2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
35 #include <asm/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
60 static char *io_tlb_start
, *io_tlb_end
;
63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
66 static unsigned long io_tlb_nslabs
;
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
71 static unsigned long io_tlb_overflow
= 32*1024;
73 static void *io_tlb_overflow_buffer
;
76 * This is a free list describing the number of free entries available from
79 static unsigned int *io_tlb_list
;
80 static unsigned int io_tlb_index
;
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
86 static phys_addr_t
*io_tlb_orig_addr
;
89 * Protect the above data structures in the map and unmap calls
91 static DEFINE_SPINLOCK(io_tlb_lock
);
93 static int late_alloc
;
96 setup_io_tlb_npages(char *str
)
99 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
105 if (!strcmp(str
, "force"))
110 __setup("swiotlb=", setup_io_tlb_npages
);
111 /* make io_tlb_overflow tunable too? */
113 unsigned long swiotlb_nr_tbl(void)
115 return io_tlb_nslabs
;
117 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
118 /* Note that this doesn't work with highmem page */
119 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
120 volatile void *address
)
122 return phys_to_dma(hwdev
, virt_to_phys(address
));
125 void swiotlb_print_info(void)
127 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
128 phys_addr_t pstart
, pend
;
130 pstart
= virt_to_phys(io_tlb_start
);
131 pend
= virt_to_phys(io_tlb_end
);
133 printk(KERN_INFO
"software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
134 (unsigned long long)pstart
, (unsigned long long)pend
- 1,
135 bytes
>> 20, io_tlb_start
, io_tlb_end
- 1);
138 void __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
140 unsigned long i
, bytes
;
142 bytes
= nslabs
<< IO_TLB_SHIFT
;
144 io_tlb_nslabs
= nslabs
;
146 io_tlb_end
= io_tlb_start
+ bytes
;
149 * Allocate and initialize the free list array. This array is used
150 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
151 * between io_tlb_start and io_tlb_end.
153 io_tlb_list
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
154 for (i
= 0; i
< io_tlb_nslabs
; i
++)
155 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
157 io_tlb_orig_addr
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
160 * Get the overflow emergency buffer
162 io_tlb_overflow_buffer
= alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow
));
163 if (!io_tlb_overflow_buffer
)
164 panic("Cannot allocate SWIOTLB overflow buffer!\n");
166 swiotlb_print_info();
170 * Statically reserve bounce buffer space and initialize bounce buffer data
171 * structures for the software IO TLB used to implement the DMA API.
174 swiotlb_init_with_default_size(size_t default_size
, int verbose
)
178 if (!io_tlb_nslabs
) {
179 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
180 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
183 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
186 * Get IO TLB memory from the low pages
188 io_tlb_start
= alloc_bootmem_low_pages(PAGE_ALIGN(bytes
));
190 panic("Cannot allocate SWIOTLB buffer");
192 swiotlb_init_with_tbl(io_tlb_start
, io_tlb_nslabs
, verbose
);
196 swiotlb_init(int verbose
)
198 swiotlb_init_with_default_size(64 * (1<<20), verbose
); /* default to 64MB */
202 * Systems with larger DMA zones (those that don't support ISA) can
203 * initialize the swiotlb later using the slab allocator if needed.
204 * This should be just like above, but with some error catching.
207 swiotlb_late_init_with_default_size(size_t default_size
)
209 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
212 if (!io_tlb_nslabs
) {
213 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
214 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
218 * Get IO TLB memory from the low pages
220 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
221 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
222 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
224 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
225 io_tlb_start
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
235 if (order
!= get_order(bytes
)) {
236 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
237 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
238 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
239 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
241 io_tlb_end
= io_tlb_start
+ bytes
;
242 memset(io_tlb_start
, 0, bytes
);
245 * Allocate and initialize the free list array. This array is used
246 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
247 * between io_tlb_start and io_tlb_end.
249 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
250 get_order(io_tlb_nslabs
* sizeof(int)));
254 for (i
= 0; i
< io_tlb_nslabs
; i
++)
255 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
258 io_tlb_orig_addr
= (phys_addr_t
*)
259 __get_free_pages(GFP_KERNEL
,
260 get_order(io_tlb_nslabs
*
261 sizeof(phys_addr_t
)));
262 if (!io_tlb_orig_addr
)
265 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
268 * Get the overflow emergency buffer
270 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
271 get_order(io_tlb_overflow
));
272 if (!io_tlb_overflow_buffer
)
275 swiotlb_print_info();
282 free_pages((unsigned long)io_tlb_orig_addr
,
283 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
284 io_tlb_orig_addr
= NULL
;
286 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
291 free_pages((unsigned long)io_tlb_start
, order
);
294 io_tlb_nslabs
= req_nslabs
;
298 void __init
swiotlb_free(void)
300 if (!io_tlb_overflow_buffer
)
304 free_pages((unsigned long)io_tlb_overflow_buffer
,
305 get_order(io_tlb_overflow
));
306 free_pages((unsigned long)io_tlb_orig_addr
,
307 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
308 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
310 free_pages((unsigned long)io_tlb_start
,
311 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
313 free_bootmem_late(__pa(io_tlb_overflow_buffer
),
314 PAGE_ALIGN(io_tlb_overflow
));
315 free_bootmem_late(__pa(io_tlb_orig_addr
),
316 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
317 free_bootmem_late(__pa(io_tlb_list
),
318 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
319 free_bootmem_late(__pa(io_tlb_start
),
320 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
325 static int is_swiotlb_buffer(phys_addr_t paddr
)
327 return paddr
>= virt_to_phys(io_tlb_start
) &&
328 paddr
< virt_to_phys(io_tlb_end
);
332 * Bounce: copy the swiotlb buffer back to the original dma location
334 void swiotlb_bounce(phys_addr_t phys
, char *dma_addr
, size_t size
,
335 enum dma_data_direction dir
)
337 unsigned long pfn
= PFN_DOWN(phys
);
339 if (PageHighMem(pfn_to_page(pfn
))) {
340 /* The buffer does not have a mapping. Map it in and copy */
341 unsigned int offset
= phys
& ~PAGE_MASK
;
347 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
349 local_irq_save(flags
);
350 buffer
= kmap_atomic(pfn_to_page(pfn
));
351 if (dir
== DMA_TO_DEVICE
)
352 memcpy(dma_addr
, buffer
+ offset
, sz
);
354 memcpy(buffer
+ offset
, dma_addr
, sz
);
355 kunmap_atomic(buffer
);
356 local_irq_restore(flags
);
364 if (dir
== DMA_TO_DEVICE
)
365 memcpy(dma_addr
, phys_to_virt(phys
), size
);
367 memcpy(phys_to_virt(phys
), dma_addr
, size
);
370 EXPORT_SYMBOL_GPL(swiotlb_bounce
);
372 void *swiotlb_tbl_map_single(struct device
*hwdev
, dma_addr_t tbl_dma_addr
,
373 phys_addr_t phys
, size_t size
,
374 enum dma_data_direction dir
)
378 unsigned int nslots
, stride
, index
, wrap
;
381 unsigned long offset_slots
;
382 unsigned long max_slots
;
384 mask
= dma_get_seg_boundary(hwdev
);
386 tbl_dma_addr
&= mask
;
388 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
391 * Carefully handle integer overflow which can occur when mask == ~0UL.
394 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
395 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
398 * For mappings greater than a page, we limit the stride (and
399 * hence alignment) to a page size.
401 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
402 if (size
> PAGE_SIZE
)
403 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
410 * Find suitable number of IO TLB entries size that will fit this
411 * request and allocate a buffer from that IO TLB pool.
413 spin_lock_irqsave(&io_tlb_lock
, flags
);
414 index
= ALIGN(io_tlb_index
, stride
);
415 if (index
>= io_tlb_nslabs
)
420 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
423 if (index
>= io_tlb_nslabs
)
430 * If we find a slot that indicates we have 'nslots' number of
431 * contiguous buffers, we allocate the buffers from that slot
432 * and mark the entries as '0' indicating unavailable.
434 if (io_tlb_list
[index
] >= nslots
) {
437 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
439 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
440 io_tlb_list
[i
] = ++count
;
441 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
444 * Update the indices to avoid searching in the next
447 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
448 ? (index
+ nslots
) : 0);
453 if (index
>= io_tlb_nslabs
)
455 } while (index
!= wrap
);
458 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
461 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
464 * Save away the mapping from the original address to the DMA address.
465 * This is needed when we sync the memory. Then we sync the buffer if
468 for (i
= 0; i
< nslots
; i
++)
469 io_tlb_orig_addr
[index
+i
] = phys
+ (i
<< IO_TLB_SHIFT
);
470 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
471 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
475 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single
);
478 * Allocates bounce buffer and returns its kernel virtual address.
482 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
483 enum dma_data_direction dir
)
485 dma_addr_t start_dma_addr
= swiotlb_virt_to_bus(hwdev
, io_tlb_start
);
487 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
, dir
);
491 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
494 swiotlb_tbl_unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
495 enum dma_data_direction dir
)
498 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
499 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
500 phys_addr_t phys
= io_tlb_orig_addr
[index
];
503 * First, sync the memory before unmapping the entry
505 if (phys
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
506 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
509 * Return the buffer to the free list by setting the corresponding
510 * entries to indicate the number of contiguous entries available.
511 * While returning the entries to the free list, we merge the entries
512 * with slots below and above the pool being returned.
514 spin_lock_irqsave(&io_tlb_lock
, flags
);
516 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
517 io_tlb_list
[index
+ nslots
] : 0);
519 * Step 1: return the slots to the free list, merging the
520 * slots with superceeding slots
522 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
523 io_tlb_list
[i
] = ++count
;
525 * Step 2: merge the returned slots with the preceding slots,
526 * if available (non zero)
528 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
529 io_tlb_list
[i
] = ++count
;
531 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
533 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single
);
536 swiotlb_tbl_sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
537 enum dma_data_direction dir
,
538 enum dma_sync_target target
)
540 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
541 phys_addr_t phys
= io_tlb_orig_addr
[index
];
543 phys
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
547 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
548 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
550 BUG_ON(dir
!= DMA_TO_DEVICE
);
552 case SYNC_FOR_DEVICE
:
553 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
554 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
556 BUG_ON(dir
!= DMA_FROM_DEVICE
);
562 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single
);
565 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
566 dma_addr_t
*dma_handle
, gfp_t flags
)
570 int order
= get_order(size
);
571 u64 dma_mask
= DMA_BIT_MASK(32);
573 if (hwdev
&& hwdev
->coherent_dma_mask
)
574 dma_mask
= hwdev
->coherent_dma_mask
;
576 ret
= (void *)__get_free_pages(flags
, order
);
577 if (ret
&& swiotlb_virt_to_bus(hwdev
, ret
) + size
- 1 > dma_mask
) {
579 * The allocated memory isn't reachable by the device.
581 free_pages((unsigned long) ret
, order
);
586 * We are either out of memory or the device can't DMA to
587 * GFP_DMA memory; fall back on map_single(), which
588 * will grab memory from the lowest available address range.
590 ret
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
595 memset(ret
, 0, size
);
596 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
598 /* Confirm address can be DMA'd by device */
599 if (dev_addr
+ size
- 1 > dma_mask
) {
600 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
601 (unsigned long long)dma_mask
,
602 (unsigned long long)dev_addr
);
604 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
605 swiotlb_tbl_unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
608 *dma_handle
= dev_addr
;
611 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
614 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
617 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
619 WARN_ON(irqs_disabled());
620 if (!is_swiotlb_buffer(paddr
))
621 free_pages((unsigned long)vaddr
, get_order(size
));
623 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
624 swiotlb_tbl_unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
626 EXPORT_SYMBOL(swiotlb_free_coherent
);
629 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
633 * Ran out of IOMMU space for this operation. This is very bad.
634 * Unfortunately the drivers cannot handle this operation properly.
635 * unless they check for dma_mapping_error (most don't)
636 * When the mapping is small enough return a static buffer to limit
637 * the damage, or panic when the transfer is too big.
639 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
640 "device %s\n", size
, dev
? dev_name(dev
) : "?");
642 if (size
<= io_tlb_overflow
|| !do_panic
)
645 if (dir
== DMA_BIDIRECTIONAL
)
646 panic("DMA: Random memory could be DMA accessed\n");
647 if (dir
== DMA_FROM_DEVICE
)
648 panic("DMA: Random memory could be DMA written\n");
649 if (dir
== DMA_TO_DEVICE
)
650 panic("DMA: Random memory could be DMA read\n");
654 * Map a single buffer of the indicated size for DMA in streaming mode. The
655 * physical address to use is returned.
657 * Once the device is given the dma address, the device owns this memory until
658 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
660 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
661 unsigned long offset
, size_t size
,
662 enum dma_data_direction dir
,
663 struct dma_attrs
*attrs
)
665 phys_addr_t phys
= page_to_phys(page
) + offset
;
666 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
669 BUG_ON(dir
== DMA_NONE
);
671 * If the address happens to be in the device's DMA window,
672 * we can safely return the device addr and not worry about bounce
675 if (dma_capable(dev
, dev_addr
, size
) && !swiotlb_force
)
679 * Oh well, have to allocate and map a bounce buffer.
681 map
= map_single(dev
, phys
, size
, dir
);
683 swiotlb_full(dev
, size
, dir
, 1);
684 map
= io_tlb_overflow_buffer
;
687 dev_addr
= swiotlb_virt_to_bus(dev
, map
);
690 * Ensure that the address returned is DMA'ble
692 if (!dma_capable(dev
, dev_addr
, size
)) {
693 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
);
694 dev_addr
= swiotlb_virt_to_bus(dev
, io_tlb_overflow_buffer
);
699 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
702 * Unmap a single streaming mode DMA translation. The dma_addr and size must
703 * match what was provided for in a previous swiotlb_map_page call. All
704 * other usages are undefined.
706 * After this call, reads by the cpu to the buffer are guaranteed to see
707 * whatever the device wrote there.
709 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
710 size_t size
, enum dma_data_direction dir
)
712 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
714 BUG_ON(dir
== DMA_NONE
);
716 if (is_swiotlb_buffer(paddr
)) {
717 swiotlb_tbl_unmap_single(hwdev
, phys_to_virt(paddr
), size
, dir
);
721 if (dir
!= DMA_FROM_DEVICE
)
725 * phys_to_virt doesn't work with hihgmem page but we could
726 * call dma_mark_clean() with hihgmem page here. However, we
727 * are fine since dma_mark_clean() is null on POWERPC. We can
728 * make dma_mark_clean() take a physical address if necessary.
730 dma_mark_clean(phys_to_virt(paddr
), size
);
733 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
734 size_t size
, enum dma_data_direction dir
,
735 struct dma_attrs
*attrs
)
737 unmap_single(hwdev
, dev_addr
, size
, dir
);
739 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
742 * Make physical memory consistent for a single streaming mode DMA translation
745 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
746 * using the cpu, yet do not wish to teardown the dma mapping, you must
747 * call this function before doing so. At the next point you give the dma
748 * address back to the card, you must first perform a
749 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
752 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
753 size_t size
, enum dma_data_direction dir
,
754 enum dma_sync_target target
)
756 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
758 BUG_ON(dir
== DMA_NONE
);
760 if (is_swiotlb_buffer(paddr
)) {
761 swiotlb_tbl_sync_single(hwdev
, phys_to_virt(paddr
), size
, dir
,
766 if (dir
!= DMA_FROM_DEVICE
)
769 dma_mark_clean(phys_to_virt(paddr
), size
);
773 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
774 size_t size
, enum dma_data_direction dir
)
776 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
778 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
781 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
782 size_t size
, enum dma_data_direction dir
)
784 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
786 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
789 * Map a set of buffers described by scatterlist in streaming mode for DMA.
790 * This is the scatter-gather version of the above swiotlb_map_page
791 * interface. Here the scatter gather list elements are each tagged with the
792 * appropriate dma address and length. They are obtained via
793 * sg_dma_{address,length}(SG).
795 * NOTE: An implementation may be able to use a smaller number of
796 * DMA address/length pairs than there are SG table elements.
797 * (for example via virtual mapping capabilities)
798 * The routine returns the number of addr/length pairs actually
799 * used, at most nents.
801 * Device ownership issues as mentioned above for swiotlb_map_page are the
805 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
806 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
808 struct scatterlist
*sg
;
811 BUG_ON(dir
== DMA_NONE
);
813 for_each_sg(sgl
, sg
, nelems
, i
) {
814 phys_addr_t paddr
= sg_phys(sg
);
815 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
818 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
819 void *map
= map_single(hwdev
, sg_phys(sg
),
822 /* Don't panic here, we expect map_sg users
823 to do proper error handling. */
824 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
825 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
827 sgl
[0].dma_length
= 0;
830 sg
->dma_address
= swiotlb_virt_to_bus(hwdev
, map
);
832 sg
->dma_address
= dev_addr
;
833 sg
->dma_length
= sg
->length
;
837 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
840 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
841 enum dma_data_direction dir
)
843 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
845 EXPORT_SYMBOL(swiotlb_map_sg
);
848 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
849 * concerning calls here are the same as for swiotlb_unmap_page() above.
852 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
853 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
855 struct scatterlist
*sg
;
858 BUG_ON(dir
== DMA_NONE
);
860 for_each_sg(sgl
, sg
, nelems
, i
)
861 unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
864 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
867 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
868 enum dma_data_direction dir
)
870 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
872 EXPORT_SYMBOL(swiotlb_unmap_sg
);
875 * Make physical memory consistent for a set of streaming mode DMA translations
878 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
882 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
883 int nelems
, enum dma_data_direction dir
,
884 enum dma_sync_target target
)
886 struct scatterlist
*sg
;
889 for_each_sg(sgl
, sg
, nelems
, i
)
890 swiotlb_sync_single(hwdev
, sg
->dma_address
,
891 sg
->dma_length
, dir
, target
);
895 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
896 int nelems
, enum dma_data_direction dir
)
898 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
900 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
903 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
904 int nelems
, enum dma_data_direction dir
)
906 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
908 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
911 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
913 return (dma_addr
== swiotlb_virt_to_bus(hwdev
, io_tlb_overflow_buffer
));
915 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
918 * Return whether the given device DMA address mask can be supported
919 * properly. For example, if your device can only drive the low 24-bits
920 * during bus mastering, then you would pass 0x00ffffff as the mask to
924 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
926 return swiotlb_virt_to_bus(hwdev
, io_tlb_end
- 1) <= mask
;
928 EXPORT_SYMBOL(swiotlb_dma_supported
);