caif: Bugfix - use MSG_TRUNC in receive
[linux-2.6/libata-dev.git] / net / core / sock.c
blobbf88a167c8f2ce5f008858454c103d762b0575ad
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
222 struct timeval tv;
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
241 return 0;
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
251 static void sock_warn_obsolete_bsdism(const char *name)
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
277 int err;
278 int skb_len;
279 unsigned long flags;
280 struct sk_buff_head *list = &sk->sk_receive_queue;
282 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283 number of warnings when compiling with -W --ANK
285 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286 (unsigned)sk->sk_rcvbuf) {
287 atomic_inc(&sk->sk_drops);
288 return -ENOMEM;
291 err = sk_filter(sk, skb);
292 if (err)
293 return err;
295 if (!sk_rmem_schedule(sk, skb->truesize)) {
296 atomic_inc(&sk->sk_drops);
297 return -ENOBUFS;
300 skb->dev = NULL;
301 skb_set_owner_r(skb, sk);
303 /* Cache the SKB length before we tack it onto the receive
304 * queue. Once it is added it no longer belongs to us and
305 * may be freed by other threads of control pulling packets
306 * from the queue.
308 skb_len = skb->len;
310 /* we escape from rcu protected region, make sure we dont leak
311 * a norefcounted dst
313 skb_dst_force(skb);
315 spin_lock_irqsave(&list->lock, flags);
316 skb->dropcount = atomic_read(&sk->sk_drops);
317 __skb_queue_tail(list, skb);
318 spin_unlock_irqrestore(&list->lock, flags);
320 if (!sock_flag(sk, SOCK_DEAD))
321 sk->sk_data_ready(sk, skb_len);
322 return 0;
324 EXPORT_SYMBOL(sock_queue_rcv_skb);
326 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
328 int rc = NET_RX_SUCCESS;
330 if (sk_filter(sk, skb))
331 goto discard_and_relse;
333 skb->dev = NULL;
335 if (sk_rcvqueues_full(sk, skb)) {
336 atomic_inc(&sk->sk_drops);
337 goto discard_and_relse;
339 if (nested)
340 bh_lock_sock_nested(sk);
341 else
342 bh_lock_sock(sk);
343 if (!sock_owned_by_user(sk)) {
345 * trylock + unlock semantics:
347 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
349 rc = sk_backlog_rcv(sk, skb);
351 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
352 } else if (sk_add_backlog(sk, skb)) {
353 bh_unlock_sock(sk);
354 atomic_inc(&sk->sk_drops);
355 goto discard_and_relse;
358 bh_unlock_sock(sk);
359 out:
360 sock_put(sk);
361 return rc;
362 discard_and_relse:
363 kfree_skb(skb);
364 goto out;
366 EXPORT_SYMBOL(sk_receive_skb);
368 void sk_reset_txq(struct sock *sk)
370 sk_tx_queue_clear(sk);
372 EXPORT_SYMBOL(sk_reset_txq);
374 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
376 struct dst_entry *dst = __sk_dst_get(sk);
378 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
379 sk_tx_queue_clear(sk);
380 rcu_assign_pointer(sk->sk_dst_cache, NULL);
381 dst_release(dst);
382 return NULL;
385 return dst;
387 EXPORT_SYMBOL(__sk_dst_check);
389 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
391 struct dst_entry *dst = sk_dst_get(sk);
393 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
394 sk_dst_reset(sk);
395 dst_release(dst);
396 return NULL;
399 return dst;
401 EXPORT_SYMBOL(sk_dst_check);
403 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
405 int ret = -ENOPROTOOPT;
406 #ifdef CONFIG_NETDEVICES
407 struct net *net = sock_net(sk);
408 char devname[IFNAMSIZ];
409 int index;
411 /* Sorry... */
412 ret = -EPERM;
413 if (!capable(CAP_NET_RAW))
414 goto out;
416 ret = -EINVAL;
417 if (optlen < 0)
418 goto out;
420 /* Bind this socket to a particular device like "eth0",
421 * as specified in the passed interface name. If the
422 * name is "" or the option length is zero the socket
423 * is not bound.
425 if (optlen > IFNAMSIZ - 1)
426 optlen = IFNAMSIZ - 1;
427 memset(devname, 0, sizeof(devname));
429 ret = -EFAULT;
430 if (copy_from_user(devname, optval, optlen))
431 goto out;
433 index = 0;
434 if (devname[0] != '\0') {
435 struct net_device *dev;
437 rcu_read_lock();
438 dev = dev_get_by_name_rcu(net, devname);
439 if (dev)
440 index = dev->ifindex;
441 rcu_read_unlock();
442 ret = -ENODEV;
443 if (!dev)
444 goto out;
447 lock_sock(sk);
448 sk->sk_bound_dev_if = index;
449 sk_dst_reset(sk);
450 release_sock(sk);
452 ret = 0;
454 out:
455 #endif
457 return ret;
460 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
462 if (valbool)
463 sock_set_flag(sk, bit);
464 else
465 sock_reset_flag(sk, bit);
469 * This is meant for all protocols to use and covers goings on
470 * at the socket level. Everything here is generic.
473 int sock_setsockopt(struct socket *sock, int level, int optname,
474 char __user *optval, unsigned int optlen)
476 struct sock *sk = sock->sk;
477 int val;
478 int valbool;
479 struct linger ling;
480 int ret = 0;
483 * Options without arguments
486 if (optname == SO_BINDTODEVICE)
487 return sock_bindtodevice(sk, optval, optlen);
489 if (optlen < sizeof(int))
490 return -EINVAL;
492 if (get_user(val, (int __user *)optval))
493 return -EFAULT;
495 valbool = val ? 1 : 0;
497 lock_sock(sk);
499 switch (optname) {
500 case SO_DEBUG:
501 if (val && !capable(CAP_NET_ADMIN))
502 ret = -EACCES;
503 else
504 sock_valbool_flag(sk, SOCK_DBG, valbool);
505 break;
506 case SO_REUSEADDR:
507 sk->sk_reuse = valbool;
508 break;
509 case SO_TYPE:
510 case SO_PROTOCOL:
511 case SO_DOMAIN:
512 case SO_ERROR:
513 ret = -ENOPROTOOPT;
514 break;
515 case SO_DONTROUTE:
516 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
517 break;
518 case SO_BROADCAST:
519 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
520 break;
521 case SO_SNDBUF:
522 /* Don't error on this BSD doesn't and if you think
523 about it this is right. Otherwise apps have to
524 play 'guess the biggest size' games. RCVBUF/SNDBUF
525 are treated in BSD as hints */
527 if (val > sysctl_wmem_max)
528 val = sysctl_wmem_max;
529 set_sndbuf:
530 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
531 if ((val * 2) < SOCK_MIN_SNDBUF)
532 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
533 else
534 sk->sk_sndbuf = val * 2;
537 * Wake up sending tasks if we
538 * upped the value.
540 sk->sk_write_space(sk);
541 break;
543 case SO_SNDBUFFORCE:
544 if (!capable(CAP_NET_ADMIN)) {
545 ret = -EPERM;
546 break;
548 goto set_sndbuf;
550 case SO_RCVBUF:
551 /* Don't error on this BSD doesn't and if you think
552 about it this is right. Otherwise apps have to
553 play 'guess the biggest size' games. RCVBUF/SNDBUF
554 are treated in BSD as hints */
556 if (val > sysctl_rmem_max)
557 val = sysctl_rmem_max;
558 set_rcvbuf:
559 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
561 * We double it on the way in to account for
562 * "struct sk_buff" etc. overhead. Applications
563 * assume that the SO_RCVBUF setting they make will
564 * allow that much actual data to be received on that
565 * socket.
567 * Applications are unaware that "struct sk_buff" and
568 * other overheads allocate from the receive buffer
569 * during socket buffer allocation.
571 * And after considering the possible alternatives,
572 * returning the value we actually used in getsockopt
573 * is the most desirable behavior.
575 if ((val * 2) < SOCK_MIN_RCVBUF)
576 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
577 else
578 sk->sk_rcvbuf = val * 2;
579 break;
581 case SO_RCVBUFFORCE:
582 if (!capable(CAP_NET_ADMIN)) {
583 ret = -EPERM;
584 break;
586 goto set_rcvbuf;
588 case SO_KEEPALIVE:
589 #ifdef CONFIG_INET
590 if (sk->sk_protocol == IPPROTO_TCP)
591 tcp_set_keepalive(sk, valbool);
592 #endif
593 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
594 break;
596 case SO_OOBINLINE:
597 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
598 break;
600 case SO_NO_CHECK:
601 sk->sk_no_check = valbool;
602 break;
604 case SO_PRIORITY:
605 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
606 sk->sk_priority = val;
607 else
608 ret = -EPERM;
609 break;
611 case SO_LINGER:
612 if (optlen < sizeof(ling)) {
613 ret = -EINVAL; /* 1003.1g */
614 break;
616 if (copy_from_user(&ling, optval, sizeof(ling))) {
617 ret = -EFAULT;
618 break;
620 if (!ling.l_onoff)
621 sock_reset_flag(sk, SOCK_LINGER);
622 else {
623 #if (BITS_PER_LONG == 32)
624 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
625 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
626 else
627 #endif
628 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
629 sock_set_flag(sk, SOCK_LINGER);
631 break;
633 case SO_BSDCOMPAT:
634 sock_warn_obsolete_bsdism("setsockopt");
635 break;
637 case SO_PASSCRED:
638 if (valbool)
639 set_bit(SOCK_PASSCRED, &sock->flags);
640 else
641 clear_bit(SOCK_PASSCRED, &sock->flags);
642 break;
644 case SO_TIMESTAMP:
645 case SO_TIMESTAMPNS:
646 if (valbool) {
647 if (optname == SO_TIMESTAMP)
648 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
649 else
650 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
651 sock_set_flag(sk, SOCK_RCVTSTAMP);
652 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
653 } else {
654 sock_reset_flag(sk, SOCK_RCVTSTAMP);
655 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
657 break;
659 case SO_TIMESTAMPING:
660 if (val & ~SOF_TIMESTAMPING_MASK) {
661 ret = -EINVAL;
662 break;
664 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
665 val & SOF_TIMESTAMPING_TX_HARDWARE);
666 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
667 val & SOF_TIMESTAMPING_TX_SOFTWARE);
668 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
669 val & SOF_TIMESTAMPING_RX_HARDWARE);
670 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
671 sock_enable_timestamp(sk,
672 SOCK_TIMESTAMPING_RX_SOFTWARE);
673 else
674 sock_disable_timestamp(sk,
675 SOCK_TIMESTAMPING_RX_SOFTWARE);
676 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
677 val & SOF_TIMESTAMPING_SOFTWARE);
678 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
679 val & SOF_TIMESTAMPING_SYS_HARDWARE);
680 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
681 val & SOF_TIMESTAMPING_RAW_HARDWARE);
682 break;
684 case SO_RCVLOWAT:
685 if (val < 0)
686 val = INT_MAX;
687 sk->sk_rcvlowat = val ? : 1;
688 break;
690 case SO_RCVTIMEO:
691 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
692 break;
694 case SO_SNDTIMEO:
695 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
696 break;
698 case SO_ATTACH_FILTER:
699 ret = -EINVAL;
700 if (optlen == sizeof(struct sock_fprog)) {
701 struct sock_fprog fprog;
703 ret = -EFAULT;
704 if (copy_from_user(&fprog, optval, sizeof(fprog)))
705 break;
707 ret = sk_attach_filter(&fprog, sk);
709 break;
711 case SO_DETACH_FILTER:
712 ret = sk_detach_filter(sk);
713 break;
715 case SO_PASSSEC:
716 if (valbool)
717 set_bit(SOCK_PASSSEC, &sock->flags);
718 else
719 clear_bit(SOCK_PASSSEC, &sock->flags);
720 break;
721 case SO_MARK:
722 if (!capable(CAP_NET_ADMIN))
723 ret = -EPERM;
724 else
725 sk->sk_mark = val;
726 break;
728 /* We implement the SO_SNDLOWAT etc to
729 not be settable (1003.1g 5.3) */
730 case SO_RXQ_OVFL:
731 if (valbool)
732 sock_set_flag(sk, SOCK_RXQ_OVFL);
733 else
734 sock_reset_flag(sk, SOCK_RXQ_OVFL);
735 break;
736 default:
737 ret = -ENOPROTOOPT;
738 break;
740 release_sock(sk);
741 return ret;
743 EXPORT_SYMBOL(sock_setsockopt);
746 int sock_getsockopt(struct socket *sock, int level, int optname,
747 char __user *optval, int __user *optlen)
749 struct sock *sk = sock->sk;
751 union {
752 int val;
753 struct linger ling;
754 struct timeval tm;
755 } v;
757 int lv = sizeof(int);
758 int len;
760 if (get_user(len, optlen))
761 return -EFAULT;
762 if (len < 0)
763 return -EINVAL;
765 memset(&v, 0, sizeof(v));
767 switch (optname) {
768 case SO_DEBUG:
769 v.val = sock_flag(sk, SOCK_DBG);
770 break;
772 case SO_DONTROUTE:
773 v.val = sock_flag(sk, SOCK_LOCALROUTE);
774 break;
776 case SO_BROADCAST:
777 v.val = !!sock_flag(sk, SOCK_BROADCAST);
778 break;
780 case SO_SNDBUF:
781 v.val = sk->sk_sndbuf;
782 break;
784 case SO_RCVBUF:
785 v.val = sk->sk_rcvbuf;
786 break;
788 case SO_REUSEADDR:
789 v.val = sk->sk_reuse;
790 break;
792 case SO_KEEPALIVE:
793 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
794 break;
796 case SO_TYPE:
797 v.val = sk->sk_type;
798 break;
800 case SO_PROTOCOL:
801 v.val = sk->sk_protocol;
802 break;
804 case SO_DOMAIN:
805 v.val = sk->sk_family;
806 break;
808 case SO_ERROR:
809 v.val = -sock_error(sk);
810 if (v.val == 0)
811 v.val = xchg(&sk->sk_err_soft, 0);
812 break;
814 case SO_OOBINLINE:
815 v.val = !!sock_flag(sk, SOCK_URGINLINE);
816 break;
818 case SO_NO_CHECK:
819 v.val = sk->sk_no_check;
820 break;
822 case SO_PRIORITY:
823 v.val = sk->sk_priority;
824 break;
826 case SO_LINGER:
827 lv = sizeof(v.ling);
828 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
829 v.ling.l_linger = sk->sk_lingertime / HZ;
830 break;
832 case SO_BSDCOMPAT:
833 sock_warn_obsolete_bsdism("getsockopt");
834 break;
836 case SO_TIMESTAMP:
837 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
838 !sock_flag(sk, SOCK_RCVTSTAMPNS);
839 break;
841 case SO_TIMESTAMPNS:
842 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
843 break;
845 case SO_TIMESTAMPING:
846 v.val = 0;
847 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
848 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
849 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
850 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
851 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
852 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
853 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
854 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
855 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
856 v.val |= SOF_TIMESTAMPING_SOFTWARE;
857 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
858 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
859 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
860 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
861 break;
863 case SO_RCVTIMEO:
864 lv = sizeof(struct timeval);
865 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
866 v.tm.tv_sec = 0;
867 v.tm.tv_usec = 0;
868 } else {
869 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
870 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
872 break;
874 case SO_SNDTIMEO:
875 lv = sizeof(struct timeval);
876 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
877 v.tm.tv_sec = 0;
878 v.tm.tv_usec = 0;
879 } else {
880 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
881 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
883 break;
885 case SO_RCVLOWAT:
886 v.val = sk->sk_rcvlowat;
887 break;
889 case SO_SNDLOWAT:
890 v.val = 1;
891 break;
893 case SO_PASSCRED:
894 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
895 break;
897 case SO_PEERCRED:
898 if (len > sizeof(sk->sk_peercred))
899 len = sizeof(sk->sk_peercred);
900 if (copy_to_user(optval, &sk->sk_peercred, len))
901 return -EFAULT;
902 goto lenout;
904 case SO_PEERNAME:
906 char address[128];
908 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
909 return -ENOTCONN;
910 if (lv < len)
911 return -EINVAL;
912 if (copy_to_user(optval, address, len))
913 return -EFAULT;
914 goto lenout;
917 /* Dubious BSD thing... Probably nobody even uses it, but
918 * the UNIX standard wants it for whatever reason... -DaveM
920 case SO_ACCEPTCONN:
921 v.val = sk->sk_state == TCP_LISTEN;
922 break;
924 case SO_PASSSEC:
925 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
926 break;
928 case SO_PEERSEC:
929 return security_socket_getpeersec_stream(sock, optval, optlen, len);
931 case SO_MARK:
932 v.val = sk->sk_mark;
933 break;
935 case SO_RXQ_OVFL:
936 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
937 break;
939 default:
940 return -ENOPROTOOPT;
943 if (len > lv)
944 len = lv;
945 if (copy_to_user(optval, &v, len))
946 return -EFAULT;
947 lenout:
948 if (put_user(len, optlen))
949 return -EFAULT;
950 return 0;
954 * Initialize an sk_lock.
956 * (We also register the sk_lock with the lock validator.)
958 static inline void sock_lock_init(struct sock *sk)
960 sock_lock_init_class_and_name(sk,
961 af_family_slock_key_strings[sk->sk_family],
962 af_family_slock_keys + sk->sk_family,
963 af_family_key_strings[sk->sk_family],
964 af_family_keys + sk->sk_family);
968 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
969 * even temporarly, because of RCU lookups. sk_node should also be left as is.
971 static void sock_copy(struct sock *nsk, const struct sock *osk)
973 #ifdef CONFIG_SECURITY_NETWORK
974 void *sptr = nsk->sk_security;
975 #endif
976 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
977 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
978 sizeof(osk->sk_tx_queue_mapping));
979 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
980 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
981 #ifdef CONFIG_SECURITY_NETWORK
982 nsk->sk_security = sptr;
983 security_sk_clone(osk, nsk);
984 #endif
987 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
988 int family)
990 struct sock *sk;
991 struct kmem_cache *slab;
993 slab = prot->slab;
994 if (slab != NULL) {
995 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
996 if (!sk)
997 return sk;
998 if (priority & __GFP_ZERO) {
1000 * caches using SLAB_DESTROY_BY_RCU should let
1001 * sk_node.next un-modified. Special care is taken
1002 * when initializing object to zero.
1004 if (offsetof(struct sock, sk_node.next) != 0)
1005 memset(sk, 0, offsetof(struct sock, sk_node.next));
1006 memset(&sk->sk_node.pprev, 0,
1007 prot->obj_size - offsetof(struct sock,
1008 sk_node.pprev));
1011 else
1012 sk = kmalloc(prot->obj_size, priority);
1014 if (sk != NULL) {
1015 kmemcheck_annotate_bitfield(sk, flags);
1017 if (security_sk_alloc(sk, family, priority))
1018 goto out_free;
1020 if (!try_module_get(prot->owner))
1021 goto out_free_sec;
1022 sk_tx_queue_clear(sk);
1025 return sk;
1027 out_free_sec:
1028 security_sk_free(sk);
1029 out_free:
1030 if (slab != NULL)
1031 kmem_cache_free(slab, sk);
1032 else
1033 kfree(sk);
1034 return NULL;
1037 static void sk_prot_free(struct proto *prot, struct sock *sk)
1039 struct kmem_cache *slab;
1040 struct module *owner;
1042 owner = prot->owner;
1043 slab = prot->slab;
1045 security_sk_free(sk);
1046 if (slab != NULL)
1047 kmem_cache_free(slab, sk);
1048 else
1049 kfree(sk);
1050 module_put(owner);
1054 * sk_alloc - All socket objects are allocated here
1055 * @net: the applicable net namespace
1056 * @family: protocol family
1057 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1058 * @prot: struct proto associated with this new sock instance
1060 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1061 struct proto *prot)
1063 struct sock *sk;
1065 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1066 if (sk) {
1067 sk->sk_family = family;
1069 * See comment in struct sock definition to understand
1070 * why we need sk_prot_creator -acme
1072 sk->sk_prot = sk->sk_prot_creator = prot;
1073 sock_lock_init(sk);
1074 sock_net_set(sk, get_net(net));
1075 atomic_set(&sk->sk_wmem_alloc, 1);
1078 return sk;
1080 EXPORT_SYMBOL(sk_alloc);
1082 static void __sk_free(struct sock *sk)
1084 struct sk_filter *filter;
1086 if (sk->sk_destruct)
1087 sk->sk_destruct(sk);
1089 filter = rcu_dereference_check(sk->sk_filter,
1090 atomic_read(&sk->sk_wmem_alloc) == 0);
1091 if (filter) {
1092 sk_filter_uncharge(sk, filter);
1093 rcu_assign_pointer(sk->sk_filter, NULL);
1096 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1097 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1099 if (atomic_read(&sk->sk_omem_alloc))
1100 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1101 __func__, atomic_read(&sk->sk_omem_alloc));
1103 put_net(sock_net(sk));
1104 sk_prot_free(sk->sk_prot_creator, sk);
1107 void sk_free(struct sock *sk)
1110 * We substract one from sk_wmem_alloc and can know if
1111 * some packets are still in some tx queue.
1112 * If not null, sock_wfree() will call __sk_free(sk) later
1114 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1115 __sk_free(sk);
1117 EXPORT_SYMBOL(sk_free);
1120 * Last sock_put should drop referrence to sk->sk_net. It has already
1121 * been dropped in sk_change_net. Taking referrence to stopping namespace
1122 * is not an option.
1123 * Take referrence to a socket to remove it from hash _alive_ and after that
1124 * destroy it in the context of init_net.
1126 void sk_release_kernel(struct sock *sk)
1128 if (sk == NULL || sk->sk_socket == NULL)
1129 return;
1131 sock_hold(sk);
1132 sock_release(sk->sk_socket);
1133 release_net(sock_net(sk));
1134 sock_net_set(sk, get_net(&init_net));
1135 sock_put(sk);
1137 EXPORT_SYMBOL(sk_release_kernel);
1139 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1141 struct sock *newsk;
1143 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1144 if (newsk != NULL) {
1145 struct sk_filter *filter;
1147 sock_copy(newsk, sk);
1149 /* SANITY */
1150 get_net(sock_net(newsk));
1151 sk_node_init(&newsk->sk_node);
1152 sock_lock_init(newsk);
1153 bh_lock_sock(newsk);
1154 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1155 newsk->sk_backlog.len = 0;
1157 atomic_set(&newsk->sk_rmem_alloc, 0);
1159 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1161 atomic_set(&newsk->sk_wmem_alloc, 1);
1162 atomic_set(&newsk->sk_omem_alloc, 0);
1163 skb_queue_head_init(&newsk->sk_receive_queue);
1164 skb_queue_head_init(&newsk->sk_write_queue);
1165 #ifdef CONFIG_NET_DMA
1166 skb_queue_head_init(&newsk->sk_async_wait_queue);
1167 #endif
1169 spin_lock_init(&newsk->sk_dst_lock);
1170 rwlock_init(&newsk->sk_callback_lock);
1171 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1172 af_callback_keys + newsk->sk_family,
1173 af_family_clock_key_strings[newsk->sk_family]);
1175 newsk->sk_dst_cache = NULL;
1176 newsk->sk_wmem_queued = 0;
1177 newsk->sk_forward_alloc = 0;
1178 newsk->sk_send_head = NULL;
1179 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1181 sock_reset_flag(newsk, SOCK_DONE);
1182 skb_queue_head_init(&newsk->sk_error_queue);
1184 filter = newsk->sk_filter;
1185 if (filter != NULL)
1186 sk_filter_charge(newsk, filter);
1188 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1189 /* It is still raw copy of parent, so invalidate
1190 * destructor and make plain sk_free() */
1191 newsk->sk_destruct = NULL;
1192 sk_free(newsk);
1193 newsk = NULL;
1194 goto out;
1197 newsk->sk_err = 0;
1198 newsk->sk_priority = 0;
1200 * Before updating sk_refcnt, we must commit prior changes to memory
1201 * (Documentation/RCU/rculist_nulls.txt for details)
1203 smp_wmb();
1204 atomic_set(&newsk->sk_refcnt, 2);
1207 * Increment the counter in the same struct proto as the master
1208 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1209 * is the same as sk->sk_prot->socks, as this field was copied
1210 * with memcpy).
1212 * This _changes_ the previous behaviour, where
1213 * tcp_create_openreq_child always was incrementing the
1214 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1215 * to be taken into account in all callers. -acme
1217 sk_refcnt_debug_inc(newsk);
1218 sk_set_socket(newsk, NULL);
1219 newsk->sk_wq = NULL;
1221 if (newsk->sk_prot->sockets_allocated)
1222 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1224 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1225 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1226 net_enable_timestamp();
1228 out:
1229 return newsk;
1231 EXPORT_SYMBOL_GPL(sk_clone);
1233 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1235 __sk_dst_set(sk, dst);
1236 sk->sk_route_caps = dst->dev->features;
1237 if (sk->sk_route_caps & NETIF_F_GSO)
1238 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1239 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1240 if (sk_can_gso(sk)) {
1241 if (dst->header_len) {
1242 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1243 } else {
1244 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1245 sk->sk_gso_max_size = dst->dev->gso_max_size;
1249 EXPORT_SYMBOL_GPL(sk_setup_caps);
1251 void __init sk_init(void)
1253 if (totalram_pages <= 4096) {
1254 sysctl_wmem_max = 32767;
1255 sysctl_rmem_max = 32767;
1256 sysctl_wmem_default = 32767;
1257 sysctl_rmem_default = 32767;
1258 } else if (totalram_pages >= 131072) {
1259 sysctl_wmem_max = 131071;
1260 sysctl_rmem_max = 131071;
1265 * Simple resource managers for sockets.
1270 * Write buffer destructor automatically called from kfree_skb.
1272 void sock_wfree(struct sk_buff *skb)
1274 struct sock *sk = skb->sk;
1275 unsigned int len = skb->truesize;
1277 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1279 * Keep a reference on sk_wmem_alloc, this will be released
1280 * after sk_write_space() call
1282 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1283 sk->sk_write_space(sk);
1284 len = 1;
1287 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1288 * could not do because of in-flight packets
1290 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1291 __sk_free(sk);
1293 EXPORT_SYMBOL(sock_wfree);
1296 * Read buffer destructor automatically called from kfree_skb.
1298 void sock_rfree(struct sk_buff *skb)
1300 struct sock *sk = skb->sk;
1302 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1303 sk_mem_uncharge(skb->sk, skb->truesize);
1305 EXPORT_SYMBOL(sock_rfree);
1308 int sock_i_uid(struct sock *sk)
1310 int uid;
1312 read_lock(&sk->sk_callback_lock);
1313 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1314 read_unlock(&sk->sk_callback_lock);
1315 return uid;
1317 EXPORT_SYMBOL(sock_i_uid);
1319 unsigned long sock_i_ino(struct sock *sk)
1321 unsigned long ino;
1323 read_lock(&sk->sk_callback_lock);
1324 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1325 read_unlock(&sk->sk_callback_lock);
1326 return ino;
1328 EXPORT_SYMBOL(sock_i_ino);
1331 * Allocate a skb from the socket's send buffer.
1333 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1334 gfp_t priority)
1336 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1337 struct sk_buff *skb = alloc_skb(size, priority);
1338 if (skb) {
1339 skb_set_owner_w(skb, sk);
1340 return skb;
1343 return NULL;
1345 EXPORT_SYMBOL(sock_wmalloc);
1348 * Allocate a skb from the socket's receive buffer.
1350 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1351 gfp_t priority)
1353 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1354 struct sk_buff *skb = alloc_skb(size, priority);
1355 if (skb) {
1356 skb_set_owner_r(skb, sk);
1357 return skb;
1360 return NULL;
1364 * Allocate a memory block from the socket's option memory buffer.
1366 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1368 if ((unsigned)size <= sysctl_optmem_max &&
1369 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1370 void *mem;
1371 /* First do the add, to avoid the race if kmalloc
1372 * might sleep.
1374 atomic_add(size, &sk->sk_omem_alloc);
1375 mem = kmalloc(size, priority);
1376 if (mem)
1377 return mem;
1378 atomic_sub(size, &sk->sk_omem_alloc);
1380 return NULL;
1382 EXPORT_SYMBOL(sock_kmalloc);
1385 * Free an option memory block.
1387 void sock_kfree_s(struct sock *sk, void *mem, int size)
1389 kfree(mem);
1390 atomic_sub(size, &sk->sk_omem_alloc);
1392 EXPORT_SYMBOL(sock_kfree_s);
1394 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1395 I think, these locks should be removed for datagram sockets.
1397 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1399 DEFINE_WAIT(wait);
1401 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1402 for (;;) {
1403 if (!timeo)
1404 break;
1405 if (signal_pending(current))
1406 break;
1407 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1408 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1409 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1410 break;
1411 if (sk->sk_shutdown & SEND_SHUTDOWN)
1412 break;
1413 if (sk->sk_err)
1414 break;
1415 timeo = schedule_timeout(timeo);
1417 finish_wait(sk_sleep(sk), &wait);
1418 return timeo;
1423 * Generic send/receive buffer handlers
1426 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1427 unsigned long data_len, int noblock,
1428 int *errcode)
1430 struct sk_buff *skb;
1431 gfp_t gfp_mask;
1432 long timeo;
1433 int err;
1435 gfp_mask = sk->sk_allocation;
1436 if (gfp_mask & __GFP_WAIT)
1437 gfp_mask |= __GFP_REPEAT;
1439 timeo = sock_sndtimeo(sk, noblock);
1440 while (1) {
1441 err = sock_error(sk);
1442 if (err != 0)
1443 goto failure;
1445 err = -EPIPE;
1446 if (sk->sk_shutdown & SEND_SHUTDOWN)
1447 goto failure;
1449 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1450 skb = alloc_skb(header_len, gfp_mask);
1451 if (skb) {
1452 int npages;
1453 int i;
1455 /* No pages, we're done... */
1456 if (!data_len)
1457 break;
1459 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1460 skb->truesize += data_len;
1461 skb_shinfo(skb)->nr_frags = npages;
1462 for (i = 0; i < npages; i++) {
1463 struct page *page;
1464 skb_frag_t *frag;
1466 page = alloc_pages(sk->sk_allocation, 0);
1467 if (!page) {
1468 err = -ENOBUFS;
1469 skb_shinfo(skb)->nr_frags = i;
1470 kfree_skb(skb);
1471 goto failure;
1474 frag = &skb_shinfo(skb)->frags[i];
1475 frag->page = page;
1476 frag->page_offset = 0;
1477 frag->size = (data_len >= PAGE_SIZE ?
1478 PAGE_SIZE :
1479 data_len);
1480 data_len -= PAGE_SIZE;
1483 /* Full success... */
1484 break;
1486 err = -ENOBUFS;
1487 goto failure;
1489 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1490 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1491 err = -EAGAIN;
1492 if (!timeo)
1493 goto failure;
1494 if (signal_pending(current))
1495 goto interrupted;
1496 timeo = sock_wait_for_wmem(sk, timeo);
1499 skb_set_owner_w(skb, sk);
1500 return skb;
1502 interrupted:
1503 err = sock_intr_errno(timeo);
1504 failure:
1505 *errcode = err;
1506 return NULL;
1508 EXPORT_SYMBOL(sock_alloc_send_pskb);
1510 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1511 int noblock, int *errcode)
1513 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1515 EXPORT_SYMBOL(sock_alloc_send_skb);
1517 static void __lock_sock(struct sock *sk)
1519 DEFINE_WAIT(wait);
1521 for (;;) {
1522 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1523 TASK_UNINTERRUPTIBLE);
1524 spin_unlock_bh(&sk->sk_lock.slock);
1525 schedule();
1526 spin_lock_bh(&sk->sk_lock.slock);
1527 if (!sock_owned_by_user(sk))
1528 break;
1530 finish_wait(&sk->sk_lock.wq, &wait);
1533 static void __release_sock(struct sock *sk)
1535 struct sk_buff *skb = sk->sk_backlog.head;
1537 do {
1538 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1539 bh_unlock_sock(sk);
1541 do {
1542 struct sk_buff *next = skb->next;
1544 WARN_ON_ONCE(skb_dst_is_noref(skb));
1545 skb->next = NULL;
1546 sk_backlog_rcv(sk, skb);
1549 * We are in process context here with softirqs
1550 * disabled, use cond_resched_softirq() to preempt.
1551 * This is safe to do because we've taken the backlog
1552 * queue private:
1554 cond_resched_softirq();
1556 skb = next;
1557 } while (skb != NULL);
1559 bh_lock_sock(sk);
1560 } while ((skb = sk->sk_backlog.head) != NULL);
1563 * Doing the zeroing here guarantee we can not loop forever
1564 * while a wild producer attempts to flood us.
1566 sk->sk_backlog.len = 0;
1570 * sk_wait_data - wait for data to arrive at sk_receive_queue
1571 * @sk: sock to wait on
1572 * @timeo: for how long
1574 * Now socket state including sk->sk_err is changed only under lock,
1575 * hence we may omit checks after joining wait queue.
1576 * We check receive queue before schedule() only as optimization;
1577 * it is very likely that release_sock() added new data.
1579 int sk_wait_data(struct sock *sk, long *timeo)
1581 int rc;
1582 DEFINE_WAIT(wait);
1584 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1585 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1586 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1587 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1588 finish_wait(sk_sleep(sk), &wait);
1589 return rc;
1591 EXPORT_SYMBOL(sk_wait_data);
1594 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1595 * @sk: socket
1596 * @size: memory size to allocate
1597 * @kind: allocation type
1599 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1600 * rmem allocation. This function assumes that protocols which have
1601 * memory_pressure use sk_wmem_queued as write buffer accounting.
1603 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1605 struct proto *prot = sk->sk_prot;
1606 int amt = sk_mem_pages(size);
1607 int allocated;
1609 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1610 allocated = atomic_add_return(amt, prot->memory_allocated);
1612 /* Under limit. */
1613 if (allocated <= prot->sysctl_mem[0]) {
1614 if (prot->memory_pressure && *prot->memory_pressure)
1615 *prot->memory_pressure = 0;
1616 return 1;
1619 /* Under pressure. */
1620 if (allocated > prot->sysctl_mem[1])
1621 if (prot->enter_memory_pressure)
1622 prot->enter_memory_pressure(sk);
1624 /* Over hard limit. */
1625 if (allocated > prot->sysctl_mem[2])
1626 goto suppress_allocation;
1628 /* guarantee minimum buffer size under pressure */
1629 if (kind == SK_MEM_RECV) {
1630 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1631 return 1;
1632 } else { /* SK_MEM_SEND */
1633 if (sk->sk_type == SOCK_STREAM) {
1634 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1635 return 1;
1636 } else if (atomic_read(&sk->sk_wmem_alloc) <
1637 prot->sysctl_wmem[0])
1638 return 1;
1641 if (prot->memory_pressure) {
1642 int alloc;
1644 if (!*prot->memory_pressure)
1645 return 1;
1646 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1647 if (prot->sysctl_mem[2] > alloc *
1648 sk_mem_pages(sk->sk_wmem_queued +
1649 atomic_read(&sk->sk_rmem_alloc) +
1650 sk->sk_forward_alloc))
1651 return 1;
1654 suppress_allocation:
1656 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1657 sk_stream_moderate_sndbuf(sk);
1659 /* Fail only if socket is _under_ its sndbuf.
1660 * In this case we cannot block, so that we have to fail.
1662 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1663 return 1;
1666 /* Alas. Undo changes. */
1667 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1668 atomic_sub(amt, prot->memory_allocated);
1669 return 0;
1671 EXPORT_SYMBOL(__sk_mem_schedule);
1674 * __sk_reclaim - reclaim memory_allocated
1675 * @sk: socket
1677 void __sk_mem_reclaim(struct sock *sk)
1679 struct proto *prot = sk->sk_prot;
1681 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1682 prot->memory_allocated);
1683 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1685 if (prot->memory_pressure && *prot->memory_pressure &&
1686 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1687 *prot->memory_pressure = 0;
1689 EXPORT_SYMBOL(__sk_mem_reclaim);
1693 * Set of default routines for initialising struct proto_ops when
1694 * the protocol does not support a particular function. In certain
1695 * cases where it makes no sense for a protocol to have a "do nothing"
1696 * function, some default processing is provided.
1699 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1701 return -EOPNOTSUPP;
1703 EXPORT_SYMBOL(sock_no_bind);
1705 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1706 int len, int flags)
1708 return -EOPNOTSUPP;
1710 EXPORT_SYMBOL(sock_no_connect);
1712 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1714 return -EOPNOTSUPP;
1716 EXPORT_SYMBOL(sock_no_socketpair);
1718 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1720 return -EOPNOTSUPP;
1722 EXPORT_SYMBOL(sock_no_accept);
1724 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1725 int *len, int peer)
1727 return -EOPNOTSUPP;
1729 EXPORT_SYMBOL(sock_no_getname);
1731 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1733 return 0;
1735 EXPORT_SYMBOL(sock_no_poll);
1737 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1739 return -EOPNOTSUPP;
1741 EXPORT_SYMBOL(sock_no_ioctl);
1743 int sock_no_listen(struct socket *sock, int backlog)
1745 return -EOPNOTSUPP;
1747 EXPORT_SYMBOL(sock_no_listen);
1749 int sock_no_shutdown(struct socket *sock, int how)
1751 return -EOPNOTSUPP;
1753 EXPORT_SYMBOL(sock_no_shutdown);
1755 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1756 char __user *optval, unsigned int optlen)
1758 return -EOPNOTSUPP;
1760 EXPORT_SYMBOL(sock_no_setsockopt);
1762 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1763 char __user *optval, int __user *optlen)
1765 return -EOPNOTSUPP;
1767 EXPORT_SYMBOL(sock_no_getsockopt);
1769 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1770 size_t len)
1772 return -EOPNOTSUPP;
1774 EXPORT_SYMBOL(sock_no_sendmsg);
1776 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1777 size_t len, int flags)
1779 return -EOPNOTSUPP;
1781 EXPORT_SYMBOL(sock_no_recvmsg);
1783 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1785 /* Mirror missing mmap method error code */
1786 return -ENODEV;
1788 EXPORT_SYMBOL(sock_no_mmap);
1790 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1792 ssize_t res;
1793 struct msghdr msg = {.msg_flags = flags};
1794 struct kvec iov;
1795 char *kaddr = kmap(page);
1796 iov.iov_base = kaddr + offset;
1797 iov.iov_len = size;
1798 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1799 kunmap(page);
1800 return res;
1802 EXPORT_SYMBOL(sock_no_sendpage);
1805 * Default Socket Callbacks
1808 static void sock_def_wakeup(struct sock *sk)
1810 struct socket_wq *wq;
1812 rcu_read_lock();
1813 wq = rcu_dereference(sk->sk_wq);
1814 if (wq_has_sleeper(wq))
1815 wake_up_interruptible_all(&wq->wait);
1816 rcu_read_unlock();
1819 static void sock_def_error_report(struct sock *sk)
1821 struct socket_wq *wq;
1823 rcu_read_lock();
1824 wq = rcu_dereference(sk->sk_wq);
1825 if (wq_has_sleeper(wq))
1826 wake_up_interruptible_poll(&wq->wait, POLLERR);
1827 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1828 rcu_read_unlock();
1831 static void sock_def_readable(struct sock *sk, int len)
1833 struct socket_wq *wq;
1835 rcu_read_lock();
1836 wq = rcu_dereference(sk->sk_wq);
1837 if (wq_has_sleeper(wq))
1838 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1839 POLLRDNORM | POLLRDBAND);
1840 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1841 rcu_read_unlock();
1844 static void sock_def_write_space(struct sock *sk)
1846 struct socket_wq *wq;
1848 rcu_read_lock();
1850 /* Do not wake up a writer until he can make "significant"
1851 * progress. --DaveM
1853 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1854 wq = rcu_dereference(sk->sk_wq);
1855 if (wq_has_sleeper(wq))
1856 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1857 POLLWRNORM | POLLWRBAND);
1859 /* Should agree with poll, otherwise some programs break */
1860 if (sock_writeable(sk))
1861 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1864 rcu_read_unlock();
1867 static void sock_def_destruct(struct sock *sk)
1869 kfree(sk->sk_protinfo);
1872 void sk_send_sigurg(struct sock *sk)
1874 if (sk->sk_socket && sk->sk_socket->file)
1875 if (send_sigurg(&sk->sk_socket->file->f_owner))
1876 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1878 EXPORT_SYMBOL(sk_send_sigurg);
1880 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1881 unsigned long expires)
1883 if (!mod_timer(timer, expires))
1884 sock_hold(sk);
1886 EXPORT_SYMBOL(sk_reset_timer);
1888 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1890 if (timer_pending(timer) && del_timer(timer))
1891 __sock_put(sk);
1893 EXPORT_SYMBOL(sk_stop_timer);
1895 void sock_init_data(struct socket *sock, struct sock *sk)
1897 skb_queue_head_init(&sk->sk_receive_queue);
1898 skb_queue_head_init(&sk->sk_write_queue);
1899 skb_queue_head_init(&sk->sk_error_queue);
1900 #ifdef CONFIG_NET_DMA
1901 skb_queue_head_init(&sk->sk_async_wait_queue);
1902 #endif
1904 sk->sk_send_head = NULL;
1906 init_timer(&sk->sk_timer);
1908 sk->sk_allocation = GFP_KERNEL;
1909 sk->sk_rcvbuf = sysctl_rmem_default;
1910 sk->sk_sndbuf = sysctl_wmem_default;
1911 sk->sk_state = TCP_CLOSE;
1912 sk_set_socket(sk, sock);
1914 sock_set_flag(sk, SOCK_ZAPPED);
1916 if (sock) {
1917 sk->sk_type = sock->type;
1918 sk->sk_wq = sock->wq;
1919 sock->sk = sk;
1920 } else
1921 sk->sk_wq = NULL;
1923 spin_lock_init(&sk->sk_dst_lock);
1924 rwlock_init(&sk->sk_callback_lock);
1925 lockdep_set_class_and_name(&sk->sk_callback_lock,
1926 af_callback_keys + sk->sk_family,
1927 af_family_clock_key_strings[sk->sk_family]);
1929 sk->sk_state_change = sock_def_wakeup;
1930 sk->sk_data_ready = sock_def_readable;
1931 sk->sk_write_space = sock_def_write_space;
1932 sk->sk_error_report = sock_def_error_report;
1933 sk->sk_destruct = sock_def_destruct;
1935 sk->sk_sndmsg_page = NULL;
1936 sk->sk_sndmsg_off = 0;
1938 sk->sk_peercred.pid = 0;
1939 sk->sk_peercred.uid = -1;
1940 sk->sk_peercred.gid = -1;
1941 sk->sk_write_pending = 0;
1942 sk->sk_rcvlowat = 1;
1943 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1944 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1946 sk->sk_stamp = ktime_set(-1L, 0);
1949 * Before updating sk_refcnt, we must commit prior changes to memory
1950 * (Documentation/RCU/rculist_nulls.txt for details)
1952 smp_wmb();
1953 atomic_set(&sk->sk_refcnt, 1);
1954 atomic_set(&sk->sk_drops, 0);
1956 EXPORT_SYMBOL(sock_init_data);
1958 void lock_sock_nested(struct sock *sk, int subclass)
1960 might_sleep();
1961 spin_lock_bh(&sk->sk_lock.slock);
1962 if (sk->sk_lock.owned)
1963 __lock_sock(sk);
1964 sk->sk_lock.owned = 1;
1965 spin_unlock(&sk->sk_lock.slock);
1967 * The sk_lock has mutex_lock() semantics here:
1969 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1970 local_bh_enable();
1972 EXPORT_SYMBOL(lock_sock_nested);
1974 void release_sock(struct sock *sk)
1977 * The sk_lock has mutex_unlock() semantics:
1979 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1981 spin_lock_bh(&sk->sk_lock.slock);
1982 if (sk->sk_backlog.tail)
1983 __release_sock(sk);
1984 sk->sk_lock.owned = 0;
1985 if (waitqueue_active(&sk->sk_lock.wq))
1986 wake_up(&sk->sk_lock.wq);
1987 spin_unlock_bh(&sk->sk_lock.slock);
1989 EXPORT_SYMBOL(release_sock);
1991 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1993 struct timeval tv;
1994 if (!sock_flag(sk, SOCK_TIMESTAMP))
1995 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1996 tv = ktime_to_timeval(sk->sk_stamp);
1997 if (tv.tv_sec == -1)
1998 return -ENOENT;
1999 if (tv.tv_sec == 0) {
2000 sk->sk_stamp = ktime_get_real();
2001 tv = ktime_to_timeval(sk->sk_stamp);
2003 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2005 EXPORT_SYMBOL(sock_get_timestamp);
2007 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2009 struct timespec ts;
2010 if (!sock_flag(sk, SOCK_TIMESTAMP))
2011 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2012 ts = ktime_to_timespec(sk->sk_stamp);
2013 if (ts.tv_sec == -1)
2014 return -ENOENT;
2015 if (ts.tv_sec == 0) {
2016 sk->sk_stamp = ktime_get_real();
2017 ts = ktime_to_timespec(sk->sk_stamp);
2019 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2021 EXPORT_SYMBOL(sock_get_timestampns);
2023 void sock_enable_timestamp(struct sock *sk, int flag)
2025 if (!sock_flag(sk, flag)) {
2026 sock_set_flag(sk, flag);
2028 * we just set one of the two flags which require net
2029 * time stamping, but time stamping might have been on
2030 * already because of the other one
2032 if (!sock_flag(sk,
2033 flag == SOCK_TIMESTAMP ?
2034 SOCK_TIMESTAMPING_RX_SOFTWARE :
2035 SOCK_TIMESTAMP))
2036 net_enable_timestamp();
2041 * Get a socket option on an socket.
2043 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2044 * asynchronous errors should be reported by getsockopt. We assume
2045 * this means if you specify SO_ERROR (otherwise whats the point of it).
2047 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2048 char __user *optval, int __user *optlen)
2050 struct sock *sk = sock->sk;
2052 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2054 EXPORT_SYMBOL(sock_common_getsockopt);
2056 #ifdef CONFIG_COMPAT
2057 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2058 char __user *optval, int __user *optlen)
2060 struct sock *sk = sock->sk;
2062 if (sk->sk_prot->compat_getsockopt != NULL)
2063 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2064 optval, optlen);
2065 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2067 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2068 #endif
2070 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2071 struct msghdr *msg, size_t size, int flags)
2073 struct sock *sk = sock->sk;
2074 int addr_len = 0;
2075 int err;
2077 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2078 flags & ~MSG_DONTWAIT, &addr_len);
2079 if (err >= 0)
2080 msg->msg_namelen = addr_len;
2081 return err;
2083 EXPORT_SYMBOL(sock_common_recvmsg);
2086 * Set socket options on an inet socket.
2088 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2089 char __user *optval, unsigned int optlen)
2091 struct sock *sk = sock->sk;
2093 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2095 EXPORT_SYMBOL(sock_common_setsockopt);
2097 #ifdef CONFIG_COMPAT
2098 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2099 char __user *optval, unsigned int optlen)
2101 struct sock *sk = sock->sk;
2103 if (sk->sk_prot->compat_setsockopt != NULL)
2104 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2105 optval, optlen);
2106 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2108 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2109 #endif
2111 void sk_common_release(struct sock *sk)
2113 if (sk->sk_prot->destroy)
2114 sk->sk_prot->destroy(sk);
2117 * Observation: when sock_common_release is called, processes have
2118 * no access to socket. But net still has.
2119 * Step one, detach it from networking:
2121 * A. Remove from hash tables.
2124 sk->sk_prot->unhash(sk);
2127 * In this point socket cannot receive new packets, but it is possible
2128 * that some packets are in flight because some CPU runs receiver and
2129 * did hash table lookup before we unhashed socket. They will achieve
2130 * receive queue and will be purged by socket destructor.
2132 * Also we still have packets pending on receive queue and probably,
2133 * our own packets waiting in device queues. sock_destroy will drain
2134 * receive queue, but transmitted packets will delay socket destruction
2135 * until the last reference will be released.
2138 sock_orphan(sk);
2140 xfrm_sk_free_policy(sk);
2142 sk_refcnt_debug_release(sk);
2143 sock_put(sk);
2145 EXPORT_SYMBOL(sk_common_release);
2147 static DEFINE_RWLOCK(proto_list_lock);
2148 static LIST_HEAD(proto_list);
2150 #ifdef CONFIG_PROC_FS
2151 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2152 struct prot_inuse {
2153 int val[PROTO_INUSE_NR];
2156 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2158 #ifdef CONFIG_NET_NS
2159 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2161 int cpu = smp_processor_id();
2162 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2164 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2166 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2168 int cpu, idx = prot->inuse_idx;
2169 int res = 0;
2171 for_each_possible_cpu(cpu)
2172 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2174 return res >= 0 ? res : 0;
2176 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2178 static int __net_init sock_inuse_init_net(struct net *net)
2180 net->core.inuse = alloc_percpu(struct prot_inuse);
2181 return net->core.inuse ? 0 : -ENOMEM;
2184 static void __net_exit sock_inuse_exit_net(struct net *net)
2186 free_percpu(net->core.inuse);
2189 static struct pernet_operations net_inuse_ops = {
2190 .init = sock_inuse_init_net,
2191 .exit = sock_inuse_exit_net,
2194 static __init int net_inuse_init(void)
2196 if (register_pernet_subsys(&net_inuse_ops))
2197 panic("Cannot initialize net inuse counters");
2199 return 0;
2202 core_initcall(net_inuse_init);
2203 #else
2204 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2206 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2208 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2210 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2212 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2214 int cpu, idx = prot->inuse_idx;
2215 int res = 0;
2217 for_each_possible_cpu(cpu)
2218 res += per_cpu(prot_inuse, cpu).val[idx];
2220 return res >= 0 ? res : 0;
2222 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2223 #endif
2225 static void assign_proto_idx(struct proto *prot)
2227 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2229 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2230 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2231 return;
2234 set_bit(prot->inuse_idx, proto_inuse_idx);
2237 static void release_proto_idx(struct proto *prot)
2239 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2240 clear_bit(prot->inuse_idx, proto_inuse_idx);
2242 #else
2243 static inline void assign_proto_idx(struct proto *prot)
2247 static inline void release_proto_idx(struct proto *prot)
2250 #endif
2252 int proto_register(struct proto *prot, int alloc_slab)
2254 if (alloc_slab) {
2255 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2256 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2257 NULL);
2259 if (prot->slab == NULL) {
2260 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2261 prot->name);
2262 goto out;
2265 if (prot->rsk_prot != NULL) {
2266 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2267 if (prot->rsk_prot->slab_name == NULL)
2268 goto out_free_sock_slab;
2270 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2271 prot->rsk_prot->obj_size, 0,
2272 SLAB_HWCACHE_ALIGN, NULL);
2274 if (prot->rsk_prot->slab == NULL) {
2275 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2276 prot->name);
2277 goto out_free_request_sock_slab_name;
2281 if (prot->twsk_prot != NULL) {
2282 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2284 if (prot->twsk_prot->twsk_slab_name == NULL)
2285 goto out_free_request_sock_slab;
2287 prot->twsk_prot->twsk_slab =
2288 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2289 prot->twsk_prot->twsk_obj_size,
2291 SLAB_HWCACHE_ALIGN |
2292 prot->slab_flags,
2293 NULL);
2294 if (prot->twsk_prot->twsk_slab == NULL)
2295 goto out_free_timewait_sock_slab_name;
2299 write_lock(&proto_list_lock);
2300 list_add(&prot->node, &proto_list);
2301 assign_proto_idx(prot);
2302 write_unlock(&proto_list_lock);
2303 return 0;
2305 out_free_timewait_sock_slab_name:
2306 kfree(prot->twsk_prot->twsk_slab_name);
2307 out_free_request_sock_slab:
2308 if (prot->rsk_prot && prot->rsk_prot->slab) {
2309 kmem_cache_destroy(prot->rsk_prot->slab);
2310 prot->rsk_prot->slab = NULL;
2312 out_free_request_sock_slab_name:
2313 if (prot->rsk_prot)
2314 kfree(prot->rsk_prot->slab_name);
2315 out_free_sock_slab:
2316 kmem_cache_destroy(prot->slab);
2317 prot->slab = NULL;
2318 out:
2319 return -ENOBUFS;
2321 EXPORT_SYMBOL(proto_register);
2323 void proto_unregister(struct proto *prot)
2325 write_lock(&proto_list_lock);
2326 release_proto_idx(prot);
2327 list_del(&prot->node);
2328 write_unlock(&proto_list_lock);
2330 if (prot->slab != NULL) {
2331 kmem_cache_destroy(prot->slab);
2332 prot->slab = NULL;
2335 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2336 kmem_cache_destroy(prot->rsk_prot->slab);
2337 kfree(prot->rsk_prot->slab_name);
2338 prot->rsk_prot->slab = NULL;
2341 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2342 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2343 kfree(prot->twsk_prot->twsk_slab_name);
2344 prot->twsk_prot->twsk_slab = NULL;
2347 EXPORT_SYMBOL(proto_unregister);
2349 #ifdef CONFIG_PROC_FS
2350 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2351 __acquires(proto_list_lock)
2353 read_lock(&proto_list_lock);
2354 return seq_list_start_head(&proto_list, *pos);
2357 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2359 return seq_list_next(v, &proto_list, pos);
2362 static void proto_seq_stop(struct seq_file *seq, void *v)
2363 __releases(proto_list_lock)
2365 read_unlock(&proto_list_lock);
2368 static char proto_method_implemented(const void *method)
2370 return method == NULL ? 'n' : 'y';
2373 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2375 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2376 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2377 proto->name,
2378 proto->obj_size,
2379 sock_prot_inuse_get(seq_file_net(seq), proto),
2380 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2381 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2382 proto->max_header,
2383 proto->slab == NULL ? "no" : "yes",
2384 module_name(proto->owner),
2385 proto_method_implemented(proto->close),
2386 proto_method_implemented(proto->connect),
2387 proto_method_implemented(proto->disconnect),
2388 proto_method_implemented(proto->accept),
2389 proto_method_implemented(proto->ioctl),
2390 proto_method_implemented(proto->init),
2391 proto_method_implemented(proto->destroy),
2392 proto_method_implemented(proto->shutdown),
2393 proto_method_implemented(proto->setsockopt),
2394 proto_method_implemented(proto->getsockopt),
2395 proto_method_implemented(proto->sendmsg),
2396 proto_method_implemented(proto->recvmsg),
2397 proto_method_implemented(proto->sendpage),
2398 proto_method_implemented(proto->bind),
2399 proto_method_implemented(proto->backlog_rcv),
2400 proto_method_implemented(proto->hash),
2401 proto_method_implemented(proto->unhash),
2402 proto_method_implemented(proto->get_port),
2403 proto_method_implemented(proto->enter_memory_pressure));
2406 static int proto_seq_show(struct seq_file *seq, void *v)
2408 if (v == &proto_list)
2409 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2410 "protocol",
2411 "size",
2412 "sockets",
2413 "memory",
2414 "press",
2415 "maxhdr",
2416 "slab",
2417 "module",
2418 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2419 else
2420 proto_seq_printf(seq, list_entry(v, struct proto, node));
2421 return 0;
2424 static const struct seq_operations proto_seq_ops = {
2425 .start = proto_seq_start,
2426 .next = proto_seq_next,
2427 .stop = proto_seq_stop,
2428 .show = proto_seq_show,
2431 static int proto_seq_open(struct inode *inode, struct file *file)
2433 return seq_open_net(inode, file, &proto_seq_ops,
2434 sizeof(struct seq_net_private));
2437 static const struct file_operations proto_seq_fops = {
2438 .owner = THIS_MODULE,
2439 .open = proto_seq_open,
2440 .read = seq_read,
2441 .llseek = seq_lseek,
2442 .release = seq_release_net,
2445 static __net_init int proto_init_net(struct net *net)
2447 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2448 return -ENOMEM;
2450 return 0;
2453 static __net_exit void proto_exit_net(struct net *net)
2455 proc_net_remove(net, "protocols");
2459 static __net_initdata struct pernet_operations proto_net_ops = {
2460 .init = proto_init_net,
2461 .exit = proto_exit_net,
2464 static int __init proto_init(void)
2466 return register_pernet_subsys(&proto_net_ops);
2469 subsys_initcall(proto_init);
2471 #endif /* PROC_FS */