int get_version(void __user * arg)
4968 mdu_version_t ver;
4970 ver.major = MD_MAJOR_VERSION;
4971 ver.minor = MD_MINOR_VERSION;
4972 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4974 if (copy_to_user(arg, &ver, sizeof(ver)))
4975 return -EFAULT;
4977 return 0;
4980 static int get_array_info(mddev_t * mddev, void __user * arg)
4982 mdu_array_info_t info;
4983 int nr,working,insync,failed,spare;
4984 mdk_rdev_t *rdev;
4986 nr=working=insync=failed=spare=0;
4987 list_for_each_entry(rdev, &mddev->disks, same_set) {
4988 nr++;
4989 if (test_bit(Faulty, &rdev->flags))
4990 failed++;
4991 else {
4992 working++;
4993 if (test_bit(In_sync, &rdev->flags))
4994 insync++;
4995 else
4996 spare++;
5000 info.major_version = mddev->major_version;
5001 info.minor_version = mddev->minor_version;
5002 info.patch_version = MD_PATCHLEVEL_VERSION;
5003 info.ctime = mddev->ctime;
5004 info.level = mddev->level;
5005 info.size = mddev->dev_sectors / 2;
5006 if (info.size != mddev->dev_sectors / 2) /* overflow */
5007 info.size = -1;
5008 info.nr_disks = nr;
5009 info.raid_disks = mddev->raid_disks;
5010 info.md_minor = mddev->md_minor;
5011 info.not_persistent= !mddev->persistent;
5013 info.utime = mddev->utime;
5014 info.state = 0;
5015 if (mddev->in_sync)
5016 info.state = (1<<MD_SB_CLEAN);
5017 if (mddev->bitmap && mddev->bitmap_info.offset)
5018 info.state = (1<<MD_SB_BITMAP_PRESENT);
5019 info.active_disks = insync;
5020 info.working_disks = working;
5021 info.failed_disks = failed;
5022 info.spare_disks = spare;
5024 info.layout = mddev->layout;
5025 info.chunk_size = mddev->chunk_sectors << 9;
5027 if (copy_to_user(arg, &info, sizeof(info)))
5028 return -EFAULT;
5030 return 0;
5033 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5035 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5036 char *ptr, *buf = NULL;
5037 int err = -ENOMEM;
5039 if (md_allow_write(mddev))
5040 file = kmalloc(sizeof(*file), GFP_NOIO);
5041 else
5042 file = kmalloc(sizeof(*file), GFP_KERNEL);
5044 if (!file)
5045 goto out;
5047 /* bitmap disabled, zero the first byte and copy out */
5048 if (!mddev->bitmap || !mddev->bitmap->file) {
5049 file->pathname[0] = '\0';
5050 goto copy_out;
5053 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5054 if (!buf)
5055 goto out;
5057 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5058 if (IS_ERR(ptr))
5059 goto out;
5061 strcpy(file->pathname, ptr);
5063 copy_out:
5064 err = 0;
5065 if (copy_to_user(arg, file, sizeof(*file)))
5066 err = -EFAULT;
5067 out:
5068 kfree(buf);
5069 kfree(file);
5070 return err;
5073 static int get_disk_info(mddev_t * mddev, void __user * arg)
5075 mdu_disk_info_t info;
5076 mdk_rdev_t *rdev;
5078 if (copy_from_user(&info, arg, sizeof(info)))
5079 return -EFAULT;
5081 rdev = find_rdev_nr(mddev, info.number);
5082 if (rdev) {
5083 info.major = MAJOR(rdev->bdev->bd_dev);
5084 info.minor = MINOR(rdev->bdev->bd_dev);
5085 info.raid_disk = rdev->raid_disk;
5086 info.state = 0;
5087 if (test_bit(Faulty, &rdev->flags))
5088 info.state |= (1<<MD_DISK_FAULTY);
5089 else if (test_bit(In_sync, &rdev->flags)) {
5090 info.state |= (1<<MD_DISK_ACTIVE);
5091 info.state |= (1<<MD_DISK_SYNC);
5093 if (test_bit(WriteMostly, &rdev->flags))
5094 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5095 } else {
5096 info.major = info.minor = 0;
5097 info.raid_disk = -1;
5098 info.state = (1<<MD_DISK_REMOVED);
5101 if (copy_to_user(arg, &info, sizeof(info)))
5102 return -EFAULT;
5104 return 0;
5107 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5109 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5110 mdk_rdev_t *rdev;
5111 dev_t dev = MKDEV(info->major,info->minor);
5113 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5114 return -EOVERFLOW;
5116 if (!mddev->raid_disks) {
5117 int err;
5118 /* expecting a device which has a superblock */
5119 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5120 if (IS_ERR(rdev)) {
5121 printk(KERN_WARNING
5122 "md: md_import_device returned %ld\n",
5123 PTR_ERR(rdev));
5124 return PTR_ERR(rdev);
5126 if (!list_empty(&mddev->disks)) {
5127 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5128 mdk_rdev_t, same_set);
5129 err = super_types[mddev->major_version]
5130 .load_super(rdev, rdev0, mddev->minor_version);
5131 if (err < 0) {
5132 printk(KERN_WARNING
5133 "md: %s has different UUID to %s\n",
5134 bdevname(rdev->bdev,b),
5135 bdevname(rdev0->bdev,b2));
5136 export_rdev(rdev);
5137 return -EINVAL;
5140 err = bind_rdev_to_array(rdev, mddev);
5141 if (err)
5142 export_rdev(rdev);
5143 return err;
5147 * add_new_disk can be used once the array is assembled
5148 * to add "hot spares". They must already have a superblock
5149 * written
5151 if (mddev->pers) {
5152 int err;
5153 if (!mddev->pers->hot_add_disk) {
5154 printk(KERN_WARNING
5155 "%s: personality does not support diskops!\n",
5156 mdname(mddev));
5157 return -EINVAL;
5159 if (mddev->persistent)
5160 rdev = md_import_device(dev, mddev->major_version,
5161 mddev->minor_version);
5162 else
5163 rdev = md_import_device(dev, -1, -1);
5164 if (IS_ERR(rdev)) {
5165 printk(KERN_WARNING
5166 "md: md_import_device returned %ld\n",
5167 PTR_ERR(rdev));
5168 return PTR_ERR(rdev);
5170 /* set saved_raid_disk if appropriate */
5171 if (!mddev->persistent) {
5172 if (info->state & (1<<MD_DISK_SYNC) &&
5173 info->raid_disk < mddev->raid_disks) {
5174 rdev->raid_disk = info->raid_disk;
5175 set_bit(In_sync, &rdev->flags);
5176 } else
5177 rdev->raid_disk = -1;
5178 } else
5179 super_types[mddev->major_version].
5180 validate_super(mddev, rdev);
5181 if (test_bit(In_sync, &rdev->flags))
5182 rdev->saved_raid_disk = rdev->raid_disk;
5183 else
5184 rdev->saved_raid_disk = -1;
5186 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5187 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5188 set_bit(WriteMostly, &rdev->flags);
5189 else
5190 clear_bit(WriteMostly, &rdev->flags);
5192 rdev->raid_disk = -1;
5193 err = bind_rdev_to_array(rdev, mddev);
5194 if (!err && !mddev->pers->hot_remove_disk) {
5195 /* If there is hot_add_disk but no hot_remove_disk
5196 * then added disks for geometry changes,
5197 * and should be added immediately.
5199 super_types[mddev->major_version].
5200 validate_super(mddev, rdev);
5201 err = mddev->pers->hot_add_disk(mddev, rdev);
5202 if (err)
5203 unbind_rdev_from_array(rdev);
5205 if (err)
5206 export_rdev(rdev);
5207 else
5208 sysfs_notify_dirent_safe(rdev->sysfs_state);
5210 md_update_sb(mddev, 1);
5211 if (mddev->degraded)
5212 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5213 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5214 md_wakeup_thread(mddev->thread);
5215 return err;
5218 /* otherwise, add_new_disk is only allowed
5219 * for major_version==0 superblocks
5221 if (mddev->major_version != 0) {
5222 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5223 mdname(mddev));
5224 return -EINVAL;
5227 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5228 int err;
5229 rdev = md_import_device(dev, -1, 0);
5230 if (IS_ERR(rdev)) {
5231 printk(KERN_WARNING
5232 "md: error, md_import_device() returned %ld\n",
5233 PTR_ERR(rdev));
5234 return PTR_ERR(rdev);
5236 rdev->desc_nr = info->number;
5237 if (info->raid_disk < mddev->raid_disks)
5238 rdev->raid_disk = info->raid_disk;
5239 else
5240 rdev->raid_disk = -1;
5242 if (rdev->raid_disk < mddev->raid_disks)
5243 if (info->state & (1<<MD_DISK_SYNC))
5244 set_bit(In_sync, &rdev->flags);
5246 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5247 set_bit(WriteMostly, &rdev->flags);
5249 if (!mddev->persistent) {
5250 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5251 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5252 } else
5253 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5254 rdev->sectors = rdev->sb_start;
5256 err = bind_rdev_to_array(rdev, mddev);
5257 if (err) {
5258 export_rdev(rdev);
5259 return err;
5263 return 0;
5266 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5268 char b[BDEVNAME_SIZE];
5269 mdk_rdev_t *rdev;
5271 rdev = find_rdev(mddev, dev);
5272 if (!rdev)
5273 return -ENXIO;
5275 if (rdev->raid_disk >= 0)
5276 goto busy;
5278 kick_rdev_from_array(rdev);
5279 md_update_sb(mddev, 1);
5280 md_new_event(mddev);
5282 return 0;
5283 busy:
5284 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5285 bdevname(rdev->bdev,b), mdname(mddev));
5286 return -EBUSY;
5289 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5291 char b[BDEVNAME_SIZE];
5292 int err;
5293 mdk_rdev_t *rdev;
5295 if (!mddev->pers)
5296 return -ENODEV;
5298 if (mddev->major_version != 0) {
5299 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5300 " version-0 superblocks.\n",
5301 mdname(mddev));
5302 return -EINVAL;
5304 if (!mddev->pers->hot_add_disk) {
5305 printk(KERN_WARNING
5306 "%s: personality does not support diskops!\n",
5307 mdname(mddev));
5308 return -EINVAL;
5311 rdev = md_import_device(dev, -1, 0);
5312 if (IS_ERR(rdev)) {
5313 printk(KERN_WARNING
5314 "md: error, md_import_device() returned %ld\n",
5315 PTR_ERR(rdev));
5316 return -EINVAL;
5319 if (mddev->persistent)
5320 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5321 else
5322 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5324 rdev->sectors = rdev->sb_start;
5326 if (test_bit(Faulty, &rdev->flags)) {
5327 printk(KERN_WARNING
5328 "md: can not hot-add faulty %s disk to %s!\n",
5329 bdevname(rdev->bdev,b), mdname(mddev));
5330 err = -EINVAL;
5331 goto abort_export;
5333 clear_bit(In_sync, &rdev->flags);
5334 rdev->desc_nr = -1;
5335 rdev->saved_raid_disk = -1;
5336 err = bind_rdev_to_array(rdev, mddev);
5337 if (err)
5338 goto abort_export;
5341 * The rest should better be atomic, we can have disk failures
5342 * noticed in interrupt contexts ...
5345 rdev->raid_disk = -1;
5347 md_update_sb(mddev, 1);
5350 * Kick recovery, maybe this spare has to be added to the
5351 * array immediately.
5353 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5354 md_wakeup_thread(mddev->thread);
5355 md_new_event(mddev);
5356 return 0;
5358 abort_export:
5359 export_rdev(rdev);
5360 return err;
5363 static int set_bitmap_file(mddev_t *mddev, int fd)
5365 int err;
5367 if (mddev->pers) {
5368 if (!mddev->pers->quiesce)
5369 return -EBUSY;
5370 if (mddev->recovery || mddev->sync_thread)
5371 return -EBUSY;
5372 /* we should be able to change the bitmap.. */
5376 if (fd >= 0) {
5377 if (mddev->bitmap)
5378 return -EEXIST; /* cannot add when bitmap is present */
5379 mddev->bitmap_info.file = fget(fd);
5381 if (mddev->bitmap_info.file == NULL) {
5382 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5383 mdname(mddev));
5384 return -EBADF;
5387 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5388 if (err) {
5389 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5390 mdname(mddev));
5391 fput(mddev->bitmap_info.file);
5392 mddev->bitmap_info.file = NULL;
5393 return err;
5395 mddev->bitmap_info.offset = 0; /* file overrides offset */
5396 } else if (mddev->bitmap == NULL)
5397 return -ENOENT; /* cannot remove what isn't there */
5398 err = 0;
5399 if (mddev->pers) {
5400 mddev->pers->quiesce(mddev, 1);
5401 if (fd >= 0) {
5402 err = bitmap_create(mddev);
5403 if (!err)
5404 err = bitmap_load(mddev);
5406 if (fd < 0 || err) {
5407 bitmap_destroy(mddev);
5408 fd = -1; /* make sure to put the file */
5410 mddev->pers->quiesce(mddev, 0);
5412 if (fd < 0) {
5413 if (mddev->bitmap_info.file) {
5414 restore_bitmap_write_access(mddev->bitmap_info.file);
5415 fput(mddev->bitmap_info.file);
5417 mddev->bitmap_info.file = NULL;
5420 return err;
5424 * set_array_info is used two different ways
5425 * The original usage is when creating a new array.
5426 * In this usage, raid_disks is > 0 and it together with
5427 * level, size, not_persistent,layout,chunksize determine the
5428 * shape of the array.
5429 * This will always create an array with a type-0.90.0 superblock.
5430 * The newer usage is when assembling an array.
5431 * In this case raid_disks will be 0, and the major_version field is
5432 * use to determine which style super-blocks are to be found on the devices.
5433 * The minor and patch _version numbers are also kept incase the
5434 * super_block handler wishes to interpret them.
5436 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5439 if (info->raid_disks == 0) {
5440 /* just setting version number for superblock loading */
5441 if (info->major_version < 0 ||
5442 info->major_version >= ARRAY_SIZE(super_types) ||
5443 super_types[info->major_version].name == NULL) {
5444 /* maybe try to auto-load a module? */
5445 printk(KERN_INFO
5446 "md: superblock version %d not known\n",
5447 info->major_version);
5448 return -EINVAL;
5450 mddev->major_version = info->major_version;
5451 mddev->minor_version = info->minor_version;
5452 mddev->patch_version = info->patch_version;
5453 mddev->persistent = !info->not_persistent;
5454 /* ensure mddev_put doesn't delete this now that there
5455 * is some minimal configuration.
5457 mddev->ctime = get_seconds();
5458 return 0;
5460 mddev->major_version = MD_MAJOR_VERSION;
5461 mddev->minor_version = MD_MINOR_VERSION;
5462 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5463 mddev->ctime = get_seconds();
5465 mddev->level = info->level;
5466 mddev->clevel[0] = 0;
5467 mddev->dev_sectors = 2 * (sector_t)info->size;
5468 mddev->raid_disks = info->raid_disks;
5469 /* don't set md_minor, it is determined by which /dev/md* was
5470 * openned
5472 if (info->state & (1<<MD_SB_CLEAN))
5473 mddev->recovery_cp = MaxSector;
5474 else
5475 mddev->recovery_cp = 0;
5476 mddev->persistent = ! info->not_persistent;
5477 mddev->external = 0;
5479 mddev->layout = info->layout;
5480 mddev->chunk_sectors = info->chunk_size >> 9;
5482 mddev->max_disks = MD_SB_DISKS;
5484 if (mddev->persistent)
5485 mddev->flags = 0;
5486 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5488 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5489 mddev->bitmap_info.offset = 0;
5491 mddev->reshape_position = MaxSector;
5494 * Generate a 128 bit UUID
5496 get_random_bytes(mddev->uuid, 16);
5498 mddev->new_level = mddev->level;
5499 mddev->new_chunk_sectors = mddev->chunk_sectors;
5500 mddev->new_layout = mddev->layout;
5501 mddev->delta_disks = 0;
5503 return 0;
5506 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5508 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5510 if (mddev->external_size)
5511 return;
5513 mddev->array_sectors = array_sectors;
5515 EXPORT_SYMBOL(md_set_array_sectors);
5517 static int update_size(mddev_t *mddev, sector_t num_sectors)
5519 mdk_rdev_t *rdev;
5520 int rv;
5521 int fit = (num_sectors == 0);
5523 if (mddev->pers->resize == NULL)
5524 return -EINVAL;
5525 /* The "num_sectors" is the number of sectors of each device that
5526 * is used. This can only make sense for arrays with redundancy.
5527 * linear and raid0 always use whatever space is available. We can only
5528 * consider changing this number if no resync or reconstruction is
5529 * happening, and if the new size is acceptable. It must fit before the
5530 * sb_start or, if that is <data_offset, it must fit before the size
5531 * of each device. If num_sectors is zero, we find the largest size
5532 * that fits.
5535 if (mddev->sync_thread)
5536 return -EBUSY;
5537 if (mddev->bitmap)
5538 /* Sorry, cannot grow a bitmap yet, just remove it,
5539 * grow, and re-add.
5541 return -EBUSY;
5542 list_for_each_entry(rdev, &mddev->disks, same_set) {
5543 sector_t avail = rdev->sectors;
5545 if (fit && (num_sectors == 0 || num_sectors > avail))
5546 num_sectors = avail;
5547 if (avail < num_sectors)
5548 return -ENOSPC;
5550 rv = mddev->pers->resize(mddev, num_sectors);
5551 if (!rv)
5552 revalidate_disk(mddev->gendisk);
5553 return rv;
5556 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5558 int rv;
5559 /* change the number of raid disks */
5560 if (mddev->pers->check_reshape == NULL)
5561 return -EINVAL;
5562 if (raid_disks <= 0 ||
5563 (mddev->max_disks && raid_disks >= mddev->max_disks))
5564 return -EINVAL;
5565 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5566 return -EBUSY;
5567 mddev->delta_disks = raid_disks - mddev->raid_disks;
5569 rv = mddev->pers->check_reshape(mddev);
5570 return rv;
5575 * update_array_info is used to change the configuration of an
5576 * on-line array.
5577 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5578 * fields in the info are checked against the array.
5579 * Any differences that cannot be handled will cause an error.
5580 * Normally, only one change can be managed at a time.
5582 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5584 int rv = 0;
5585 int cnt = 0;
5586 int state = 0;
5588 /* calculate expected state,ignoring low bits */
5589 if (mddev->bitmap && mddev->bitmap_info.offset)
5590 state |= (1 << MD_SB_BITMAP_PRESENT);
5592 if (mddev->major_version != info->major_version ||
5593 mddev->minor_version != info->minor_version ||
5594 /* mddev->patch_version != info->patch_version || */
5595 mddev->ctime != info->ctime ||
5596 mddev->level != info->level ||
5597 /* mddev->layout != info->layout || */
5598 !mddev->persistent != info->not_persistent||
5599 mddev->chunk_sectors != info->chunk_size >> 9 ||
5600 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5601 ((state^info->state) & 0xfffffe00)
5603 return -EINVAL;
5604 /* Check there is only one change */
5605 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5606 cnt++;
5607 if (mddev->raid_disks != info->raid_disks)
5608 cnt++;
5609 if (mddev->layout != info->layout)
5610 cnt++;
5611 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5612 cnt++;
5613 if (cnt == 0)
5614 return 0;
5615 if (cnt > 1)
5616 return -EINVAL;
5618 if (mddev->layout != info->layout) {
5619 /* Change layout
5620 * we don't need to do anything at the md level, the
5621 * personality will take care of it all.
5623 if (mddev->pers->check_reshape == NULL)
5624 return -EINVAL;
5625 else {
5626 mddev->new_layout = info->layout;
5627 rv = mddev->pers->check_reshape(mddev);
5628 if (rv)
5629 mddev->new_layout = mddev->layout;
5630 return rv;
5633 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5634 rv = update_size(mddev, (sector_t)info->size * 2);
5636 if (mddev->raid_disks != info->raid_disks)
5637 rv = update_raid_disks(mddev, info->raid_disks);
5639 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5640 if (mddev->pers->quiesce == NULL)
5641 return -EINVAL;
5642 if (mddev->recovery || mddev->sync_thread)
5643 return -EBUSY;
5644 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5645 /* add the bitmap */
5646 if (mddev->bitmap)
5647 return -EEXIST;
5648 if (mddev->bitmap_info.default_offset == 0)
5649 return -EINVAL;
5650 mddev->bitmap_info.offset =
5651 mddev->bitmap_info.default_offset;
5652 mddev->pers->quiesce(mddev, 1);
5653 rv = bitmap_create(mddev);
5654 if (!rv)
5655 rv = bitmap_load(mddev);
5656 if (rv)
5657 bitmap_destroy(mddev);
5658 mddev->pers->quiesce(mddev, 0);
5659 } else {
5660 /* remove the bitmap */
5661 if (!mddev->bitmap)
5662 return -ENOENT;
5663 if (mddev->bitmap->file)
5664 return -EINVAL;
5665 mddev->pers->quiesce(mddev, 1);
5666 bitmap_destroy(mddev);
5667 mddev->pers->quiesce(mddev, 0);
5668 mddev->bitmap_info.offset = 0;
5671 md_update_sb(mddev, 1);
5672 return rv;
5675 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5677 mdk_rdev_t *rdev;
5679 if (mddev->pers == NULL)
5680 return -ENODEV;
5682 rdev = find_rdev(mddev, dev);
5683 if (!rdev)
5684 return -ENODEV;
5686 md_error(mddev, rdev);
5687 return 0;
5691 * We have a problem here : there is no easy way to give a CHS
5692 * virtual geometry. We currently pretend that we have a 2 heads
5693 * 4 sectors (with a BIG number of cylinders...). This drives
5694 * dosfs just mad... ;-)
5696 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5698 mddev_t *mddev = bdev->bd_disk->private_data;
5700 geo->heads = 2;
5701 geo->sectors = 4;
5702 geo->cylinders = mddev->array_sectors / 8;
5703 return 0;
5706 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5707 unsigned int cmd, unsigned long arg)
5709 int err = 0;
5710 void __user *argp = (void __user *)arg;
5711 mddev_t *mddev = NULL;
5712 int ro;
5714 if (!capable(CAP_SYS_ADMIN))
5715 return -EACCES;
5718 * Commands dealing with the RAID driver but not any
5719 * particular array:
5721 switch (cmd)
5723 case RAID_VERSION:
5724 err = get_version(argp);
5725 goto done;
5727 case PRINT_RAID_DEBUG:
5728 err = 0;
5729 md_print_devices();
5730 goto done;
5732 #ifndef MODULE
5733 case RAID_AUTORUN:
5734 err = 0;
5735 autostart_arrays(arg);
5736 goto done;
5737 #endif
5738 default:;
5742 * Commands creating/starting a new array:
5745 mddev = bdev->bd_disk->private_data;
5747 if (!mddev) {
5748 BUG();
5749 goto abort;
5752 err = mddev_lock(mddev);
5753 if (err) {
5754 printk(KERN_INFO
5755 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5756 err, cmd);
5757 goto abort;
5760 switch (cmd)
5762 case SET_ARRAY_INFO:
5764 mdu_array_info_t info;
5765 if (!arg)
5766 memset(&info, 0, sizeof(info));
5767 else if (copy_from_user(&info, argp, sizeof(info))) {
5768 err = -EFAULT;
5769 goto abort_unlock;
5771 if (mddev->pers) {
5772 err = update_array_info(mddev, &info);
5773 if (err) {
5774 printk(KERN_WARNING "md: couldn't update"
5775 " array info. %d\n", err);
5776 goto abort_unlock;
5778 goto done_unlock;
5780 if (!list_empty(&mddev->disks)) {
5781 printk(KERN_WARNING
5782 "md: array %s already has disks!\n",
5783 mdname(mddev));
5784 err = -EBUSY;
5785 goto abort_unlock;
5787 if (mddev->raid_disks) {
5788 printk(KERN_WARNING
5789 "md: array %s already initialised!\n",
5790 mdname(mddev));
5791 err = -EBUSY;
5792 goto abort_unlock;
5794 err = set_array_info(mddev, &info);
5795 if (err) {
5796 printk(KERN_WARNING "md: couldn't set"
5797 " array info. %d\n", err);
5798 goto abort_unlock;
5801 goto done_unlock;
5803 default:;
5807 * Commands querying/configuring an existing array:
5809 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5810 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5811 if ((!mddev->raid_disks && !mddev->external)
5812 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5813 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5814 && cmd != GET_BITMAP_FILE) {
5815 err = -ENODEV;
5816 goto abort_unlock;
5820 * Commands even a read-only array can execute:
5822 switch (cmd)
5824 case GET_ARRAY_INFO:
5825 err = get_array_info(mddev, argp);
5826 goto done_unlock;
5828 case GET_BITMAP_FILE:
5829 err = get_bitmap_file(mddev, argp);
5830 goto done_unlock;
5832 case GET_DISK_INFO:
5833 err = get_disk_info(mddev, argp);
5834 goto done_unlock;
5836 case RESTART_ARRAY_RW:
5837 err = restart_array(mddev);
5838 goto done_unlock;
5840 case STOP_ARRAY:
5841 err = do_md_stop(mddev, 0, 1);
5842 goto done_unlock;
5844 case STOP_ARRAY_RO:
5845 err = md_set_readonly(mddev, 1);
5846 goto done_unlock;
5848 case BLKROSET:
5849 if (get_user(ro, (int __user *)(arg))) {
5850 err = -EFAULT;
5851 goto done_unlock;
5853 err = -EINVAL;
5855 /* if the bdev is going readonly the value of mddev->ro
5856 * does not matter, no writes are coming
5858 if (ro)
5859 goto done_unlock;
5861 /* are we are already prepared for writes? */
5862 if (mddev->ro != 1)
5863 goto done_unlock;
5865 /* transitioning to readauto need only happen for
5866 * arrays that call md_write_start
5868 if (mddev->pers) {
5869 err = restart_array(mddev);
5870 if (err == 0) {
5871 mddev->ro = 2;
5872 set_disk_ro(mddev->gendisk, 0);
5875 goto done_unlock;
5879 * The remaining ioctls are changing the state of the
5880 * superblock, so we do not allow them on read-only arrays.
5881 * However non-MD ioctls (e.g. get-size) will still come through
5882 * here and hit the 'default' below, so only disallow
5883 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5885 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5886 if (mddev->ro == 2) {
5887 mddev->ro = 0;
5888 sysfs_notify_dirent_safe(mddev->sysfs_state);
5889 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5890 md_wakeup_thread(mddev->thread);
5891 } else {
5892 err = -EROFS;
5893 goto abort_unlock;
5897 switch (cmd)
5899 case ADD_NEW_DISK:
5901 mdu_disk_info_t info;
5902 if (copy_from_user(&info, argp, sizeof(info)))
5903 err = -EFAULT;
5904 else
5905 err = add_new_disk(mddev, &info);
5906 goto done_unlock;
5909 case HOT_REMOVE_DISK:
5910 err = hot_remove_disk(mddev, new_decode_dev(arg));
5911 goto done_unlock;
5913 case HOT_ADD_DISK:
5914 err = hot_add_disk(mddev, new_decode_dev(arg));
5915 goto done_unlock;
5917 case SET_DISK_FAULTY:
5918 err = set_disk_faulty(mddev, new_decode_dev(arg));
5919 goto done_unlock;
5921 case RUN_ARRAY:
5922 err = do_md_run(mddev);
5923 goto done_unlock;
5925 case SET_BITMAP_FILE:
5926 err = set_bitmap_file(mddev, (int)arg);
5927 goto done_unlock;
5929 default:
5930 err = -EINVAL;
5931 goto abort_unlock;
5934 done_unlock:
5935 abort_unlock:
5936 if (mddev->hold_active == UNTIL_IOCTL &&
5937 err != -EINVAL)
5938 mddev->hold_active = 0;
5939 mddev_unlock(mddev);
5941 return err;
5942 done:
5943 if (err)
5944 MD_BUG();
5945 abort:
5946 return err;
5948 #ifdef CONFIG_COMPAT
5949 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5950 unsigned int cmd, unsigned long arg)
5952 switch (cmd) {
5953 case HOT_REMOVE_DISK:
5954 case HOT_ADD_DISK:
5955 case SET_DISK_FAULTY:
5956 case SET_BITMAP_FILE:
5957 /* These take in integer arg, do not convert */
5958 break;
5959 default:
5960 arg = (unsigned long)compat_ptr(arg);
5961 break;
5964 return md_ioctl(bdev, mode, cmd, arg);
5966 #endif /* CONFIG_COMPAT */
5968 static int md_open(struct block_device *bdev, fmode_t mode)
5971 * Succeed if we can lock the mddev, which confirms that
5972 * it isn't being stopped right now.
5974 mddev_t *mddev = mddev_find(bdev->bd_dev);
5975 int err;
5977 if (mddev->gendisk != bdev->bd_disk) {
5978 /* we are racing with mddev_put which is discarding this
5979 * bd_disk.
5981 mddev_put(mddev);
5982 /* Wait until bdev->bd_disk is definitely gone */
5983 flush_workqueue(md_misc_wq);
5984 /* Then retry the open from the top */
5985 return -ERESTARTSYS;
5987 BUG_ON(mddev != bdev->bd_disk->private_data);
5989 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5990 goto out;
5992 err = 0;
5993 atomic_inc(&mddev->openers);
5994 mutex_unlock(&mddev->open_mutex);
5996 check_disk_size_change(mddev->gendisk, bdev);
5997 out:
5998 return err;
6001 static int md_release(struct gendisk *disk, fmode_t mode)
6003 mddev_t *mddev = disk->private_data;
6005 BUG_ON(!mddev);
6006 atomic_dec(&mddev->openers);
6007 mddev_put(mddev);
6009 return 0;
6011 static const struct block_device_operations md_fops =
6013 .owner = THIS_MODULE,
6014 .open = md_open,
6015 .release = md_release,
6016 .ioctl = md_ioctl,
6017 #ifdef CONFIG_COMPAT
6018 .compat_ioctl = md_compat_ioctl,
6019 #endif
6020 .getgeo = md_getgeo,
6023 static int md_thread(void * arg)
6025 mdk_thread_t *thread = arg;
6028 * md_thread is a 'system-thread', it's priority should be very
6029 * high. We avoid resource deadlocks individually in each
6030 * raid personality. (RAID5 does preallocation) We also use RR and
6031 * the very same RT priority as kswapd, thus we will never get
6032 * into a priority inversion deadlock.
6034 * we definitely have to have equal or higher priority than
6035 * bdflush, otherwise bdflush will deadlock if there are too
6036 * many dirty RAID5 blocks.
6039 allow_signal(SIGKILL);
6040 while (!kthread_should_stop()) {
6042 /* We need to wait INTERRUPTIBLE so that
6043 * we don't add to the load-average.
6044 * That means we need to be sure no signals are
6045 * pending
6047 if (signal_pending(current))
6048 flush_signals(current);
6050 wait_event_interruptible_timeout
6051 (thread->wqueue,
6052 test_bit(THREAD_WAKEUP, &thread->flags)
6053 || kthread_should_stop(),
6054 thread->timeout);
6056 clear_bit(THREAD_WAKEUP, &thread->flags);
6057 if (!kthread_should_stop())
6058 thread->run(thread->mddev);
6061 return 0;
6064 void md_wakeup_thread(mdk_thread_t *thread)
6066 if (thread) {
6067 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6068 set_bit(THREAD_WAKEUP, &thread->flags);
6069 wake_up(&thread->wqueue);
6073 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6074 const char *name)
6076 mdk_thread_t *thread;
6078 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6079 if (!thread)
6080 return NULL;
6082 init_waitqueue_head(&thread->wqueue);
6084 thread->run = run;
6085 thread->mddev = mddev;
6086 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6087 thread->tsk = kthread_run(md_thread, thread,
6088 "%s_%s",
6089 mdname(thread->mddev),
6090 name ?: mddev->pers->name);
6091 if (IS_ERR(thread->tsk)) {
6092 kfree(thread);
6093 return NULL;
6095 return thread;
6098 void md_unregister_thread(mdk_thread_t *thread)
6100 if (!thread)
6101 return;
6102 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6104 kthread_stop(thread->tsk);
6105 kfree(thread);
6108 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6110 if (!mddev) {
6111 MD_BUG();
6112 return;
6115 if (!rdev || test_bit(Faulty, &rdev->flags))
6116 return;
6118 if (mddev->external)
6119 set_bit(Blocked, &rdev->flags);
6121 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6122 mdname(mddev),
6123 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6124 __builtin_return_address(0),__builtin_return_address(1),
6125 __builtin_return_address(2),__builtin_return_address(3));
6127 if (!mddev->pers)
6128 return;
6129 if (!mddev->pers->error_handler)
6130 return;
6131 mddev->pers->error_handler(mddev,rdev);
6132 if (mddev->degraded)
6133 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6134 sysfs_notify_dirent_safe(rdev->sysfs_state);
6135 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6137 md_wakeup_thread(mddev->thread);
6138 if (mddev->event_work.func)
6139 queue_work(md_misc_wq, &mddev->event_work);
6140 md_new_event_inintr(mddev);
6143 /* seq_file implementation /proc/mdstat */
6145 static void status_unused(struct seq_file *seq)
6147 int i = 0;
6148 mdk_rdev_t *rdev;
6150 seq_printf(seq, "unused devices: ");
6152 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6153 char b[BDEVNAME_SIZE];
6154 i++;
6155 seq_printf(seq, "%s ",
6156 bdevname(rdev->bdev,b));
6158 if (!i)
6159 seq_printf(seq, "<none>");
6161 seq_printf(seq, "\n");
6165 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6167 sector_t max_sectors, resync, res;
6168 unsigned long dt, db;
6169 sector_t rt;
6170 int scale;
6171 unsigned int per_milli;
6173 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6175 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6176 max_sectors = mddev->resync_max_sectors;
6177 else
6178 max_sectors = mddev->dev_sectors;
6181 * Should not happen.
6183 if (!max_sectors) {
6184 MD_BUG();
6185 return;
6187 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6188 * in a sector_t, and (max_sectors>>scale) will fit in a
6189 * u32, as those are the requirements for sector_div.
6190 * Thus 'scale' must be at least 10
6192 scale = 10;
6193 if (sizeof(sector_t) > sizeof(unsigned long)) {
6194 while ( max_sectors/2 > (1ULL<<(scale+32)))
6195 scale++;
6197 res = (resync>>scale)*1000;
6198 sector_div(res, (u32)((max_sectors>>scale)+1));
6200 per_milli = res;
6202 int i, x = per_milli/50, y = 20-x;
6203 seq_printf(seq, "[");
6204 for (i = 0; i < x; i++)
6205 seq_printf(seq, "=");
6206 seq_printf(seq, ">");
6207 for (i = 0; i < y; i++)
6208 seq_printf(seq, ".");
6209 seq_printf(seq, "] ");
6211 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6212 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6213 "reshape" :
6214 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6215 "check" :
6216 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6217 "resync" : "recovery"))),
6218 per_milli/10, per_milli % 10,
6219 (unsigned long long) resync/2,
6220 (unsigned long long) max_sectors/2);
6223 * dt: time from mark until now
6224 * db: blocks written from mark until now
6225 * rt: remaining time
6227 * rt is a sector_t, so could be 32bit or 64bit.
6228 * So we divide before multiply in case it is 32bit and close
6229 * to the limit.
6230 * We scale the divisor (db) by 32 to avoid loosing precision
6231 * near the end of resync when the number of remaining sectors
6232 * is close to 'db'.
6233 * We then divide rt by 32 after multiplying by db to compensate.
6234 * The '+1' avoids division by zero if db is very small.
6236 dt = ((jiffies - mddev->resync_mark) / HZ);
6237 if (!dt) dt++;
6238 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6239 - mddev->resync_mark_cnt;
6241 rt = max_sectors - resync; /* number of remaining sectors */
6242 sector_div(rt, db/32+1);
6243 rt *= dt;
6244 rt >>= 5;
6246 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6247 ((unsigned long)rt % 60)/6);
6249 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6252 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6254 struct list_head *tmp;
6255 loff_t l = *pos;
6256 mddev_t *mddev;
6258 if (l >= 0x10000)
6259 return NULL;
6260 if (!l--)
6261 /* header */
6262 return (void*)1;
6264 spin_lock(&all_mddevs_lock);
6265 list_for_each(tmp,&all_mddevs)
6266 if (!l--) {
6267 mddev = list_entry(tmp, mddev_t, all_mddevs);
6268 mddev_get(mddev);
6269 spin_unlock(&all_mddevs_lock);
6270 return mddev;
6272 spin_unlock(&all_mddevs_lock);
6273 if (!l--)
6274 return (void*)2;/* tail */
6275 return NULL;
6278 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6280 struct list_head *tmp;
6281 mddev_t *next_mddev, *mddev = v;
6283 ++*pos;
6284 if (v == (void*)2)
6285 return NULL;
6287 spin_lock(&all_mddevs_lock);
6288 if (v == (void*)1)
6289 tmp = all_mddevs.next;
6290 else
6291 tmp = mddev->all_mddevs.next;
6292 if (tmp != &all_mddevs)
6293 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6294 else {
6295 next_mddev = (void*)2;
6296 *pos = 0x10000;
6298 spin_unlock(&all_mddevs_lock);
6300 if (v != (void*)1)
6301 mddev_put(mddev);
6302 return next_mddev;
6306 static void md_seq_stop(struct seq_file *seq, void *v)
6308 mddev_t *mddev = v;
6310 if (mddev && v != (void*)1 && v != (void*)2)
6311 mddev_put(mddev);
6314 struct mdstat_info {
6315 int event;
6318 static int md_seq_show(struct seq_file *seq, void *v)
6320 mddev_t *mddev = v;
6321 sector_t sectors;
6322 mdk_rdev_t *rdev;
6323 struct mdstat_info *mi = seq->private;
6324 struct bitmap *bitmap;
6326 if (v == (void*)1) {
6327 struct mdk_personality *pers;
6328 seq_printf(seq, "Personalities : ");
6329 spin_lock(&pers_lock);
6330 list_for_each_entry(pers, &pers_list, list)
6331 seq_printf(seq, "[%s] ", pers->name);
6333 spin_unlock(&pers_lock);
6334 seq_printf(seq, "\n");
6335 mi->event = atomic_read(&md_event_count);
6336 return 0;
6338 if (v == (void*)2) {
6339 status_unused(seq);
6340 return 0;
6343 if (mddev_lock(mddev) < 0)
6344 return -EINTR;
6346 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6347 seq_printf(seq, "%s : %sactive", mdname(mddev),
6348 mddev->pers ? "" : "in");
6349 if (mddev->pers) {
6350 if (mddev->ro==1)
6351 seq_printf(seq, " (read-only)");
6352 if (mddev->ro==2)
6353 seq_printf(seq, " (auto-read-only)");
6354 seq_printf(seq, " %s", mddev->pers->name);
6357 sectors = 0;
6358 list_for_each_entry(rdev, &mddev->disks, same_set) {
6359 char b[BDEVNAME_SIZE];
6360 seq_printf(seq, " %s[%d]",
6361 bdevname(rdev->bdev,b), rdev->desc_nr);
6362 if (test_bit(WriteMostly, &rdev->flags))
6363 seq_printf(seq, "(W)");
6364 if (test_bit(Faulty, &rdev->flags)) {
6365 seq_printf(seq, "(F)");
6366 continue;
6367 } else if (rdev->raid_disk < 0)
6368 seq_printf(seq, "(S)"); /* spare */
6369 sectors += rdev->sectors;
6372 if (!list_empty(&mddev->disks)) {
6373 if (mddev->pers)
6374 seq_printf(seq, "\n %llu blocks",
6375 (unsigned long long)
6376 mddev->array_sectors / 2);
6377 else
6378 seq_printf(seq, "\n %llu blocks",
6379 (unsigned long long)sectors / 2);
6381 if (mddev->persistent) {
6382 if (mddev->major_version != 0 ||
6383 mddev->minor_version != 90) {
6384 seq_printf(seq," super %d.%d",
6385 mddev->major_version,
6386 mddev->minor_version);
6388 } else if (mddev->external)
6389 seq_printf(seq, " super external:%s",
6390 mddev->metadata_type);
6391 else
6392 seq_printf(seq, " super non-persistent");
6394 if (mddev->pers) {
6395 mddev->pers->status(seq, mddev);
6396 seq_printf(seq, "\n ");
6397 if (mddev->pers->sync_request) {
6398 if (mddev->curr_resync > 2) {
6399 status_resync(seq, mddev);
6400 seq_printf(seq, "\n ");
6401 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6402 seq_printf(seq, "\tresync=DELAYED\n ");
6403 else if (mddev->recovery_cp < MaxSector)
6404 seq_printf(seq, "\tresync=PENDING\n ");
6406 } else
6407 seq_printf(seq, "\n ");
6409 if ((bitmap = mddev->bitmap)) {
6410 unsigned long chunk_kb;
6411 unsigned long flags;
6412 spin_lock_irqsave(&bitmap->lock, flags);
6413 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6414 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6415 "%lu%s chunk",
6416 bitmap->pages - bitmap->missing_pages,
6417 bitmap->pages,
6418 (bitmap->pages - bitmap->missing_pages)
6419 << (PAGE_SHIFT - 10),
6420 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6421 chunk_kb ? "KB" : "B");
6422 if (bitmap->file) {
6423 seq_printf(seq, ", file: ");
6424 seq_path(seq, &bitmap->file->f_path, " \t\n");
6427 seq_printf(seq, "\n");
6428 spin_unlock_irqrestore(&bitmap->lock, flags);
6431 seq_printf(seq, "\n");
6433 mddev_unlock(mddev);
6435 return 0;
6438 static const struct seq_operations md_seq_ops = {
6439 .start = md_seq_start,
6440 .next = md_seq_next,
6441 .stop = md_seq_stop,
6442 .show = md_seq_show,
6445 static int md_seq_open(struct inode *inode, struct file *file)
6447 int error;
6448 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6449 if (mi == NULL)
6450 return -ENOMEM;
6452 error = seq_open(file, &md_seq_ops);
6453 if (error)
6454 kfree(mi);
6455 else {
6456 struct seq_file *p = file->private_data;
6457 p->private = mi;
6458 mi->event = atomic_read(&md_event_count);
6460 return error;
6463 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6465 struct seq_file *m = filp->private_data;
6466 struct mdstat_info *mi = m->private;
6467 int mask;
6469 poll_wait(filp, &md_event_waiters, wait);
6471 /* always allow read */
6472 mask = POLLIN | POLLRDNORM;
6474 if (mi->event != atomic_read(&md_event_count))
6475 mask |= POLLERR | POLLPRI;
6476 return mask;
6479 static const struct file_operations md_seq_fops = {
6480 .owner = THIS_MODULE,
6481 .open = md_seq_open,
6482 .read = seq_read,
6483 .llseek = seq_lseek,
6484 .release = seq_release_private,
6485 .poll = mdstat_poll,
6488 int register_md_personality(struct mdk_personality *p)
6490 spin_lock(&pers_lock);
6491 list_add_tail(&p->list, &pers_list);
6492 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6493 spin_unlock(&pers_lock);
6494 return 0;
6497 int unregister_md_personality(struct mdk_personality *p)
6499 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6500 spin_lock(&pers_lock);
6501 list_del_init(&p->list);
6502 spin_unlock(&pers_lock);
6503 return 0;
6506 static int is_mddev_idle(mddev_t *mddev, int init)
6508 mdk_rdev_t * rdev;
6509 int idle;
6510 int curr_events;
6512 idle = 1;
6513 rcu_read_lock();
6514 rdev_for_each_rcu(rdev, mddev) {
6515 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6516 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6517 (int)part_stat_read(&disk->part0, sectors[1]) -
6518 atomic_read(&disk->sync_io);
6519 /* sync IO will cause sync_io to increase before the disk_stats
6520 * as sync_io is counted when a request starts, and
6521 * disk_stats is counted when it completes.
6522 * So resync activity will cause curr_events to be smaller than
6523 * when there was no such activity.
6524 * non-sync IO will cause disk_stat to increase without
6525 * increasing sync_io so curr_events will (eventually)
6526 * be larger than it was before. Once it becomes
6527 * substantially larger, the test below will cause
6528 * the array to appear non-idle, and resync will slow
6529 * down.
6530 * If there is a lot of outstanding resync activity when
6531 * we set last_event to curr_events, then all that activity
6532 * completing might cause the array to appear non-idle
6533 * and resync will be slowed down even though there might
6534 * not have been non-resync activity. This will only
6535 * happen once though. 'last_events' will soon reflect
6536 * the state where there is little or no outstanding
6537 * resync requests, and further resync activity will
6538 * always make curr_events less than last_events.
6541 if (init || curr_events - rdev->last_events > 64) {
6542 rdev->last_events = curr_events;
6543 idle = 0;
6546 rcu_read_unlock();
6547 return idle;
6550 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6552 /* another "blocks" (512byte) blocks have been synced */
6553 atomic_sub(blocks, &mddev->recovery_active);
6554 wake_up(&mddev->recovery_wait);
6555 if (!ok) {
6556 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6557 md_wakeup_thread(mddev->thread);
6558 // stop recovery, signal do_sync ....
6563 /* md_write_start(mddev, bi)
6564 * If we need to update some array metadata (e.g. 'active' flag
6565 * in superblock) before writing, schedule a superblock update
6566 * and wait for it to complete.
6568 void md_write_start(mddev_t *mddev, struct bio *bi)
6570 int did_change = 0;
6571 if (bio_data_dir(bi) != WRITE)
6572 return;
6574 BUG_ON(mddev->ro == 1);
6575 if (mddev->ro == 2) {
6576 /* need to switch to read/write */
6577 mddev->ro = 0;
6578 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6579 md_wakeup_thread(mddev->thread);
6580 md_wakeup_thread(mddev->sync_thread);
6581 did_change = 1;
6583 atomic_inc(&mddev->writes_pending);
6584 if (mddev->safemode == 1)
6585 mddev->safemode = 0;
6586 if (mddev->in_sync) {
6587 spin_lock_irq(&mddev->write_lock);
6588 if (mddev->in_sync) {
6589 mddev->in_sync = 0;
6590 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6591 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6592 md_wakeup_thread(mddev->thread);
6593 did_change = 1;
6595 spin_unlock_irq(&mddev->write_lock);
6597 if (did_change)
6598 sysfs_notify_dirent_safe(mddev->sysfs_state);
6599 wait_event(mddev->sb_wait,
6600 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6603 void md_write_end(mddev_t *mddev)
6605 if (atomic_dec_and_test(&mddev->writes_pending)) {
6606 if (mddev->safemode == 2)
6607 md_wakeup_thread(mddev->thread);
6608 else if (mddev->safemode_delay)
6609 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6613 /* md_allow_write(mddev)
6614 * Calling this ensures that the array is marked 'active' so that writes
6615 * may proceed without blocking. It is important to call this before
6616 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6617 * Must be called with mddev_lock held.
6619 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6620 * is dropped, so return -EAGAIN after notifying userspace.
6622 int md_allow_write(mddev_t *mddev)
6624 if (!mddev->pers)
6625 return 0;
6626 if (mddev->ro)
6627 return 0;
6628 if (!mddev->pers->sync_request)
6629 return 0;
6631 spin_lock_irq(&mddev->write_lock);
6632 if (mddev->in_sync) {
6633 mddev->in_sync = 0;
6634 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6635 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6636 if (mddev->safemode_delay &&
6637 mddev->safemode == 0)
6638 mddev->safemode = 1;
6639 spin_unlock_irq(&mddev->write_lock);
6640 md_update_sb(mddev, 0);
6641 sysfs_notify_dirent_safe(mddev->sysfs_state);
6642 } else
6643 spin_unlock_irq(&mddev->write_lock);
6645 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6646 return -EAGAIN;
6647 else
6648 return 0;
6650 EXPORT_SYMBOL_GPL(md_allow_write);
6652 void md_unplug(mddev_t *mddev)
6654 if (mddev->queue)
6655 blk_unplug(mddev->queue);
6656 if (mddev->plug)
6657 mddev->plug->unplug_fn(mddev->plug);
6660 #define SYNC_MARKS 10
6661 #define SYNC_MARK_STEP (3*HZ)
6662 void md_do_sync(mddev_t *mddev)
6664 mddev_t *mddev2;
6665 unsigned int currspeed = 0,
6666 window;
6667 sector_t max_sectors,j, io_sectors;
6668 unsigned long mark[SYNC_MARKS];
6669 sector_t mark_cnt[SYNC_MARKS];
6670 int last_mark,m;
6671 struct list_head *tmp;
6672 sector_t last_check;
6673 int skipped = 0;
6674 mdk_rdev_t *rdev;
6675 char *desc;
6677 /* just incase thread restarts... */
6678 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6679 return;
6680 if (mddev->ro) /* never try to sync a read-only array */
6681 return;
6683 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6684 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6685 desc = "data-check";
6686 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6687 desc = "requested-resync";
6688 else
6689 desc = "resync";
6690 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6691 desc = "reshape";
6692 else
6693 desc = "recovery";
6695 /* we overload curr_resync somewhat here.
6696 * 0 == not engaged in resync at all
6697 * 2 == checking that there is no conflict with another sync
6698 * 1 == like 2, but have yielded to allow conflicting resync to
6699 * commense
6700 * other == active in resync - this many blocks
6702 * Before starting a resync we must have set curr_resync to
6703 * 2, and then checked that every "conflicting" array has curr_resync
6704 * less than ours. When we find one that is the same or higher
6705 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6706 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6707 * This will mean we have to start checking from the beginning again.
6711 do {
6712 mddev->curr_resync = 2;
6714 try_again:
6715 if (kthread_should_stop())
6716 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6718 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6719 goto skip;
6720 for_each_mddev(mddev2, tmp) {
6721 if (mddev2 == mddev)
6722 continue;
6723 if (!mddev->parallel_resync
6724 && mddev2->curr_resync
6725 && match_mddev_units(mddev, mddev2)) {
6726 DEFINE_WAIT(wq);
6727 if (mddev < mddev2 && mddev->curr_resync == 2) {
6728 /* arbitrarily yield */
6729 mddev->curr_resync = 1;
6730 wake_up(&resync_wait);
6732 if (mddev > mddev2 && mddev->curr_resync == 1)
6733 /* no need to wait here, we can wait the next
6734 * time 'round when curr_resync == 2
6736 continue;
6737 /* We need to wait 'interruptible' so as not to
6738 * contribute to the load average, and not to
6739 * be caught by 'softlockup'
6741 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6742 if (!kthread_should_stop() &&
6743 mddev2->curr_resync >= mddev->curr_resync) {
6744 printk(KERN_INFO "md: delaying %s of %s"
6745 " until %s has finished (they"
6746 " share one or more physical units)\n",
6747 desc, mdname(mddev), mdname(mddev2));
6748 mddev_put(mddev2);
6749 if (signal_pending(current))
6750 flush_signals(current);
6751 schedule();
6752 finish_wait(&resync_wait, &wq);
6753 goto try_again;
6755 finish_wait(&resync_wait, &wq);
6758 } while (mddev->curr_resync < 2);
6760 j = 0;
6761 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6762 /* resync follows the size requested by the personality,
6763 * which defaults to physical size, but can be virtual size
6765 max_sectors = mddev->resync_max_sectors;
6766 mddev->resync_mismatches = 0;
6767 /* we don't use the checkpoint if there's a bitmap */
6768 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6769 j = mddev->resync_min;
6770 else if (!mddev->bitmap)
6771 j = mddev->recovery_cp;
6773 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6774 max_sectors = mddev->dev_sectors;
6775 else {
6776 /* recovery follows the physical size of devices */
6777 max_sectors = mddev->dev_sectors;
6778 j = MaxSector;
6779 rcu_read_lock();
6780 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6781 if (rdev->raid_disk >= 0 &&
6782 !test_bit(Faulty, &rdev->flags) &&
6783 !test_bit(In_sync, &rdev->flags) &&
6784 rdev->recovery_offset < j)
6785 j = rdev->recovery_offset;
6786 rcu_read_unlock();
6789 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6790 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6791 " %d KB/sec/disk.\n", speed_min(mddev));
6792 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6793 "(but not more than %d KB/sec) for %s.\n",
6794 speed_max(mddev), desc);
6796 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6798 io_sectors = 0;
6799 for (m = 0; m < SYNC_MARKS; m++) {
6800 mark[m] = jiffies;
6801 mark_cnt[m] = io_sectors;
6803 last_mark = 0;
6804 mddev->resync_mark = mark[last_mark];
6805 mddev->resync_mark_cnt = mark_cnt[last_mark];
6808 * Tune reconstruction:
6810 window = 32*(PAGE_SIZE/512);
6811 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6812 window/2,(unsigned long long) max_sectors/2);
6814 atomic_set(&mddev->recovery_active, 0);
6815 last_check = 0;
6817 if (j>2) {
6818 printk(KERN_INFO
6819 "md: resuming %s of %s from checkpoint.\n",
6820 desc, mdname(mddev));
6821 mddev->curr_resync = j;
6823 mddev->curr_resync_completed = mddev->curr_resync;
6825 while (j < max_sectors) {
6826 sector_t sectors;
6828 skipped = 0;
6830 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6831 ((mddev->curr_resync > mddev->curr_resync_completed &&
6832 (mddev->curr_resync - mddev->curr_resync_completed)
6833 > (max_sectors >> 4)) ||
6834 (j - mddev->curr_resync_completed)*2
6835 >= mddev->resync_max - mddev->curr_resync_completed
6836 )) {
6837 /* time to update curr_resync_completed */
6838 md_unplug(mddev);
6839 wait_event(mddev->recovery_wait,
6840 atomic_read(&mddev->recovery_active) == 0);
6841 mddev->curr_resync_completed =
6842 mddev->curr_resync;
6843 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6844 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6847 while (j >= mddev->resync_max && !kthread_should_stop()) {
6848 /* As this condition is controlled by user-space,
6849 * we can block indefinitely, so use '_interruptible'
6850 * to avoid triggering warnings.
6852 flush_signals(current); /* just in case */
6853 wait_event_interruptible(mddev->recovery_wait,
6854 mddev->resync_max > j
6855 || kthread_should_stop());
6858 if (kthread_should_stop())
6859 goto interrupted;
6861 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6862 currspeed < speed_min(mddev));
6863 if (sectors == 0) {
6864 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6865 goto out;
6868 if (!skipped) { /* actual IO requested */
6869 io_sectors += sectors;
6870 atomic_add(sectors, &mddev->recovery_active);
6873 j += sectors;
6874 if (j>1) mddev->curr_resync = j;
6875 mddev->curr_mark_cnt = io_sectors;
6876 if (last_check == 0)
6877 /* this is the earliers that rebuilt will be
6878 * visible in /proc/mdstat
6880 md_new_event(mddev);
6882 if (last_check + window > io_sectors || j == max_sectors)
6883 continue;
6885 last_check = io_sectors;
6887 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6888 break;
6890 repeat:
6891 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6892 /* step marks */
6893 int next = (last_mark+1) % SYNC_MARKS;
6895 mddev->resync_mark = mark[next];
6896 mddev->resync_mark_cnt = mark_cnt[next];
6897 mark[next] = jiffies;
6898 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6899 last_mark = next;
6903 if (kthread_should_stop())
6904 goto interrupted;
6908 * this loop exits only if either when we are slower than
6909 * the 'hard' speed limit, or the system was IO-idle for
6910 * a jiffy.
6911 * the system might be non-idle CPU-wise, but we only care
6912 * about not overloading the IO subsystem. (things like an
6913 * e2fsck being done on the RAID array should execute fast)
6915 md_unplug(mddev);
6916 cond_resched();
6918 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6919 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6921 if (currspeed > speed_min(mddev)) {
6922 if ((currspeed > speed_max(mddev)) ||
6923 !is_mddev_idle(mddev, 0)) {
6924 msleep(500);
6925 goto repeat;
6929 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6931 * this also signals 'finished resyncing' to md_stop
6933 out:
6934 md_unplug(mddev);
6936 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6938 /* tell personality that we are finished */
6939 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6941 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6942 mddev->curr_resync > 2) {
6943 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6944 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6945 if (mddev->curr_resync >= mddev->recovery_cp) {
6946 printk(KERN_INFO
6947 "md: checkpointing %s of %s.\n",
6948 desc, mdname(mddev));
6949 mddev->recovery_cp = mddev->curr_resync;
6951 } else
6952 mddev->recovery_cp = MaxSector;
6953 } else {
6954 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6955 mddev->curr_resync = MaxSector;
6956 rcu_read_lock();
6957 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6958 if (rdev->raid_disk >= 0 &&
6959 mddev->delta_disks >= 0 &&
6960 !test_bit(Faulty, &rdev->flags) &&
6961 !test_bit(In_sync, &rdev->flags) &&
6962 rdev->recovery_offset < mddev->curr_resync)
6963 rdev->recovery_offset = mddev->curr_resync;
6964 rcu_read_unlock();
6967 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6969 skip:
6970 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6971 /* We completed so min/max setting can be forgotten if used. */
6972 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6973 mddev->resync_min = 0;
6974 mddev->resync_max = MaxSector;
6975 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6976 mddev->resync_min = mddev->curr_resync_completed;
6977 mddev->curr_resync = 0;
6978 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6979 mddev->curr_resync_completed = 0;
6980 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6981 wake_up(&resync_wait);
6982 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6983 md_wakeup_thread(mddev->thread);
6984 return;
6986 interrupted:
6988 * got a signal, exit.
6990 printk(KERN_INFO
6991 "md: md_do_sync() got signal ... exiting\n");
6992 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6993 goto out;
6996 EXPORT_SYMBOL_GPL(md_do_sync);
6999 static int remove_and_add_spares(mddev_t *mddev)
7001 mdk_rdev_t *rdev;
7002 int spares = 0;
7004 mddev->curr_resync_completed = 0;
7006 list_for_each_entry(rdev, &mddev->disks, same_set)
7007 if (rdev->raid_disk >= 0 &&
7008 !test_bit(Blocked, &rdev->flags) &&
7009 (test_bit(Faulty, &rdev->flags) ||
7010 ! test_bit(In_sync, &rdev->flags)) &&
7011 atomic_read(&rdev->nr_pending)==0) {
7012 if (mddev->pers->hot_remove_disk(
7013 mddev, rdev->raid_disk)==0) {
7014 char nm[20];
7015 sprintf(nm,"rd%d", rdev->raid_disk);
7016 sysfs_remove_link(&mddev->kobj, nm);
7017 rdev->raid_disk = -1;
7021 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7022 list_for_each_entry(rdev, &mddev->disks, same_set) {
7023 if (rdev->raid_disk >= 0 &&
7024 !test_bit(In_sync, &rdev->flags) &&
7025 !test_bit(Blocked, &rdev->flags))
7026 spares++;
7027 if (rdev->raid_disk < 0
7028 && !test_bit(Faulty, &rdev->flags)) {
7029 rdev->recovery_offset = 0;
7030 if (mddev->pers->
7031 hot_add_disk(mddev, rdev) == 0) {
7032 char nm[20];
7033 sprintf(nm, "rd%d", rdev->raid_disk);
7034 if (sysfs_create_link(&mddev->kobj,
7035 &rdev->kobj, nm))
7036 /* failure here is OK */;
7037 spares++;
7038 md_new_event(mddev);
7039 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7040 } else
7041 break;
7045 return spares;
7048 * This routine is regularly called by all per-raid-array threads to
7049 * deal with generic issues like resync and super-block update.
7050 * Raid personalities that don't have a thread (linear/raid0) do not
7051 * need this as they never do any recovery or update the superblock.
7053 * It does not do any resync itself, but rather "forks" off other threads
7054 * to do that as needed.
7055 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7056 * "->recovery" and create a thread at ->sync_thread.
7057 * When the thread finishes it sets MD_RECOVERY_DONE
7058 * and wakeups up this thread which will reap the thread and finish up.
7059 * This thread also removes any faulty devices (with nr_pending == 0).
7061 * The overall approach is:
7062 * 1/ if the superblock needs updating, update it.
7063 * 2/ If a recovery thread is running, don't do anything else.
7064 * 3/ If recovery has finished, clean up, possibly marking spares active.
7065 * 4/ If there are any faulty devices, remove them.
7066 * 5/ If array is degraded, try to add spares devices
7067 * 6/ If array has spares or is not in-sync, start a resync thread.
7069 void md_check_recovery(mddev_t *mddev)
7071 mdk_rdev_t *rdev;
7074 if (mddev->bitmap)
7075 bitmap_daemon_work(mddev);
7077 if (mddev->ro)
7078 return;
7080 if (signal_pending(current)) {
7081 if (mddev->pers->sync_request && !mddev->external) {
7082 printk(KERN_INFO "md: %s in immediate safe mode\n",
7083 mdname(mddev));
7084 mddev->safemode = 2;
7086 flush_signals(current);
7089 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7090 return;
7091 if ( ! (
7092 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7093 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7094 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7095 (mddev->external == 0 && mddev->safemode == 1) ||
7096 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7097 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7099 return;
7101 if (mddev_trylock(mddev)) {
7102 int spares = 0;
7104 if (mddev->ro) {
7105 /* Only thing we do on a ro array is remove
7106 * failed devices.
7108 remove_and_add_spares(mddev);
7109 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7110 goto unlock;
7113 if (!mddev->external) {
7114 int did_change = 0;
7115 spin_lock_irq(&mddev->write_lock);
7116 if (mddev->safemode &&
7117 !atomic_read(&mddev->writes_pending) &&
7118 !mddev->in_sync &&
7119 mddev->recovery_cp == MaxSector) {
7120 mddev->in_sync = 1;
7121 did_change = 1;
7122 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7124 if (mddev->safemode == 1)
7125 mddev->safemode = 0;
7126 spin_unlock_irq(&mddev->write_lock);
7127 if (did_change)
7128 sysfs_notify_dirent_safe(mddev->sysfs_state);
7131 if (mddev->flags)
7132 md_update_sb(mddev, 0);
7134 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7135 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7136 /* resync/recovery still happening */
7137 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7138 goto unlock;
7140 if (mddev->sync_thread) {
7141 /* resync has finished, collect result */
7142 md_unregister_thread(mddev->sync_thread);
7143 mddev->sync_thread = NULL;
7144 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7145 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7146 /* success...*/
7147 /* activate any spares */
7148 if (mddev->pers->spare_active(mddev))
7149 sysfs_notify(&mddev->kobj, NULL,
7150 "degraded");
7152 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7153 mddev->pers->finish_reshape)
7154 mddev->pers->finish_reshape(mddev);
7155 md_update_sb(mddev, 1);
7157 /* if array is no-longer degraded, then any saved_raid_disk
7158 * information must be scrapped
7160 if (!mddev->degraded)
7161 list_for_each_entry(rdev, &mddev->disks, same_set)
7162 rdev->saved_raid_disk = -1;
7164 mddev->recovery = 0;
7165 /* flag recovery needed just to double check */
7166 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7167 sysfs_notify_dirent_safe(mddev->sysfs_action);
7168 md_new_event(mddev);
7169 goto unlock;
7171 /* Set RUNNING before clearing NEEDED to avoid
7172 * any transients in the value of "sync_action".
7174 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7175 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7176 /* Clear some bits that don't mean anything, but
7177 * might be left set
7179 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7180 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7182 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7183 goto unlock;
7184 /* no recovery is running.
7185 * remove any failed drives, then
7186 * add spares if possible.
7187 * Spare are also removed and re-added, to allow
7188 * the personality to fail the re-add.
7191 if (mddev->reshape_position != MaxSector) {
7192 if (mddev->pers->check_reshape == NULL ||
7193 mddev->pers->check_reshape(mddev) != 0)
7194 /* Cannot proceed */
7195 goto unlock;
7196 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7197 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7198 } else if ((spares = remove_and_add_spares(mddev))) {
7199 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7200 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7201 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7202 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7203 } else if (mddev->recovery_cp < MaxSector) {
7204 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7205 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7206 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7207 /* nothing to be done ... */
7208 goto unlock;
7210 if (mddev->pers->sync_request) {
7211 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7212 /* We are adding a device or devices to an array
7213 * which has the bitmap stored on all devices.
7214 * So make sure all bitmap pages get written
7216 bitmap_write_all(mddev->bitmap);
7218 mddev->sync_thread = md_register_thread(md_do_sync,
7219 mddev,
7220 "resync");
7221 if (!mddev->sync_thread) {
7222 printk(KERN_ERR "%s: could not start resync"
7223 " thread...\n",
7224 mdname(mddev));
7225 /* leave the spares where they are, it shouldn't hurt */
7226 mddev->recovery = 0;
7227 } else
7228 md_wakeup_thread(mddev->sync_thread);
7229 sysfs_notify_dirent_safe(mddev->sysfs_action);
7230 md_new_event(mddev);
7232 unlock:
7233 if (!mddev->sync_thread) {
7234 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7235 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7236 &mddev->recovery))
7237 if (mddev->sysfs_action)
7238 sysfs_notify_dirent_safe(mddev->sysfs_action);
7240 mddev_unlock(mddev);
7244 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7246 sysfs_notify_dirent_safe(rdev->sysfs_state);
7247 wait_event_timeout(rdev->blocked_wait,
7248 !test_bit(Blocked, &rdev->flags),
7249 msecs_to_jiffies(5000));
7250 rdev_dec_pending(rdev, mddev);
7252 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7254 static int md_notify_reboot(struct notifier_block *this,
7255 unsigned long code, void *x)
7257 struct list_head *tmp;
7258 mddev_t *mddev;
7260 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7262 printk(KERN_INFO "md: stopping all md devices.\n");
7264 for_each_mddev(mddev, tmp)
7265 if (mddev_trylock(mddev)) {
7266 /* Force a switch to readonly even array
7267 * appears to still be in use. Hence
7268 * the '100'.
7270 md_set_readonly(mddev, 100);
7271 mddev_unlock(mddev);
7274 * certain more exotic SCSI devices are known to be
7275 * volatile wrt too early system reboots. While the
7276 * right place to handle this issue is the given
7277 * driver, we do want to have a safe RAID driver ...
7279 mdelay(1000*1);
7281 return NOTIFY_DONE;
7284 static struct notifier_block md_notifier = {
7285 .notifier_call = md_notify_reboot,
7286 .next = NULL,
7287 .priority = INT_MAX, /* before any real devices */
7290 static void md_geninit(void)
7292 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7294 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7297 static int __init md_init(void)
7299 int ret = -ENOMEM;
7301 md_wq = alloc_workqueue("md", WQ_RESCUER, 0);
7302 if (!md_wq)
7303 goto err_wq;
7305 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
7306 if (!md_misc_wq)
7307 goto err_misc_wq;
7309 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
7310 goto err_md;
7312 if ((ret = register_blkdev(0, "mdp")) < 0)
7313 goto err_mdp;
7314 mdp_major = ret;
7316 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7317 md_probe, NULL, NULL);
7318 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7319 md_probe, NULL, NULL);
7321 register_reboot_notifier(&md_notifier);
7322 raid_table_header = register_sysctl_table(raid_root_table);
7324 md_geninit();
7325 return 0;
7327 err_mdp:
7328 unregister_blkdev(MD_MAJOR, "md");
7329 err_md:
7330 destroy_workqueue(md_misc_wq);
7331 err_misc_wq:
7332 destroy_workqueue(md_wq);
7333 err_wq:
7334 return ret;
7337 #ifndef MODULE
7340 * Searches all registered partitions for autorun RAID arrays
7341 * at boot time.
7344 static LIST_HEAD(all_detected_devices);
7345 struct detected_devices_node {
7346 struct list_head list;
7347 dev_t dev;
7350 void md_autodetect_dev(dev_t dev)
7352 struct detected_devices_node *node_detected_dev;
7354 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7355 if (node_detected_dev) {
7356 node_detected_dev->dev = dev;
7357 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7358 } else {
7359 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7360 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7365 static void autostart_arrays(int part)
7367 mdk_rdev_t *rdev;
7368 struct detected_devices_node *node_detected_dev;
7369 dev_t dev;
7370 int i_scanned, i_passed;
7372 i_scanned = 0;
7373 i_passed = 0;
7375 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7377 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7378 i_scanned++;
7379 node_detected_dev = list_entry(all_detected_devices.next,
7380 struct detected_devices_node, list);
7381 list_del(&node_detected_dev->list);
7382 dev = node_detected_dev->dev;
7383 kfree(node_detected_dev);
7384 rdev = md_import_device(dev,0, 90);
7385 if (IS_ERR(rdev))
7386 continue;
7388 if (test_bit(Faulty, &rdev->flags)) {
7389 MD_BUG();
7390 continue;
7392 set_bit(AutoDetected, &rdev->flags);
7393 list_add(&rdev->same_set, &pending_raid_disks);
7394 i_passed++;
7397 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7398 i_scanned, i_passed);
7400 autorun_devices(part);
7403 #endif /* !MODULE */
7405 static __exit void md_exit(void)
7407 mddev_t *mddev;
7408 struct list_head *tmp;
7410 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7411 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7413 unregister_blkdev(MD_MAJOR,"md");
7414 unregister_blkdev(mdp_major, "mdp");
7415 unregister_reboot_notifier(&md_notifier);
7416 unregister_sysctl_table(raid_table_header);
7417 remove_proc_entry("mdstat", NULL);
7418 for_each_mddev(mddev, tmp) {
7419 export_array(mddev);
7420 mddev->hold_active = 0;
7422 destroy_workqueue(md_misc_wq);
7423 destroy_workqueue(md_wq);
7426 subsys_initcall(md_init);
7427 module_exit(md_exit)
7429 static int get_ro(char *buffer, struct kernel_param *kp)
7431 return sprintf(buffer, "%d", start_readonly);
7433 static int set_ro(const char *val, struct kernel_param *kp)
7435 char *e;
7436 int num = simple_strtoul(val, &e, 10);
7437 if (*val && (*e == '\0' || *e == '\n')) {
7438 start_readonly = num;
7439 return 0;
7441 return -EINVAL;
7444 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7445 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7447 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7449 EXPORT_SYMBOL(register_md_personality);
7450 EXPORT_SYMBOL(unregister_md_personality);
7451 EXPORT_SYMBOL(md_error);
7452 EXPORT_SYMBOL(md_done_sync);
7453 EXPORT_SYMBOL(md_write_start);
7454 EXPORT_SYMBOL(md_write_end);
7455 EXPORT_SYMBOL(md_register_thread);
7456 EXPORT_SYMBOL(md_unregister_thread);
7457 EXPORT_SYMBOL(md_wakeup_thread);
7458 EXPORT_SYMBOL(md_check_recovery);
7459 MODULE_LICENSE("GPL");
7460 MODULE_DESCRIPTION("MD RAID framework");
7461 MODULE_ALIAS("md");
7462 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);