e1000e: cleanup redundant #include's
[linux-2.6/libata-dev.git] / drivers / net / e1000e / es2lan.c
blob6fd46f5f8a3cb049886c05a6d2012ed7e2cef38e
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
34 #include "e1000.h"
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
49 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
50 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
52 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
53 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
55 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
56 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
57 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
58 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
59 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
60 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
62 /* PHY Specific Control Register 2 (Page 0, Register 26) */
63 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
64 /* 1=Reverse Auto-Negotiation */
66 /* MAC Specific Control Register (Page 2, Register 21) */
67 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
68 #define GG82563_MSCR_TX_CLK_MASK 0x0007
69 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
70 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
71 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
73 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
75 /* DSP Distance Register (Page 5, Register 26) */
76 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
77 1 = 50-80M
78 2 = 80-110M
79 3 = 110-140M
80 4 = >140M */
82 /* Kumeran Mode Control Register (Page 193, Register 16) */
83 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
85 /* Max number of times Kumeran read/write should be validated */
86 #define GG82563_MAX_KMRN_RETRY 0x5
88 /* Power Management Control Register (Page 193, Register 20) */
89 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
90 /* 1=Enable SERDES Electrical Idle */
92 /* In-Band Control Register (Page 194, Register 18) */
93 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
96 * A table for the GG82563 cable length where the range is defined
97 * with a lower bound at "index" and the upper bound at
98 * "index + 5".
100 static const u16 e1000_gg82563_cable_length_table[] =
101 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
103 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
104 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
105 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
106 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
107 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
108 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
110 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
111 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
112 u16 *data);
113 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
114 u16 data);
117 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
118 * @hw: pointer to the HW structure
120 * This is a function pointer entry point called by the api module.
122 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
124 struct e1000_phy_info *phy = &hw->phy;
125 s32 ret_val;
127 if (hw->phy.media_type != e1000_media_type_copper) {
128 phy->type = e1000_phy_none;
129 return 0;
132 phy->addr = 1;
133 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
134 phy->reset_delay_us = 100;
135 phy->type = e1000_phy_gg82563;
137 /* This can only be done after all function pointers are setup. */
138 ret_val = e1000e_get_phy_id(hw);
140 /* Verify phy id */
141 if (phy->id != GG82563_E_PHY_ID)
142 return -E1000_ERR_PHY;
144 return ret_val;
148 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
149 * @hw: pointer to the HW structure
151 * This is a function pointer entry point called by the api module.
153 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
155 struct e1000_nvm_info *nvm = &hw->nvm;
156 u32 eecd = er32(EECD);
157 u16 size;
159 nvm->opcode_bits = 8;
160 nvm->delay_usec = 1;
161 switch (nvm->override) {
162 case e1000_nvm_override_spi_large:
163 nvm->page_size = 32;
164 nvm->address_bits = 16;
165 break;
166 case e1000_nvm_override_spi_small:
167 nvm->page_size = 8;
168 nvm->address_bits = 8;
169 break;
170 default:
171 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
172 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
173 break;
176 nvm->type = e1000_nvm_eeprom_spi;
178 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
179 E1000_EECD_SIZE_EX_SHIFT);
182 * Added to a constant, "size" becomes the left-shift value
183 * for setting word_size.
185 size += NVM_WORD_SIZE_BASE_SHIFT;
187 /* EEPROM access above 16k is unsupported */
188 if (size > 14)
189 size = 14;
190 nvm->word_size = 1 << size;
192 return 0;
196 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
197 * @hw: pointer to the HW structure
199 * This is a function pointer entry point called by the api module.
201 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
203 struct e1000_hw *hw = &adapter->hw;
204 struct e1000_mac_info *mac = &hw->mac;
205 struct e1000_mac_operations *func = &mac->ops;
207 /* Set media type */
208 switch (adapter->pdev->device) {
209 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
210 hw->phy.media_type = e1000_media_type_internal_serdes;
211 break;
212 default:
213 hw->phy.media_type = e1000_media_type_copper;
214 break;
217 /* Set mta register count */
218 mac->mta_reg_count = 128;
219 /* Set rar entry count */
220 mac->rar_entry_count = E1000_RAR_ENTRIES;
221 /* Set if manageability features are enabled. */
222 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
224 /* check for link */
225 switch (hw->phy.media_type) {
226 case e1000_media_type_copper:
227 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
228 func->check_for_link = e1000e_check_for_copper_link;
229 break;
230 case e1000_media_type_fiber:
231 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
232 func->check_for_link = e1000e_check_for_fiber_link;
233 break;
234 case e1000_media_type_internal_serdes:
235 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
236 func->check_for_link = e1000e_check_for_serdes_link;
237 break;
238 default:
239 return -E1000_ERR_CONFIG;
240 break;
243 return 0;
246 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
248 struct e1000_hw *hw = &adapter->hw;
249 s32 rc;
251 rc = e1000_init_mac_params_80003es2lan(adapter);
252 if (rc)
253 return rc;
255 rc = e1000_init_nvm_params_80003es2lan(hw);
256 if (rc)
257 return rc;
259 rc = e1000_init_phy_params_80003es2lan(hw);
260 if (rc)
261 return rc;
263 return 0;
267 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
268 * @hw: pointer to the HW structure
270 * A wrapper to acquire access rights to the correct PHY. This is a
271 * function pointer entry point called by the api module.
273 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
275 u16 mask;
277 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
278 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
282 * e1000_release_phy_80003es2lan - Release rights to access PHY
283 * @hw: pointer to the HW structure
285 * A wrapper to release access rights to the correct PHY. This is a
286 * function pointer entry point called by the api module.
288 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
290 u16 mask;
292 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
293 e1000_release_swfw_sync_80003es2lan(hw, mask);
297 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
298 * @hw: pointer to the HW structure
300 * Acquire the semaphore to access the Kumeran interface.
303 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
305 u16 mask;
307 mask = E1000_SWFW_CSR_SM;
309 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
313 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
314 * @hw: pointer to the HW structure
316 * Release the semaphore used to access the Kumeran interface
318 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
320 u16 mask;
322 mask = E1000_SWFW_CSR_SM;
324 e1000_release_swfw_sync_80003es2lan(hw, mask);
328 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
329 * @hw: pointer to the HW structure
331 * Acquire the semaphore to access the EEPROM. This is a function
332 * pointer entry point called by the api module.
334 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
336 s32 ret_val;
338 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
339 if (ret_val)
340 return ret_val;
342 ret_val = e1000e_acquire_nvm(hw);
344 if (ret_val)
345 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
347 return ret_val;
351 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
352 * @hw: pointer to the HW structure
354 * Release the semaphore used to access the EEPROM. This is a
355 * function pointer entry point called by the api module.
357 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
359 e1000e_release_nvm(hw);
360 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
364 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
365 * @hw: pointer to the HW structure
366 * @mask: specifies which semaphore to acquire
368 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
369 * will also specify which port we're acquiring the lock for.
371 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
373 u32 swfw_sync;
374 u32 swmask = mask;
375 u32 fwmask = mask << 16;
376 s32 i = 0;
377 s32 timeout = 50;
379 while (i < timeout) {
380 if (e1000e_get_hw_semaphore(hw))
381 return -E1000_ERR_SWFW_SYNC;
383 swfw_sync = er32(SW_FW_SYNC);
384 if (!(swfw_sync & (fwmask | swmask)))
385 break;
388 * Firmware currently using resource (fwmask)
389 * or other software thread using resource (swmask)
391 e1000e_put_hw_semaphore(hw);
392 mdelay(5);
393 i++;
396 if (i == timeout) {
397 hw_dbg(hw,
398 "Driver can't access resource, SW_FW_SYNC timeout.\n");
399 return -E1000_ERR_SWFW_SYNC;
402 swfw_sync |= swmask;
403 ew32(SW_FW_SYNC, swfw_sync);
405 e1000e_put_hw_semaphore(hw);
407 return 0;
411 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
412 * @hw: pointer to the HW structure
413 * @mask: specifies which semaphore to acquire
415 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
416 * will also specify which port we're releasing the lock for.
418 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
420 u32 swfw_sync;
422 while (e1000e_get_hw_semaphore(hw) != 0);
423 /* Empty */
425 swfw_sync = er32(SW_FW_SYNC);
426 swfw_sync &= ~mask;
427 ew32(SW_FW_SYNC, swfw_sync);
429 e1000e_put_hw_semaphore(hw);
433 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
434 * @hw: pointer to the HW structure
435 * @offset: offset of the register to read
436 * @data: pointer to the data returned from the operation
438 * Read the GG82563 PHY register. This is a function pointer entry
439 * point called by the api module.
441 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
442 u32 offset, u16 *data)
444 s32 ret_val;
445 u32 page_select;
446 u16 temp;
448 ret_val = e1000_acquire_phy_80003es2lan(hw);
449 if (ret_val)
450 return ret_val;
452 /* Select Configuration Page */
453 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
454 page_select = GG82563_PHY_PAGE_SELECT;
455 } else {
457 * Use Alternative Page Select register to access
458 * registers 30 and 31
460 page_select = GG82563_PHY_PAGE_SELECT_ALT;
463 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
464 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
465 if (ret_val) {
466 e1000_release_phy_80003es2lan(hw);
467 return ret_val;
471 * The "ready" bit in the MDIC register may be incorrectly set
472 * before the device has completed the "Page Select" MDI
473 * transaction. So we wait 200us after each MDI command...
475 udelay(200);
477 /* ...and verify the command was successful. */
478 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
480 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
481 ret_val = -E1000_ERR_PHY;
482 e1000_release_phy_80003es2lan(hw);
483 return ret_val;
486 udelay(200);
488 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
489 data);
491 udelay(200);
492 e1000_release_phy_80003es2lan(hw);
494 return ret_val;
498 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
499 * @hw: pointer to the HW structure
500 * @offset: offset of the register to read
501 * @data: value to write to the register
503 * Write to the GG82563 PHY register. This is a function pointer entry
504 * point called by the api module.
506 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
507 u32 offset, u16 data)
509 s32 ret_val;
510 u32 page_select;
511 u16 temp;
513 ret_val = e1000_acquire_phy_80003es2lan(hw);
514 if (ret_val)
515 return ret_val;
517 /* Select Configuration Page */
518 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
519 page_select = GG82563_PHY_PAGE_SELECT;
520 } else {
522 * Use Alternative Page Select register to access
523 * registers 30 and 31
525 page_select = GG82563_PHY_PAGE_SELECT_ALT;
528 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
529 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
530 if (ret_val) {
531 e1000_release_phy_80003es2lan(hw);
532 return ret_val;
537 * The "ready" bit in the MDIC register may be incorrectly set
538 * before the device has completed the "Page Select" MDI
539 * transaction. So we wait 200us after each MDI command...
541 udelay(200);
543 /* ...and verify the command was successful. */
544 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
546 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
547 e1000_release_phy_80003es2lan(hw);
548 return -E1000_ERR_PHY;
551 udelay(200);
553 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
554 data);
556 udelay(200);
557 e1000_release_phy_80003es2lan(hw);
559 return ret_val;
563 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
564 * @hw: pointer to the HW structure
565 * @offset: offset of the register to read
566 * @words: number of words to write
567 * @data: buffer of data to write to the NVM
569 * Write "words" of data to the ESB2 NVM. This is a function
570 * pointer entry point called by the api module.
572 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
573 u16 words, u16 *data)
575 return e1000e_write_nvm_spi(hw, offset, words, data);
579 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
580 * @hw: pointer to the HW structure
582 * Wait a specific amount of time for manageability processes to complete.
583 * This is a function pointer entry point called by the phy module.
585 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
587 s32 timeout = PHY_CFG_TIMEOUT;
588 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
590 if (hw->bus.func == 1)
591 mask = E1000_NVM_CFG_DONE_PORT_1;
593 while (timeout) {
594 if (er32(EEMNGCTL) & mask)
595 break;
596 msleep(1);
597 timeout--;
599 if (!timeout) {
600 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
601 return -E1000_ERR_RESET;
604 return 0;
608 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
609 * @hw: pointer to the HW structure
611 * Force the speed and duplex settings onto the PHY. This is a
612 * function pointer entry point called by the phy module.
614 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
616 s32 ret_val;
617 u16 phy_data;
618 bool link;
621 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
622 * forced whenever speed and duplex are forced.
624 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
625 if (ret_val)
626 return ret_val;
628 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
629 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
630 if (ret_val)
631 return ret_val;
633 hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
635 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
636 if (ret_val)
637 return ret_val;
639 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
641 /* Reset the phy to commit changes. */
642 phy_data |= MII_CR_RESET;
644 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
645 if (ret_val)
646 return ret_val;
648 udelay(1);
650 if (hw->phy.autoneg_wait_to_complete) {
651 hw_dbg(hw, "Waiting for forced speed/duplex link "
652 "on GG82563 phy.\n");
654 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
655 100000, &link);
656 if (ret_val)
657 return ret_val;
659 if (!link) {
661 * We didn't get link.
662 * Reset the DSP and cross our fingers.
664 ret_val = e1000e_phy_reset_dsp(hw);
665 if (ret_val)
666 return ret_val;
669 /* Try once more */
670 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
671 100000, &link);
672 if (ret_val)
673 return ret_val;
676 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
677 if (ret_val)
678 return ret_val;
681 * Resetting the phy means we need to verify the TX_CLK corresponds
682 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
684 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
685 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
686 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
687 else
688 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
691 * In addition, we must re-enable CRS on Tx for both half and full
692 * duplex.
694 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
695 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
697 return ret_val;
701 * e1000_get_cable_length_80003es2lan - Set approximate cable length
702 * @hw: pointer to the HW structure
704 * Find the approximate cable length as measured by the GG82563 PHY.
705 * This is a function pointer entry point called by the phy module.
707 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
709 struct e1000_phy_info *phy = &hw->phy;
710 s32 ret_val;
711 u16 phy_data;
712 u16 index;
714 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
715 if (ret_val)
716 return ret_val;
718 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
719 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
720 phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
722 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
724 return 0;
728 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
729 * @hw: pointer to the HW structure
730 * @speed: pointer to speed buffer
731 * @duplex: pointer to duplex buffer
733 * Retrieve the current speed and duplex configuration.
734 * This is a function pointer entry point called by the api module.
736 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
737 u16 *duplex)
739 s32 ret_val;
741 if (hw->phy.media_type == e1000_media_type_copper) {
742 ret_val = e1000e_get_speed_and_duplex_copper(hw,
743 speed,
744 duplex);
745 hw->phy.ops.cfg_on_link_up(hw);
746 } else {
747 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
748 speed,
749 duplex);
752 return ret_val;
756 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
757 * @hw: pointer to the HW structure
759 * Perform a global reset to the ESB2 controller.
760 * This is a function pointer entry point called by the api module.
762 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
764 u32 ctrl;
765 u32 icr;
766 s32 ret_val;
769 * Prevent the PCI-E bus from sticking if there is no TLP connection
770 * on the last TLP read/write transaction when MAC is reset.
772 ret_val = e1000e_disable_pcie_master(hw);
773 if (ret_val)
774 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
776 hw_dbg(hw, "Masking off all interrupts\n");
777 ew32(IMC, 0xffffffff);
779 ew32(RCTL, 0);
780 ew32(TCTL, E1000_TCTL_PSP);
781 e1e_flush();
783 msleep(10);
785 ctrl = er32(CTRL);
787 ret_val = e1000_acquire_phy_80003es2lan(hw);
788 hw_dbg(hw, "Issuing a global reset to MAC\n");
789 ew32(CTRL, ctrl | E1000_CTRL_RST);
790 e1000_release_phy_80003es2lan(hw);
792 ret_val = e1000e_get_auto_rd_done(hw);
793 if (ret_val)
794 /* We don't want to continue accessing MAC registers. */
795 return ret_val;
797 /* Clear any pending interrupt events. */
798 ew32(IMC, 0xffffffff);
799 icr = er32(ICR);
801 return 0;
805 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
806 * @hw: pointer to the HW structure
808 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
809 * This is a function pointer entry point called by the api module.
811 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
813 struct e1000_mac_info *mac = &hw->mac;
814 u32 reg_data;
815 s32 ret_val;
816 u16 i;
818 e1000_initialize_hw_bits_80003es2lan(hw);
820 /* Initialize identification LED */
821 ret_val = e1000e_id_led_init(hw);
822 if (ret_val) {
823 hw_dbg(hw, "Error initializing identification LED\n");
824 return ret_val;
827 /* Disabling VLAN filtering */
828 hw_dbg(hw, "Initializing the IEEE VLAN\n");
829 e1000e_clear_vfta(hw);
831 /* Setup the receive address. */
832 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
834 /* Zero out the Multicast HASH table */
835 hw_dbg(hw, "Zeroing the MTA\n");
836 for (i = 0; i < mac->mta_reg_count; i++)
837 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
839 /* Setup link and flow control */
840 ret_val = e1000e_setup_link(hw);
842 /* Set the transmit descriptor write-back policy */
843 reg_data = er32(TXDCTL(0));
844 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
845 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
846 ew32(TXDCTL(0), reg_data);
848 /* ...for both queues. */
849 reg_data = er32(TXDCTL(1));
850 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
851 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
852 ew32(TXDCTL(1), reg_data);
854 /* Enable retransmit on late collisions */
855 reg_data = er32(TCTL);
856 reg_data |= E1000_TCTL_RTLC;
857 ew32(TCTL, reg_data);
859 /* Configure Gigabit Carry Extend Padding */
860 reg_data = er32(TCTL_EXT);
861 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
862 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
863 ew32(TCTL_EXT, reg_data);
865 /* Configure Transmit Inter-Packet Gap */
866 reg_data = er32(TIPG);
867 reg_data &= ~E1000_TIPG_IPGT_MASK;
868 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
869 ew32(TIPG, reg_data);
871 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
872 reg_data &= ~0x00100000;
873 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
876 * Clear all of the statistics registers (clear on read). It is
877 * important that we do this after we have tried to establish link
878 * because the symbol error count will increment wildly if there
879 * is no link.
881 e1000_clear_hw_cntrs_80003es2lan(hw);
883 return ret_val;
887 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
888 * @hw: pointer to the HW structure
890 * Initializes required hardware-dependent bits needed for normal operation.
892 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
894 u32 reg;
896 /* Transmit Descriptor Control 0 */
897 reg = er32(TXDCTL(0));
898 reg |= (1 << 22);
899 ew32(TXDCTL(0), reg);
901 /* Transmit Descriptor Control 1 */
902 reg = er32(TXDCTL(1));
903 reg |= (1 << 22);
904 ew32(TXDCTL(1), reg);
906 /* Transmit Arbitration Control 0 */
907 reg = er32(TARC(0));
908 reg &= ~(0xF << 27); /* 30:27 */
909 if (hw->phy.media_type != e1000_media_type_copper)
910 reg &= ~(1 << 20);
911 ew32(TARC(0), reg);
913 /* Transmit Arbitration Control 1 */
914 reg = er32(TARC(1));
915 if (er32(TCTL) & E1000_TCTL_MULR)
916 reg &= ~(1 << 28);
917 else
918 reg |= (1 << 28);
919 ew32(TARC(1), reg);
923 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
924 * @hw: pointer to the HW structure
926 * Setup some GG82563 PHY registers for obtaining link
928 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
930 struct e1000_phy_info *phy = &hw->phy;
931 s32 ret_val;
932 u32 ctrl_ext;
933 u16 data;
935 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
936 if (ret_val)
937 return ret_val;
939 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
940 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
941 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
943 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
944 if (ret_val)
945 return ret_val;
948 * Options:
949 * MDI/MDI-X = 0 (default)
950 * 0 - Auto for all speeds
951 * 1 - MDI mode
952 * 2 - MDI-X mode
953 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
955 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
956 if (ret_val)
957 return ret_val;
959 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
961 switch (phy->mdix) {
962 case 1:
963 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
964 break;
965 case 2:
966 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
967 break;
968 case 0:
969 default:
970 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
971 break;
975 * Options:
976 * disable_polarity_correction = 0 (default)
977 * Automatic Correction for Reversed Cable Polarity
978 * 0 - Disabled
979 * 1 - Enabled
981 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
982 if (phy->disable_polarity_correction)
983 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
985 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
986 if (ret_val)
987 return ret_val;
989 /* SW Reset the PHY so all changes take effect */
990 ret_val = e1000e_commit_phy(hw);
991 if (ret_val) {
992 hw_dbg(hw, "Error Resetting the PHY\n");
993 return ret_val;
996 /* Bypass Rx and Tx FIFO's */
997 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
998 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
999 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1000 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1001 if (ret_val)
1002 return ret_val;
1004 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1005 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1006 &data);
1007 if (ret_val)
1008 return ret_val;
1009 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1010 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1011 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1012 data);
1013 if (ret_val)
1014 return ret_val;
1016 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1017 if (ret_val)
1018 return ret_val;
1020 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1021 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1022 if (ret_val)
1023 return ret_val;
1025 ctrl_ext = er32(CTRL_EXT);
1026 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1027 ew32(CTRL_EXT, ctrl_ext);
1029 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1030 if (ret_val)
1031 return ret_val;
1034 * Do not init these registers when the HW is in IAMT mode, since the
1035 * firmware will have already initialized them. We only initialize
1036 * them if the HW is not in IAMT mode.
1038 if (!e1000e_check_mng_mode(hw)) {
1039 /* Enable Electrical Idle on the PHY */
1040 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1041 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1042 if (ret_val)
1043 return ret_val;
1045 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1046 if (ret_val)
1047 return ret_val;
1049 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1050 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1051 if (ret_val)
1052 return ret_val;
1056 * Workaround: Disable padding in Kumeran interface in the MAC
1057 * and in the PHY to avoid CRC errors.
1059 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1060 if (ret_val)
1061 return ret_val;
1063 data |= GG82563_ICR_DIS_PADDING;
1064 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1065 if (ret_val)
1066 return ret_val;
1068 return 0;
1072 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1073 * @hw: pointer to the HW structure
1075 * Essentially a wrapper for setting up all things "copper" related.
1076 * This is a function pointer entry point called by the mac module.
1078 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1080 u32 ctrl;
1081 s32 ret_val;
1082 u16 reg_data;
1084 ctrl = er32(CTRL);
1085 ctrl |= E1000_CTRL_SLU;
1086 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1087 ew32(CTRL, ctrl);
1090 * Set the mac to wait the maximum time between each
1091 * iteration and increase the max iterations when
1092 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1094 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1095 0xFFFF);
1096 if (ret_val)
1097 return ret_val;
1098 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1099 &reg_data);
1100 if (ret_val)
1101 return ret_val;
1102 reg_data |= 0x3F;
1103 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1104 reg_data);
1105 if (ret_val)
1106 return ret_val;
1107 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1108 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1109 &reg_data);
1110 if (ret_val)
1111 return ret_val;
1112 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1113 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1114 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1115 reg_data);
1116 if (ret_val)
1117 return ret_val;
1119 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1120 if (ret_val)
1121 return ret_val;
1123 ret_val = e1000e_setup_copper_link(hw);
1125 return 0;
1129 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1130 * @hw: pointer to the HW structure
1131 * @duplex: current duplex setting
1133 * Configure the KMRN interface by applying last minute quirks for
1134 * 10/100 operation.
1136 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1138 s32 ret_val = 0;
1139 u16 speed;
1140 u16 duplex;
1142 if (hw->phy.media_type == e1000_media_type_copper) {
1143 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1144 &duplex);
1145 if (ret_val)
1146 return ret_val;
1148 if (speed == SPEED_1000)
1149 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1150 else
1151 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1154 return ret_val;
1158 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1159 * @hw: pointer to the HW structure
1160 * @duplex: current duplex setting
1162 * Configure the KMRN interface by applying last minute quirks for
1163 * 10/100 operation.
1165 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1167 s32 ret_val;
1168 u32 tipg;
1169 u32 i = 0;
1170 u16 reg_data, reg_data2;
1172 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1173 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1174 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1175 reg_data);
1176 if (ret_val)
1177 return ret_val;
1179 /* Configure Transmit Inter-Packet Gap */
1180 tipg = er32(TIPG);
1181 tipg &= ~E1000_TIPG_IPGT_MASK;
1182 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1183 ew32(TIPG, tipg);
1185 do {
1186 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1187 if (ret_val)
1188 return ret_val;
1190 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1191 if (ret_val)
1192 return ret_val;
1193 i++;
1194 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1196 if (duplex == HALF_DUPLEX)
1197 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1198 else
1199 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1201 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1203 return 0;
1207 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1208 * @hw: pointer to the HW structure
1210 * Configure the KMRN interface by applying last minute quirks for
1211 * gigabit operation.
1213 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1215 s32 ret_val;
1216 u16 reg_data, reg_data2;
1217 u32 tipg;
1218 u32 i = 0;
1220 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1221 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1222 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1223 reg_data);
1224 if (ret_val)
1225 return ret_val;
1227 /* Configure Transmit Inter-Packet Gap */
1228 tipg = er32(TIPG);
1229 tipg &= ~E1000_TIPG_IPGT_MASK;
1230 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1231 ew32(TIPG, tipg);
1233 do {
1234 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1235 if (ret_val)
1236 return ret_val;
1238 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1239 if (ret_val)
1240 return ret_val;
1241 i++;
1242 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1244 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1245 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1247 return ret_val;
1251 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1252 * @hw: pointer to the HW structure
1253 * @offset: register offset to be read
1254 * @data: pointer to the read data
1256 * Acquire semaphore, then read the PHY register at offset
1257 * using the kumeran interface. The information retrieved is stored in data.
1258 * Release the semaphore before exiting.
1260 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1261 u16 *data)
1263 u32 kmrnctrlsta;
1264 s32 ret_val = 0;
1266 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1267 if (ret_val)
1268 return ret_val;
1270 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1271 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1272 ew32(KMRNCTRLSTA, kmrnctrlsta);
1274 udelay(2);
1276 kmrnctrlsta = er32(KMRNCTRLSTA);
1277 *data = (u16)kmrnctrlsta;
1279 e1000_release_mac_csr_80003es2lan(hw);
1281 return ret_val;
1285 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1286 * @hw: pointer to the HW structure
1287 * @offset: register offset to write to
1288 * @data: data to write at register offset
1290 * Acquire semaphore, then write the data to PHY register
1291 * at the offset using the kumeran interface. Release semaphore
1292 * before exiting.
1294 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1295 u16 data)
1297 u32 kmrnctrlsta;
1298 s32 ret_val = 0;
1300 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1301 if (ret_val)
1302 return ret_val;
1304 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1305 E1000_KMRNCTRLSTA_OFFSET) | data;
1306 ew32(KMRNCTRLSTA, kmrnctrlsta);
1308 udelay(2);
1310 e1000_release_mac_csr_80003es2lan(hw);
1312 return ret_val;
1316 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1317 * @hw: pointer to the HW structure
1319 * Clears the hardware counters by reading the counter registers.
1321 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1323 u32 temp;
1325 e1000e_clear_hw_cntrs_base(hw);
1327 temp = er32(PRC64);
1328 temp = er32(PRC127);
1329 temp = er32(PRC255);
1330 temp = er32(PRC511);
1331 temp = er32(PRC1023);
1332 temp = er32(PRC1522);
1333 temp = er32(PTC64);
1334 temp = er32(PTC127);
1335 temp = er32(PTC255);
1336 temp = er32(PTC511);
1337 temp = er32(PTC1023);
1338 temp = er32(PTC1522);
1340 temp = er32(ALGNERRC);
1341 temp = er32(RXERRC);
1342 temp = er32(TNCRS);
1343 temp = er32(CEXTERR);
1344 temp = er32(TSCTC);
1345 temp = er32(TSCTFC);
1347 temp = er32(MGTPRC);
1348 temp = er32(MGTPDC);
1349 temp = er32(MGTPTC);
1351 temp = er32(IAC);
1352 temp = er32(ICRXOC);
1354 temp = er32(ICRXPTC);
1355 temp = er32(ICRXATC);
1356 temp = er32(ICTXPTC);
1357 temp = er32(ICTXATC);
1358 temp = er32(ICTXQEC);
1359 temp = er32(ICTXQMTC);
1360 temp = er32(ICRXDMTC);
1363 static struct e1000_mac_operations es2_mac_ops = {
1364 .id_led_init = e1000e_id_led_init,
1365 .check_mng_mode = e1000e_check_mng_mode_generic,
1366 /* check_for_link dependent on media type */
1367 .cleanup_led = e1000e_cleanup_led_generic,
1368 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1369 .get_bus_info = e1000e_get_bus_info_pcie,
1370 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1371 .led_on = e1000e_led_on_generic,
1372 .led_off = e1000e_led_off_generic,
1373 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1374 .reset_hw = e1000_reset_hw_80003es2lan,
1375 .init_hw = e1000_init_hw_80003es2lan,
1376 .setup_link = e1000e_setup_link,
1377 /* setup_physical_interface dependent on media type */
1378 .setup_led = e1000e_setup_led_generic,
1381 static struct e1000_phy_operations es2_phy_ops = {
1382 .acquire_phy = e1000_acquire_phy_80003es2lan,
1383 .check_reset_block = e1000e_check_reset_block_generic,
1384 .commit_phy = e1000e_phy_sw_reset,
1385 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1386 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1387 .get_cable_length = e1000_get_cable_length_80003es2lan,
1388 .get_phy_info = e1000e_get_phy_info_m88,
1389 .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1390 .release_phy = e1000_release_phy_80003es2lan,
1391 .reset_phy = e1000e_phy_hw_reset_generic,
1392 .set_d0_lplu_state = NULL,
1393 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1394 .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1395 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
1398 static struct e1000_nvm_operations es2_nvm_ops = {
1399 .acquire_nvm = e1000_acquire_nvm_80003es2lan,
1400 .read_nvm = e1000e_read_nvm_eerd,
1401 .release_nvm = e1000_release_nvm_80003es2lan,
1402 .update_nvm = e1000e_update_nvm_checksum_generic,
1403 .valid_led_default = e1000e_valid_led_default,
1404 .validate_nvm = e1000e_validate_nvm_checksum_generic,
1405 .write_nvm = e1000_write_nvm_80003es2lan,
1408 struct e1000_info e1000_es2_info = {
1409 .mac = e1000_80003es2lan,
1410 .flags = FLAG_HAS_HW_VLAN_FILTER
1411 | FLAG_HAS_JUMBO_FRAMES
1412 | FLAG_HAS_WOL
1413 | FLAG_APME_IN_CTRL3
1414 | FLAG_RX_CSUM_ENABLED
1415 | FLAG_HAS_CTRLEXT_ON_LOAD
1416 | FLAG_RX_NEEDS_RESTART /* errata */
1417 | FLAG_TARC_SET_BIT_ZERO /* errata */
1418 | FLAG_APME_CHECK_PORT_B
1419 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1420 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1421 .pba = 38,
1422 .max_hw_frame_size = DEFAULT_JUMBO,
1423 .get_variants = e1000_get_variants_80003es2lan,
1424 .mac_ops = &es2_mac_ops,
1425 .phy_ops = &es2_phy_ops,
1426 .nvm_ops = &es2_nvm_ops,