4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * Sleep at most 200ms at a time in balance_dirty_pages().
42 #define MAX_PAUSE max(HZ/5, 1)
45 * Try to keep balance_dirty_pages() call intervals higher than this many pages
46 * by raising pause time to max_pause when falls below it.
48 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
51 * Estimate write bandwidth at 200ms intervals.
53 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
55 #define RATELIMIT_CALC_SHIFT 10
58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
59 * will look to see if it needs to force writeback or throttling.
61 static long ratelimit_pages
= 32;
63 /* The following parameters are exported via /proc/sys/vm */
66 * Start background writeback (via writeback threads) at this percentage
68 int dirty_background_ratio
= 10;
71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
72 * dirty_background_ratio * the amount of dirtyable memory
74 unsigned long dirty_background_bytes
;
77 * free highmem will not be subtracted from the total free memory
78 * for calculating free ratios if vm_highmem_is_dirtyable is true
80 int vm_highmem_is_dirtyable
;
83 * The generator of dirty data starts writeback at this percentage
85 int vm_dirty_ratio
= 20;
88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
89 * vm_dirty_ratio * the amount of dirtyable memory
91 unsigned long vm_dirty_bytes
;
94 * The interval between `kupdate'-style writebacks
96 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
98 EXPORT_SYMBOL_GPL(dirty_writeback_interval
);
101 * The longest time for which data is allowed to remain dirty
103 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
106 * Flag that makes the machine dump writes/reads and block dirtyings.
111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112 * a full sync is triggered after this time elapses without any disk activity.
116 EXPORT_SYMBOL(laptop_mode
);
118 /* End of sysctl-exported parameters */
120 unsigned long global_dirty_limit
;
123 * Scale the writeback cache size proportional to the relative writeout speeds.
125 * We do this by keeping a floating proportion between BDIs, based on page
126 * writeback completions [end_page_writeback()]. Those devices that write out
127 * pages fastest will get the larger share, while the slower will get a smaller
130 * We use page writeout completions because we are interested in getting rid of
131 * dirty pages. Having them written out is the primary goal.
133 * We introduce a concept of time, a period over which we measure these events,
134 * because demand can/will vary over time. The length of this period itself is
135 * measured in page writeback completions.
138 static struct prop_descriptor vm_completions
;
141 * Work out the current dirty-memory clamping and background writeout
144 * The main aim here is to lower them aggressively if there is a lot of mapped
145 * memory around. To avoid stressing page reclaim with lots of unreclaimable
146 * pages. It is better to clamp down on writers than to start swapping, and
147 * performing lots of scanning.
149 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
151 * We don't permit the clamping level to fall below 5% - that is getting rather
154 * We make sure that the background writeout level is below the adjusted
159 * In a memory zone, there is a certain amount of pages we consider
160 * available for the page cache, which is essentially the number of
161 * free and reclaimable pages, minus some zone reserves to protect
162 * lowmem and the ability to uphold the zone's watermarks without
163 * requiring writeback.
165 * This number of dirtyable pages is the base value of which the
166 * user-configurable dirty ratio is the effictive number of pages that
167 * are allowed to be actually dirtied. Per individual zone, or
168 * globally by using the sum of dirtyable pages over all zones.
170 * Because the user is allowed to specify the dirty limit globally as
171 * absolute number of bytes, calculating the per-zone dirty limit can
172 * require translating the configured limit into a percentage of
173 * global dirtyable memory first.
176 static unsigned long highmem_dirtyable_memory(unsigned long total
)
178 #ifdef CONFIG_HIGHMEM
182 for_each_node_state(node
, N_HIGH_MEMORY
) {
184 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
186 x
+= zone_page_state(z
, NR_FREE_PAGES
) +
187 zone_reclaimable_pages(z
) - z
->dirty_balance_reserve
;
190 * Make sure that the number of highmem pages is never larger
191 * than the number of the total dirtyable memory. This can only
192 * occur in very strange VM situations but we want to make sure
193 * that this does not occur.
195 return min(x
, total
);
202 * global_dirtyable_memory - number of globally dirtyable pages
204 * Returns the global number of pages potentially available for dirty
205 * page cache. This is the base value for the global dirty limits.
207 static unsigned long global_dirtyable_memory(void)
211 x
= global_page_state(NR_FREE_PAGES
) + global_reclaimable_pages() -
212 dirty_balance_reserve
;
214 if (!vm_highmem_is_dirtyable
)
215 x
-= highmem_dirtyable_memory(x
);
217 return x
+ 1; /* Ensure that we never return 0 */
221 * global_dirty_limits - background-writeback and dirty-throttling thresholds
223 * Calculate the dirty thresholds based on sysctl parameters
224 * - vm.dirty_background_ratio or vm.dirty_background_bytes
225 * - vm.dirty_ratio or vm.dirty_bytes
226 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
229 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
231 unsigned long background
;
233 unsigned long uninitialized_var(available_memory
);
234 struct task_struct
*tsk
;
236 if (!vm_dirty_bytes
|| !dirty_background_bytes
)
237 available_memory
= global_dirtyable_memory();
240 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
242 dirty
= (vm_dirty_ratio
* available_memory
) / 100;
244 if (dirty_background_bytes
)
245 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
247 background
= (dirty_background_ratio
* available_memory
) / 100;
249 if (background
>= dirty
)
250 background
= dirty
/ 2;
252 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
253 background
+= background
/ 4;
256 *pbackground
= background
;
258 trace_global_dirty_state(background
, dirty
);
262 * zone_dirtyable_memory - number of dirtyable pages in a zone
265 * Returns the zone's number of pages potentially available for dirty
266 * page cache. This is the base value for the per-zone dirty limits.
268 static unsigned long zone_dirtyable_memory(struct zone
*zone
)
271 * The effective global number of dirtyable pages may exclude
272 * highmem as a big-picture measure to keep the ratio between
273 * dirty memory and lowmem reasonable.
275 * But this function is purely about the individual zone and a
276 * highmem zone can hold its share of dirty pages, so we don't
277 * care about vm_highmem_is_dirtyable here.
279 return zone_page_state(zone
, NR_FREE_PAGES
) +
280 zone_reclaimable_pages(zone
) -
281 zone
->dirty_balance_reserve
;
285 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
288 * Returns the maximum number of dirty pages allowed in a zone, based
289 * on the zone's dirtyable memory.
291 static unsigned long zone_dirty_limit(struct zone
*zone
)
293 unsigned long zone_memory
= zone_dirtyable_memory(zone
);
294 struct task_struct
*tsk
= current
;
298 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
) *
299 zone_memory
/ global_dirtyable_memory();
301 dirty
= vm_dirty_ratio
* zone_memory
/ 100;
303 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
))
310 * zone_dirty_ok - tells whether a zone is within its dirty limits
311 * @zone: the zone to check
313 * Returns %true when the dirty pages in @zone are within the zone's
314 * dirty limit, %false if the limit is exceeded.
316 bool zone_dirty_ok(struct zone
*zone
)
318 unsigned long limit
= zone_dirty_limit(zone
);
320 return zone_page_state(zone
, NR_FILE_DIRTY
) +
321 zone_page_state(zone
, NR_UNSTABLE_NFS
) +
322 zone_page_state(zone
, NR_WRITEBACK
) <= limit
;
326 * couple the period to the dirty_ratio:
328 * period/2 ~ roundup_pow_of_two(dirty limit)
330 static int calc_period_shift(void)
332 unsigned long dirty_total
;
335 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
337 dirty_total
= (vm_dirty_ratio
* global_dirtyable_memory()) /
339 return 2 + ilog2(dirty_total
- 1);
343 * update the period when the dirty threshold changes.
345 static void update_completion_period(void)
347 int shift
= calc_period_shift();
348 prop_change_shift(&vm_completions
, shift
);
350 writeback_set_ratelimit();
353 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
354 void __user
*buffer
, size_t *lenp
,
359 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
360 if (ret
== 0 && write
)
361 dirty_background_bytes
= 0;
365 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
366 void __user
*buffer
, size_t *lenp
,
371 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
372 if (ret
== 0 && write
)
373 dirty_background_ratio
= 0;
377 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
378 void __user
*buffer
, size_t *lenp
,
381 int old_ratio
= vm_dirty_ratio
;
384 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
385 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
386 update_completion_period();
392 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
393 void __user
*buffer
, size_t *lenp
,
396 unsigned long old_bytes
= vm_dirty_bytes
;
399 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
400 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
401 update_completion_period();
408 * Increment the BDI's writeout completion count and the global writeout
409 * completion count. Called from test_clear_page_writeback().
411 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
413 __inc_bdi_stat(bdi
, BDI_WRITTEN
);
414 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
418 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
422 local_irq_save(flags
);
423 __bdi_writeout_inc(bdi
);
424 local_irq_restore(flags
);
426 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
429 * Obtain an accurate fraction of the BDI's portion.
431 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
432 long *numerator
, long *denominator
)
434 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
435 numerator
, denominator
);
439 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
440 * registered backing devices, which, for obvious reasons, can not
443 static unsigned int bdi_min_ratio
;
445 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
449 spin_lock_bh(&bdi_lock
);
450 if (min_ratio
> bdi
->max_ratio
) {
453 min_ratio
-= bdi
->min_ratio
;
454 if (bdi_min_ratio
+ min_ratio
< 100) {
455 bdi_min_ratio
+= min_ratio
;
456 bdi
->min_ratio
+= min_ratio
;
461 spin_unlock_bh(&bdi_lock
);
466 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
473 spin_lock_bh(&bdi_lock
);
474 if (bdi
->min_ratio
> max_ratio
) {
477 bdi
->max_ratio
= max_ratio
;
478 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
480 spin_unlock_bh(&bdi_lock
);
484 EXPORT_SYMBOL(bdi_set_max_ratio
);
486 static unsigned long dirty_freerun_ceiling(unsigned long thresh
,
487 unsigned long bg_thresh
)
489 return (thresh
+ bg_thresh
) / 2;
492 static unsigned long hard_dirty_limit(unsigned long thresh
)
494 return max(thresh
, global_dirty_limit
);
498 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
499 * @bdi: the backing_dev_info to query
500 * @dirty: global dirty limit in pages
502 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
503 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
505 * Note that balance_dirty_pages() will only seriously take it as a hard limit
506 * when sleeping max_pause per page is not enough to keep the dirty pages under
507 * control. For example, when the device is completely stalled due to some error
508 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
509 * In the other normal situations, it acts more gently by throttling the tasks
510 * more (rather than completely block them) when the bdi dirty pages go high.
512 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
513 * - starving fast devices
514 * - piling up dirty pages (that will take long time to sync) on slow devices
516 * The bdi's share of dirty limit will be adapting to its throughput and
517 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
519 unsigned long bdi_dirty_limit(struct backing_dev_info
*bdi
, unsigned long dirty
)
522 long numerator
, denominator
;
525 * Calculate this BDI's share of the dirty ratio.
527 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
529 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
530 bdi_dirty
*= numerator
;
531 do_div(bdi_dirty
, denominator
);
533 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
534 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
535 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
541 * Dirty position control.
543 * (o) global/bdi setpoints
545 * We want the dirty pages be balanced around the global/bdi setpoints.
546 * When the number of dirty pages is higher/lower than the setpoint, the
547 * dirty position control ratio (and hence task dirty ratelimit) will be
548 * decreased/increased to bring the dirty pages back to the setpoint.
550 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
552 * if (dirty < setpoint) scale up pos_ratio
553 * if (dirty > setpoint) scale down pos_ratio
555 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
556 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
558 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
560 * (o) global control line
564 * | |<===== global dirty control scope ======>|
572 * 1.0 ................................*
578 * 0 +------------.------------------.----------------------*------------->
579 * freerun^ setpoint^ limit^ dirty pages
581 * (o) bdi control line
589 * | * |<=========== span ============>|
590 * 1.0 .......................*
602 * 1/4 ...............................................* * * * * * * * * * * *
606 * 0 +----------------------.-------------------------------.------------->
607 * bdi_setpoint^ x_intercept^
609 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
610 * be smoothly throttled down to normal if it starts high in situations like
611 * - start writing to a slow SD card and a fast disk at the same time. The SD
612 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
613 * - the bdi dirty thresh drops quickly due to change of JBOD workload
615 static unsigned long bdi_position_ratio(struct backing_dev_info
*bdi
,
616 unsigned long thresh
,
617 unsigned long bg_thresh
,
619 unsigned long bdi_thresh
,
620 unsigned long bdi_dirty
)
622 unsigned long write_bw
= bdi
->avg_write_bandwidth
;
623 unsigned long freerun
= dirty_freerun_ceiling(thresh
, bg_thresh
);
624 unsigned long limit
= hard_dirty_limit(thresh
);
625 unsigned long x_intercept
;
626 unsigned long setpoint
; /* dirty pages' target balance point */
627 unsigned long bdi_setpoint
;
629 long long pos_ratio
; /* for scaling up/down the rate limit */
632 if (unlikely(dirty
>= limit
))
639 * f(dirty) := 1.0 + (----------------)
642 * it's a 3rd order polynomial that subjects to
644 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
645 * (2) f(setpoint) = 1.0 => the balance point
646 * (3) f(limit) = 0 => the hard limit
647 * (4) df/dx <= 0 => negative feedback control
648 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
649 * => fast response on large errors; small oscillation near setpoint
651 setpoint
= (freerun
+ limit
) / 2;
652 x
= div_s64((setpoint
- dirty
) << RATELIMIT_CALC_SHIFT
,
653 limit
- setpoint
+ 1);
655 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
656 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
657 pos_ratio
+= 1 << RATELIMIT_CALC_SHIFT
;
660 * We have computed basic pos_ratio above based on global situation. If
661 * the bdi is over/under its share of dirty pages, we want to scale
662 * pos_ratio further down/up. That is done by the following mechanism.
668 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
670 * x_intercept - bdi_dirty
671 * := --------------------------
672 * x_intercept - bdi_setpoint
674 * The main bdi control line is a linear function that subjects to
676 * (1) f(bdi_setpoint) = 1.0
677 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
678 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
680 * For single bdi case, the dirty pages are observed to fluctuate
681 * regularly within range
682 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
683 * for various filesystems, where (2) can yield in a reasonable 12.5%
684 * fluctuation range for pos_ratio.
686 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
687 * own size, so move the slope over accordingly and choose a slope that
688 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
690 if (unlikely(bdi_thresh
> thresh
))
693 * It's very possible that bdi_thresh is close to 0 not because the
694 * device is slow, but that it has remained inactive for long time.
695 * Honour such devices a reasonable good (hopefully IO efficient)
696 * threshold, so that the occasional writes won't be blocked and active
697 * writes can rampup the threshold quickly.
699 bdi_thresh
= max(bdi_thresh
, (limit
- dirty
) / 8);
701 * scale global setpoint to bdi's:
702 * bdi_setpoint = setpoint * bdi_thresh / thresh
704 x
= div_u64((u64
)bdi_thresh
<< 16, thresh
+ 1);
705 bdi_setpoint
= setpoint
* (u64
)x
>> 16;
707 * Use span=(8*write_bw) in single bdi case as indicated by
708 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
710 * bdi_thresh thresh - bdi_thresh
711 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
714 span
= (thresh
- bdi_thresh
+ 8 * write_bw
) * (u64
)x
>> 16;
715 x_intercept
= bdi_setpoint
+ span
;
717 if (bdi_dirty
< x_intercept
- span
/ 4) {
718 pos_ratio
= div_u64(pos_ratio
* (x_intercept
- bdi_dirty
),
719 x_intercept
- bdi_setpoint
+ 1);
724 * bdi reserve area, safeguard against dirty pool underrun and disk idle
725 * It may push the desired control point of global dirty pages higher
728 x_intercept
= bdi_thresh
/ 2;
729 if (bdi_dirty
< x_intercept
) {
730 if (bdi_dirty
> x_intercept
/ 8)
731 pos_ratio
= div_u64(pos_ratio
* x_intercept
, bdi_dirty
);
739 static void bdi_update_write_bandwidth(struct backing_dev_info
*bdi
,
740 unsigned long elapsed
,
741 unsigned long written
)
743 const unsigned long period
= roundup_pow_of_two(3 * HZ
);
744 unsigned long avg
= bdi
->avg_write_bandwidth
;
745 unsigned long old
= bdi
->write_bandwidth
;
749 * bw = written * HZ / elapsed
751 * bw * elapsed + write_bandwidth * (period - elapsed)
752 * write_bandwidth = ---------------------------------------------------
755 bw
= written
- bdi
->written_stamp
;
757 if (unlikely(elapsed
> period
)) {
762 bw
+= (u64
)bdi
->write_bandwidth
* (period
- elapsed
);
763 bw
>>= ilog2(period
);
766 * one more level of smoothing, for filtering out sudden spikes
768 if (avg
> old
&& old
>= (unsigned long)bw
)
769 avg
-= (avg
- old
) >> 3;
771 if (avg
< old
&& old
<= (unsigned long)bw
)
772 avg
+= (old
- avg
) >> 3;
775 bdi
->write_bandwidth
= bw
;
776 bdi
->avg_write_bandwidth
= avg
;
780 * The global dirtyable memory and dirty threshold could be suddenly knocked
781 * down by a large amount (eg. on the startup of KVM in a swapless system).
782 * This may throw the system into deep dirty exceeded state and throttle
783 * heavy/light dirtiers alike. To retain good responsiveness, maintain
784 * global_dirty_limit for tracking slowly down to the knocked down dirty
787 static void update_dirty_limit(unsigned long thresh
, unsigned long dirty
)
789 unsigned long limit
= global_dirty_limit
;
792 * Follow up in one step.
794 if (limit
< thresh
) {
800 * Follow down slowly. Use the higher one as the target, because thresh
801 * may drop below dirty. This is exactly the reason to introduce
802 * global_dirty_limit which is guaranteed to lie above the dirty pages.
804 thresh
= max(thresh
, dirty
);
805 if (limit
> thresh
) {
806 limit
-= (limit
- thresh
) >> 5;
811 global_dirty_limit
= limit
;
814 static void global_update_bandwidth(unsigned long thresh
,
818 static DEFINE_SPINLOCK(dirty_lock
);
819 static unsigned long update_time
;
822 * check locklessly first to optimize away locking for the most time
824 if (time_before(now
, update_time
+ BANDWIDTH_INTERVAL
))
827 spin_lock(&dirty_lock
);
828 if (time_after_eq(now
, update_time
+ BANDWIDTH_INTERVAL
)) {
829 update_dirty_limit(thresh
, dirty
);
832 spin_unlock(&dirty_lock
);
836 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
838 * Normal bdi tasks will be curbed at or below it in long term.
839 * Obviously it should be around (write_bw / N) when there are N dd tasks.
841 static void bdi_update_dirty_ratelimit(struct backing_dev_info
*bdi
,
842 unsigned long thresh
,
843 unsigned long bg_thresh
,
845 unsigned long bdi_thresh
,
846 unsigned long bdi_dirty
,
847 unsigned long dirtied
,
848 unsigned long elapsed
)
850 unsigned long freerun
= dirty_freerun_ceiling(thresh
, bg_thresh
);
851 unsigned long limit
= hard_dirty_limit(thresh
);
852 unsigned long setpoint
= (freerun
+ limit
) / 2;
853 unsigned long write_bw
= bdi
->avg_write_bandwidth
;
854 unsigned long dirty_ratelimit
= bdi
->dirty_ratelimit
;
855 unsigned long dirty_rate
;
856 unsigned long task_ratelimit
;
857 unsigned long balanced_dirty_ratelimit
;
858 unsigned long pos_ratio
;
863 * The dirty rate will match the writeout rate in long term, except
864 * when dirty pages are truncated by userspace or re-dirtied by FS.
866 dirty_rate
= (dirtied
- bdi
->dirtied_stamp
) * HZ
/ elapsed
;
868 pos_ratio
= bdi_position_ratio(bdi
, thresh
, bg_thresh
, dirty
,
869 bdi_thresh
, bdi_dirty
);
871 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
873 task_ratelimit
= (u64
)dirty_ratelimit
*
874 pos_ratio
>> RATELIMIT_CALC_SHIFT
;
875 task_ratelimit
++; /* it helps rampup dirty_ratelimit from tiny values */
878 * A linear estimation of the "balanced" throttle rate. The theory is,
879 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
880 * dirty_rate will be measured to be (N * task_ratelimit). So the below
881 * formula will yield the balanced rate limit (write_bw / N).
883 * Note that the expanded form is not a pure rate feedback:
884 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
885 * but also takes pos_ratio into account:
886 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
888 * (1) is not realistic because pos_ratio also takes part in balancing
889 * the dirty rate. Consider the state
890 * pos_ratio = 0.5 (3)
891 * rate = 2 * (write_bw / N) (4)
892 * If (1) is used, it will stuck in that state! Because each dd will
894 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
896 * dirty_rate = N * task_ratelimit = write_bw (6)
897 * put (6) into (1) we get
898 * rate_(i+1) = rate_(i) (7)
900 * So we end up using (2) to always keep
901 * rate_(i+1) ~= (write_bw / N) (8)
902 * regardless of the value of pos_ratio. As long as (8) is satisfied,
903 * pos_ratio is able to drive itself to 1.0, which is not only where
904 * the dirty count meet the setpoint, but also where the slope of
905 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
907 balanced_dirty_ratelimit
= div_u64((u64
)task_ratelimit
* write_bw
,
910 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
912 if (unlikely(balanced_dirty_ratelimit
> write_bw
))
913 balanced_dirty_ratelimit
= write_bw
;
916 * We could safely do this and return immediately:
918 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
920 * However to get a more stable dirty_ratelimit, the below elaborated
921 * code makes use of task_ratelimit to filter out sigular points and
922 * limit the step size.
924 * The below code essentially only uses the relative value of
926 * task_ratelimit - dirty_ratelimit
927 * = (pos_ratio - 1) * dirty_ratelimit
929 * which reflects the direction and size of dirty position error.
933 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
934 * task_ratelimit is on the same side of dirty_ratelimit, too.
936 * - dirty_ratelimit > balanced_dirty_ratelimit
937 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
938 * lowering dirty_ratelimit will help meet both the position and rate
939 * control targets. Otherwise, don't update dirty_ratelimit if it will
940 * only help meet the rate target. After all, what the users ultimately
941 * feel and care are stable dirty rate and small position error.
943 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
944 * and filter out the sigular points of balanced_dirty_ratelimit. Which
945 * keeps jumping around randomly and can even leap far away at times
946 * due to the small 200ms estimation period of dirty_rate (we want to
947 * keep that period small to reduce time lags).
950 if (dirty
< setpoint
) {
951 x
= min(bdi
->balanced_dirty_ratelimit
,
952 min(balanced_dirty_ratelimit
, task_ratelimit
));
953 if (dirty_ratelimit
< x
)
954 step
= x
- dirty_ratelimit
;
956 x
= max(bdi
->balanced_dirty_ratelimit
,
957 max(balanced_dirty_ratelimit
, task_ratelimit
));
958 if (dirty_ratelimit
> x
)
959 step
= dirty_ratelimit
- x
;
963 * Don't pursue 100% rate matching. It's impossible since the balanced
964 * rate itself is constantly fluctuating. So decrease the track speed
965 * when it gets close to the target. Helps eliminate pointless tremors.
967 step
>>= dirty_ratelimit
/ (2 * step
+ 1);
969 * Limit the tracking speed to avoid overshooting.
971 step
= (step
+ 7) / 8;
973 if (dirty_ratelimit
< balanced_dirty_ratelimit
)
974 dirty_ratelimit
+= step
;
976 dirty_ratelimit
-= step
;
978 bdi
->dirty_ratelimit
= max(dirty_ratelimit
, 1UL);
979 bdi
->balanced_dirty_ratelimit
= balanced_dirty_ratelimit
;
981 trace_bdi_dirty_ratelimit(bdi
, dirty_rate
, task_ratelimit
);
984 void __bdi_update_bandwidth(struct backing_dev_info
*bdi
,
985 unsigned long thresh
,
986 unsigned long bg_thresh
,
988 unsigned long bdi_thresh
,
989 unsigned long bdi_dirty
,
990 unsigned long start_time
)
992 unsigned long now
= jiffies
;
993 unsigned long elapsed
= now
- bdi
->bw_time_stamp
;
994 unsigned long dirtied
;
995 unsigned long written
;
998 * rate-limit, only update once every 200ms.
1000 if (elapsed
< BANDWIDTH_INTERVAL
)
1003 dirtied
= percpu_counter_read(&bdi
->bdi_stat
[BDI_DIRTIED
]);
1004 written
= percpu_counter_read(&bdi
->bdi_stat
[BDI_WRITTEN
]);
1007 * Skip quiet periods when disk bandwidth is under-utilized.
1008 * (at least 1s idle time between two flusher runs)
1010 if (elapsed
> HZ
&& time_before(bdi
->bw_time_stamp
, start_time
))
1014 global_update_bandwidth(thresh
, dirty
, now
);
1015 bdi_update_dirty_ratelimit(bdi
, thresh
, bg_thresh
, dirty
,
1016 bdi_thresh
, bdi_dirty
,
1019 bdi_update_write_bandwidth(bdi
, elapsed
, written
);
1022 bdi
->dirtied_stamp
= dirtied
;
1023 bdi
->written_stamp
= written
;
1024 bdi
->bw_time_stamp
= now
;
1027 static void bdi_update_bandwidth(struct backing_dev_info
*bdi
,
1028 unsigned long thresh
,
1029 unsigned long bg_thresh
,
1030 unsigned long dirty
,
1031 unsigned long bdi_thresh
,
1032 unsigned long bdi_dirty
,
1033 unsigned long start_time
)
1035 if (time_is_after_eq_jiffies(bdi
->bw_time_stamp
+ BANDWIDTH_INTERVAL
))
1037 spin_lock(&bdi
->wb
.list_lock
);
1038 __bdi_update_bandwidth(bdi
, thresh
, bg_thresh
, dirty
,
1039 bdi_thresh
, bdi_dirty
, start_time
);
1040 spin_unlock(&bdi
->wb
.list_lock
);
1044 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1045 * will look to see if it needs to start dirty throttling.
1047 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1048 * global_page_state() too often. So scale it near-sqrt to the safety margin
1049 * (the number of pages we may dirty without exceeding the dirty limits).
1051 static unsigned long dirty_poll_interval(unsigned long dirty
,
1052 unsigned long thresh
)
1055 return 1UL << (ilog2(thresh
- dirty
) >> 1);
1060 static long bdi_max_pause(struct backing_dev_info
*bdi
,
1061 unsigned long bdi_dirty
)
1063 long bw
= bdi
->avg_write_bandwidth
;
1067 * Limit pause time for small memory systems. If sleeping for too long
1068 * time, a small pool of dirty/writeback pages may go empty and disk go
1071 * 8 serves as the safety ratio.
1073 t
= bdi_dirty
/ (1 + bw
/ roundup_pow_of_two(1 + HZ
/ 8));
1076 return min_t(long, t
, MAX_PAUSE
);
1079 static long bdi_min_pause(struct backing_dev_info
*bdi
,
1081 unsigned long task_ratelimit
,
1082 unsigned long dirty_ratelimit
,
1083 int *nr_dirtied_pause
)
1085 long hi
= ilog2(bdi
->avg_write_bandwidth
);
1086 long lo
= ilog2(bdi
->dirty_ratelimit
);
1087 long t
; /* target pause */
1088 long pause
; /* estimated next pause */
1089 int pages
; /* target nr_dirtied_pause */
1091 /* target for 10ms pause on 1-dd case */
1092 t
= max(1, HZ
/ 100);
1095 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1098 * (N * 10ms) on 2^N concurrent tasks.
1101 t
+= (hi
- lo
) * (10 * HZ
) / 1024;
1104 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1105 * on the much more stable dirty_ratelimit. However the next pause time
1106 * will be computed based on task_ratelimit and the two rate limits may
1107 * depart considerably at some time. Especially if task_ratelimit goes
1108 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1109 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1110 * result task_ratelimit won't be executed faithfully, which could
1111 * eventually bring down dirty_ratelimit.
1113 * We apply two rules to fix it up:
1114 * 1) try to estimate the next pause time and if necessary, use a lower
1115 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1116 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1117 * 2) limit the target pause time to max_pause/2, so that the normal
1118 * small fluctuations of task_ratelimit won't trigger rule (1) and
1119 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1121 t
= min(t
, 1 + max_pause
/ 2);
1122 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1125 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1126 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1127 * When the 16 consecutive reads are often interrupted by some dirty
1128 * throttling pause during the async writes, cfq will go into idles
1129 * (deadline is fine). So push nr_dirtied_pause as high as possible
1130 * until reaches DIRTY_POLL_THRESH=32 pages.
1132 if (pages
< DIRTY_POLL_THRESH
) {
1134 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1135 if (pages
> DIRTY_POLL_THRESH
) {
1136 pages
= DIRTY_POLL_THRESH
;
1137 t
= HZ
* DIRTY_POLL_THRESH
/ dirty_ratelimit
;
1141 pause
= HZ
* pages
/ (task_ratelimit
+ 1);
1142 if (pause
> max_pause
) {
1144 pages
= task_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1147 *nr_dirtied_pause
= pages
;
1149 * The minimal pause time will normally be half the target pause time.
1151 return pages
>= DIRTY_POLL_THRESH
? 1 + t
/ 2 : t
;
1155 * balance_dirty_pages() must be called by processes which are generating dirty
1156 * data. It looks at the number of dirty pages in the machine and will force
1157 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1158 * If we're over `background_thresh' then the writeback threads are woken to
1159 * perform some writeout.
1161 static void balance_dirty_pages(struct address_space
*mapping
,
1162 unsigned long pages_dirtied
)
1164 unsigned long nr_reclaimable
; /* = file_dirty + unstable_nfs */
1165 unsigned long bdi_reclaimable
;
1166 unsigned long nr_dirty
; /* = file_dirty + writeback + unstable_nfs */
1167 unsigned long bdi_dirty
;
1168 unsigned long freerun
;
1169 unsigned long background_thresh
;
1170 unsigned long dirty_thresh
;
1171 unsigned long bdi_thresh
;
1176 int nr_dirtied_pause
;
1177 bool dirty_exceeded
= false;
1178 unsigned long task_ratelimit
;
1179 unsigned long dirty_ratelimit
;
1180 unsigned long pos_ratio
;
1181 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1182 unsigned long start_time
= jiffies
;
1185 unsigned long now
= jiffies
;
1188 * Unstable writes are a feature of certain networked
1189 * filesystems (i.e. NFS) in which data may have been
1190 * written to the server's write cache, but has not yet
1191 * been flushed to permanent storage.
1193 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
1194 global_page_state(NR_UNSTABLE_NFS
);
1195 nr_dirty
= nr_reclaimable
+ global_page_state(NR_WRITEBACK
);
1197 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1200 * Throttle it only when the background writeback cannot
1201 * catch-up. This avoids (excessively) small writeouts
1202 * when the bdi limits are ramping up.
1204 freerun
= dirty_freerun_ceiling(dirty_thresh
,
1206 if (nr_dirty
<= freerun
) {
1207 current
->dirty_paused_when
= now
;
1208 current
->nr_dirtied
= 0;
1209 current
->nr_dirtied_pause
=
1210 dirty_poll_interval(nr_dirty
, dirty_thresh
);
1214 if (unlikely(!writeback_in_progress(bdi
)))
1215 bdi_start_background_writeback(bdi
);
1218 * bdi_thresh is not treated as some limiting factor as
1219 * dirty_thresh, due to reasons
1220 * - in JBOD setup, bdi_thresh can fluctuate a lot
1221 * - in a system with HDD and USB key, the USB key may somehow
1222 * go into state (bdi_dirty >> bdi_thresh) either because
1223 * bdi_dirty starts high, or because bdi_thresh drops low.
1224 * In this case we don't want to hard throttle the USB key
1225 * dirtiers for 100 seconds until bdi_dirty drops under
1226 * bdi_thresh. Instead the auxiliary bdi control line in
1227 * bdi_position_ratio() will let the dirtier task progress
1228 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1230 bdi_thresh
= bdi_dirty_limit(bdi
, dirty_thresh
);
1233 * In order to avoid the stacked BDI deadlock we need
1234 * to ensure we accurately count the 'dirty' pages when
1235 * the threshold is low.
1237 * Otherwise it would be possible to get thresh+n pages
1238 * reported dirty, even though there are thresh-m pages
1239 * actually dirty; with m+n sitting in the percpu
1242 if (bdi_thresh
< 2 * bdi_stat_error(bdi
)) {
1243 bdi_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
1244 bdi_dirty
= bdi_reclaimable
+
1245 bdi_stat_sum(bdi
, BDI_WRITEBACK
);
1247 bdi_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
1248 bdi_dirty
= bdi_reclaimable
+
1249 bdi_stat(bdi
, BDI_WRITEBACK
);
1252 dirty_exceeded
= (bdi_dirty
> bdi_thresh
) &&
1253 (nr_dirty
> dirty_thresh
);
1254 if (dirty_exceeded
&& !bdi
->dirty_exceeded
)
1255 bdi
->dirty_exceeded
= 1;
1257 bdi_update_bandwidth(bdi
, dirty_thresh
, background_thresh
,
1258 nr_dirty
, bdi_thresh
, bdi_dirty
,
1261 dirty_ratelimit
= bdi
->dirty_ratelimit
;
1262 pos_ratio
= bdi_position_ratio(bdi
, dirty_thresh
,
1263 background_thresh
, nr_dirty
,
1264 bdi_thresh
, bdi_dirty
);
1265 task_ratelimit
= ((u64
)dirty_ratelimit
* pos_ratio
) >>
1266 RATELIMIT_CALC_SHIFT
;
1267 max_pause
= bdi_max_pause(bdi
, bdi_dirty
);
1268 min_pause
= bdi_min_pause(bdi
, max_pause
,
1269 task_ratelimit
, dirty_ratelimit
,
1272 if (unlikely(task_ratelimit
== 0)) {
1277 period
= HZ
* pages_dirtied
/ task_ratelimit
;
1279 if (current
->dirty_paused_when
)
1280 pause
-= now
- current
->dirty_paused_when
;
1282 * For less than 1s think time (ext3/4 may block the dirtier
1283 * for up to 800ms from time to time on 1-HDD; so does xfs,
1284 * however at much less frequency), try to compensate it in
1285 * future periods by updating the virtual time; otherwise just
1286 * do a reset, as it may be a light dirtier.
1288 if (pause
< min_pause
) {
1289 trace_balance_dirty_pages(bdi
,
1302 current
->dirty_paused_when
= now
;
1303 current
->nr_dirtied
= 0;
1304 } else if (period
) {
1305 current
->dirty_paused_when
+= period
;
1306 current
->nr_dirtied
= 0;
1307 } else if (current
->nr_dirtied_pause
<= pages_dirtied
)
1308 current
->nr_dirtied_pause
+= pages_dirtied
;
1311 if (unlikely(pause
> max_pause
)) {
1312 /* for occasional dropped task_ratelimit */
1313 now
+= min(pause
- max_pause
, max_pause
);
1318 trace_balance_dirty_pages(bdi
,
1330 __set_current_state(TASK_KILLABLE
);
1331 io_schedule_timeout(pause
);
1333 current
->dirty_paused_when
= now
+ pause
;
1334 current
->nr_dirtied
= 0;
1335 current
->nr_dirtied_pause
= nr_dirtied_pause
;
1338 * This is typically equal to (nr_dirty < dirty_thresh) and can
1339 * also keep "1000+ dd on a slow USB stick" under control.
1345 * In the case of an unresponding NFS server and the NFS dirty
1346 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1347 * to go through, so that tasks on them still remain responsive.
1349 * In theory 1 page is enough to keep the comsumer-producer
1350 * pipe going: the flusher cleans 1 page => the task dirties 1
1351 * more page. However bdi_dirty has accounting errors. So use
1352 * the larger and more IO friendly bdi_stat_error.
1354 if (bdi_dirty
<= bdi_stat_error(bdi
))
1357 if (fatal_signal_pending(current
))
1361 if (!dirty_exceeded
&& bdi
->dirty_exceeded
)
1362 bdi
->dirty_exceeded
= 0;
1364 if (writeback_in_progress(bdi
))
1368 * In laptop mode, we wait until hitting the higher threshold before
1369 * starting background writeout, and then write out all the way down
1370 * to the lower threshold. So slow writers cause minimal disk activity.
1372 * In normal mode, we start background writeout at the lower
1373 * background_thresh, to keep the amount of dirty memory low.
1378 if (nr_reclaimable
> background_thresh
)
1379 bdi_start_background_writeback(bdi
);
1382 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
1384 if (set_page_dirty(page
) || page_mkwrite
) {
1385 struct address_space
*mapping
= page_mapping(page
);
1388 balance_dirty_pages_ratelimited(mapping
);
1392 static DEFINE_PER_CPU(int, bdp_ratelimits
);
1395 * Normal tasks are throttled by
1397 * dirty tsk->nr_dirtied_pause pages;
1398 * take a snap in balance_dirty_pages();
1400 * However there is a worst case. If every task exit immediately when dirtied
1401 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1402 * called to throttle the page dirties. The solution is to save the not yet
1403 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1404 * randomly into the running tasks. This works well for the above worst case,
1405 * as the new task will pick up and accumulate the old task's leaked dirty
1406 * count and eventually get throttled.
1408 DEFINE_PER_CPU(int, dirty_throttle_leaks
) = 0;
1411 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1412 * @mapping: address_space which was dirtied
1413 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1415 * Processes which are dirtying memory should call in here once for each page
1416 * which was newly dirtied. The function will periodically check the system's
1417 * dirty state and will initiate writeback if needed.
1419 * On really big machines, get_writeback_state is expensive, so try to avoid
1420 * calling it too often (ratelimiting). But once we're over the dirty memory
1421 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1422 * from overshooting the limit by (ratelimit_pages) each.
1424 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
1425 unsigned long nr_pages_dirtied
)
1427 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1431 if (!bdi_cap_account_dirty(bdi
))
1434 ratelimit
= current
->nr_dirtied_pause
;
1435 if (bdi
->dirty_exceeded
)
1436 ratelimit
= min(ratelimit
, 32 >> (PAGE_SHIFT
- 10));
1440 * This prevents one CPU to accumulate too many dirtied pages without
1441 * calling into balance_dirty_pages(), which can happen when there are
1442 * 1000+ tasks, all of them start dirtying pages at exactly the same
1443 * time, hence all honoured too large initial task->nr_dirtied_pause.
1445 p
= &__get_cpu_var(bdp_ratelimits
);
1446 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1448 else if (unlikely(*p
>= ratelimit_pages
)) {
1453 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1454 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1455 * the dirty throttling and livelock other long-run dirtiers.
1457 p
= &__get_cpu_var(dirty_throttle_leaks
);
1458 if (*p
> 0 && current
->nr_dirtied
< ratelimit
) {
1459 nr_pages_dirtied
= min(*p
, ratelimit
- current
->nr_dirtied
);
1460 *p
-= nr_pages_dirtied
;
1461 current
->nr_dirtied
+= nr_pages_dirtied
;
1465 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1466 balance_dirty_pages(mapping
, current
->nr_dirtied
);
1468 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
1470 void throttle_vm_writeout(gfp_t gfp_mask
)
1472 unsigned long background_thresh
;
1473 unsigned long dirty_thresh
;
1476 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1477 dirty_thresh
= hard_dirty_limit(dirty_thresh
);
1480 * Boost the allowable dirty threshold a bit for page
1481 * allocators so they don't get DoS'ed by heavy writers
1483 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
1485 if (global_page_state(NR_UNSTABLE_NFS
) +
1486 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
1488 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1491 * The caller might hold locks which can prevent IO completion
1492 * or progress in the filesystem. So we cannot just sit here
1493 * waiting for IO to complete.
1495 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
1501 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1503 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
1504 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1506 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1507 bdi_arm_supers_timer();
1512 void laptop_mode_timer_fn(unsigned long data
)
1514 struct request_queue
*q
= (struct request_queue
*)data
;
1515 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1516 global_page_state(NR_UNSTABLE_NFS
);
1519 * We want to write everything out, not just down to the dirty
1522 if (bdi_has_dirty_io(&q
->backing_dev_info
))
1523 bdi_start_writeback(&q
->backing_dev_info
, nr_pages
,
1524 WB_REASON_LAPTOP_TIMER
);
1528 * We've spun up the disk and we're in laptop mode: schedule writeback
1529 * of all dirty data a few seconds from now. If the flush is already scheduled
1530 * then push it back - the user is still using the disk.
1532 void laptop_io_completion(struct backing_dev_info
*info
)
1534 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
1538 * We're in laptop mode and we've just synced. The sync's writes will have
1539 * caused another writeback to be scheduled by laptop_io_completion.
1540 * Nothing needs to be written back anymore, so we unschedule the writeback.
1542 void laptop_sync_completion(void)
1544 struct backing_dev_info
*bdi
;
1548 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
1549 del_timer(&bdi
->laptop_mode_wb_timer
);
1556 * If ratelimit_pages is too high then we can get into dirty-data overload
1557 * if a large number of processes all perform writes at the same time.
1558 * If it is too low then SMP machines will call the (expensive)
1559 * get_writeback_state too often.
1561 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1562 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1566 void writeback_set_ratelimit(void)
1568 unsigned long background_thresh
;
1569 unsigned long dirty_thresh
;
1570 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1571 global_dirty_limit
= dirty_thresh
;
1572 ratelimit_pages
= dirty_thresh
/ (num_online_cpus() * 32);
1573 if (ratelimit_pages
< 16)
1574 ratelimit_pages
= 16;
1577 static int __cpuinit
1578 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
1580 writeback_set_ratelimit();
1584 static struct notifier_block __cpuinitdata ratelimit_nb
= {
1585 .notifier_call
= ratelimit_handler
,
1590 * Called early on to tune the page writeback dirty limits.
1592 * We used to scale dirty pages according to how total memory
1593 * related to pages that could be allocated for buffers (by
1594 * comparing nr_free_buffer_pages() to vm_total_pages.
1596 * However, that was when we used "dirty_ratio" to scale with
1597 * all memory, and we don't do that any more. "dirty_ratio"
1598 * is now applied to total non-HIGHPAGE memory (by subtracting
1599 * totalhigh_pages from vm_total_pages), and as such we can't
1600 * get into the old insane situation any more where we had
1601 * large amounts of dirty pages compared to a small amount of
1602 * non-HIGHMEM memory.
1604 * But we might still want to scale the dirty_ratio by how
1605 * much memory the box has..
1607 void __init
page_writeback_init(void)
1611 writeback_set_ratelimit();
1612 register_cpu_notifier(&ratelimit_nb
);
1614 shift
= calc_period_shift();
1615 prop_descriptor_init(&vm_completions
, shift
);
1619 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1620 * @mapping: address space structure to write
1621 * @start: starting page index
1622 * @end: ending page index (inclusive)
1624 * This function scans the page range from @start to @end (inclusive) and tags
1625 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1626 * that write_cache_pages (or whoever calls this function) will then use
1627 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1628 * used to avoid livelocking of writeback by a process steadily creating new
1629 * dirty pages in the file (thus it is important for this function to be quick
1630 * so that it can tag pages faster than a dirtying process can create them).
1633 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1635 void tag_pages_for_writeback(struct address_space
*mapping
,
1636 pgoff_t start
, pgoff_t end
)
1638 #define WRITEBACK_TAG_BATCH 4096
1639 unsigned long tagged
;
1642 spin_lock_irq(&mapping
->tree_lock
);
1643 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
1644 &start
, end
, WRITEBACK_TAG_BATCH
,
1645 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
1646 spin_unlock_irq(&mapping
->tree_lock
);
1647 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
1649 /* We check 'start' to handle wrapping when end == ~0UL */
1650 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
1652 EXPORT_SYMBOL(tag_pages_for_writeback
);
1655 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1656 * @mapping: address space structure to write
1657 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1658 * @writepage: function called for each page
1659 * @data: data passed to writepage function
1661 * If a page is already under I/O, write_cache_pages() skips it, even
1662 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1663 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1664 * and msync() need to guarantee that all the data which was dirty at the time
1665 * the call was made get new I/O started against them. If wbc->sync_mode is
1666 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1667 * existing IO to complete.
1669 * To avoid livelocks (when other process dirties new pages), we first tag
1670 * pages which should be written back with TOWRITE tag and only then start
1671 * writing them. For data-integrity sync we have to be careful so that we do
1672 * not miss some pages (e.g., because some other process has cleared TOWRITE
1673 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1674 * by the process clearing the DIRTY tag (and submitting the page for IO).
1676 int write_cache_pages(struct address_space
*mapping
,
1677 struct writeback_control
*wbc
, writepage_t writepage
,
1682 struct pagevec pvec
;
1684 pgoff_t
uninitialized_var(writeback_index
);
1686 pgoff_t end
; /* Inclusive */
1689 int range_whole
= 0;
1692 pagevec_init(&pvec
, 0);
1693 if (wbc
->range_cyclic
) {
1694 writeback_index
= mapping
->writeback_index
; /* prev offset */
1695 index
= writeback_index
;
1702 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1703 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1704 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1706 cycled
= 1; /* ignore range_cyclic tests */
1708 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1709 tag
= PAGECACHE_TAG_TOWRITE
;
1711 tag
= PAGECACHE_TAG_DIRTY
;
1713 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1714 tag_pages_for_writeback(mapping
, index
, end
);
1716 while (!done
&& (index
<= end
)) {
1719 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1720 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1724 for (i
= 0; i
< nr_pages
; i
++) {
1725 struct page
*page
= pvec
.pages
[i
];
1728 * At this point, the page may be truncated or
1729 * invalidated (changing page->mapping to NULL), or
1730 * even swizzled back from swapper_space to tmpfs file
1731 * mapping. However, page->index will not change
1732 * because we have a reference on the page.
1734 if (page
->index
> end
) {
1736 * can't be range_cyclic (1st pass) because
1737 * end == -1 in that case.
1743 done_index
= page
->index
;
1748 * Page truncated or invalidated. We can freely skip it
1749 * then, even for data integrity operations: the page
1750 * has disappeared concurrently, so there could be no
1751 * real expectation of this data interity operation
1752 * even if there is now a new, dirty page at the same
1753 * pagecache address.
1755 if (unlikely(page
->mapping
!= mapping
)) {
1761 if (!PageDirty(page
)) {
1762 /* someone wrote it for us */
1763 goto continue_unlock
;
1766 if (PageWriteback(page
)) {
1767 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1768 wait_on_page_writeback(page
);
1770 goto continue_unlock
;
1773 BUG_ON(PageWriteback(page
));
1774 if (!clear_page_dirty_for_io(page
))
1775 goto continue_unlock
;
1777 trace_wbc_writepage(wbc
, mapping
->backing_dev_info
);
1778 ret
= (*writepage
)(page
, wbc
, data
);
1779 if (unlikely(ret
)) {
1780 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
1785 * done_index is set past this page,
1786 * so media errors will not choke
1787 * background writeout for the entire
1788 * file. This has consequences for
1789 * range_cyclic semantics (ie. it may
1790 * not be suitable for data integrity
1793 done_index
= page
->index
+ 1;
1800 * We stop writing back only if we are not doing
1801 * integrity sync. In case of integrity sync we have to
1802 * keep going until we have written all the pages
1803 * we tagged for writeback prior to entering this loop.
1805 if (--wbc
->nr_to_write
<= 0 &&
1806 wbc
->sync_mode
== WB_SYNC_NONE
) {
1811 pagevec_release(&pvec
);
1814 if (!cycled
&& !done
) {
1817 * We hit the last page and there is more work to be done: wrap
1818 * back to the start of the file
1822 end
= writeback_index
- 1;
1825 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1826 mapping
->writeback_index
= done_index
;
1830 EXPORT_SYMBOL(write_cache_pages
);
1833 * Function used by generic_writepages to call the real writepage
1834 * function and set the mapping flags on error
1836 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1839 struct address_space
*mapping
= data
;
1840 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1841 mapping_set_error(mapping
, ret
);
1846 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1847 * @mapping: address space structure to write
1848 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1850 * This is a library function, which implements the writepages()
1851 * address_space_operation.
1853 int generic_writepages(struct address_space
*mapping
,
1854 struct writeback_control
*wbc
)
1856 struct blk_plug plug
;
1859 /* deal with chardevs and other special file */
1860 if (!mapping
->a_ops
->writepage
)
1863 blk_start_plug(&plug
);
1864 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1865 blk_finish_plug(&plug
);
1869 EXPORT_SYMBOL(generic_writepages
);
1871 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1875 if (wbc
->nr_to_write
<= 0)
1877 if (mapping
->a_ops
->writepages
)
1878 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1880 ret
= generic_writepages(mapping
, wbc
);
1885 * write_one_page - write out a single page and optionally wait on I/O
1886 * @page: the page to write
1887 * @wait: if true, wait on writeout
1889 * The page must be locked by the caller and will be unlocked upon return.
1891 * write_one_page() returns a negative error code if I/O failed.
1893 int write_one_page(struct page
*page
, int wait
)
1895 struct address_space
*mapping
= page
->mapping
;
1897 struct writeback_control wbc
= {
1898 .sync_mode
= WB_SYNC_ALL
,
1902 BUG_ON(!PageLocked(page
));
1905 wait_on_page_writeback(page
);
1907 if (clear_page_dirty_for_io(page
)) {
1908 page_cache_get(page
);
1909 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1910 if (ret
== 0 && wait
) {
1911 wait_on_page_writeback(page
);
1912 if (PageError(page
))
1915 page_cache_release(page
);
1921 EXPORT_SYMBOL(write_one_page
);
1924 * For address_spaces which do not use buffers nor write back.
1926 int __set_page_dirty_no_writeback(struct page
*page
)
1928 if (!PageDirty(page
))
1929 return !TestSetPageDirty(page
);
1934 * Helper function for set_page_dirty family.
1935 * NOTE: This relies on being atomic wrt interrupts.
1937 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1939 if (mapping_cap_account_dirty(mapping
)) {
1940 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1941 __inc_zone_page_state(page
, NR_DIRTIED
);
1942 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1943 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_DIRTIED
);
1944 task_io_account_write(PAGE_CACHE_SIZE
);
1945 current
->nr_dirtied
++;
1946 this_cpu_inc(bdp_ratelimits
);
1949 EXPORT_SYMBOL(account_page_dirtied
);
1952 * Helper function for set_page_writeback family.
1953 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1956 void account_page_writeback(struct page
*page
)
1958 inc_zone_page_state(page
, NR_WRITEBACK
);
1960 EXPORT_SYMBOL(account_page_writeback
);
1963 * For address_spaces which do not use buffers. Just tag the page as dirty in
1966 * This is also used when a single buffer is being dirtied: we want to set the
1967 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1968 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1970 * Most callers have locked the page, which pins the address_space in memory.
1971 * But zap_pte_range() does not lock the page, however in that case the
1972 * mapping is pinned by the vma's ->vm_file reference.
1974 * We take care to handle the case where the page was truncated from the
1975 * mapping by re-checking page_mapping() inside tree_lock.
1977 int __set_page_dirty_nobuffers(struct page
*page
)
1979 if (!TestSetPageDirty(page
)) {
1980 struct address_space
*mapping
= page_mapping(page
);
1981 struct address_space
*mapping2
;
1986 spin_lock_irq(&mapping
->tree_lock
);
1987 mapping2
= page_mapping(page
);
1988 if (mapping2
) { /* Race with truncate? */
1989 BUG_ON(mapping2
!= mapping
);
1990 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1991 account_page_dirtied(page
, mapping
);
1992 radix_tree_tag_set(&mapping
->page_tree
,
1993 page_index(page
), PAGECACHE_TAG_DIRTY
);
1995 spin_unlock_irq(&mapping
->tree_lock
);
1996 if (mapping
->host
) {
1997 /* !PageAnon && !swapper_space */
1998 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
2004 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
2007 * Call this whenever redirtying a page, to de-account the dirty counters
2008 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2009 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2010 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2013 void account_page_redirty(struct page
*page
)
2015 struct address_space
*mapping
= page
->mapping
;
2016 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2017 current
->nr_dirtied
--;
2018 dec_zone_page_state(page
, NR_DIRTIED
);
2019 dec_bdi_stat(mapping
->backing_dev_info
, BDI_DIRTIED
);
2022 EXPORT_SYMBOL(account_page_redirty
);
2025 * When a writepage implementation decides that it doesn't want to write this
2026 * page for some reason, it should redirty the locked page via
2027 * redirty_page_for_writepage() and it should then unlock the page and return 0
2029 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
2031 wbc
->pages_skipped
++;
2032 account_page_redirty(page
);
2033 return __set_page_dirty_nobuffers(page
);
2035 EXPORT_SYMBOL(redirty_page_for_writepage
);
2040 * For pages with a mapping this should be done under the page lock
2041 * for the benefit of asynchronous memory errors who prefer a consistent
2042 * dirty state. This rule can be broken in some special cases,
2043 * but should be better not to.
2045 * If the mapping doesn't provide a set_page_dirty a_op, then
2046 * just fall through and assume that it wants buffer_heads.
2048 int set_page_dirty(struct page
*page
)
2050 struct address_space
*mapping
= page_mapping(page
);
2052 if (likely(mapping
)) {
2053 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
2055 * readahead/lru_deactivate_page could remain
2056 * PG_readahead/PG_reclaim due to race with end_page_writeback
2057 * About readahead, if the page is written, the flags would be
2058 * reset. So no problem.
2059 * About lru_deactivate_page, if the page is redirty, the flag
2060 * will be reset. So no problem. but if the page is used by readahead
2061 * it will confuse readahead and make it restart the size rampup
2062 * process. But it's a trivial problem.
2064 ClearPageReclaim(page
);
2067 spd
= __set_page_dirty_buffers
;
2069 return (*spd
)(page
);
2071 if (!PageDirty(page
)) {
2072 if (!TestSetPageDirty(page
))
2077 EXPORT_SYMBOL(set_page_dirty
);
2080 * set_page_dirty() is racy if the caller has no reference against
2081 * page->mapping->host, and if the page is unlocked. This is because another
2082 * CPU could truncate the page off the mapping and then free the mapping.
2084 * Usually, the page _is_ locked, or the caller is a user-space process which
2085 * holds a reference on the inode by having an open file.
2087 * In other cases, the page should be locked before running set_page_dirty().
2089 int set_page_dirty_lock(struct page
*page
)
2094 ret
= set_page_dirty(page
);
2098 EXPORT_SYMBOL(set_page_dirty_lock
);
2101 * Clear a page's dirty flag, while caring for dirty memory accounting.
2102 * Returns true if the page was previously dirty.
2104 * This is for preparing to put the page under writeout. We leave the page
2105 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2106 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2107 * implementation will run either set_page_writeback() or set_page_dirty(),
2108 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2111 * This incoherency between the page's dirty flag and radix-tree tag is
2112 * unfortunate, but it only exists while the page is locked.
2114 int clear_page_dirty_for_io(struct page
*page
)
2116 struct address_space
*mapping
= page_mapping(page
);
2118 BUG_ON(!PageLocked(page
));
2120 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2122 * Yes, Virginia, this is indeed insane.
2124 * We use this sequence to make sure that
2125 * (a) we account for dirty stats properly
2126 * (b) we tell the low-level filesystem to
2127 * mark the whole page dirty if it was
2128 * dirty in a pagetable. Only to then
2129 * (c) clean the page again and return 1 to
2130 * cause the writeback.
2132 * This way we avoid all nasty races with the
2133 * dirty bit in multiple places and clearing
2134 * them concurrently from different threads.
2136 * Note! Normally the "set_page_dirty(page)"
2137 * has no effect on the actual dirty bit - since
2138 * that will already usually be set. But we
2139 * need the side effects, and it can help us
2142 * We basically use the page "master dirty bit"
2143 * as a serialization point for all the different
2144 * threads doing their things.
2146 if (page_mkclean(page
))
2147 set_page_dirty(page
);
2149 * We carefully synchronise fault handlers against
2150 * installing a dirty pte and marking the page dirty
2151 * at this point. We do this by having them hold the
2152 * page lock at some point after installing their
2153 * pte, but before marking the page dirty.
2154 * Pages are always locked coming in here, so we get
2155 * the desired exclusion. See mm/memory.c:do_wp_page()
2156 * for more comments.
2158 if (TestClearPageDirty(page
)) {
2159 dec_zone_page_state(page
, NR_FILE_DIRTY
);
2160 dec_bdi_stat(mapping
->backing_dev_info
,
2166 return TestClearPageDirty(page
);
2168 EXPORT_SYMBOL(clear_page_dirty_for_io
);
2170 int test_clear_page_writeback(struct page
*page
)
2172 struct address_space
*mapping
= page_mapping(page
);
2176 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2177 unsigned long flags
;
2179 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2180 ret
= TestClearPageWriteback(page
);
2182 radix_tree_tag_clear(&mapping
->page_tree
,
2184 PAGECACHE_TAG_WRITEBACK
);
2185 if (bdi_cap_account_writeback(bdi
)) {
2186 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
2187 __bdi_writeout_inc(bdi
);
2190 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2192 ret
= TestClearPageWriteback(page
);
2195 dec_zone_page_state(page
, NR_WRITEBACK
);
2196 inc_zone_page_state(page
, NR_WRITTEN
);
2201 int test_set_page_writeback(struct page
*page
)
2203 struct address_space
*mapping
= page_mapping(page
);
2207 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2208 unsigned long flags
;
2210 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2211 ret
= TestSetPageWriteback(page
);
2213 radix_tree_tag_set(&mapping
->page_tree
,
2215 PAGECACHE_TAG_WRITEBACK
);
2216 if (bdi_cap_account_writeback(bdi
))
2217 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
2219 if (!PageDirty(page
))
2220 radix_tree_tag_clear(&mapping
->page_tree
,
2222 PAGECACHE_TAG_DIRTY
);
2223 radix_tree_tag_clear(&mapping
->page_tree
,
2225 PAGECACHE_TAG_TOWRITE
);
2226 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2228 ret
= TestSetPageWriteback(page
);
2231 account_page_writeback(page
);
2235 EXPORT_SYMBOL(test_set_page_writeback
);
2238 * Return true if any of the pages in the mapping are marked with the
2241 int mapping_tagged(struct address_space
*mapping
, int tag
)
2243 return radix_tree_tagged(&mapping
->page_tree
, tag
);
2245 EXPORT_SYMBOL(mapping_tagged
);