2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/export.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
43 #define dprintk printk
45 #define dprintk(x...) do { ; } while (0)
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock
);
50 unsigned long aio_nr
; /* current system wide number of aio requests */
51 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
54 static struct kmem_cache
*kiocb_cachep
;
55 static struct kmem_cache
*kioctx_cachep
;
57 static struct workqueue_struct
*aio_wq
;
59 static void aio_kick_handler(struct work_struct
*);
60 static void aio_queue_work(struct kioctx
*);
63 * Creates the slab caches used by the aio routines, panic on
64 * failure as this is done early during the boot sequence.
66 static int __init
aio_setup(void)
68 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
69 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
71 aio_wq
= alloc_workqueue("aio", 0, 1); /* used to limit concurrency */
74 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
78 __initcall(aio_setup
);
80 static void aio_free_ring(struct kioctx
*ctx
)
82 struct aio_ring_info
*info
= &ctx
->ring_info
;
85 for (i
=0; i
<info
->nr_pages
; i
++)
86 put_page(info
->ring_pages
[i
]);
88 if (info
->mmap_size
) {
89 BUG_ON(ctx
->mm
!= current
->mm
);
90 vm_munmap(info
->mmap_base
, info
->mmap_size
);
93 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
94 kfree(info
->ring_pages
);
95 info
->ring_pages
= NULL
;
99 static int aio_setup_ring(struct kioctx
*ctx
)
101 struct aio_ring
*ring
;
102 struct aio_ring_info
*info
= &ctx
->ring_info
;
103 unsigned nr_events
= ctx
->max_reqs
;
107 /* Compensate for the ring buffer's head/tail overlap entry */
108 nr_events
+= 2; /* 1 is required, 2 for good luck */
110 size
= sizeof(struct aio_ring
);
111 size
+= sizeof(struct io_event
) * nr_events
;
112 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
117 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
120 info
->ring_pages
= info
->internal_pages
;
121 if (nr_pages
> AIO_RING_PAGES
) {
122 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
123 if (!info
->ring_pages
)
127 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
128 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
129 down_write(&ctx
->mm
->mmap_sem
);
130 info
->mmap_base
= do_mmap_pgoff(NULL
, 0, info
->mmap_size
,
131 PROT_READ
|PROT_WRITE
,
132 MAP_ANONYMOUS
|MAP_PRIVATE
, 0);
133 if (IS_ERR((void *)info
->mmap_base
)) {
134 up_write(&ctx
->mm
->mmap_sem
);
140 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
141 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
142 info
->mmap_base
, nr_pages
,
143 1, 0, info
->ring_pages
, NULL
);
144 up_write(&ctx
->mm
->mmap_sem
);
146 if (unlikely(info
->nr_pages
!= nr_pages
)) {
151 ctx
->user_id
= info
->mmap_base
;
153 info
->nr
= nr_events
; /* trusted copy */
155 ring
= kmap_atomic(info
->ring_pages
[0]);
156 ring
->nr
= nr_events
; /* user copy */
157 ring
->id
= ctx
->user_id
;
158 ring
->head
= ring
->tail
= 0;
159 ring
->magic
= AIO_RING_MAGIC
;
160 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
161 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
162 ring
->header_length
= sizeof(struct aio_ring
);
169 /* aio_ring_event: returns a pointer to the event at the given index from
170 * kmap_atomic(). Release the pointer with put_aio_ring_event();
172 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
173 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
174 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
176 #define aio_ring_event(info, nr) ({ \
177 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
178 struct io_event *__event; \
179 __event = kmap_atomic( \
180 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
181 __event += pos % AIO_EVENTS_PER_PAGE; \
185 #define put_aio_ring_event(event) do { \
186 struct io_event *__event = (event); \
188 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
191 static void ctx_rcu_free(struct rcu_head
*head
)
193 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
194 kmem_cache_free(kioctx_cachep
, ctx
);
198 * Called when the last user of an aio context has gone away,
199 * and the struct needs to be freed.
201 static void __put_ioctx(struct kioctx
*ctx
)
203 unsigned nr_events
= ctx
->max_reqs
;
204 BUG_ON(ctx
->reqs_active
);
206 cancel_delayed_work_sync(&ctx
->wq
);
211 spin_lock(&aio_nr_lock
);
212 BUG_ON(aio_nr
- nr_events
> aio_nr
);
214 spin_unlock(&aio_nr_lock
);
216 pr_debug("__put_ioctx: freeing %p\n", ctx
);
217 call_rcu(&ctx
->rcu_head
, ctx_rcu_free
);
220 static inline int try_get_ioctx(struct kioctx
*kioctx
)
222 return atomic_inc_not_zero(&kioctx
->users
);
225 static inline void put_ioctx(struct kioctx
*kioctx
)
227 BUG_ON(atomic_read(&kioctx
->users
) <= 0);
228 if (unlikely(atomic_dec_and_test(&kioctx
->users
)))
233 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
235 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
237 struct mm_struct
*mm
;
241 /* Prevent overflows */
242 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
243 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
244 pr_debug("ENOMEM: nr_events too high\n");
245 return ERR_PTR(-EINVAL
);
248 if (!nr_events
|| (unsigned long)nr_events
> aio_max_nr
)
249 return ERR_PTR(-EAGAIN
);
251 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
253 return ERR_PTR(-ENOMEM
);
255 ctx
->max_reqs
= nr_events
;
256 mm
= ctx
->mm
= current
->mm
;
257 atomic_inc(&mm
->mm_count
);
259 atomic_set(&ctx
->users
, 2);
260 spin_lock_init(&ctx
->ctx_lock
);
261 spin_lock_init(&ctx
->ring_info
.ring_lock
);
262 init_waitqueue_head(&ctx
->wait
);
264 INIT_LIST_HEAD(&ctx
->active_reqs
);
265 INIT_LIST_HEAD(&ctx
->run_list
);
266 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
268 if (aio_setup_ring(ctx
) < 0)
271 /* limit the number of system wide aios */
272 spin_lock(&aio_nr_lock
);
273 if (aio_nr
+ nr_events
> aio_max_nr
||
274 aio_nr
+ nr_events
< aio_nr
) {
275 spin_unlock(&aio_nr_lock
);
278 aio_nr
+= ctx
->max_reqs
;
279 spin_unlock(&aio_nr_lock
);
281 /* now link into global list. */
282 spin_lock(&mm
->ioctx_lock
);
283 hlist_add_head_rcu(&ctx
->list
, &mm
->ioctx_list
);
284 spin_unlock(&mm
->ioctx_lock
);
286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
295 kmem_cache_free(kioctx_cachep
, ctx
);
296 dprintk("aio: error allocating ioctx %d\n", err
);
301 * Cancels all outstanding aio requests on an aio context. Used
302 * when the processes owning a context have all exited to encourage
303 * the rapid destruction of the kioctx.
305 static void kill_ctx(struct kioctx
*ctx
)
307 int (*cancel
)(struct kiocb
*, struct io_event
*);
308 struct task_struct
*tsk
= current
;
309 DECLARE_WAITQUEUE(wait
, tsk
);
312 spin_lock_irq(&ctx
->ctx_lock
);
314 while (!list_empty(&ctx
->active_reqs
)) {
315 struct list_head
*pos
= ctx
->active_reqs
.next
;
316 struct kiocb
*iocb
= list_kiocb(pos
);
317 list_del_init(&iocb
->ki_list
);
318 cancel
= iocb
->ki_cancel
;
319 kiocbSetCancelled(iocb
);
322 spin_unlock_irq(&ctx
->ctx_lock
);
324 spin_lock_irq(&ctx
->ctx_lock
);
328 if (!ctx
->reqs_active
)
331 add_wait_queue(&ctx
->wait
, &wait
);
332 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
333 while (ctx
->reqs_active
) {
334 spin_unlock_irq(&ctx
->ctx_lock
);
336 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
337 spin_lock_irq(&ctx
->ctx_lock
);
339 __set_task_state(tsk
, TASK_RUNNING
);
340 remove_wait_queue(&ctx
->wait
, &wait
);
343 spin_unlock_irq(&ctx
->ctx_lock
);
346 /* wait_on_sync_kiocb:
347 * Waits on the given sync kiocb to complete.
349 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
351 while (iocb
->ki_users
) {
352 set_current_state(TASK_UNINTERRUPTIBLE
);
357 __set_current_state(TASK_RUNNING
);
358 return iocb
->ki_user_data
;
360 EXPORT_SYMBOL(wait_on_sync_kiocb
);
362 /* exit_aio: called when the last user of mm goes away. At this point,
363 * there is no way for any new requests to be submited or any of the
364 * io_* syscalls to be called on the context. However, there may be
365 * outstanding requests which hold references to the context; as they
366 * go away, they will call put_ioctx and release any pinned memory
367 * associated with the request (held via struct page * references).
369 void exit_aio(struct mm_struct
*mm
)
373 while (!hlist_empty(&mm
->ioctx_list
)) {
374 ctx
= hlist_entry(mm
->ioctx_list
.first
, struct kioctx
, list
);
375 hlist_del_rcu(&ctx
->list
);
379 if (1 != atomic_read(&ctx
->users
))
381 "exit_aio:ioctx still alive: %d %d %d\n",
382 atomic_read(&ctx
->users
), ctx
->dead
,
385 * We don't need to bother with munmap() here -
386 * exit_mmap(mm) is coming and it'll unmap everything.
387 * Since aio_free_ring() uses non-zero ->mmap_size
388 * as indicator that it needs to unmap the area,
389 * just set it to 0; aio_free_ring() is the only
390 * place that uses ->mmap_size, so it's safe.
391 * That way we get all munmap done to current->mm -
392 * all other callers have ctx->mm == current->mm.
394 ctx
->ring_info
.mmap_size
= 0;
400 * Allocate a slot for an aio request. Increments the users count
401 * of the kioctx so that the kioctx stays around until all requests are
402 * complete. Returns NULL if no requests are free.
404 * Returns with kiocb->users set to 2. The io submit code path holds
405 * an extra reference while submitting the i/o.
406 * This prevents races between the aio code path referencing the
407 * req (after submitting it) and aio_complete() freeing the req.
409 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
411 struct kiocb
*req
= NULL
;
413 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
421 req
->ki_cancel
= NULL
;
422 req
->ki_retry
= NULL
;
425 req
->ki_iovec
= NULL
;
426 INIT_LIST_HEAD(&req
->ki_run_list
);
427 req
->ki_eventfd
= NULL
;
433 * struct kiocb's are allocated in batches to reduce the number of
434 * times the ctx lock is acquired and released.
436 #define KIOCB_BATCH_SIZE 32L
438 struct list_head head
;
439 long count
; /* number of requests left to allocate */
442 static void kiocb_batch_init(struct kiocb_batch
*batch
, long total
)
444 INIT_LIST_HEAD(&batch
->head
);
445 batch
->count
= total
;
448 static void kiocb_batch_free(struct kioctx
*ctx
, struct kiocb_batch
*batch
)
450 struct kiocb
*req
, *n
;
452 if (list_empty(&batch
->head
))
455 spin_lock_irq(&ctx
->ctx_lock
);
456 list_for_each_entry_safe(req
, n
, &batch
->head
, ki_batch
) {
457 list_del(&req
->ki_batch
);
458 list_del(&req
->ki_list
);
459 kmem_cache_free(kiocb_cachep
, req
);
462 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
463 wake_up_all(&ctx
->wait
);
464 spin_unlock_irq(&ctx
->ctx_lock
);
468 * Allocate a batch of kiocbs. This avoids taking and dropping the
469 * context lock a lot during setup.
471 static int kiocb_batch_refill(struct kioctx
*ctx
, struct kiocb_batch
*batch
)
473 unsigned short allocated
, to_alloc
;
475 struct kiocb
*req
, *n
;
476 struct aio_ring
*ring
;
478 to_alloc
= min(batch
->count
, KIOCB_BATCH_SIZE
);
479 for (allocated
= 0; allocated
< to_alloc
; allocated
++) {
480 req
= __aio_get_req(ctx
);
482 /* allocation failed, go with what we've got */
484 list_add(&req
->ki_batch
, &batch
->head
);
490 spin_lock_irq(&ctx
->ctx_lock
);
491 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0]);
493 avail
= aio_ring_avail(&ctx
->ring_info
, ring
) - ctx
->reqs_active
;
495 if (avail
< allocated
) {
496 /* Trim back the number of requests. */
497 list_for_each_entry_safe(req
, n
, &batch
->head
, ki_batch
) {
498 list_del(&req
->ki_batch
);
499 kmem_cache_free(kiocb_cachep
, req
);
500 if (--allocated
<= avail
)
505 batch
->count
-= allocated
;
506 list_for_each_entry(req
, &batch
->head
, ki_batch
) {
507 list_add(&req
->ki_list
, &ctx
->active_reqs
);
512 spin_unlock_irq(&ctx
->ctx_lock
);
518 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
,
519 struct kiocb_batch
*batch
)
523 if (list_empty(&batch
->head
))
524 if (kiocb_batch_refill(ctx
, batch
) == 0)
526 req
= list_first_entry(&batch
->head
, struct kiocb
, ki_batch
);
527 list_del(&req
->ki_batch
);
531 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
533 assert_spin_locked(&ctx
->ctx_lock
);
535 if (req
->ki_eventfd
!= NULL
)
536 eventfd_ctx_put(req
->ki_eventfd
);
539 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
540 kfree(req
->ki_iovec
);
541 kmem_cache_free(kiocb_cachep
, req
);
544 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
545 wake_up_all(&ctx
->wait
);
549 * Returns true if this put was the last user of the request.
551 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
553 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
554 req
, atomic_long_read(&req
->ki_filp
->f_count
));
556 assert_spin_locked(&ctx
->ctx_lock
);
559 BUG_ON(req
->ki_users
< 0);
560 if (likely(req
->ki_users
))
562 list_del(&req
->ki_list
); /* remove from active_reqs */
563 req
->ki_cancel
= NULL
;
564 req
->ki_retry
= NULL
;
568 really_put_req(ctx
, req
);
573 * Returns true if this put was the last user of the kiocb,
574 * false if the request is still in use.
576 int aio_put_req(struct kiocb
*req
)
578 struct kioctx
*ctx
= req
->ki_ctx
;
580 spin_lock_irq(&ctx
->ctx_lock
);
581 ret
= __aio_put_req(ctx
, req
);
582 spin_unlock_irq(&ctx
->ctx_lock
);
585 EXPORT_SYMBOL(aio_put_req
);
587 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
589 struct mm_struct
*mm
= current
->mm
;
590 struct kioctx
*ctx
, *ret
= NULL
;
591 struct hlist_node
*n
;
595 hlist_for_each_entry_rcu(ctx
, n
, &mm
->ioctx_list
, list
) {
597 * RCU protects us against accessing freed memory but
598 * we have to be careful not to get a reference when the
599 * reference count already dropped to 0 (ctx->dead test
600 * is unreliable because of races).
602 if (ctx
->user_id
== ctx_id
&& !ctx
->dead
&& try_get_ioctx(ctx
)){
613 * Queue up a kiocb to be retried. Assumes that the kiocb
614 * has already been marked as kicked, and places it on
615 * the retry run list for the corresponding ioctx, if it
616 * isn't already queued. Returns 1 if it actually queued
617 * the kiocb (to tell the caller to activate the work
618 * queue to process it), or 0, if it found that it was
621 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
623 struct kioctx
*ctx
= iocb
->ki_ctx
;
625 assert_spin_locked(&ctx
->ctx_lock
);
627 if (list_empty(&iocb
->ki_run_list
)) {
628 list_add_tail(&iocb
->ki_run_list
,
636 * This is the core aio execution routine. It is
637 * invoked both for initial i/o submission and
638 * subsequent retries via the aio_kick_handler.
639 * Expects to be invoked with iocb->ki_ctx->lock
640 * already held. The lock is released and reacquired
641 * as needed during processing.
643 * Calls the iocb retry method (already setup for the
644 * iocb on initial submission) for operation specific
645 * handling, but takes care of most of common retry
646 * execution details for a given iocb. The retry method
647 * needs to be non-blocking as far as possible, to avoid
648 * holding up other iocbs waiting to be serviced by the
649 * retry kernel thread.
651 * The trickier parts in this code have to do with
652 * ensuring that only one retry instance is in progress
653 * for a given iocb at any time. Providing that guarantee
654 * simplifies the coding of individual aio operations as
655 * it avoids various potential races.
657 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
659 struct kioctx
*ctx
= iocb
->ki_ctx
;
660 ssize_t (*retry
)(struct kiocb
*);
663 if (!(retry
= iocb
->ki_retry
)) {
664 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
669 * We don't want the next retry iteration for this
670 * operation to start until this one has returned and
671 * updated the iocb state. However, wait_queue functions
672 * can trigger a kick_iocb from interrupt context in the
673 * meantime, indicating that data is available for the next
674 * iteration. We want to remember that and enable the
675 * next retry iteration _after_ we are through with
678 * So, in order to be able to register a "kick", but
679 * prevent it from being queued now, we clear the kick
680 * flag, but make the kick code *think* that the iocb is
681 * still on the run list until we are actually done.
682 * When we are done with this iteration, we check if
683 * the iocb was kicked in the meantime and if so, queue
687 kiocbClearKicked(iocb
);
690 * This is so that aio_complete knows it doesn't need to
691 * pull the iocb off the run list (We can't just call
692 * INIT_LIST_HEAD because we don't want a kick_iocb to
693 * queue this on the run list yet)
695 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
696 spin_unlock_irq(&ctx
->ctx_lock
);
698 /* Quit retrying if the i/o has been cancelled */
699 if (kiocbIsCancelled(iocb
)) {
701 aio_complete(iocb
, ret
, 0);
702 /* must not access the iocb after this */
707 * Now we are all set to call the retry method in async
712 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
714 * There's no easy way to restart the syscall since other AIO's
715 * may be already running. Just fail this IO with EINTR.
717 if (unlikely(ret
== -ERESTARTSYS
|| ret
== -ERESTARTNOINTR
||
718 ret
== -ERESTARTNOHAND
|| ret
== -ERESTART_RESTARTBLOCK
))
720 aio_complete(iocb
, ret
, 0);
723 spin_lock_irq(&ctx
->ctx_lock
);
725 if (-EIOCBRETRY
== ret
) {
727 * OK, now that we are done with this iteration
728 * and know that there is more left to go,
729 * this is where we let go so that a subsequent
730 * "kick" can start the next iteration
733 /* will make __queue_kicked_iocb succeed from here on */
734 INIT_LIST_HEAD(&iocb
->ki_run_list
);
735 /* we must queue the next iteration ourselves, if it
736 * has already been kicked */
737 if (kiocbIsKicked(iocb
)) {
738 __queue_kicked_iocb(iocb
);
741 * __queue_kicked_iocb will always return 1 here, because
742 * iocb->ki_run_list is empty at this point so it should
743 * be safe to unconditionally queue the context into the
754 * Process all pending retries queued on the ioctx
756 * Assumes it is operating within the aio issuer's mm
759 static int __aio_run_iocbs(struct kioctx
*ctx
)
762 struct list_head run_list
;
764 assert_spin_locked(&ctx
->ctx_lock
);
766 list_replace_init(&ctx
->run_list
, &run_list
);
767 while (!list_empty(&run_list
)) {
768 iocb
= list_entry(run_list
.next
, struct kiocb
,
770 list_del(&iocb
->ki_run_list
);
772 * Hold an extra reference while retrying i/o.
774 iocb
->ki_users
++; /* grab extra reference */
776 __aio_put_req(ctx
, iocb
);
778 if (!list_empty(&ctx
->run_list
))
783 static void aio_queue_work(struct kioctx
* ctx
)
785 unsigned long timeout
;
787 * if someone is waiting, get the work started right
788 * away, otherwise, use a longer delay
791 if (waitqueue_active(&ctx
->wait
))
795 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
800 * Process all pending retries queued on the ioctx
801 * run list, and keep running them until the list
803 * Assumes it is operating within the aio issuer's mm context.
805 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
807 spin_lock_irq(&ctx
->ctx_lock
);
808 while (__aio_run_iocbs(ctx
))
810 spin_unlock_irq(&ctx
->ctx_lock
);
815 * Work queue handler triggered to process pending
816 * retries on an ioctx. Takes on the aio issuer's
817 * mm context before running the iocbs, so that
818 * copy_xxx_user operates on the issuer's address
820 * Run on aiod's context.
822 static void aio_kick_handler(struct work_struct
*work
)
824 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
825 mm_segment_t oldfs
= get_fs();
826 struct mm_struct
*mm
;
831 spin_lock_irq(&ctx
->ctx_lock
);
832 requeue
=__aio_run_iocbs(ctx
);
834 spin_unlock_irq(&ctx
->ctx_lock
);
838 * we're in a worker thread already; no point using non-zero delay
841 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
846 * Called by kick_iocb to queue the kiocb for retry
847 * and if required activate the aio work queue to process
850 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
852 struct kioctx
*ctx
= iocb
->ki_ctx
;
856 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
857 /* set this inside the lock so that we can't race with aio_run_iocb()
858 * testing it and putting the iocb on the run list under the lock */
859 if (!kiocbTryKick(iocb
))
860 run
= __queue_kicked_iocb(iocb
);
861 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
868 * Called typically from a wait queue callback context
869 * to trigger a retry of the iocb.
870 * The retry is usually executed by aio workqueue
871 * threads (See aio_kick_handler).
873 void kick_iocb(struct kiocb
*iocb
)
875 /* sync iocbs are easy: they can only ever be executing from a
877 if (is_sync_kiocb(iocb
)) {
878 kiocbSetKicked(iocb
);
879 wake_up_process(iocb
->ki_obj
.tsk
);
883 try_queue_kicked_iocb(iocb
);
885 EXPORT_SYMBOL(kick_iocb
);
888 * Called when the io request on the given iocb is complete.
889 * Returns true if this is the last user of the request. The
890 * only other user of the request can be the cancellation code.
892 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
894 struct kioctx
*ctx
= iocb
->ki_ctx
;
895 struct aio_ring_info
*info
;
896 struct aio_ring
*ring
;
897 struct io_event
*event
;
903 * Special case handling for sync iocbs:
904 * - events go directly into the iocb for fast handling
905 * - the sync task with the iocb in its stack holds the single iocb
906 * ref, no other paths have a way to get another ref
907 * - the sync task helpfully left a reference to itself in the iocb
909 if (is_sync_kiocb(iocb
)) {
910 BUG_ON(iocb
->ki_users
!= 1);
911 iocb
->ki_user_data
= res
;
913 wake_up_process(iocb
->ki_obj
.tsk
);
917 info
= &ctx
->ring_info
;
919 /* add a completion event to the ring buffer.
920 * must be done holding ctx->ctx_lock to prevent
921 * other code from messing with the tail
922 * pointer since we might be called from irq
925 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
927 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
928 list_del_init(&iocb
->ki_run_list
);
931 * cancelled requests don't get events, userland was given one
932 * when the event got cancelled.
934 if (kiocbIsCancelled(iocb
))
937 ring
= kmap_atomic(info
->ring_pages
[0]);
940 event
= aio_ring_event(info
, tail
);
941 if (++tail
>= info
->nr
)
944 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
945 event
->data
= iocb
->ki_user_data
;
949 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
950 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
953 /* after flagging the request as done, we
954 * must never even look at it again
956 smp_wmb(); /* make event visible before updating tail */
961 put_aio_ring_event(event
);
964 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
967 * Check if the user asked us to deliver the result through an
968 * eventfd. The eventfd_signal() function is safe to be called
971 if (iocb
->ki_eventfd
!= NULL
)
972 eventfd_signal(iocb
->ki_eventfd
, 1);
975 /* everything turned out well, dispose of the aiocb. */
976 ret
= __aio_put_req(ctx
, iocb
);
979 * We have to order our ring_info tail store above and test
980 * of the wait list below outside the wait lock. This is
981 * like in wake_up_bit() where clearing a bit has to be
982 * ordered with the unlocked test.
986 if (waitqueue_active(&ctx
->wait
))
989 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
992 EXPORT_SYMBOL(aio_complete
);
995 * Pull an event off of the ioctx's event ring. Returns the number of
996 * events fetched (0 or 1 ;-)
997 * FIXME: make this use cmpxchg.
998 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1000 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1002 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1003 struct aio_ring
*ring
;
1007 ring
= kmap_atomic(info
->ring_pages
[0]);
1008 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1009 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1010 (unsigned long)ring
->nr
);
1012 if (ring
->head
== ring
->tail
)
1015 spin_lock(&info
->ring_lock
);
1017 head
= ring
->head
% info
->nr
;
1018 if (head
!= ring
->tail
) {
1019 struct io_event
*evp
= aio_ring_event(info
, head
);
1021 head
= (head
+ 1) % info
->nr
;
1022 smp_mb(); /* finish reading the event before updatng the head */
1025 put_aio_ring_event(evp
);
1027 spin_unlock(&info
->ring_lock
);
1030 kunmap_atomic(ring
);
1031 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1032 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1036 struct aio_timeout
{
1037 struct timer_list timer
;
1039 struct task_struct
*p
;
1042 static void timeout_func(unsigned long data
)
1044 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1047 wake_up_process(to
->p
);
1050 static inline void init_timeout(struct aio_timeout
*to
)
1052 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1057 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1058 const struct timespec
*ts
)
1060 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1061 if (time_after(to
->timer
.expires
, jiffies
))
1062 add_timer(&to
->timer
);
1067 static inline void clear_timeout(struct aio_timeout
*to
)
1069 del_singleshot_timer_sync(&to
->timer
);
1072 static int read_events(struct kioctx
*ctx
,
1073 long min_nr
, long nr
,
1074 struct io_event __user
*event
,
1075 struct timespec __user
*timeout
)
1077 long start_jiffies
= jiffies
;
1078 struct task_struct
*tsk
= current
;
1079 DECLARE_WAITQUEUE(wait
, tsk
);
1082 struct io_event ent
;
1083 struct aio_timeout to
;
1086 /* needed to zero any padding within an entry (there shouldn't be
1087 * any, but C is fun!
1089 memset(&ent
, 0, sizeof(ent
));
1092 while (likely(i
< nr
)) {
1093 ret
= aio_read_evt(ctx
, &ent
);
1094 if (unlikely(ret
<= 0))
1097 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1098 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1100 /* Could we split the check in two? */
1102 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1103 dprintk("aio: lost an event due to EFAULT.\n");
1108 /* Good, event copied to userland, update counts. */
1120 /* racey check, but it gets redone */
1121 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1123 aio_run_all_iocbs(ctx
);
1131 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1134 set_timeout(start_jiffies
, &to
, &ts
);
1137 while (likely(i
< nr
)) {
1138 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1140 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1141 ret
= aio_read_evt(ctx
, &ent
);
1146 if (unlikely(ctx
->dead
)) {
1150 if (to
.timed_out
) /* Only check after read evt */
1152 /* Try to only show up in io wait if there are ops
1154 if (ctx
->reqs_active
)
1158 if (signal_pending(tsk
)) {
1162 /*ret = aio_read_evt(ctx, &ent);*/
1165 set_task_state(tsk
, TASK_RUNNING
);
1166 remove_wait_queue(&ctx
->wait
, &wait
);
1168 if (unlikely(ret
<= 0))
1172 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1173 dprintk("aio: lost an event due to EFAULT.\n");
1177 /* Good, event copied to userland, update counts. */
1185 destroy_timer_on_stack(&to
.timer
);
1189 /* Take an ioctx and remove it from the list of ioctx's. Protects
1190 * against races with itself via ->dead.
1192 static void io_destroy(struct kioctx
*ioctx
)
1194 struct mm_struct
*mm
= current
->mm
;
1197 /* delete the entry from the list is someone else hasn't already */
1198 spin_lock(&mm
->ioctx_lock
);
1199 was_dead
= ioctx
->dead
;
1201 hlist_del_rcu(&ioctx
->list
);
1202 spin_unlock(&mm
->ioctx_lock
);
1204 dprintk("aio_release(%p)\n", ioctx
);
1205 if (likely(!was_dead
))
1206 put_ioctx(ioctx
); /* twice for the list */
1211 * Wake up any waiters. The setting of ctx->dead must be seen
1212 * by other CPUs at this point. Right now, we rely on the
1213 * locking done by the above calls to ensure this consistency.
1215 wake_up_all(&ioctx
->wait
);
1219 * Create an aio_context capable of receiving at least nr_events.
1220 * ctxp must not point to an aio_context that already exists, and
1221 * must be initialized to 0 prior to the call. On successful
1222 * creation of the aio_context, *ctxp is filled in with the resulting
1223 * handle. May fail with -EINVAL if *ctxp is not initialized,
1224 * if the specified nr_events exceeds internal limits. May fail
1225 * with -EAGAIN if the specified nr_events exceeds the user's limit
1226 * of available events. May fail with -ENOMEM if insufficient kernel
1227 * resources are available. May fail with -EFAULT if an invalid
1228 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1231 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1233 struct kioctx
*ioctx
= NULL
;
1237 ret
= get_user(ctx
, ctxp
);
1242 if (unlikely(ctx
|| nr_events
== 0)) {
1243 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1248 ioctx
= ioctx_alloc(nr_events
);
1249 ret
= PTR_ERR(ioctx
);
1250 if (!IS_ERR(ioctx
)) {
1251 ret
= put_user(ioctx
->user_id
, ctxp
);
1262 * Destroy the aio_context specified. May cancel any outstanding
1263 * AIOs and block on completion. Will fail with -ENOSYS if not
1264 * implemented. May fail with -EINVAL if the context pointed to
1267 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1269 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1270 if (likely(NULL
!= ioctx
)) {
1275 pr_debug("EINVAL: io_destroy: invalid context id\n");
1279 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1281 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1285 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1286 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1287 iov
->iov_base
+= this;
1288 iov
->iov_len
-= this;
1289 iocb
->ki_left
-= this;
1291 if (iov
->iov_len
== 0) {
1297 /* the caller should not have done more io than what fit in
1298 * the remaining iovecs */
1299 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1302 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1304 struct file
*file
= iocb
->ki_filp
;
1305 struct address_space
*mapping
= file
->f_mapping
;
1306 struct inode
*inode
= mapping
->host
;
1307 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1308 unsigned long, loff_t
);
1310 unsigned short opcode
;
1312 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1313 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1314 rw_op
= file
->f_op
->aio_read
;
1315 opcode
= IOCB_CMD_PREADV
;
1317 rw_op
= file
->f_op
->aio_write
;
1318 opcode
= IOCB_CMD_PWRITEV
;
1321 /* This matches the pread()/pwrite() logic */
1322 if (iocb
->ki_pos
< 0)
1326 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1327 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1330 aio_advance_iovec(iocb
, ret
);
1332 /* retry all partial writes. retry partial reads as long as its a
1334 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1335 (opcode
== IOCB_CMD_PWRITEV
||
1336 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1338 /* This means we must have transferred all that we could */
1339 /* No need to retry anymore */
1340 if ((ret
== 0) || (iocb
->ki_left
== 0))
1341 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1343 /* If we managed to write some out we return that, rather than
1344 * the eventual error. */
1345 if (opcode
== IOCB_CMD_PWRITEV
1346 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1347 && iocb
->ki_nbytes
- iocb
->ki_left
)
1348 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1353 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1355 struct file
*file
= iocb
->ki_filp
;
1356 ssize_t ret
= -EINVAL
;
1358 if (file
->f_op
->aio_fsync
)
1359 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1363 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1365 struct file
*file
= iocb
->ki_filp
;
1366 ssize_t ret
= -EINVAL
;
1368 if (file
->f_op
->aio_fsync
)
1369 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1373 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
, bool compat
)
1377 #ifdef CONFIG_COMPAT
1379 ret
= compat_rw_copy_check_uvector(type
,
1380 (struct compat_iovec __user
*)kiocb
->ki_buf
,
1381 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1385 ret
= rw_copy_check_uvector(type
,
1386 (struct iovec __user
*)kiocb
->ki_buf
,
1387 kiocb
->ki_nbytes
, 1, &kiocb
->ki_inline_vec
,
1392 ret
= rw_verify_area(type
, kiocb
->ki_filp
, &kiocb
->ki_pos
, ret
);
1396 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1397 kiocb
->ki_cur_seg
= 0;
1398 /* ki_nbytes/left now reflect bytes instead of segs */
1399 kiocb
->ki_nbytes
= ret
;
1400 kiocb
->ki_left
= ret
;
1407 static ssize_t
aio_setup_single_vector(int type
, struct file
* file
, struct kiocb
*kiocb
)
1411 bytes
= rw_verify_area(type
, file
, &kiocb
->ki_pos
, kiocb
->ki_left
);
1415 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1416 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1417 kiocb
->ki_iovec
->iov_len
= bytes
;
1418 kiocb
->ki_nr_segs
= 1;
1419 kiocb
->ki_cur_seg
= 0;
1425 * Performs the initial checks and aio retry method
1426 * setup for the kiocb at the time of io submission.
1428 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
, bool compat
)
1430 struct file
*file
= kiocb
->ki_filp
;
1433 switch (kiocb
->ki_opcode
) {
1434 case IOCB_CMD_PREAD
:
1436 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1439 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1442 ret
= aio_setup_single_vector(READ
, file
, kiocb
);
1446 if (file
->f_op
->aio_read
)
1447 kiocb
->ki_retry
= aio_rw_vect_retry
;
1449 case IOCB_CMD_PWRITE
:
1451 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1454 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1457 ret
= aio_setup_single_vector(WRITE
, file
, kiocb
);
1461 if (file
->f_op
->aio_write
)
1462 kiocb
->ki_retry
= aio_rw_vect_retry
;
1464 case IOCB_CMD_PREADV
:
1466 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1468 ret
= aio_setup_vectored_rw(READ
, kiocb
, compat
);
1472 if (file
->f_op
->aio_read
)
1473 kiocb
->ki_retry
= aio_rw_vect_retry
;
1475 case IOCB_CMD_PWRITEV
:
1477 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1479 ret
= aio_setup_vectored_rw(WRITE
, kiocb
, compat
);
1483 if (file
->f_op
->aio_write
)
1484 kiocb
->ki_retry
= aio_rw_vect_retry
;
1486 case IOCB_CMD_FDSYNC
:
1488 if (file
->f_op
->aio_fsync
)
1489 kiocb
->ki_retry
= aio_fdsync
;
1491 case IOCB_CMD_FSYNC
:
1493 if (file
->f_op
->aio_fsync
)
1494 kiocb
->ki_retry
= aio_fsync
;
1497 dprintk("EINVAL: io_submit: no operation provided\n");
1501 if (!kiocb
->ki_retry
)
1507 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1508 struct iocb
*iocb
, struct kiocb_batch
*batch
,
1515 /* enforce forwards compatibility on users */
1516 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1517 pr_debug("EINVAL: io_submit: reserve field set\n");
1521 /* prevent overflows */
1523 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1524 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1525 ((ssize_t
)iocb
->aio_nbytes
< 0)
1527 pr_debug("EINVAL: io_submit: overflow check\n");
1531 file
= fget(iocb
->aio_fildes
);
1532 if (unlikely(!file
))
1535 req
= aio_get_req(ctx
, batch
); /* returns with 2 references to req */
1536 if (unlikely(!req
)) {
1540 req
->ki_filp
= file
;
1541 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1543 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1544 * instance of the file* now. The file descriptor must be
1545 * an eventfd() fd, and will be signaled for each completed
1546 * event using the eventfd_signal() function.
1548 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1549 if (IS_ERR(req
->ki_eventfd
)) {
1550 ret
= PTR_ERR(req
->ki_eventfd
);
1551 req
->ki_eventfd
= NULL
;
1556 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1557 if (unlikely(ret
)) {
1558 dprintk("EFAULT: aio_key\n");
1562 req
->ki_obj
.user
= user_iocb
;
1563 req
->ki_user_data
= iocb
->aio_data
;
1564 req
->ki_pos
= iocb
->aio_offset
;
1566 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1567 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1568 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1570 ret
= aio_setup_iocb(req
, compat
);
1575 spin_lock_irq(&ctx
->ctx_lock
);
1577 * We could have raced with io_destroy() and are currently holding a
1578 * reference to ctx which should be destroyed. We cannot submit IO
1579 * since ctx gets freed as soon as io_submit() puts its reference. The
1580 * check here is reliable: io_destroy() sets ctx->dead before waiting
1581 * for outstanding IO and the barrier between these two is realized by
1582 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we
1583 * increment ctx->reqs_active before checking for ctx->dead and the
1584 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1585 * don't see ctx->dead set here, io_destroy() waits for our IO to
1589 spin_unlock_irq(&ctx
->ctx_lock
);
1594 if (!list_empty(&ctx
->run_list
)) {
1595 /* drain the run list */
1596 while (__aio_run_iocbs(ctx
))
1599 spin_unlock_irq(&ctx
->ctx_lock
);
1601 aio_put_req(req
); /* drop extra ref to req */
1605 aio_put_req(req
); /* drop extra ref to req */
1606 aio_put_req(req
); /* drop i/o ref to req */
1610 long do_io_submit(aio_context_t ctx_id
, long nr
,
1611 struct iocb __user
*__user
*iocbpp
, bool compat
)
1616 struct blk_plug plug
;
1617 struct kiocb_batch batch
;
1619 if (unlikely(nr
< 0))
1622 if (unlikely(nr
> LONG_MAX
/sizeof(*iocbpp
)))
1623 nr
= LONG_MAX
/sizeof(*iocbpp
);
1625 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1628 ctx
= lookup_ioctx(ctx_id
);
1629 if (unlikely(!ctx
)) {
1630 pr_debug("EINVAL: io_submit: invalid context id\n");
1634 kiocb_batch_init(&batch
, nr
);
1636 blk_start_plug(&plug
);
1639 * AKPM: should this return a partial result if some of the IOs were
1640 * successfully submitted?
1642 for (i
=0; i
<nr
; i
++) {
1643 struct iocb __user
*user_iocb
;
1646 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1651 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1656 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, &batch
, compat
);
1660 blk_finish_plug(&plug
);
1662 kiocb_batch_free(ctx
, &batch
);
1668 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1669 * the number of iocbs queued. May return -EINVAL if the aio_context
1670 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1671 * *iocbpp[0] is not properly initialized, if the operation specified
1672 * is invalid for the file descriptor in the iocb. May fail with
1673 * -EFAULT if any of the data structures point to invalid data. May
1674 * fail with -EBADF if the file descriptor specified in the first
1675 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1676 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1677 * fail with -ENOSYS if not implemented.
1679 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1680 struct iocb __user
* __user
*, iocbpp
)
1682 return do_io_submit(ctx_id
, nr
, iocbpp
, 0);
1686 * Finds a given iocb for cancellation.
1688 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1691 struct list_head
*pos
;
1693 assert_spin_locked(&ctx
->ctx_lock
);
1695 /* TODO: use a hash or array, this sucks. */
1696 list_for_each(pos
, &ctx
->active_reqs
) {
1697 struct kiocb
*kiocb
= list_kiocb(pos
);
1698 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1705 * Attempts to cancel an iocb previously passed to io_submit. If
1706 * the operation is successfully cancelled, the resulting event is
1707 * copied into the memory pointed to by result without being placed
1708 * into the completion queue and 0 is returned. May fail with
1709 * -EFAULT if any of the data structures pointed to are invalid.
1710 * May fail with -EINVAL if aio_context specified by ctx_id is
1711 * invalid. May fail with -EAGAIN if the iocb specified was not
1712 * cancelled. Will fail with -ENOSYS if not implemented.
1714 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1715 struct io_event __user
*, result
)
1717 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1719 struct kiocb
*kiocb
;
1723 ret
= get_user(key
, &iocb
->aio_key
);
1727 ctx
= lookup_ioctx(ctx_id
);
1731 spin_lock_irq(&ctx
->ctx_lock
);
1733 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1734 if (kiocb
&& kiocb
->ki_cancel
) {
1735 cancel
= kiocb
->ki_cancel
;
1737 kiocbSetCancelled(kiocb
);
1740 spin_unlock_irq(&ctx
->ctx_lock
);
1742 if (NULL
!= cancel
) {
1743 struct io_event tmp
;
1744 pr_debug("calling cancel\n");
1745 memset(&tmp
, 0, sizeof(tmp
));
1746 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1747 tmp
.data
= kiocb
->ki_user_data
;
1748 ret
= cancel(kiocb
, &tmp
);
1750 /* Cancellation succeeded -- copy the result
1751 * into the user's buffer.
1753 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1765 * Attempts to read at least min_nr events and up to nr events from
1766 * the completion queue for the aio_context specified by ctx_id. If
1767 * it succeeds, the number of read events is returned. May fail with
1768 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1769 * out of range, if timeout is out of range. May fail with -EFAULT
1770 * if any of the memory specified is invalid. May return 0 or
1771 * < min_nr if the timeout specified by timeout has elapsed
1772 * before sufficient events are available, where timeout == NULL
1773 * specifies an infinite timeout. Note that the timeout pointed to by
1774 * timeout is relative and will be updated if not NULL and the
1775 * operation blocks. Will fail with -ENOSYS if not implemented.
1777 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1780 struct io_event __user
*, events
,
1781 struct timespec __user
*, timeout
)
1783 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1786 if (likely(ioctx
)) {
1787 if (likely(min_nr
<= nr
&& min_nr
>= 0))
1788 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1792 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);