Merge branch 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6
[linux-2.6/libata-dev.git] / drivers / atm / ambassador.c
blob8ff5c4e50823bfbe7cac35f0544ab750ee024363
1 /*
2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
36 #include <asm/atomic.h>
37 #include <asm/io.h>
38 #include <asm/byteorder.h>
40 #include "ambassador.h"
42 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
43 #define description_string "Madge ATM Ambassador driver"
44 #define version_string "1.2.4"
46 static inline void __init show_version (void) {
47 printk ("%s version %s\n", description_string, version_string);
52 Theory of Operation
54 I Hardware, detection, initialisation and shutdown.
56 1. Supported Hardware
58 This driver is for the PCI ATMizer-based Ambassador card (except
59 very early versions). It is not suitable for the similar EISA "TR7"
60 card. Commercially, both cards are known as Collage Server ATM
61 adapters.
63 The loader supports image transfer to the card, image start and few
64 other miscellaneous commands.
66 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
68 The cards are big-endian.
70 2. Detection
72 Standard PCI stuff, the early cards are detected and rejected.
74 3. Initialisation
76 The cards are reset and the self-test results are checked. The
77 microcode image is then transferred and started. This waits for a
78 pointer to a descriptor containing details of the host-based queues
79 and buffers and various parameters etc. Once they are processed
80 normal operations may begin. The BIA is read using a microcode
81 command.
83 4. Shutdown
85 This may be accomplished either by a card reset or via the microcode
86 shutdown command. Further investigation required.
88 5. Persistent state
90 The card reset does not affect PCI configuration (good) or the
91 contents of several other "shared run-time registers" (bad) which
92 include doorbell and interrupt control as well as EEPROM and PCI
93 control. The driver must be careful when modifying these registers
94 not to touch bits it does not use and to undo any changes at exit.
96 II Driver software
98 0. Generalities
100 The adapter is quite intelligent (fast) and has a simple interface
101 (few features). VPI is always zero, 1024 VCIs are supported. There
102 is limited cell rate support. UBR channels can be capped and ABR
103 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
104 support.
106 1. Driver <-> Adapter Communication
108 Apart from the basic loader commands, the driver communicates
109 through three entities: the command queue (CQ), the transmit queue
110 pair (TXQ) and the receive queue pairs (RXQ). These three entities
111 are set up by the host and passed to the microcode just after it has
112 been started.
114 All queues are host-based circular queues. They are contiguous and
115 (due to hardware limitations) have some restrictions as to their
116 locations in (bus) memory. They are of the "full means the same as
117 empty so don't do that" variety since the adapter uses pointers
118 internally.
120 The queue pairs work as follows: one queue is for supply to the
121 adapter, items in it are pending and are owned by the adapter; the
122 other is the queue for return from the adapter, items in it have
123 been dealt with by the adapter. The host adds items to the supply
124 (TX descriptors and free RX buffer descriptors) and removes items
125 from the return (TX and RX completions). The adapter deals with out
126 of order completions.
128 Interrupts (card to host) and the doorbell (host to card) are used
129 for signalling.
131 1. CQ
133 This is to communicate "open VC", "close VC", "get stats" etc. to
134 the adapter. At most one command is retired every millisecond by the
135 card. There is no out of order completion or notification. The
136 driver needs to check the return code of the command, waiting as
137 appropriate.
139 2. TXQ
141 TX supply items are of variable length (scatter gather support) and
142 so the queue items are (more or less) pointers to the real thing.
143 Each TX supply item contains a unique, host-supplied handle (the skb
144 bus address seems most sensible as this works for Alphas as well,
145 there is no need to do any endian conversions on the handles).
147 TX return items consist of just the handles above.
149 3. RXQ (up to 4 of these with different lengths and buffer sizes)
151 RX supply items consist of a unique, host-supplied handle (the skb
152 bus address again) and a pointer to the buffer data area.
154 RX return items consist of the handle above, the VC, length and a
155 status word. This just screams "oh so easy" doesn't it?
157 Note on RX pool sizes:
159 Each pool should have enough buffers to handle a back-to-back stream
160 of minimum sized frames on a single VC. For example:
162 frame spacing = 3us (about right)
164 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
166 min number of buffers for one VC = 1 + delay/spacing (buffers)
168 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
170 The 20us delay assumes that there is no need to sleep; if we need to
171 sleep to get buffers we are going to drop frames anyway.
173 In fact, each pool should have enough buffers to support the
174 simultaneous reassembly of a separate frame on each VC and cope with
175 the case in which frames complete in round robin cell fashion on
176 each VC.
178 Only one frame can complete at each cell arrival, so if "n" VCs are
179 open, the worst case is to have them all complete frames together
180 followed by all starting new frames together.
182 desired number of buffers = n + delay/spacing
184 These are the extreme requirements, however, they are "n+k" for some
185 "k" so we have only the constant to choose. This is the argument
186 rx_lats which current defaults to 7.
188 Actually, "n ? n+k : 0" is better and this is what is implemented,
189 subject to the limit given by the pool size.
191 4. Driver locking
193 Simple spinlocks are used around the TX and RX queue mechanisms.
194 Anyone with a faster, working method is welcome to implement it.
196 The adapter command queue is protected with a spinlock. We always
197 wait for commands to complete.
199 A more complex form of locking is used around parts of the VC open
200 and close functions. There are three reasons for a lock: 1. we need
201 to do atomic rate reservation and release (not used yet), 2. Opening
202 sometimes involves two adapter commands which must not be separated
203 by another command on the same VC, 3. the changes to RX pool size
204 must be atomic. The lock needs to work over context switches, so we
205 use a semaphore.
207 III Hardware Features and Microcode Bugs
209 1. Byte Ordering
211 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
213 2. Memory access
215 All structures that are not accessed using DMA must be 4-byte
216 aligned (not a problem) and must not cross 4MB boundaries.
218 There is a DMA memory hole at E0000000-E00000FF (groan).
220 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
221 but for a hardware bug).
223 RX buffers (DMA write) must not cross 16MB boundaries and must
224 include spare trailing bytes up to the next 4-byte boundary; they
225 will be written with rubbish.
227 The PLX likes to prefetch; if reading up to 4 u32 past the end of
228 each TX fragment is not a problem, then TX can be made to go a
229 little faster by passing a flag at init that disables a prefetch
230 workaround. We do not pass this flag. (new microcode only)
232 Now we:
233 . Note that alloc_skb rounds up size to a 16byte boundary.
234 . Ensure all areas do not traverse 4MB boundaries.
235 . Ensure all areas do not start at a E00000xx bus address.
236 (I cannot be certain, but this may always hold with Linux)
237 . Make all failures cause a loud message.
238 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
239 . Discard non-conforming TX fragment descriptors (the TX fails).
240 In the future we could:
241 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
242 . Segment TX areas into some/more fragments, when necessary.
243 . Relax checks for non-DMA items (ignore hole).
244 . Give scatter-gather (iovec) requirements using ???. (?)
246 3. VC close is broken (only for new microcode)
248 The VC close adapter microcode command fails to do anything if any
249 frames have been received on the VC but none have been transmitted.
250 Frames continue to be reassembled and passed (with IRQ) to the
251 driver.
253 IV To Do List
255 . Fix bugs!
257 . Timer code may be broken.
259 . Deal with buggy VC close (somehow) in microcode 12.
261 . Handle interrupted and/or non-blocking writes - is this a job for
262 the protocol layer?
264 . Add code to break up TX fragments when they span 4MB boundaries.
266 . Add SUNI phy layer (need to know where SUNI lives on card).
268 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
269 leave extra headroom space for Ambassador TX descriptors.
271 . Understand these elements of struct atm_vcc: recvq (proto?),
272 sleep, callback, listenq, backlog_quota, reply and user_back.
274 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
276 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
278 . Decide whether RX buffer recycling is or can be made completely safe;
279 turn it back on. It looks like Werner is going to axe this.
281 . Implement QoS changes on open VCs (involves extracting parts of VC open
282 and close into separate functions and using them to make changes).
284 . Hack on command queue so that someone can issue multiple commands and wait
285 on the last one (OR only "no-op" or "wait" commands are waited for).
287 . Eliminate need for while-schedule around do_command.
291 /********** microcode **********/
293 #ifdef AMB_NEW_MICROCODE
294 #define UCODE(x) UCODE2(atmsar12.x)
295 #else
296 #define UCODE(x) UCODE2(atmsar11.x)
297 #endif
298 #define UCODE2(x) #x
300 static u32 __devinitdata ucode_start =
301 #include UCODE(start)
304 static region __devinitdata ucode_regions[] = {
305 #include UCODE(regions)
306 { 0, 0 }
309 static u32 __devinitdata ucode_data[] = {
310 #include UCODE(data)
311 0xdeadbeef
314 static void do_housekeeping (unsigned long arg);
315 /********** globals **********/
317 static unsigned short debug = 0;
318 static unsigned int cmds = 8;
319 static unsigned int txs = 32;
320 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
321 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
322 static unsigned int rx_lats = 7;
323 static unsigned char pci_lat = 0;
325 static const unsigned long onegigmask = -1 << 30;
327 /********** access to adapter **********/
329 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
330 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
331 #ifdef AMB_MMIO
332 dev->membase[addr / sizeof(u32)] = data;
333 #else
334 outl (data, dev->iobase + addr);
335 #endif
338 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
339 #ifdef AMB_MMIO
340 u32 data = dev->membase[addr / sizeof(u32)];
341 #else
342 u32 data = inl (dev->iobase + addr);
343 #endif
344 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
345 return data;
348 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
349 __be32 be = cpu_to_be32 (data);
350 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
351 #ifdef AMB_MMIO
352 dev->membase[addr / sizeof(u32)] = be;
353 #else
354 outl (be, dev->iobase + addr);
355 #endif
358 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
359 #ifdef AMB_MMIO
360 __be32 be = dev->membase[addr / sizeof(u32)];
361 #else
362 __be32 be = inl (dev->iobase + addr);
363 #endif
364 u32 data = be32_to_cpu (be);
365 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
366 return data;
369 /********** dump routines **********/
371 static inline void dump_registers (const amb_dev * dev) {
372 #ifdef DEBUG_AMBASSADOR
373 if (debug & DBG_REGS) {
374 size_t i;
375 PRINTD (DBG_REGS, "reading PLX control: ");
376 for (i = 0x00; i < 0x30; i += sizeof(u32))
377 rd_mem (dev, i);
378 PRINTD (DBG_REGS, "reading mailboxes: ");
379 for (i = 0x40; i < 0x60; i += sizeof(u32))
380 rd_mem (dev, i);
381 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
382 for (i = 0x60; i < 0x70; i += sizeof(u32))
383 rd_mem (dev, i);
385 #else
386 (void) dev;
387 #endif
388 return;
391 static inline void dump_loader_block (volatile loader_block * lb) {
392 #ifdef DEBUG_AMBASSADOR
393 unsigned int i;
394 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
395 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
396 for (i = 0; i < MAX_COMMAND_DATA; ++i)
397 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
398 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
399 #else
400 (void) lb;
401 #endif
402 return;
405 static inline void dump_command (command * cmd) {
406 #ifdef DEBUG_AMBASSADOR
407 unsigned int i;
408 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
409 cmd, /*be32_to_cpu*/ (cmd->request));
410 for (i = 0; i < 3; ++i)
411 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
412 PRINTDE (DBG_CMD, "");
413 #else
414 (void) cmd;
415 #endif
416 return;
419 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
420 #ifdef DEBUG_AMBASSADOR
421 unsigned int i;
422 unsigned char * data = skb->data;
423 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
424 for (i=0; i<skb->len && i < 256;i++)
425 PRINTDM (DBG_DATA, "%02x ", data[i]);
426 PRINTDE (DBG_DATA,"");
427 #else
428 (void) prefix;
429 (void) vc;
430 (void) skb;
431 #endif
432 return;
435 /********** check memory areas for use by Ambassador **********/
437 /* see limitations under Hardware Features */
439 static inline int check_area (void * start, size_t length) {
440 // assumes length > 0
441 const u32 fourmegmask = -1 << 22;
442 const u32 twofivesixmask = -1 << 8;
443 const u32 starthole = 0xE0000000;
444 u32 startaddress = virt_to_bus (start);
445 u32 lastaddress = startaddress+length-1;
446 if ((startaddress ^ lastaddress) & fourmegmask ||
447 (startaddress & twofivesixmask) == starthole) {
448 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
449 startaddress, lastaddress);
450 return -1;
451 } else {
452 return 0;
456 /********** free an skb (as per ATM device driver documentation) **********/
458 static inline void amb_kfree_skb (struct sk_buff * skb) {
459 if (ATM_SKB(skb)->vcc->pop) {
460 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
461 } else {
462 dev_kfree_skb_any (skb);
466 /********** TX completion **********/
468 static inline void tx_complete (amb_dev * dev, tx_out * tx) {
469 tx_simple * tx_descr = bus_to_virt (tx->handle);
470 struct sk_buff * skb = tx_descr->skb;
472 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
474 // VC layer stats
475 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
477 // free the descriptor
478 kfree (tx_descr);
480 // free the skb
481 amb_kfree_skb (skb);
483 dev->stats.tx_ok++;
484 return;
487 /********** RX completion **********/
489 static void rx_complete (amb_dev * dev, rx_out * rx) {
490 struct sk_buff * skb = bus_to_virt (rx->handle);
491 u16 vc = be16_to_cpu (rx->vc);
492 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
493 u16 status = be16_to_cpu (rx->status);
494 u16 rx_len = be16_to_cpu (rx->length);
496 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
498 // XXX move this in and add to VC stats ???
499 if (!status) {
500 struct atm_vcc * atm_vcc = dev->rxer[vc];
501 dev->stats.rx.ok++;
503 if (atm_vcc) {
505 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
507 if (atm_charge (atm_vcc, skb->truesize)) {
509 // prepare socket buffer
510 ATM_SKB(skb)->vcc = atm_vcc;
511 skb_put (skb, rx_len);
513 dump_skb ("<<<", vc, skb);
515 // VC layer stats
516 atomic_inc(&atm_vcc->stats->rx);
517 __net_timestamp(skb);
518 // end of our responsability
519 atm_vcc->push (atm_vcc, skb);
520 return;
522 } else {
523 // someone fix this (message), please!
524 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
525 // drop stats incremented in atm_charge
528 } else {
529 PRINTK (KERN_INFO, "dropped over-size frame");
530 // should we count this?
531 atomic_inc(&atm_vcc->stats->rx_drop);
534 } else {
535 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
536 // this is an adapter bug, only in new version of microcode
539 } else {
540 dev->stats.rx.error++;
541 if (status & CRC_ERR)
542 dev->stats.rx.badcrc++;
543 if (status & LEN_ERR)
544 dev->stats.rx.toolong++;
545 if (status & ABORT_ERR)
546 dev->stats.rx.aborted++;
547 if (status & UNUSED_ERR)
548 dev->stats.rx.unused++;
551 dev_kfree_skb_any (skb);
552 return;
557 Note on queue handling.
559 Here "give" and "take" refer to queue entries and a queue (pair)
560 rather than frames to or from the host or adapter. Empty frame
561 buffers are given to the RX queue pair and returned unused or
562 containing RX frames. TX frames (well, pointers to TX fragment
563 lists) are given to the TX queue pair, completions are returned.
567 /********** command queue **********/
569 // I really don't like this, but it's the best I can do at the moment
571 // also, the callers are responsible for byte order as the microcode
572 // sometimes does 16-bit accesses (yuk yuk yuk)
574 static int command_do (amb_dev * dev, command * cmd) {
575 amb_cq * cq = &dev->cq;
576 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
577 command * my_slot;
579 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
581 if (test_bit (dead, &dev->flags))
582 return 0;
584 spin_lock (&cq->lock);
586 // if not full...
587 if (cq->pending < cq->maximum) {
588 // remember my slot for later
589 my_slot = ptrs->in;
590 PRINTD (DBG_CMD, "command in slot %p", my_slot);
592 dump_command (cmd);
594 // copy command in
595 *ptrs->in = *cmd;
596 cq->pending++;
597 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
599 // mail the command
600 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
602 if (cq->pending > cq->high)
603 cq->high = cq->pending;
604 spin_unlock (&cq->lock);
606 // these comments were in a while-loop before, msleep removes the loop
607 // go to sleep
608 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
609 msleep(cq->pending);
611 // wait for my slot to be reached (all waiters are here or above, until...)
612 while (ptrs->out != my_slot) {
613 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
614 set_current_state(TASK_UNINTERRUPTIBLE);
615 schedule();
618 // wait on my slot (... one gets to its slot, and... )
619 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
620 PRINTD (DBG_CMD, "wait: command slot completion");
621 set_current_state(TASK_UNINTERRUPTIBLE);
622 schedule();
625 PRINTD (DBG_CMD, "command complete");
626 // update queue (... moves the queue along to the next slot)
627 spin_lock (&cq->lock);
628 cq->pending--;
629 // copy command out
630 *cmd = *ptrs->out;
631 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
632 spin_unlock (&cq->lock);
634 return 0;
635 } else {
636 cq->filled++;
637 spin_unlock (&cq->lock);
638 return -EAGAIN;
643 /********** TX queue pair **********/
645 static inline int tx_give (amb_dev * dev, tx_in * tx) {
646 amb_txq * txq = &dev->txq;
647 unsigned long flags;
649 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
651 if (test_bit (dead, &dev->flags))
652 return 0;
654 spin_lock_irqsave (&txq->lock, flags);
656 if (txq->pending < txq->maximum) {
657 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
659 *txq->in.ptr = *tx;
660 txq->pending++;
661 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
662 // hand over the TX and ring the bell
663 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
664 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
666 if (txq->pending > txq->high)
667 txq->high = txq->pending;
668 spin_unlock_irqrestore (&txq->lock, flags);
669 return 0;
670 } else {
671 txq->filled++;
672 spin_unlock_irqrestore (&txq->lock, flags);
673 return -EAGAIN;
677 static inline int tx_take (amb_dev * dev) {
678 amb_txq * txq = &dev->txq;
679 unsigned long flags;
681 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
683 spin_lock_irqsave (&txq->lock, flags);
685 if (txq->pending && txq->out.ptr->handle) {
686 // deal with TX completion
687 tx_complete (dev, txq->out.ptr);
688 // mark unused again
689 txq->out.ptr->handle = 0;
690 // remove item
691 txq->pending--;
692 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
694 spin_unlock_irqrestore (&txq->lock, flags);
695 return 0;
696 } else {
698 spin_unlock_irqrestore (&txq->lock, flags);
699 return -1;
703 /********** RX queue pairs **********/
705 static inline int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
706 amb_rxq * rxq = &dev->rxq[pool];
707 unsigned long flags;
709 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
711 spin_lock_irqsave (&rxq->lock, flags);
713 if (rxq->pending < rxq->maximum) {
714 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
716 *rxq->in.ptr = *rx;
717 rxq->pending++;
718 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
719 // hand over the RX buffer
720 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
722 spin_unlock_irqrestore (&rxq->lock, flags);
723 return 0;
724 } else {
725 spin_unlock_irqrestore (&rxq->lock, flags);
726 return -1;
730 static inline int rx_take (amb_dev * dev, unsigned char pool) {
731 amb_rxq * rxq = &dev->rxq[pool];
732 unsigned long flags;
734 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
736 spin_lock_irqsave (&rxq->lock, flags);
738 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
739 // deal with RX completion
740 rx_complete (dev, rxq->out.ptr);
741 // mark unused again
742 rxq->out.ptr->status = 0;
743 rxq->out.ptr->length = 0;
744 // remove item
745 rxq->pending--;
746 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
748 if (rxq->pending < rxq->low)
749 rxq->low = rxq->pending;
750 spin_unlock_irqrestore (&rxq->lock, flags);
751 return 0;
752 } else {
753 if (!rxq->pending && rxq->buffers_wanted)
754 rxq->emptied++;
755 spin_unlock_irqrestore (&rxq->lock, flags);
756 return -1;
760 /********** RX Pool handling **********/
762 /* pre: buffers_wanted = 0, post: pending = 0 */
763 static inline void drain_rx_pool (amb_dev * dev, unsigned char pool) {
764 amb_rxq * rxq = &dev->rxq[pool];
766 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
768 if (test_bit (dead, &dev->flags))
769 return;
771 /* we are not quite like the fill pool routines as we cannot just
772 remove one buffer, we have to remove all of them, but we might as
773 well pretend... */
774 if (rxq->pending > rxq->buffers_wanted) {
775 command cmd;
776 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
777 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
778 while (command_do (dev, &cmd))
779 schedule();
780 /* the pool may also be emptied via the interrupt handler */
781 while (rxq->pending > rxq->buffers_wanted)
782 if (rx_take (dev, pool))
783 schedule();
786 return;
789 static void drain_rx_pools (amb_dev * dev) {
790 unsigned char pool;
792 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
794 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
795 drain_rx_pool (dev, pool);
798 static inline void fill_rx_pool (amb_dev * dev, unsigned char pool,
799 gfp_t priority)
801 rx_in rx;
802 amb_rxq * rxq;
804 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
806 if (test_bit (dead, &dev->flags))
807 return;
809 rxq = &dev->rxq[pool];
810 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
812 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
813 if (!skb) {
814 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
815 return;
817 if (check_area (skb->data, skb->truesize)) {
818 dev_kfree_skb_any (skb);
819 return;
821 // cast needed as there is no %? for pointer differences
822 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
823 skb, skb->head, (long) (skb->end - skb->head));
824 rx.handle = virt_to_bus (skb);
825 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
826 if (rx_give (dev, &rx, pool))
827 dev_kfree_skb_any (skb);
831 return;
834 // top up all RX pools (can also be called as a bottom half)
835 static void fill_rx_pools (amb_dev * dev) {
836 unsigned char pool;
838 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
840 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
841 fill_rx_pool (dev, pool, GFP_ATOMIC);
843 return;
846 /********** enable host interrupts **********/
848 static inline void interrupts_on (amb_dev * dev) {
849 wr_plain (dev, offsetof(amb_mem, interrupt_control),
850 rd_plain (dev, offsetof(amb_mem, interrupt_control))
851 | AMB_INTERRUPT_BITS);
854 /********** disable host interrupts **********/
856 static inline void interrupts_off (amb_dev * dev) {
857 wr_plain (dev, offsetof(amb_mem, interrupt_control),
858 rd_plain (dev, offsetof(amb_mem, interrupt_control))
859 &~ AMB_INTERRUPT_BITS);
862 /********** interrupt handling **********/
864 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
865 amb_dev * dev = (amb_dev *) dev_id;
867 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
869 if (!dev_id) {
870 PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq);
871 return IRQ_NONE;
875 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
877 // for us or someone else sharing the same interrupt
878 if (!interrupt) {
879 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
880 return IRQ_NONE;
883 // definitely for us
884 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
885 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
889 unsigned int irq_work = 0;
890 unsigned char pool;
891 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
892 while (!rx_take (dev, pool))
893 ++irq_work;
894 while (!tx_take (dev))
895 ++irq_work;
897 if (irq_work) {
898 #ifdef FILL_RX_POOLS_IN_BH
899 schedule_work (&dev->bh);
900 #else
901 fill_rx_pools (dev);
902 #endif
904 PRINTD (DBG_IRQ, "work done: %u", irq_work);
905 } else {
906 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
910 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
911 return IRQ_HANDLED;
914 /********** make rate (not quite as much fun as Horizon) **********/
916 static int make_rate (unsigned int rate, rounding r,
917 u16 * bits, unsigned int * actual) {
918 unsigned char exp = -1; // hush gcc
919 unsigned int man = -1; // hush gcc
921 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
923 // rates in cells per second, ITU format (nasty 16-bit floating-point)
924 // given 5-bit e and 9-bit m:
925 // rate = EITHER (1+m/2^9)*2^e OR 0
926 // bits = EITHER 1<<14 | e<<9 | m OR 0
927 // (bit 15 is "reserved", bit 14 "non-zero")
928 // smallest rate is 0 (special representation)
929 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
930 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
931 // simple algorithm:
932 // find position of top bit, this gives e
933 // remove top bit and shift (rounding if feeling clever) by 9-e
935 // ucode bug: please don't set bit 14! so 0 rate not representable
937 if (rate > 0xffc00000U) {
938 // larger than largest representable rate
940 if (r == round_up) {
941 return -EINVAL;
942 } else {
943 exp = 31;
944 man = 511;
947 } else if (rate) {
948 // representable rate
950 exp = 31;
951 man = rate;
953 // invariant: rate = man*2^(exp-31)
954 while (!(man & (1<<31))) {
955 exp = exp - 1;
956 man = man<<1;
959 // man has top bit set
960 // rate = (2^31+(man-2^31))*2^(exp-31)
961 // rate = (1+(man-2^31)/2^31)*2^exp
962 man = man<<1;
963 man &= 0xffffffffU; // a nop on 32-bit systems
964 // rate = (1+man/2^32)*2^exp
966 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
967 // time to lose significance... we want m in the range 0 to 2^9-1
968 // rounding presents a minor problem... we first decide which way
969 // we are rounding (based on given rounding direction and possibly
970 // the bits of the mantissa that are to be discarded).
972 switch (r) {
973 case round_down: {
974 // just truncate
975 man = man>>(32-9);
976 break;
978 case round_up: {
979 // check all bits that we are discarding
980 if (man & (-1>>9)) {
981 man = (man>>(32-9)) + 1;
982 if (man == (1<<9)) {
983 // no need to check for round up outside of range
984 man = 0;
985 exp += 1;
987 } else {
988 man = (man>>(32-9));
990 break;
992 case round_nearest: {
993 // check msb that we are discarding
994 if (man & (1<<(32-9-1))) {
995 man = (man>>(32-9)) + 1;
996 if (man == (1<<9)) {
997 // no need to check for round up outside of range
998 man = 0;
999 exp += 1;
1001 } else {
1002 man = (man>>(32-9));
1004 break;
1008 } else {
1009 // zero rate - not representable
1011 if (r == round_down) {
1012 return -EINVAL;
1013 } else {
1014 exp = 0;
1015 man = 0;
1020 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
1022 if (bits)
1023 *bits = /* (1<<14) | */ (exp<<9) | man;
1025 if (actual)
1026 *actual = (exp >= 9)
1027 ? (1 << exp) + (man << (exp-9))
1028 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1030 return 0;
1033 /********** Linux ATM Operations **********/
1035 // some are not yet implemented while others do not make sense for
1036 // this device
1038 /********** Open a VC **********/
1040 static int amb_open (struct atm_vcc * atm_vcc)
1042 int error;
1044 struct atm_qos * qos;
1045 struct atm_trafprm * txtp;
1046 struct atm_trafprm * rxtp;
1047 u16 tx_rate_bits;
1048 u16 tx_vc_bits = -1; // hush gcc
1049 u16 tx_frame_bits = -1; // hush gcc
1051 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1052 amb_vcc * vcc;
1053 unsigned char pool = -1; // hush gcc
1054 short vpi = atm_vcc->vpi;
1055 int vci = atm_vcc->vci;
1057 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1059 #ifdef ATM_VPI_UNSPEC
1060 // UNSPEC is deprecated, remove this code eventually
1061 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1062 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1063 return -EINVAL;
1065 #endif
1067 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1068 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1069 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1070 return -EINVAL;
1073 qos = &atm_vcc->qos;
1075 if (qos->aal != ATM_AAL5) {
1076 PRINTD (DBG_QOS, "AAL not supported");
1077 return -EINVAL;
1080 // traffic parameters
1082 PRINTD (DBG_QOS, "TX:");
1083 txtp = &qos->txtp;
1084 if (txtp->traffic_class != ATM_NONE) {
1085 switch (txtp->traffic_class) {
1086 case ATM_UBR: {
1087 // we take "the PCR" as a rate-cap
1088 int pcr = atm_pcr_goal (txtp);
1089 if (!pcr) {
1090 // no rate cap
1091 tx_rate_bits = 0;
1092 tx_vc_bits = TX_UBR;
1093 tx_frame_bits = TX_FRAME_NOTCAP;
1094 } else {
1095 rounding r;
1096 if (pcr < 0) {
1097 r = round_down;
1098 pcr = -pcr;
1099 } else {
1100 r = round_up;
1102 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1103 tx_vc_bits = TX_UBR_CAPPED;
1104 tx_frame_bits = TX_FRAME_CAPPED;
1106 break;
1108 #if 0
1109 case ATM_ABR: {
1110 pcr = atm_pcr_goal (txtp);
1111 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1112 break;
1114 #endif
1115 default: {
1116 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1117 PRINTD (DBG_QOS, "request for non-UBR denied");
1118 return -EINVAL;
1121 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1122 tx_rate_bits, tx_vc_bits);
1125 PRINTD (DBG_QOS, "RX:");
1126 rxtp = &qos->rxtp;
1127 if (rxtp->traffic_class == ATM_NONE) {
1128 // do nothing
1129 } else {
1130 // choose an RX pool (arranged in increasing size)
1131 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1132 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1133 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1134 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1135 break;
1137 if (pool == NUM_RX_POOLS) {
1138 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1139 "no pool suitable for VC (RX max_sdu %d is too large)",
1140 rxtp->max_sdu);
1141 return -EINVAL;
1144 switch (rxtp->traffic_class) {
1145 case ATM_UBR: {
1146 break;
1148 #if 0
1149 case ATM_ABR: {
1150 pcr = atm_pcr_goal (rxtp);
1151 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1152 break;
1154 #endif
1155 default: {
1156 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1157 PRINTD (DBG_QOS, "request for non-UBR denied");
1158 return -EINVAL;
1163 // get space for our vcc stuff
1164 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1165 if (!vcc) {
1166 PRINTK (KERN_ERR, "out of memory!");
1167 return -ENOMEM;
1169 atm_vcc->dev_data = (void *) vcc;
1171 // no failures beyond this point
1173 // we are not really "immediately before allocating the connection
1174 // identifier in hardware", but it will just have to do!
1175 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1177 if (txtp->traffic_class != ATM_NONE) {
1178 command cmd;
1180 vcc->tx_frame_bits = tx_frame_bits;
1182 down (&dev->vcc_sf);
1183 if (dev->rxer[vci]) {
1184 // RXer on the channel already, just modify rate...
1185 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1186 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1187 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1188 while (command_do (dev, &cmd))
1189 schedule();
1190 // ... and TX flags, preserving the RX pool
1191 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1192 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1193 cmd.args.modify_flags.flags = cpu_to_be32
1194 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1195 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1196 while (command_do (dev, &cmd))
1197 schedule();
1198 } else {
1199 // no RXer on the channel, just open (with pool zero)
1200 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1201 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1202 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1203 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1204 while (command_do (dev, &cmd))
1205 schedule();
1207 dev->txer[vci].tx_present = 1;
1208 up (&dev->vcc_sf);
1211 if (rxtp->traffic_class != ATM_NONE) {
1212 command cmd;
1214 vcc->rx_info.pool = pool;
1216 down (&dev->vcc_sf);
1217 /* grow RX buffer pool */
1218 if (!dev->rxq[pool].buffers_wanted)
1219 dev->rxq[pool].buffers_wanted = rx_lats;
1220 dev->rxq[pool].buffers_wanted += 1;
1221 fill_rx_pool (dev, pool, GFP_KERNEL);
1223 if (dev->txer[vci].tx_present) {
1224 // TXer on the channel already
1225 // switch (from pool zero) to this pool, preserving the TX bits
1226 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1227 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1228 cmd.args.modify_flags.flags = cpu_to_be32
1229 ( (pool << SRB_POOL_SHIFT)
1230 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1231 } else {
1232 // no TXer on the channel, open the VC (with no rate info)
1233 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1234 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1235 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1236 cmd.args.open.rate = cpu_to_be32 (0);
1238 while (command_do (dev, &cmd))
1239 schedule();
1240 // this link allows RX frames through
1241 dev->rxer[vci] = atm_vcc;
1242 up (&dev->vcc_sf);
1245 // indicate readiness
1246 set_bit(ATM_VF_READY,&atm_vcc->flags);
1248 return 0;
1251 /********** Close a VC **********/
1253 static void amb_close (struct atm_vcc * atm_vcc) {
1254 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1255 amb_vcc * vcc = AMB_VCC (atm_vcc);
1256 u16 vci = atm_vcc->vci;
1258 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1260 // indicate unreadiness
1261 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1263 // disable TXing
1264 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1265 command cmd;
1267 down (&dev->vcc_sf);
1268 if (dev->rxer[vci]) {
1269 // RXer still on the channel, just modify rate... XXX not really needed
1270 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1271 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1272 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1273 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1274 } else {
1275 // no RXer on the channel, close channel
1276 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1277 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1279 dev->txer[vci].tx_present = 0;
1280 while (command_do (dev, &cmd))
1281 schedule();
1282 up (&dev->vcc_sf);
1285 // disable RXing
1286 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1287 command cmd;
1289 // this is (the?) one reason why we need the amb_vcc struct
1290 unsigned char pool = vcc->rx_info.pool;
1292 down (&dev->vcc_sf);
1293 if (dev->txer[vci].tx_present) {
1294 // TXer still on the channel, just go to pool zero XXX not really needed
1295 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1296 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1297 cmd.args.modify_flags.flags = cpu_to_be32
1298 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1299 } else {
1300 // no TXer on the channel, close the VC
1301 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1302 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1304 // forget the rxer - no more skbs will be pushed
1305 if (atm_vcc != dev->rxer[vci])
1306 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1307 "arghhh! we're going to die!",
1308 vcc, dev->rxer[vci]);
1309 dev->rxer[vci] = NULL;
1310 while (command_do (dev, &cmd))
1311 schedule();
1313 /* shrink RX buffer pool */
1314 dev->rxq[pool].buffers_wanted -= 1;
1315 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1316 dev->rxq[pool].buffers_wanted = 0;
1317 drain_rx_pool (dev, pool);
1319 up (&dev->vcc_sf);
1322 // free our structure
1323 kfree (vcc);
1325 // say the VPI/VCI is free again
1326 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1328 return;
1331 /********** Set socket options for a VC **********/
1333 // int amb_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1335 /********** Set socket options for a VC **********/
1337 // int amb_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1339 /********** Send **********/
1341 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1342 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1343 amb_vcc * vcc = AMB_VCC(atm_vcc);
1344 u16 vc = atm_vcc->vci;
1345 unsigned int tx_len = skb->len;
1346 unsigned char * tx_data = skb->data;
1347 tx_simple * tx_descr;
1348 tx_in tx;
1350 if (test_bit (dead, &dev->flags))
1351 return -EIO;
1353 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1354 vc, tx_data, tx_len);
1356 dump_skb (">>>", vc, skb);
1358 if (!dev->txer[vc].tx_present) {
1359 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1360 return -EBADFD;
1363 // this is a driver private field so we have to set it ourselves,
1364 // despite the fact that we are _required_ to use it to check for a
1365 // pop function
1366 ATM_SKB(skb)->vcc = atm_vcc;
1368 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1369 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1370 return -EIO;
1373 if (check_area (skb->data, skb->len)) {
1374 atomic_inc(&atm_vcc->stats->tx_err);
1375 return -ENOMEM; // ?
1378 // allocate memory for fragments
1379 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1380 if (!tx_descr) {
1381 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1382 return -ENOMEM;
1384 if (check_area (tx_descr, sizeof(tx_simple))) {
1385 kfree (tx_descr);
1386 return -ENOMEM;
1388 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1390 tx_descr->skb = skb;
1392 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1393 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1395 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1396 tx_descr->tx_frag_end.vc = 0;
1397 tx_descr->tx_frag_end.next_descriptor_length = 0;
1398 tx_descr->tx_frag_end.next_descriptor = 0;
1399 #ifdef AMB_NEW_MICROCODE
1400 tx_descr->tx_frag_end.cpcs_uu = 0;
1401 tx_descr->tx_frag_end.cpi = 0;
1402 tx_descr->tx_frag_end.pad = 0;
1403 #endif
1405 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1406 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1407 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1409 while (tx_give (dev, &tx))
1410 schedule();
1411 return 0;
1414 /********** Change QoS on a VC **********/
1416 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1418 /********** Free RX Socket Buffer **********/
1420 #if 0
1421 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1422 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1423 amb_vcc * vcc = AMB_VCC (atm_vcc);
1424 unsigned char pool = vcc->rx_info.pool;
1425 rx_in rx;
1427 // This may be unsafe for various reasons that I cannot really guess
1428 // at. However, I note that the ATM layer calls kfree_skb rather
1429 // than dev_kfree_skb at this point so we are least covered as far
1430 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1432 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1433 skb, atm_vcc, vcc);
1435 rx.handle = virt_to_bus (skb);
1436 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1438 skb->data = skb->head;
1439 skb->tail = skb->head;
1440 skb->len = 0;
1442 if (!rx_give (dev, &rx, pool)) {
1443 // success
1444 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1445 return;
1448 // just do what the ATM layer would have done
1449 dev_kfree_skb_any (skb);
1451 return;
1453 #endif
1455 /********** Proc File Output **********/
1457 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1458 amb_dev * dev = AMB_DEV (atm_dev);
1459 int left = *pos;
1460 unsigned char pool;
1462 PRINTD (DBG_FLOW, "amb_proc_read");
1464 /* more diagnostics here? */
1466 if (!left--) {
1467 amb_stats * s = &dev->stats;
1468 return sprintf (page,
1469 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1470 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1471 s->tx_ok, s->rx.ok, s->rx.error,
1472 s->rx.badcrc, s->rx.toolong,
1473 s->rx.aborted, s->rx.unused);
1476 if (!left--) {
1477 amb_cq * c = &dev->cq;
1478 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1479 c->pending, c->high, c->maximum);
1482 if (!left--) {
1483 amb_txq * t = &dev->txq;
1484 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1485 t->pending, t->maximum, t->high, t->filled);
1488 if (!left--) {
1489 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1490 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1491 amb_rxq * r = &dev->rxq[pool];
1492 count += sprintf (page+count, " %u/%u/%u %u %u",
1493 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1495 count += sprintf (page+count, ".\n");
1496 return count;
1499 if (!left--) {
1500 unsigned int count = sprintf (page, "RX buffer sizes:");
1501 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1502 amb_rxq * r = &dev->rxq[pool];
1503 count += sprintf (page+count, " %u", r->buffer_size);
1505 count += sprintf (page+count, ".\n");
1506 return count;
1509 #if 0
1510 if (!left--) {
1511 // suni block etc?
1513 #endif
1515 return 0;
1518 /********** Operation Structure **********/
1520 static const struct atmdev_ops amb_ops = {
1521 .open = amb_open,
1522 .close = amb_close,
1523 .send = amb_send,
1524 .proc_read = amb_proc_read,
1525 .owner = THIS_MODULE,
1528 /********** housekeeping **********/
1529 static void do_housekeeping (unsigned long arg) {
1530 amb_dev * dev = (amb_dev *) arg;
1532 // could collect device-specific (not driver/atm-linux) stats here
1534 // last resort refill once every ten seconds
1535 fill_rx_pools (dev);
1536 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1538 return;
1541 /********** creation of communication queues **********/
1543 static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1544 unsigned int txs, unsigned int * rxs,
1545 unsigned int * rx_buffer_sizes) {
1546 unsigned char pool;
1547 size_t total = 0;
1548 void * memory;
1549 void * limit;
1551 PRINTD (DBG_FLOW, "create_queues %p", dev);
1553 total += cmds * sizeof(command);
1555 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1557 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1558 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1560 memory = kmalloc (total, GFP_KERNEL);
1561 if (!memory) {
1562 PRINTK (KERN_ERR, "could not allocate queues");
1563 return -ENOMEM;
1565 if (check_area (memory, total)) {
1566 PRINTK (KERN_ERR, "queues allocated in nasty area");
1567 kfree (memory);
1568 return -ENOMEM;
1571 limit = memory + total;
1572 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1574 PRINTD (DBG_CMD, "command queue at %p", memory);
1577 command * cmd = memory;
1578 amb_cq * cq = &dev->cq;
1580 cq->pending = 0;
1581 cq->high = 0;
1582 cq->maximum = cmds - 1;
1584 cq->ptrs.start = cmd;
1585 cq->ptrs.in = cmd;
1586 cq->ptrs.out = cmd;
1587 cq->ptrs.limit = cmd + cmds;
1589 memory = cq->ptrs.limit;
1592 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1595 tx_in * in = memory;
1596 tx_out * out;
1597 amb_txq * txq = &dev->txq;
1599 txq->pending = 0;
1600 txq->high = 0;
1601 txq->filled = 0;
1602 txq->maximum = txs - 1;
1604 txq->in.start = in;
1605 txq->in.ptr = in;
1606 txq->in.limit = in + txs;
1608 memory = txq->in.limit;
1609 out = memory;
1611 txq->out.start = out;
1612 txq->out.ptr = out;
1613 txq->out.limit = out + txs;
1615 memory = txq->out.limit;
1618 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1620 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1621 rx_in * in = memory;
1622 rx_out * out;
1623 amb_rxq * rxq = &dev->rxq[pool];
1625 rxq->buffer_size = rx_buffer_sizes[pool];
1626 rxq->buffers_wanted = 0;
1628 rxq->pending = 0;
1629 rxq->low = rxs[pool] - 1;
1630 rxq->emptied = 0;
1631 rxq->maximum = rxs[pool] - 1;
1633 rxq->in.start = in;
1634 rxq->in.ptr = in;
1635 rxq->in.limit = in + rxs[pool];
1637 memory = rxq->in.limit;
1638 out = memory;
1640 rxq->out.start = out;
1641 rxq->out.ptr = out;
1642 rxq->out.limit = out + rxs[pool];
1644 memory = rxq->out.limit;
1647 if (memory == limit) {
1648 return 0;
1649 } else {
1650 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1651 kfree (limit - total);
1652 return -ENOMEM;
1657 /********** destruction of communication queues **********/
1659 static void destroy_queues (amb_dev * dev) {
1660 // all queues assumed empty
1661 void * memory = dev->cq.ptrs.start;
1662 // includes txq.in, txq.out, rxq[].in and rxq[].out
1664 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1666 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1667 kfree (memory);
1669 return;
1672 /********** basic loader commands and error handling **********/
1673 // centisecond timeouts - guessing away here
1674 static unsigned int command_timeouts [] = {
1675 [host_memory_test] = 15,
1676 [read_adapter_memory] = 2,
1677 [write_adapter_memory] = 2,
1678 [adapter_start] = 50,
1679 [get_version_number] = 10,
1680 [interrupt_host] = 1,
1681 [flash_erase_sector] = 1,
1682 [adap_download_block] = 1,
1683 [adap_erase_flash] = 1,
1684 [adap_run_in_iram] = 1,
1685 [adap_end_download] = 1
1689 static unsigned int command_successes [] = {
1690 [host_memory_test] = COMMAND_PASSED_TEST,
1691 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1692 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1693 [adapter_start] = COMMAND_COMPLETE,
1694 [get_version_number] = COMMAND_COMPLETE,
1695 [interrupt_host] = COMMAND_COMPLETE,
1696 [flash_erase_sector] = COMMAND_COMPLETE,
1697 [adap_download_block] = COMMAND_COMPLETE,
1698 [adap_erase_flash] = COMMAND_COMPLETE,
1699 [adap_run_in_iram] = COMMAND_COMPLETE,
1700 [adap_end_download] = COMMAND_COMPLETE
1703 static int decode_loader_result (loader_command cmd, u32 result)
1705 int res;
1706 const char *msg;
1708 if (result == command_successes[cmd])
1709 return 0;
1711 switch (result) {
1712 case BAD_COMMAND:
1713 res = -EINVAL;
1714 msg = "bad command";
1715 break;
1716 case COMMAND_IN_PROGRESS:
1717 res = -ETIMEDOUT;
1718 msg = "command in progress";
1719 break;
1720 case COMMAND_PASSED_TEST:
1721 res = 0;
1722 msg = "command passed test";
1723 break;
1724 case COMMAND_FAILED_TEST:
1725 res = -EIO;
1726 msg = "command failed test";
1727 break;
1728 case COMMAND_READ_DATA_OK:
1729 res = 0;
1730 msg = "command read data ok";
1731 break;
1732 case COMMAND_READ_BAD_ADDRESS:
1733 res = -EINVAL;
1734 msg = "command read bad address";
1735 break;
1736 case COMMAND_WRITE_DATA_OK:
1737 res = 0;
1738 msg = "command write data ok";
1739 break;
1740 case COMMAND_WRITE_BAD_ADDRESS:
1741 res = -EINVAL;
1742 msg = "command write bad address";
1743 break;
1744 case COMMAND_WRITE_FLASH_FAILURE:
1745 res = -EIO;
1746 msg = "command write flash failure";
1747 break;
1748 case COMMAND_COMPLETE:
1749 res = 0;
1750 msg = "command complete";
1751 break;
1752 case COMMAND_FLASH_ERASE_FAILURE:
1753 res = -EIO;
1754 msg = "command flash erase failure";
1755 break;
1756 case COMMAND_WRITE_BAD_DATA:
1757 res = -EINVAL;
1758 msg = "command write bad data";
1759 break;
1760 default:
1761 res = -EINVAL;
1762 msg = "unknown error";
1763 PRINTD (DBG_LOAD|DBG_ERR,
1764 "decode_loader_result got %d=%x !",
1765 result, result);
1766 break;
1769 PRINTK (KERN_ERR, "%s", msg);
1770 return res;
1773 static int __devinit do_loader_command (volatile loader_block * lb,
1774 const amb_dev * dev, loader_command cmd) {
1776 unsigned long timeout;
1778 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1780 /* do a command
1782 Set the return value to zero, set the command type and set the
1783 valid entry to the right magic value. The payload is already
1784 correctly byte-ordered so we leave it alone. Hit the doorbell
1785 with the bus address of this structure.
1789 lb->result = 0;
1790 lb->command = cpu_to_be32 (cmd);
1791 lb->valid = cpu_to_be32 (DMA_VALID);
1792 // dump_registers (dev);
1793 // dump_loader_block (lb);
1794 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1796 timeout = command_timeouts[cmd] * 10;
1798 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1799 if (timeout) {
1800 timeout = msleep_interruptible(timeout);
1801 } else {
1802 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1803 dump_registers (dev);
1804 dump_loader_block (lb);
1805 return -ETIMEDOUT;
1808 if (cmd == adapter_start) {
1809 // wait for start command to acknowledge...
1810 timeout = 100;
1811 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1812 if (timeout) {
1813 timeout = msleep_interruptible(timeout);
1814 } else {
1815 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1816 be32_to_cpu (lb->result));
1817 dump_registers (dev);
1818 return -ETIMEDOUT;
1820 return 0;
1821 } else {
1822 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1827 /* loader: determine loader version */
1829 static int __devinit get_loader_version (loader_block * lb,
1830 const amb_dev * dev, u32 * version) {
1831 int res;
1833 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1835 res = do_loader_command (lb, dev, get_version_number);
1836 if (res)
1837 return res;
1838 if (version)
1839 *version = be32_to_cpu (lb->payload.version);
1840 return 0;
1843 /* loader: write memory data blocks */
1845 static int __devinit loader_write (loader_block * lb,
1846 const amb_dev * dev, const u32 * data,
1847 u32 address, unsigned int count) {
1848 unsigned int i;
1849 transfer_block * tb = &lb->payload.transfer;
1851 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1853 if (count > MAX_TRANSFER_DATA)
1854 return -EINVAL;
1855 tb->address = cpu_to_be32 (address);
1856 tb->count = cpu_to_be32 (count);
1857 for (i = 0; i < count; ++i)
1858 tb->data[i] = cpu_to_be32 (data[i]);
1859 return do_loader_command (lb, dev, write_adapter_memory);
1862 /* loader: verify memory data blocks */
1864 static int __devinit loader_verify (loader_block * lb,
1865 const amb_dev * dev, const u32 * data,
1866 u32 address, unsigned int count) {
1867 unsigned int i;
1868 transfer_block * tb = &lb->payload.transfer;
1869 int res;
1871 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1873 if (count > MAX_TRANSFER_DATA)
1874 return -EINVAL;
1875 tb->address = cpu_to_be32 (address);
1876 tb->count = cpu_to_be32 (count);
1877 res = do_loader_command (lb, dev, read_adapter_memory);
1878 if (!res)
1879 for (i = 0; i < count; ++i)
1880 if (tb->data[i] != cpu_to_be32 (data[i])) {
1881 res = -EINVAL;
1882 break;
1884 return res;
1887 /* loader: start microcode */
1889 static int __devinit loader_start (loader_block * lb,
1890 const amb_dev * dev, u32 address) {
1891 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1893 lb->payload.start = cpu_to_be32 (address);
1894 return do_loader_command (lb, dev, adapter_start);
1897 /********** reset card **********/
1899 static inline void sf (const char * msg)
1901 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1904 static int amb_reset (amb_dev * dev, int diags) {
1905 u32 word;
1907 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1909 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1910 // put card into reset state
1911 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1912 // wait a short while
1913 udelay (10);
1914 #if 1
1915 // put card into known good state
1916 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1917 // clear all interrupts just in case
1918 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1919 #endif
1920 // clear self-test done flag
1921 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1922 // take card out of reset state
1923 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1925 if (diags) {
1926 unsigned long timeout;
1927 // 4.2 second wait
1928 msleep(4200);
1929 // half second time-out
1930 timeout = 500;
1931 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1932 if (timeout) {
1933 timeout = msleep_interruptible(timeout);
1934 } else {
1935 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1936 return -ETIMEDOUT;
1939 // get results of self-test
1940 // XXX double check byte-order
1941 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1942 if (word & SELF_TEST_FAILURE) {
1943 if (word & GPINT_TST_FAILURE)
1944 sf ("interrupt");
1945 if (word & SUNI_DATA_PATTERN_FAILURE)
1946 sf ("SUNI data pattern");
1947 if (word & SUNI_DATA_BITS_FAILURE)
1948 sf ("SUNI data bits");
1949 if (word & SUNI_UTOPIA_FAILURE)
1950 sf ("SUNI UTOPIA interface");
1951 if (word & SUNI_FIFO_FAILURE)
1952 sf ("SUNI cell buffer FIFO");
1953 if (word & SRAM_FAILURE)
1954 sf ("bad SRAM");
1955 // better return value?
1956 return -EIO;
1960 return 0;
1963 /********** transfer and start the microcode **********/
1965 static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
1966 unsigned int i = 0;
1967 unsigned int total = 0;
1968 const u32 * pointer = ucode_data;
1969 u32 address;
1970 unsigned int count;
1971 int res;
1973 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1975 while (address = ucode_regions[i].start,
1976 count = ucode_regions[i].count) {
1977 PRINTD (DBG_LOAD, "starting region (%x, %u)", address, count);
1978 while (count) {
1979 unsigned int words;
1980 if (count <= MAX_TRANSFER_DATA)
1981 words = count;
1982 else
1983 words = MAX_TRANSFER_DATA;
1984 total += words;
1985 res = loader_write (lb, dev, pointer, address, words);
1986 if (res)
1987 return res;
1988 res = loader_verify (lb, dev, pointer, address, words);
1989 if (res)
1990 return res;
1991 count -= words;
1992 address += sizeof(u32) * words;
1993 pointer += words;
1995 i += 1;
1997 if (*pointer == ATM_POISON) {
1998 return loader_start (lb, dev, ucode_start);
1999 } else {
2000 // cast needed as there is no %? for pointer differnces
2001 PRINTD (DBG_LOAD|DBG_ERR,
2002 "offset=%li, *pointer=%x, address=%x, total=%u",
2003 (long) (pointer - ucode_data), *pointer, address, total);
2004 PRINTK (KERN_ERR, "incorrect microcode data");
2005 return -ENOMEM;
2009 /********** give adapter parameters **********/
2011 static inline __be32 bus_addr(void * addr) {
2012 return cpu_to_be32 (virt_to_bus (addr));
2015 static int __devinit amb_talk (amb_dev * dev) {
2016 adap_talk_block a;
2017 unsigned char pool;
2018 unsigned long timeout;
2020 PRINTD (DBG_FLOW, "amb_talk %p", dev);
2022 a.command_start = bus_addr (dev->cq.ptrs.start);
2023 a.command_end = bus_addr (dev->cq.ptrs.limit);
2024 a.tx_start = bus_addr (dev->txq.in.start);
2025 a.tx_end = bus_addr (dev->txq.in.limit);
2026 a.txcom_start = bus_addr (dev->txq.out.start);
2027 a.txcom_end = bus_addr (dev->txq.out.limit);
2029 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2030 // the other "a" items are set up by the adapter
2031 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2032 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
2033 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2034 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2035 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2038 #ifdef AMB_NEW_MICROCODE
2039 // disable fast PLX prefetching
2040 a.init_flags = 0;
2041 #endif
2043 // pass the structure
2044 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2046 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2047 msleep(2200);
2048 // give the adapter another half second?
2049 timeout = 500;
2050 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2051 if (timeout) {
2052 timeout = msleep_interruptible(timeout);
2053 } else {
2054 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2055 return -ETIMEDOUT;
2058 return 0;
2061 // get microcode version
2062 static void __devinit amb_ucode_version (amb_dev * dev) {
2063 u32 major;
2064 u32 minor;
2065 command cmd;
2066 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2067 while (command_do (dev, &cmd)) {
2068 set_current_state(TASK_UNINTERRUPTIBLE);
2069 schedule();
2071 major = be32_to_cpu (cmd.args.version.major);
2072 minor = be32_to_cpu (cmd.args.version.minor);
2073 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2076 // swap bits within byte to get Ethernet ordering
2077 static u8 bit_swap (u8 byte)
2079 const u8 swap[] = {
2080 0x0, 0x8, 0x4, 0xc,
2081 0x2, 0xa, 0x6, 0xe,
2082 0x1, 0x9, 0x5, 0xd,
2083 0x3, 0xb, 0x7, 0xf
2085 return ((swap[byte & 0xf]<<4) | swap[byte>>4]);
2088 // get end station address
2089 static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2090 u32 lower4;
2091 u16 upper2;
2092 command cmd;
2094 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2095 while (command_do (dev, &cmd)) {
2096 set_current_state(TASK_UNINTERRUPTIBLE);
2097 schedule();
2099 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2100 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2101 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2103 if (esi) {
2104 unsigned int i;
2106 PRINTDB (DBG_INIT, "ESI:");
2107 for (i = 0; i < ESI_LEN; ++i) {
2108 if (i < 4)
2109 esi[i] = bit_swap (lower4>>(8*i));
2110 else
2111 esi[i] = bit_swap (upper2>>(8*(i-4)));
2112 PRINTDM (DBG_INIT, " %02x", esi[i]);
2115 PRINTDE (DBG_INIT, "");
2118 return;
2121 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2123 // fix up the PLX-mapped window base address to match the block
2124 unsigned long blb;
2125 u32 mapreg;
2126 blb = virt_to_bus(lb);
2127 // the kernel stack had better not ever cross a 1Gb boundary!
2128 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2129 mapreg &= ~onegigmask;
2130 mapreg |= blb & onegigmask;
2131 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2132 return;
2135 static int __devinit amb_init (amb_dev * dev)
2137 loader_block lb;
2139 u32 version;
2141 if (amb_reset (dev, 1)) {
2142 PRINTK (KERN_ERR, "card reset failed!");
2143 } else {
2144 fixup_plx_window (dev, &lb);
2146 if (get_loader_version (&lb, dev, &version)) {
2147 PRINTK (KERN_INFO, "failed to get loader version");
2148 } else {
2149 PRINTK (KERN_INFO, "loader version is %08x", version);
2151 if (ucode_init (&lb, dev)) {
2152 PRINTK (KERN_ERR, "microcode failure");
2153 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2154 PRINTK (KERN_ERR, "failed to get memory for queues");
2155 } else {
2157 if (amb_talk (dev)) {
2158 PRINTK (KERN_ERR, "adapter did not accept queues");
2159 } else {
2161 amb_ucode_version (dev);
2162 return 0;
2164 } /* amb_talk */
2166 destroy_queues (dev);
2167 } /* create_queues, ucode_init */
2169 amb_reset (dev, 0);
2170 } /* get_loader_version */
2172 } /* amb_reset */
2174 return -EINVAL;
2177 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2179 unsigned char pool;
2180 memset (dev, 0, sizeof(amb_dev));
2182 // set up known dev items straight away
2183 dev->pci_dev = pci_dev;
2184 pci_set_drvdata(pci_dev, dev);
2186 dev->iobase = pci_resource_start (pci_dev, 1);
2187 dev->irq = pci_dev->irq;
2188 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2190 // flags (currently only dead)
2191 dev->flags = 0;
2193 // Allocate cell rates (fibre)
2194 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2195 // to be really pedantic, this should be ATM_OC3c_PCR
2196 dev->tx_avail = ATM_OC3_PCR;
2197 dev->rx_avail = ATM_OC3_PCR;
2199 #ifdef FILL_RX_POOLS_IN_BH
2200 // initialise bottom half
2201 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2202 #endif
2204 // semaphore for txer/rxer modifications - we cannot use a
2205 // spinlock as the critical region needs to switch processes
2206 init_MUTEX (&dev->vcc_sf);
2207 // queue manipulation spinlocks; we want atomic reads and
2208 // writes to the queue descriptors (handles IRQ and SMP)
2209 // consider replacing "int pending" -> "atomic_t available"
2210 // => problem related to who gets to move queue pointers
2211 spin_lock_init (&dev->cq.lock);
2212 spin_lock_init (&dev->txq.lock);
2213 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2214 spin_lock_init (&dev->rxq[pool].lock);
2217 static void setup_pci_dev(struct pci_dev *pci_dev)
2219 unsigned char lat;
2221 // enable bus master accesses
2222 pci_set_master(pci_dev);
2224 // frobnicate latency (upwards, usually)
2225 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2227 if (!pci_lat)
2228 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2230 if (lat != pci_lat) {
2231 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2232 lat, pci_lat);
2233 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2237 static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2239 amb_dev * dev;
2240 int err;
2241 unsigned int irq;
2243 err = pci_enable_device(pci_dev);
2244 if (err < 0) {
2245 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2246 goto out;
2249 // read resources from PCI configuration space
2250 irq = pci_dev->irq;
2252 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2253 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2254 err = -EINVAL;
2255 goto out_disable;
2258 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2259 " IO %llx, IRQ %u, MEM %p",
2260 (unsigned long long)pci_resource_start(pci_dev, 1),
2261 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2263 // check IO region
2264 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2265 if (err < 0) {
2266 PRINTK (KERN_ERR, "IO range already in use!");
2267 goto out_disable;
2270 dev = kmalloc (sizeof(amb_dev), GFP_KERNEL);
2271 if (!dev) {
2272 PRINTK (KERN_ERR, "out of memory!");
2273 err = -ENOMEM;
2274 goto out_release;
2277 setup_dev(dev, pci_dev);
2279 err = amb_init(dev);
2280 if (err < 0) {
2281 PRINTK (KERN_ERR, "adapter initialisation failure");
2282 goto out_free;
2285 setup_pci_dev(pci_dev);
2287 // grab (but share) IRQ and install handler
2288 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2289 if (err < 0) {
2290 PRINTK (KERN_ERR, "request IRQ failed!");
2291 goto out_reset;
2294 dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL);
2295 if (!dev->atm_dev) {
2296 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2297 err = -EINVAL;
2298 goto out_free_irq;
2301 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2302 dev->atm_dev->number, dev, dev->atm_dev);
2303 dev->atm_dev->dev_data = (void *) dev;
2305 // register our address
2306 amb_esi (dev, dev->atm_dev->esi);
2308 // 0 bits for vpi, 10 bits for vci
2309 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2310 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2312 init_timer(&dev->housekeeping);
2313 dev->housekeeping.function = do_housekeeping;
2314 dev->housekeeping.data = (unsigned long) dev;
2315 mod_timer(&dev->housekeeping, jiffies);
2317 // enable host interrupts
2318 interrupts_on (dev);
2320 out:
2321 return err;
2323 out_free_irq:
2324 free_irq(irq, dev);
2325 out_reset:
2326 amb_reset(dev, 0);
2327 out_free:
2328 kfree(dev);
2329 out_release:
2330 pci_release_region(pci_dev, 1);
2331 out_disable:
2332 pci_disable_device(pci_dev);
2333 goto out;
2337 static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2339 struct amb_dev *dev;
2341 dev = pci_get_drvdata(pci_dev);
2343 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2344 del_timer_sync(&dev->housekeeping);
2345 // the drain should not be necessary
2346 drain_rx_pools(dev);
2347 interrupts_off(dev);
2348 amb_reset(dev, 0);
2349 free_irq(dev->irq, dev);
2350 pci_disable_device(pci_dev);
2351 destroy_queues(dev);
2352 atm_dev_deregister(dev->atm_dev);
2353 kfree(dev);
2354 pci_release_region(pci_dev, 1);
2357 static void __init amb_check_args (void) {
2358 unsigned char pool;
2359 unsigned int max_rx_size;
2361 #ifdef DEBUG_AMBASSADOR
2362 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2363 #else
2364 if (debug)
2365 PRINTK (KERN_NOTICE, "no debugging support");
2366 #endif
2368 if (cmds < MIN_QUEUE_SIZE)
2369 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2370 cmds = MIN_QUEUE_SIZE);
2372 if (txs < MIN_QUEUE_SIZE)
2373 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2374 txs = MIN_QUEUE_SIZE);
2376 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2377 if (rxs[pool] < MIN_QUEUE_SIZE)
2378 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2379 pool, rxs[pool] = MIN_QUEUE_SIZE);
2381 // buffers sizes should be greater than zero and strictly increasing
2382 max_rx_size = 0;
2383 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2384 if (rxs_bs[pool] <= max_rx_size)
2385 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2386 pool, rxs_bs[pool]);
2387 else
2388 max_rx_size = rxs_bs[pool];
2390 if (rx_lats < MIN_RX_BUFFERS)
2391 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2392 rx_lats = MIN_RX_BUFFERS);
2394 return;
2397 /********** module stuff **********/
2399 MODULE_AUTHOR(maintainer_string);
2400 MODULE_DESCRIPTION(description_string);
2401 MODULE_LICENSE("GPL");
2402 module_param(debug, ushort, 0644);
2403 module_param(cmds, uint, 0);
2404 module_param(txs, uint, 0);
2405 module_param_array(rxs, uint, NULL, 0);
2406 module_param_array(rxs_bs, uint, NULL, 0);
2407 module_param(rx_lats, uint, 0);
2408 module_param(pci_lat, byte, 0);
2409 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2410 MODULE_PARM_DESC(cmds, "number of command queue entries");
2411 MODULE_PARM_DESC(txs, "number of TX queue entries");
2412 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2413 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2414 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2415 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2417 /********** module entry **********/
2419 static struct pci_device_id amb_pci_tbl[] = {
2420 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR, PCI_ANY_ID, PCI_ANY_ID,
2421 0, 0, 0 },
2422 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD, PCI_ANY_ID, PCI_ANY_ID,
2423 0, 0, 0 },
2424 { 0, }
2427 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2429 static struct pci_driver amb_driver = {
2430 .name = "amb",
2431 .probe = amb_probe,
2432 .remove = __devexit_p(amb_remove_one),
2433 .id_table = amb_pci_tbl,
2436 static int __init amb_module_init (void)
2438 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2440 // sanity check - cast needed as printk does not support %Zu
2441 if (sizeof(amb_mem) != 4*16 + 4*12) {
2442 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2443 (unsigned long) sizeof(amb_mem));
2444 return -ENOMEM;
2447 show_version();
2449 amb_check_args();
2451 // get the juice
2452 return pci_register_driver(&amb_driver);
2455 /********** module exit **********/
2457 static void __exit amb_module_exit (void)
2459 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2461 return pci_unregister_driver(&amb_driver);
2464 module_init(amb_module_init);
2465 module_exit(amb_module_exit);