4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
64 #include <trace/events/task.h>
67 #include <trace/events/sched.h>
70 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
71 unsigned int core_pipe_limit
;
72 int suid_dumpable
= 0;
78 static atomic_t call_count
= ATOMIC_INIT(1);
80 /* The maximal length of core_pattern is also specified in sysctl.c */
82 static LIST_HEAD(formats
);
83 static DEFINE_RWLOCK(binfmt_lock
);
85 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
88 write_lock(&binfmt_lock
);
89 insert
? list_add(&fmt
->lh
, &formats
) :
90 list_add_tail(&fmt
->lh
, &formats
);
91 write_unlock(&binfmt_lock
);
94 EXPORT_SYMBOL(__register_binfmt
);
96 void unregister_binfmt(struct linux_binfmt
* fmt
)
98 write_lock(&binfmt_lock
);
100 write_unlock(&binfmt_lock
);
103 EXPORT_SYMBOL(unregister_binfmt
);
105 static inline void put_binfmt(struct linux_binfmt
* fmt
)
107 module_put(fmt
->module
);
111 * Note that a shared library must be both readable and executable due to
114 * Also note that we take the address to load from from the file itself.
116 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
119 char *tmp
= getname(library
);
120 int error
= PTR_ERR(tmp
);
121 static const struct open_flags uselib_flags
= {
122 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
123 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
124 .intent
= LOOKUP_OPEN
130 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
, LOOKUP_FOLLOW
);
132 error
= PTR_ERR(file
);
137 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
141 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
148 struct linux_binfmt
* fmt
;
150 read_lock(&binfmt_lock
);
151 list_for_each_entry(fmt
, &formats
, lh
) {
152 if (!fmt
->load_shlib
)
154 if (!try_module_get(fmt
->module
))
156 read_unlock(&binfmt_lock
);
157 error
= fmt
->load_shlib(file
);
158 read_lock(&binfmt_lock
);
160 if (error
!= -ENOEXEC
)
163 read_unlock(&binfmt_lock
);
173 * The nascent bprm->mm is not visible until exec_mmap() but it can
174 * use a lot of memory, account these pages in current->mm temporary
175 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
176 * change the counter back via acct_arg_size(0).
178 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
180 struct mm_struct
*mm
= current
->mm
;
181 long diff
= (long)(pages
- bprm
->vma_pages
);
186 bprm
->vma_pages
= pages
;
187 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
190 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
196 #ifdef CONFIG_STACK_GROWSUP
198 ret
= expand_downwards(bprm
->vma
, pos
);
203 ret
= get_user_pages(current
, bprm
->mm
, pos
,
204 1, write
, 1, &page
, NULL
);
209 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
212 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
215 * We've historically supported up to 32 pages (ARG_MAX)
216 * of argument strings even with small stacks
222 * Limit to 1/4-th the stack size for the argv+env strings.
224 * - the remaining binfmt code will not run out of stack space,
225 * - the program will have a reasonable amount of stack left
228 rlim
= current
->signal
->rlim
;
229 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
238 static void put_arg_page(struct page
*page
)
243 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
247 static void free_arg_pages(struct linux_binprm
*bprm
)
251 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
254 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
257 static int __bprm_mm_init(struct linux_binprm
*bprm
)
260 struct vm_area_struct
*vma
= NULL
;
261 struct mm_struct
*mm
= bprm
->mm
;
263 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
267 down_write(&mm
->mmap_sem
);
271 * Place the stack at the largest stack address the architecture
272 * supports. Later, we'll move this to an appropriate place. We don't
273 * use STACK_TOP because that can depend on attributes which aren't
276 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
277 vma
->vm_end
= STACK_TOP_MAX
;
278 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
279 vma
->vm_flags
= VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
280 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
281 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
283 err
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
287 err
= insert_vm_struct(mm
, vma
);
291 mm
->stack_vm
= mm
->total_vm
= 1;
292 up_write(&mm
->mmap_sem
);
293 bprm
->p
= vma
->vm_end
- sizeof(void *);
296 up_write(&mm
->mmap_sem
);
298 kmem_cache_free(vm_area_cachep
, vma
);
302 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
304 return len
<= MAX_ARG_STRLEN
;
309 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
313 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
318 page
= bprm
->page
[pos
/ PAGE_SIZE
];
319 if (!page
&& write
) {
320 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
323 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
329 static void put_arg_page(struct page
*page
)
333 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
336 __free_page(bprm
->page
[i
]);
337 bprm
->page
[i
] = NULL
;
341 static void free_arg_pages(struct linux_binprm
*bprm
)
345 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
346 free_arg_page(bprm
, i
);
349 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
354 static int __bprm_mm_init(struct linux_binprm
*bprm
)
356 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
360 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
362 return len
<= bprm
->p
;
365 #endif /* CONFIG_MMU */
368 * Create a new mm_struct and populate it with a temporary stack
369 * vm_area_struct. We don't have enough context at this point to set the stack
370 * flags, permissions, and offset, so we use temporary values. We'll update
371 * them later in setup_arg_pages().
373 int bprm_mm_init(struct linux_binprm
*bprm
)
376 struct mm_struct
*mm
= NULL
;
378 bprm
->mm
= mm
= mm_alloc();
383 err
= init_new_context(current
, mm
);
387 err
= __bprm_mm_init(bprm
);
402 struct user_arg_ptr
{
407 const char __user
*const __user
*native
;
409 compat_uptr_t __user
*compat
;
414 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
416 const char __user
*native
;
419 if (unlikely(argv
.is_compat
)) {
420 compat_uptr_t compat
;
422 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
423 return ERR_PTR(-EFAULT
);
425 return compat_ptr(compat
);
429 if (get_user(native
, argv
.ptr
.native
+ nr
))
430 return ERR_PTR(-EFAULT
);
436 * count() counts the number of strings in array ARGV.
438 static int count(struct user_arg_ptr argv
, int max
)
442 if (argv
.ptr
.native
!= NULL
) {
444 const char __user
*p
= get_user_arg_ptr(argv
, i
);
455 if (fatal_signal_pending(current
))
456 return -ERESTARTNOHAND
;
464 * 'copy_strings()' copies argument/environment strings from the old
465 * processes's memory to the new process's stack. The call to get_user_pages()
466 * ensures the destination page is created and not swapped out.
468 static int copy_strings(int argc
, struct user_arg_ptr argv
,
469 struct linux_binprm
*bprm
)
471 struct page
*kmapped_page
= NULL
;
473 unsigned long kpos
= 0;
477 const char __user
*str
;
482 str
= get_user_arg_ptr(argv
, argc
);
486 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
491 if (!valid_arg_len(bprm
, len
))
494 /* We're going to work our way backwords. */
500 int offset
, bytes_to_copy
;
502 if (fatal_signal_pending(current
)) {
503 ret
= -ERESTARTNOHAND
;
508 offset
= pos
% PAGE_SIZE
;
512 bytes_to_copy
= offset
;
513 if (bytes_to_copy
> len
)
516 offset
-= bytes_to_copy
;
517 pos
-= bytes_to_copy
;
518 str
-= bytes_to_copy
;
519 len
-= bytes_to_copy
;
521 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
524 page
= get_arg_page(bprm
, pos
, 1);
531 flush_kernel_dcache_page(kmapped_page
);
532 kunmap(kmapped_page
);
533 put_arg_page(kmapped_page
);
536 kaddr
= kmap(kmapped_page
);
537 kpos
= pos
& PAGE_MASK
;
538 flush_arg_page(bprm
, kpos
, kmapped_page
);
540 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
549 flush_kernel_dcache_page(kmapped_page
);
550 kunmap(kmapped_page
);
551 put_arg_page(kmapped_page
);
557 * Like copy_strings, but get argv and its values from kernel memory.
559 int copy_strings_kernel(int argc
, const char *const *__argv
,
560 struct linux_binprm
*bprm
)
563 mm_segment_t oldfs
= get_fs();
564 struct user_arg_ptr argv
= {
565 .ptr
.native
= (const char __user
*const __user
*)__argv
,
569 r
= copy_strings(argc
, argv
, bprm
);
574 EXPORT_SYMBOL(copy_strings_kernel
);
579 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
580 * the binfmt code determines where the new stack should reside, we shift it to
581 * its final location. The process proceeds as follows:
583 * 1) Use shift to calculate the new vma endpoints.
584 * 2) Extend vma to cover both the old and new ranges. This ensures the
585 * arguments passed to subsequent functions are consistent.
586 * 3) Move vma's page tables to the new range.
587 * 4) Free up any cleared pgd range.
588 * 5) Shrink the vma to cover only the new range.
590 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
592 struct mm_struct
*mm
= vma
->vm_mm
;
593 unsigned long old_start
= vma
->vm_start
;
594 unsigned long old_end
= vma
->vm_end
;
595 unsigned long length
= old_end
- old_start
;
596 unsigned long new_start
= old_start
- shift
;
597 unsigned long new_end
= old_end
- shift
;
598 struct mmu_gather tlb
;
600 BUG_ON(new_start
> new_end
);
603 * ensure there are no vmas between where we want to go
606 if (vma
!= find_vma(mm
, new_start
))
610 * cover the whole range: [new_start, old_end)
612 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
616 * move the page tables downwards, on failure we rely on
617 * process cleanup to remove whatever mess we made.
619 if (length
!= move_page_tables(vma
, old_start
,
620 vma
, new_start
, length
))
624 tlb_gather_mmu(&tlb
, mm
, 0);
625 if (new_end
> old_start
) {
627 * when the old and new regions overlap clear from new_end.
629 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
630 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
633 * otherwise, clean from old_start; this is done to not touch
634 * the address space in [new_end, old_start) some architectures
635 * have constraints on va-space that make this illegal (IA64) -
636 * for the others its just a little faster.
638 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
639 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
641 tlb_finish_mmu(&tlb
, new_end
, old_end
);
644 * Shrink the vma to just the new range. Always succeeds.
646 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
652 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
653 * the stack is optionally relocated, and some extra space is added.
655 int setup_arg_pages(struct linux_binprm
*bprm
,
656 unsigned long stack_top
,
657 int executable_stack
)
660 unsigned long stack_shift
;
661 struct mm_struct
*mm
= current
->mm
;
662 struct vm_area_struct
*vma
= bprm
->vma
;
663 struct vm_area_struct
*prev
= NULL
;
664 unsigned long vm_flags
;
665 unsigned long stack_base
;
666 unsigned long stack_size
;
667 unsigned long stack_expand
;
668 unsigned long rlim_stack
;
670 #ifdef CONFIG_STACK_GROWSUP
671 /* Limit stack size to 1GB */
672 stack_base
= rlimit_max(RLIMIT_STACK
);
673 if (stack_base
> (1 << 30))
674 stack_base
= 1 << 30;
676 /* Make sure we didn't let the argument array grow too large. */
677 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
680 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
682 stack_shift
= vma
->vm_start
- stack_base
;
683 mm
->arg_start
= bprm
->p
- stack_shift
;
684 bprm
->p
= vma
->vm_end
- stack_shift
;
686 stack_top
= arch_align_stack(stack_top
);
687 stack_top
= PAGE_ALIGN(stack_top
);
689 if (unlikely(stack_top
< mmap_min_addr
) ||
690 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
693 stack_shift
= vma
->vm_end
- stack_top
;
695 bprm
->p
-= stack_shift
;
696 mm
->arg_start
= bprm
->p
;
700 bprm
->loader
-= stack_shift
;
701 bprm
->exec
-= stack_shift
;
703 down_write(&mm
->mmap_sem
);
704 vm_flags
= VM_STACK_FLAGS
;
707 * Adjust stack execute permissions; explicitly enable for
708 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
709 * (arch default) otherwise.
711 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
713 else if (executable_stack
== EXSTACK_DISABLE_X
)
714 vm_flags
&= ~VM_EXEC
;
715 vm_flags
|= mm
->def_flags
;
716 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
718 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
724 /* Move stack pages down in memory. */
726 ret
= shift_arg_pages(vma
, stack_shift
);
731 /* mprotect_fixup is overkill to remove the temporary stack flags */
732 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
734 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
735 stack_size
= vma
->vm_end
- vma
->vm_start
;
737 * Align this down to a page boundary as expand_stack
740 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
741 #ifdef CONFIG_STACK_GROWSUP
742 if (stack_size
+ stack_expand
> rlim_stack
)
743 stack_base
= vma
->vm_start
+ rlim_stack
;
745 stack_base
= vma
->vm_end
+ stack_expand
;
747 if (stack_size
+ stack_expand
> rlim_stack
)
748 stack_base
= vma
->vm_end
- rlim_stack
;
750 stack_base
= vma
->vm_start
- stack_expand
;
752 current
->mm
->start_stack
= bprm
->p
;
753 ret
= expand_stack(vma
, stack_base
);
758 up_write(&mm
->mmap_sem
);
761 EXPORT_SYMBOL(setup_arg_pages
);
763 #endif /* CONFIG_MMU */
765 struct file
*open_exec(const char *name
)
769 static const struct open_flags open_exec_flags
= {
770 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
771 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
772 .intent
= LOOKUP_OPEN
775 file
= do_filp_open(AT_FDCWD
, name
, &open_exec_flags
, LOOKUP_FOLLOW
);
780 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
783 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
788 err
= deny_write_access(file
);
799 EXPORT_SYMBOL(open_exec
);
801 int kernel_read(struct file
*file
, loff_t offset
,
802 char *addr
, unsigned long count
)
810 /* The cast to a user pointer is valid due to the set_fs() */
811 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
816 EXPORT_SYMBOL(kernel_read
);
818 static int exec_mmap(struct mm_struct
*mm
)
820 struct task_struct
*tsk
;
821 struct mm_struct
* old_mm
, *active_mm
;
823 /* Notify parent that we're no longer interested in the old VM */
825 old_mm
= current
->mm
;
827 mm_release(tsk
, old_mm
);
831 * Make sure that if there is a core dump in progress
832 * for the old mm, we get out and die instead of going
833 * through with the exec. We must hold mmap_sem around
834 * checking core_state and changing tsk->mm.
836 down_read(&old_mm
->mmap_sem
);
837 if (unlikely(old_mm
->core_state
)) {
838 up_read(&old_mm
->mmap_sem
);
843 active_mm
= tsk
->active_mm
;
846 activate_mm(active_mm
, mm
);
848 arch_pick_mmap_layout(mm
);
850 up_read(&old_mm
->mmap_sem
);
851 BUG_ON(active_mm
!= old_mm
);
852 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
853 mm_update_next_owner(old_mm
);
862 * This function makes sure the current process has its own signal table,
863 * so that flush_signal_handlers can later reset the handlers without
864 * disturbing other processes. (Other processes might share the signal
865 * table via the CLONE_SIGHAND option to clone().)
867 static int de_thread(struct task_struct
*tsk
)
869 struct signal_struct
*sig
= tsk
->signal
;
870 struct sighand_struct
*oldsighand
= tsk
->sighand
;
871 spinlock_t
*lock
= &oldsighand
->siglock
;
873 if (thread_group_empty(tsk
))
874 goto no_thread_group
;
877 * Kill all other threads in the thread group.
880 if (signal_group_exit(sig
)) {
882 * Another group action in progress, just
883 * return so that the signal is processed.
885 spin_unlock_irq(lock
);
889 sig
->group_exit_task
= tsk
;
890 sig
->notify_count
= zap_other_threads(tsk
);
891 if (!thread_group_leader(tsk
))
894 while (sig
->notify_count
) {
895 __set_current_state(TASK_UNINTERRUPTIBLE
);
896 spin_unlock_irq(lock
);
900 spin_unlock_irq(lock
);
903 * At this point all other threads have exited, all we have to
904 * do is to wait for the thread group leader to become inactive,
905 * and to assume its PID:
907 if (!thread_group_leader(tsk
)) {
908 struct task_struct
*leader
= tsk
->group_leader
;
910 sig
->notify_count
= -1; /* for exit_notify() */
912 write_lock_irq(&tasklist_lock
);
913 if (likely(leader
->exit_state
))
915 __set_current_state(TASK_UNINTERRUPTIBLE
);
916 write_unlock_irq(&tasklist_lock
);
921 * The only record we have of the real-time age of a
922 * process, regardless of execs it's done, is start_time.
923 * All the past CPU time is accumulated in signal_struct
924 * from sister threads now dead. But in this non-leader
925 * exec, nothing survives from the original leader thread,
926 * whose birth marks the true age of this process now.
927 * When we take on its identity by switching to its PID, we
928 * also take its birthdate (always earlier than our own).
930 tsk
->start_time
= leader
->start_time
;
932 BUG_ON(!same_thread_group(leader
, tsk
));
933 BUG_ON(has_group_leader_pid(tsk
));
935 * An exec() starts a new thread group with the
936 * TGID of the previous thread group. Rehash the
937 * two threads with a switched PID, and release
938 * the former thread group leader:
941 /* Become a process group leader with the old leader's pid.
942 * The old leader becomes a thread of the this thread group.
943 * Note: The old leader also uses this pid until release_task
944 * is called. Odd but simple and correct.
946 detach_pid(tsk
, PIDTYPE_PID
);
947 tsk
->pid
= leader
->pid
;
948 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
949 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
950 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
952 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
953 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
955 tsk
->group_leader
= tsk
;
956 leader
->group_leader
= tsk
;
958 tsk
->exit_signal
= SIGCHLD
;
959 leader
->exit_signal
= -1;
961 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
962 leader
->exit_state
= EXIT_DEAD
;
965 * We are going to release_task()->ptrace_unlink() silently,
966 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
967 * the tracer wont't block again waiting for this thread.
969 if (unlikely(leader
->ptrace
))
970 __wake_up_parent(leader
, leader
->parent
);
971 write_unlock_irq(&tasklist_lock
);
973 release_task(leader
);
976 sig
->group_exit_task
= NULL
;
977 sig
->notify_count
= 0;
980 /* we have changed execution domain */
981 tsk
->exit_signal
= SIGCHLD
;
984 flush_itimer_signals();
986 if (atomic_read(&oldsighand
->count
) != 1) {
987 struct sighand_struct
*newsighand
;
989 * This ->sighand is shared with the CLONE_SIGHAND
990 * but not CLONE_THREAD task, switch to the new one.
992 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
996 atomic_set(&newsighand
->count
, 1);
997 memcpy(newsighand
->action
, oldsighand
->action
,
998 sizeof(newsighand
->action
));
1000 write_lock_irq(&tasklist_lock
);
1001 spin_lock(&oldsighand
->siglock
);
1002 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1003 spin_unlock(&oldsighand
->siglock
);
1004 write_unlock_irq(&tasklist_lock
);
1006 __cleanup_sighand(oldsighand
);
1009 BUG_ON(!thread_group_leader(tsk
));
1014 * These functions flushes out all traces of the currently running executable
1015 * so that a new one can be started
1017 static void flush_old_files(struct files_struct
* files
)
1020 struct fdtable
*fdt
;
1022 spin_lock(&files
->file_lock
);
1024 unsigned long set
, i
;
1028 fdt
= files_fdtable(files
);
1029 if (i
>= fdt
->max_fds
)
1031 set
= fdt
->close_on_exec
[j
];
1034 fdt
->close_on_exec
[j
] = 0;
1035 spin_unlock(&files
->file_lock
);
1036 for ( ; set
; i
++,set
>>= 1) {
1041 spin_lock(&files
->file_lock
);
1044 spin_unlock(&files
->file_lock
);
1047 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1049 /* buf must be at least sizeof(tsk->comm) in size */
1051 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1055 EXPORT_SYMBOL_GPL(get_task_comm
);
1057 void set_task_comm(struct task_struct
*tsk
, char *buf
)
1061 trace_task_rename(tsk
, buf
);
1064 * Threads may access current->comm without holding
1065 * the task lock, so write the string carefully.
1066 * Readers without a lock may see incomplete new
1067 * names but are safe from non-terminating string reads.
1069 memset(tsk
->comm
, 0, TASK_COMM_LEN
);
1071 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1073 perf_event_comm(tsk
);
1076 static void filename_to_taskname(char *tcomm
, const char *fn
, unsigned int len
)
1080 /* Copies the binary name from after last slash */
1081 for (i
= 0; (ch
= *(fn
++)) != '\0';) {
1083 i
= 0; /* overwrite what we wrote */
1091 int flush_old_exec(struct linux_binprm
* bprm
)
1096 * Make sure we have a private signal table and that
1097 * we are unassociated from the previous thread group.
1099 retval
= de_thread(current
);
1103 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1105 filename_to_taskname(bprm
->tcomm
, bprm
->filename
, sizeof(bprm
->tcomm
));
1107 * Release all of the old mmap stuff
1109 acct_arg_size(bprm
, 0);
1110 retval
= exec_mmap(bprm
->mm
);
1114 bprm
->mm
= NULL
; /* We're using it now */
1117 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
);
1119 current
->personality
&= ~bprm
->per_clear
;
1126 EXPORT_SYMBOL(flush_old_exec
);
1128 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1130 if (inode_permission(file
->f_path
.dentry
->d_inode
, MAY_READ
) < 0)
1131 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1133 EXPORT_SYMBOL(would_dump
);
1135 void setup_new_exec(struct linux_binprm
* bprm
)
1137 arch_pick_mmap_layout(current
->mm
);
1139 /* This is the point of no return */
1140 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1142 if (current_euid() == current_uid() && current_egid() == current_gid())
1143 set_dumpable(current
->mm
, 1);
1145 set_dumpable(current
->mm
, suid_dumpable
);
1147 set_task_comm(current
, bprm
->tcomm
);
1149 /* Set the new mm task size. We have to do that late because it may
1150 * depend on TIF_32BIT which is only updated in flush_thread() on
1151 * some architectures like powerpc
1153 current
->mm
->task_size
= TASK_SIZE
;
1155 /* install the new credentials */
1156 if (bprm
->cred
->uid
!= current_euid() ||
1157 bprm
->cred
->gid
!= current_egid()) {
1158 current
->pdeath_signal
= 0;
1160 would_dump(bprm
, bprm
->file
);
1161 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)
1162 set_dumpable(current
->mm
, suid_dumpable
);
1166 * Flush performance counters when crossing a
1169 if (!get_dumpable(current
->mm
))
1170 perf_event_exit_task(current
);
1172 /* An exec changes our domain. We are no longer part of the thread
1175 current
->self_exec_id
++;
1177 flush_signal_handlers(current
, 0);
1178 flush_old_files(current
->files
);
1180 EXPORT_SYMBOL(setup_new_exec
);
1183 * Prepare credentials and lock ->cred_guard_mutex.
1184 * install_exec_creds() commits the new creds and drops the lock.
1185 * Or, if exec fails before, free_bprm() should release ->cred and
1188 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1190 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1191 return -ERESTARTNOINTR
;
1193 bprm
->cred
= prepare_exec_creds();
1194 if (likely(bprm
->cred
))
1197 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1201 void free_bprm(struct linux_binprm
*bprm
)
1203 free_arg_pages(bprm
);
1205 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1206 abort_creds(bprm
->cred
);
1212 * install the new credentials for this executable
1214 void install_exec_creds(struct linux_binprm
*bprm
)
1216 security_bprm_committing_creds(bprm
);
1218 commit_creds(bprm
->cred
);
1221 * cred_guard_mutex must be held at least to this point to prevent
1222 * ptrace_attach() from altering our determination of the task's
1223 * credentials; any time after this it may be unlocked.
1225 security_bprm_committed_creds(bprm
);
1226 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1228 EXPORT_SYMBOL(install_exec_creds
);
1231 * determine how safe it is to execute the proposed program
1232 * - the caller must hold ->cred_guard_mutex to protect against
1235 static int check_unsafe_exec(struct linux_binprm
*bprm
)
1237 struct task_struct
*p
= current
, *t
;
1242 if (p
->ptrace
& PT_PTRACE_CAP
)
1243 bprm
->unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1245 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1249 spin_lock(&p
->fs
->lock
);
1251 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1257 if (p
->fs
->users
> n_fs
) {
1258 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1261 if (!p
->fs
->in_exec
) {
1266 spin_unlock(&p
->fs
->lock
);
1272 * Fill the binprm structure from the inode.
1273 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1275 * This may be called multiple times for binary chains (scripts for example).
1277 int prepare_binprm(struct linux_binprm
*bprm
)
1280 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1283 mode
= inode
->i_mode
;
1284 if (bprm
->file
->f_op
== NULL
)
1287 /* clear any previous set[ug]id data from a previous binary */
1288 bprm
->cred
->euid
= current_euid();
1289 bprm
->cred
->egid
= current_egid();
1291 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1293 if (mode
& S_ISUID
) {
1294 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1295 bprm
->cred
->euid
= inode
->i_uid
;
1300 * If setgid is set but no group execute bit then this
1301 * is a candidate for mandatory locking, not a setgid
1304 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1305 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1306 bprm
->cred
->egid
= inode
->i_gid
;
1310 /* fill in binprm security blob */
1311 retval
= security_bprm_set_creds(bprm
);
1314 bprm
->cred_prepared
= 1;
1316 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1317 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1320 EXPORT_SYMBOL(prepare_binprm
);
1323 * Arguments are '\0' separated strings found at the location bprm->p
1324 * points to; chop off the first by relocating brpm->p to right after
1325 * the first '\0' encountered.
1327 int remove_arg_zero(struct linux_binprm
*bprm
)
1330 unsigned long offset
;
1338 offset
= bprm
->p
& ~PAGE_MASK
;
1339 page
= get_arg_page(bprm
, bprm
->p
, 0);
1344 kaddr
= kmap_atomic(page
);
1346 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1347 offset
++, bprm
->p
++)
1350 kunmap_atomic(kaddr
);
1353 if (offset
== PAGE_SIZE
)
1354 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1355 } while (offset
== PAGE_SIZE
);
1364 EXPORT_SYMBOL(remove_arg_zero
);
1367 * cycle the list of binary formats handler, until one recognizes the image
1369 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1371 unsigned int depth
= bprm
->recursion_depth
;
1373 struct linux_binfmt
*fmt
;
1376 retval
= security_bprm_check(bprm
);
1380 retval
= audit_bprm(bprm
);
1384 /* Need to fetch pid before load_binary changes it */
1386 old_pid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1390 for (try=0; try<2; try++) {
1391 read_lock(&binfmt_lock
);
1392 list_for_each_entry(fmt
, &formats
, lh
) {
1393 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1396 if (!try_module_get(fmt
->module
))
1398 read_unlock(&binfmt_lock
);
1399 retval
= fn(bprm
, regs
);
1401 * Restore the depth counter to its starting value
1402 * in this call, so we don't have to rely on every
1403 * load_binary function to restore it on return.
1405 bprm
->recursion_depth
= depth
;
1408 trace_sched_process_exec(current
, old_pid
, bprm
);
1409 ptrace_event(PTRACE_EVENT_EXEC
, old_pid
);
1412 allow_write_access(bprm
->file
);
1416 current
->did_exec
= 1;
1417 proc_exec_connector(current
);
1420 read_lock(&binfmt_lock
);
1422 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1425 read_unlock(&binfmt_lock
);
1429 read_unlock(&binfmt_lock
);
1430 #ifdef CONFIG_MODULES
1431 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1434 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1435 if (printable(bprm
->buf
[0]) &&
1436 printable(bprm
->buf
[1]) &&
1437 printable(bprm
->buf
[2]) &&
1438 printable(bprm
->buf
[3]))
1439 break; /* -ENOEXEC */
1441 break; /* -ENOEXEC */
1442 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1451 EXPORT_SYMBOL(search_binary_handler
);
1454 * sys_execve() executes a new program.
1456 static int do_execve_common(const char *filename
,
1457 struct user_arg_ptr argv
,
1458 struct user_arg_ptr envp
,
1459 struct pt_regs
*regs
)
1461 struct linux_binprm
*bprm
;
1463 struct files_struct
*displaced
;
1466 const struct cred
*cred
= current_cred();
1469 * We move the actual failure in case of RLIMIT_NPROC excess from
1470 * set*uid() to execve() because too many poorly written programs
1471 * don't check setuid() return code. Here we additionally recheck
1472 * whether NPROC limit is still exceeded.
1474 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1475 atomic_read(&cred
->user
->processes
) > rlimit(RLIMIT_NPROC
)) {
1480 /* We're below the limit (still or again), so we don't want to make
1481 * further execve() calls fail. */
1482 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1484 retval
= unshare_files(&displaced
);
1489 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1493 retval
= prepare_bprm_creds(bprm
);
1497 retval
= check_unsafe_exec(bprm
);
1500 clear_in_exec
= retval
;
1501 current
->in_execve
= 1;
1503 file
= open_exec(filename
);
1504 retval
= PTR_ERR(file
);
1511 bprm
->filename
= filename
;
1512 bprm
->interp
= filename
;
1514 retval
= bprm_mm_init(bprm
);
1518 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1519 if ((retval
= bprm
->argc
) < 0)
1522 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1523 if ((retval
= bprm
->envc
) < 0)
1526 retval
= prepare_binprm(bprm
);
1530 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1534 bprm
->exec
= bprm
->p
;
1535 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1539 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1543 retval
= search_binary_handler(bprm
,regs
);
1547 /* execve succeeded */
1548 current
->fs
->in_exec
= 0;
1549 current
->in_execve
= 0;
1550 acct_update_integrals(current
);
1553 put_files_struct(displaced
);
1558 acct_arg_size(bprm
, 0);
1564 allow_write_access(bprm
->file
);
1570 current
->fs
->in_exec
= 0;
1571 current
->in_execve
= 0;
1578 reset_files_struct(displaced
);
1583 int do_execve(const char *filename
,
1584 const char __user
*const __user
*__argv
,
1585 const char __user
*const __user
*__envp
,
1586 struct pt_regs
*regs
)
1588 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1589 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1590 return do_execve_common(filename
, argv
, envp
, regs
);
1593 #ifdef CONFIG_COMPAT
1594 int compat_do_execve(char *filename
,
1595 compat_uptr_t __user
*__argv
,
1596 compat_uptr_t __user
*__envp
,
1597 struct pt_regs
*regs
)
1599 struct user_arg_ptr argv
= {
1601 .ptr
.compat
= __argv
,
1603 struct user_arg_ptr envp
= {
1605 .ptr
.compat
= __envp
,
1607 return do_execve_common(filename
, argv
, envp
, regs
);
1611 void set_binfmt(struct linux_binfmt
*new)
1613 struct mm_struct
*mm
= current
->mm
;
1616 module_put(mm
->binfmt
->module
);
1620 __module_get(new->module
);
1623 EXPORT_SYMBOL(set_binfmt
);
1625 static int expand_corename(struct core_name
*cn
)
1627 char *old_corename
= cn
->corename
;
1629 cn
->size
= CORENAME_MAX_SIZE
* atomic_inc_return(&call_count
);
1630 cn
->corename
= krealloc(old_corename
, cn
->size
, GFP_KERNEL
);
1632 if (!cn
->corename
) {
1633 kfree(old_corename
);
1640 static int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
1648 need
= vsnprintf(NULL
, 0, fmt
, arg
);
1651 if (likely(need
< cn
->size
- cn
->used
- 1))
1654 ret
= expand_corename(cn
);
1659 cur
= cn
->corename
+ cn
->used
;
1661 vsnprintf(cur
, need
+ 1, fmt
, arg
);
1670 static void cn_escape(char *str
)
1677 static int cn_print_exe_file(struct core_name
*cn
)
1679 struct file
*exe_file
;
1680 char *pathbuf
, *path
;
1683 exe_file
= get_mm_exe_file(current
->mm
);
1685 char *commstart
= cn
->corename
+ cn
->used
;
1686 ret
= cn_printf(cn
, "%s (path unknown)", current
->comm
);
1687 cn_escape(commstart
);
1691 pathbuf
= kmalloc(PATH_MAX
, GFP_TEMPORARY
);
1697 path
= d_path(&exe_file
->f_path
, pathbuf
, PATH_MAX
);
1699 ret
= PTR_ERR(path
);
1705 ret
= cn_printf(cn
, "%s", path
);
1714 /* format_corename will inspect the pattern parameter, and output a
1715 * name into corename, which must have space for at least
1716 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1718 static int format_corename(struct core_name
*cn
, long signr
)
1720 const struct cred
*cred
= current_cred();
1721 const char *pat_ptr
= core_pattern
;
1722 int ispipe
= (*pat_ptr
== '|');
1723 int pid_in_pattern
= 0;
1726 cn
->size
= CORENAME_MAX_SIZE
* atomic_read(&call_count
);
1727 cn
->corename
= kmalloc(cn
->size
, GFP_KERNEL
);
1733 /* Repeat as long as we have more pattern to process and more output
1736 if (*pat_ptr
!= '%') {
1739 err
= cn_printf(cn
, "%c", *pat_ptr
++);
1741 switch (*++pat_ptr
) {
1742 /* single % at the end, drop that */
1745 /* Double percent, output one percent */
1747 err
= cn_printf(cn
, "%c", '%');
1752 err
= cn_printf(cn
, "%d",
1753 task_tgid_vnr(current
));
1757 err
= cn_printf(cn
, "%d", cred
->uid
);
1761 err
= cn_printf(cn
, "%d", cred
->gid
);
1763 /* signal that caused the coredump */
1765 err
= cn_printf(cn
, "%ld", signr
);
1767 /* UNIX time of coredump */
1770 do_gettimeofday(&tv
);
1771 err
= cn_printf(cn
, "%lu", tv
.tv_sec
);
1776 char *namestart
= cn
->corename
+ cn
->used
;
1777 down_read(&uts_sem
);
1778 err
= cn_printf(cn
, "%s",
1779 utsname()->nodename
);
1781 cn_escape(namestart
);
1786 char *commstart
= cn
->corename
+ cn
->used
;
1787 err
= cn_printf(cn
, "%s", current
->comm
);
1788 cn_escape(commstart
);
1792 err
= cn_print_exe_file(cn
);
1794 /* core limit size */
1796 err
= cn_printf(cn
, "%lu",
1797 rlimit(RLIMIT_CORE
));
1809 /* Backward compatibility with core_uses_pid:
1811 * If core_pattern does not include a %p (as is the default)
1812 * and core_uses_pid is set, then .%pid will be appended to
1813 * the filename. Do not do this for piped commands. */
1814 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1815 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
1823 static int zap_process(struct task_struct
*start
, int exit_code
)
1825 struct task_struct
*t
;
1828 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1829 start
->signal
->group_exit_code
= exit_code
;
1830 start
->signal
->group_stop_count
= 0;
1834 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
1835 if (t
!= current
&& t
->mm
) {
1836 sigaddset(&t
->pending
.signal
, SIGKILL
);
1837 signal_wake_up(t
, 1);
1840 } while_each_thread(start
, t
);
1845 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1846 struct core_state
*core_state
, int exit_code
)
1848 struct task_struct
*g
, *p
;
1849 unsigned long flags
;
1852 spin_lock_irq(&tsk
->sighand
->siglock
);
1853 if (!signal_group_exit(tsk
->signal
)) {
1854 mm
->core_state
= core_state
;
1855 nr
= zap_process(tsk
, exit_code
);
1857 spin_unlock_irq(&tsk
->sighand
->siglock
);
1858 if (unlikely(nr
< 0))
1861 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1864 * We should find and kill all tasks which use this mm, and we should
1865 * count them correctly into ->nr_threads. We don't take tasklist
1866 * lock, but this is safe wrt:
1869 * None of sub-threads can fork after zap_process(leader). All
1870 * processes which were created before this point should be
1871 * visible to zap_threads() because copy_process() adds the new
1872 * process to the tail of init_task.tasks list, and lock/unlock
1873 * of ->siglock provides a memory barrier.
1876 * The caller holds mm->mmap_sem. This means that the task which
1877 * uses this mm can't pass exit_mm(), so it can't exit or clear
1881 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1882 * we must see either old or new leader, this does not matter.
1883 * However, it can change p->sighand, so lock_task_sighand(p)
1884 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1887 * Note also that "g" can be the old leader with ->mm == NULL
1888 * and already unhashed and thus removed from ->thread_group.
1889 * This is OK, __unhash_process()->list_del_rcu() does not
1890 * clear the ->next pointer, we will find the new leader via
1894 for_each_process(g
) {
1895 if (g
== tsk
->group_leader
)
1897 if (g
->flags
& PF_KTHREAD
)
1902 if (unlikely(p
->mm
== mm
)) {
1903 lock_task_sighand(p
, &flags
);
1904 nr
+= zap_process(p
, exit_code
);
1905 unlock_task_sighand(p
, &flags
);
1909 } while_each_thread(g
, p
);
1913 atomic_set(&core_state
->nr_threads
, nr
);
1917 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1919 struct task_struct
*tsk
= current
;
1920 struct mm_struct
*mm
= tsk
->mm
;
1921 int core_waiters
= -EBUSY
;
1923 init_completion(&core_state
->startup
);
1924 core_state
->dumper
.task
= tsk
;
1925 core_state
->dumper
.next
= NULL
;
1927 down_write(&mm
->mmap_sem
);
1928 if (!mm
->core_state
)
1929 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1930 up_write(&mm
->mmap_sem
);
1932 if (core_waiters
> 0)
1933 wait_for_completion(&core_state
->startup
);
1935 return core_waiters
;
1938 static void coredump_finish(struct mm_struct
*mm
)
1940 struct core_thread
*curr
, *next
;
1941 struct task_struct
*task
;
1943 next
= mm
->core_state
->dumper
.next
;
1944 while ((curr
= next
) != NULL
) {
1948 * see exit_mm(), curr->task must not see
1949 * ->task == NULL before we read ->next.
1953 wake_up_process(task
);
1956 mm
->core_state
= NULL
;
1960 * set_dumpable converts traditional three-value dumpable to two flags and
1961 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1962 * these bits are not changed atomically. So get_dumpable can observe the
1963 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1964 * return either old dumpable or new one by paying attention to the order of
1965 * modifying the bits.
1967 * dumpable | mm->flags (binary)
1968 * old new | initial interim final
1969 * ---------+-----------------------
1977 * (*) get_dumpable regards interim value of 10 as 11.
1979 void set_dumpable(struct mm_struct
*mm
, int value
)
1983 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1985 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1988 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1990 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1993 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1995 set_bit(MMF_DUMPABLE
, &mm
->flags
);
2000 static int __get_dumpable(unsigned long mm_flags
)
2004 ret
= mm_flags
& MMF_DUMPABLE_MASK
;
2005 return (ret
>= 2) ? 2 : ret
;
2008 int get_dumpable(struct mm_struct
*mm
)
2010 return __get_dumpable(mm
->flags
);
2013 static void wait_for_dump_helpers(struct file
*file
)
2015 struct pipe_inode_info
*pipe
;
2017 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
2023 while ((pipe
->readers
> 1) && (!signal_pending(current
))) {
2024 wake_up_interruptible_sync(&pipe
->wait
);
2025 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
2038 * helper function to customize the process used
2039 * to collect the core in userspace. Specifically
2040 * it sets up a pipe and installs it as fd 0 (stdin)
2041 * for the process. Returns 0 on success, or
2042 * PTR_ERR on failure.
2043 * Note that it also sets the core limit to 1. This
2044 * is a special value that we use to trap recursive
2047 static int umh_pipe_setup(struct subprocess_info
*info
, struct cred
*new)
2049 struct file
*rp
, *wp
;
2050 struct fdtable
*fdt
;
2051 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
2052 struct files_struct
*cf
= current
->files
;
2054 wp
= create_write_pipe(0);
2058 rp
= create_read_pipe(wp
, 0);
2060 free_write_pipe(wp
);
2068 spin_lock(&cf
->file_lock
);
2069 fdt
= files_fdtable(cf
);
2070 __set_open_fd(0, fdt
);
2071 __clear_close_on_exec(0, fdt
);
2072 spin_unlock(&cf
->file_lock
);
2074 /* and disallow core files too */
2075 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
2080 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
2082 struct core_state core_state
;
2083 struct core_name cn
;
2084 struct mm_struct
*mm
= current
->mm
;
2085 struct linux_binfmt
* binfmt
;
2086 const struct cred
*old_cred
;
2091 static atomic_t core_dump_count
= ATOMIC_INIT(0);
2092 struct coredump_params cprm
= {
2095 .limit
= rlimit(RLIMIT_CORE
),
2097 * We must use the same mm->flags while dumping core to avoid
2098 * inconsistency of bit flags, since this flag is not protected
2101 .mm_flags
= mm
->flags
,
2104 audit_core_dumps(signr
);
2106 binfmt
= mm
->binfmt
;
2107 if (!binfmt
|| !binfmt
->core_dump
)
2109 if (!__get_dumpable(cprm
.mm_flags
))
2112 cred
= prepare_creds();
2116 * We cannot trust fsuid as being the "true" uid of the
2117 * process nor do we know its entire history. We only know it
2118 * was tainted so we dump it as root in mode 2.
2120 if (__get_dumpable(cprm
.mm_flags
) == 2) {
2121 /* Setuid core dump mode */
2122 flag
= O_EXCL
; /* Stop rewrite attacks */
2123 cred
->fsuid
= 0; /* Dump root private */
2126 retval
= coredump_wait(exit_code
, &core_state
);
2130 old_cred
= override_creds(cred
);
2133 * Clear any false indication of pending signals that might
2134 * be seen by the filesystem code called to write the core file.
2136 clear_thread_flag(TIF_SIGPENDING
);
2138 ispipe
= format_corename(&cn
, signr
);
2145 printk(KERN_WARNING
"format_corename failed\n");
2146 printk(KERN_WARNING
"Aborting core\n");
2150 if (cprm
.limit
== 1) {
2152 * Normally core limits are irrelevant to pipes, since
2153 * we're not writing to the file system, but we use
2154 * cprm.limit of 1 here as a speacial value. Any
2155 * non-1 limit gets set to RLIM_INFINITY below, but
2156 * a limit of 0 skips the dump. This is a consistent
2157 * way to catch recursive crashes. We can still crash
2158 * if the core_pattern binary sets RLIM_CORE = !1
2159 * but it runs as root, and can do lots of stupid things
2160 * Note that we use task_tgid_vnr here to grab the pid
2161 * of the process group leader. That way we get the
2162 * right pid if a thread in a multi-threaded
2163 * core_pattern process dies.
2166 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2167 task_tgid_vnr(current
), current
->comm
);
2168 printk(KERN_WARNING
"Aborting core\n");
2171 cprm
.limit
= RLIM_INFINITY
;
2173 dump_count
= atomic_inc_return(&core_dump_count
);
2174 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
2175 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
2176 task_tgid_vnr(current
), current
->comm
);
2177 printk(KERN_WARNING
"Skipping core dump\n");
2178 goto fail_dropcount
;
2181 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
+1, NULL
);
2183 printk(KERN_WARNING
"%s failed to allocate memory\n",
2185 goto fail_dropcount
;
2188 retval
= call_usermodehelper_fns(helper_argv
[0], helper_argv
,
2189 NULL
, UMH_WAIT_EXEC
, umh_pipe_setup
,
2191 argv_free(helper_argv
);
2193 printk(KERN_INFO
"Core dump to %s pipe failed\n",
2198 struct inode
*inode
;
2200 if (cprm
.limit
< binfmt
->min_coredump
)
2203 cprm
.file
= filp_open(cn
.corename
,
2204 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
2206 if (IS_ERR(cprm
.file
))
2209 inode
= cprm
.file
->f_path
.dentry
->d_inode
;
2210 if (inode
->i_nlink
> 1)
2212 if (d_unhashed(cprm
.file
->f_path
.dentry
))
2215 * AK: actually i see no reason to not allow this for named
2216 * pipes etc, but keep the previous behaviour for now.
2218 if (!S_ISREG(inode
->i_mode
))
2221 * Dont allow local users get cute and trick others to coredump
2222 * into their pre-created files.
2224 if (inode
->i_uid
!= current_fsuid())
2226 if (!cprm
.file
->f_op
|| !cprm
.file
->f_op
->write
)
2228 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
2232 retval
= binfmt
->core_dump(&cprm
);
2234 current
->signal
->group_exit_code
|= 0x80;
2236 if (ispipe
&& core_pipe_limit
)
2237 wait_for_dump_helpers(cprm
.file
);
2240 filp_close(cprm
.file
, NULL
);
2243 atomic_dec(&core_dump_count
);
2247 coredump_finish(mm
);
2248 revert_creds(old_cred
);
2256 * Core dumping helper functions. These are the only things you should
2257 * do on a core-file: use only these functions to write out all the
2260 int dump_write(struct file
*file
, const void *addr
, int nr
)
2262 return access_ok(VERIFY_READ
, addr
, nr
) && file
->f_op
->write(file
, addr
, nr
, &file
->f_pos
) == nr
;
2264 EXPORT_SYMBOL(dump_write
);
2266 int dump_seek(struct file
*file
, loff_t off
)
2270 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
2271 if (file
->f_op
->llseek(file
, off
, SEEK_CUR
) < 0)
2274 char *buf
= (char *)get_zeroed_page(GFP_KERNEL
);
2279 unsigned long n
= off
;
2283 if (!dump_write(file
, buf
, n
)) {
2289 free_page((unsigned long)buf
);
2293 EXPORT_SYMBOL(dump_seek
);