2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
18 #include "blk-cgroup.h"
20 static struct blkcg_policy blkcg_policy_cfq __maybe_unused
;
25 /* max queue in one round of service */
26 static const int cfq_quantum
= 8;
27 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max
= 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty
= 2;
32 static const int cfq_slice_sync
= HZ
/ 10;
33 static int cfq_slice_async
= HZ
/ 25;
34 static const int cfq_slice_async_rq
= 2;
35 static int cfq_slice_idle
= HZ
/ 125;
36 static int cfq_group_idle
= HZ
/ 125;
37 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
38 static const int cfq_hist_divisor
= 4;
41 * offset from end of service tree
43 #define CFQ_IDLE_DELAY (HZ / 5)
46 * below this threshold, we consider thinktime immediate
48 #define CFQ_MIN_TT (2)
50 #define CFQ_SLICE_SCALE (5)
51 #define CFQ_HW_QUEUE_MIN (5)
52 #define CFQ_SERVICE_SHIFT 12
54 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
55 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
56 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
57 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
59 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
60 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
61 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
63 static struct kmem_cache
*cfq_pool
;
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
73 unsigned long last_end_request
;
75 unsigned long ttime_total
;
76 unsigned long ttime_samples
;
77 unsigned long ttime_mean
;
81 * Most of our rbtree usage is for sorting with min extraction, so
82 * if we cache the leftmost node we don't have to walk down the tree
83 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
84 * move this into the elevator for the rq sorting as well.
90 unsigned total_weight
;
92 struct cfq_ttime ttime
;
94 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
95 .ttime = {.last_end_request = jiffies,},}
98 * Per process-grouping structure
101 /* reference count */
103 /* various state flags, see below */
105 /* parent cfq_data */
106 struct cfq_data
*cfqd
;
107 /* service_tree member */
108 struct rb_node rb_node
;
109 /* service_tree key */
110 unsigned long rb_key
;
111 /* prio tree member */
112 struct rb_node p_node
;
113 /* prio tree root we belong to, if any */
114 struct rb_root
*p_root
;
115 /* sorted list of pending requests */
116 struct rb_root sort_list
;
117 /* if fifo isn't expired, next request to serve */
118 struct request
*next_rq
;
119 /* requests queued in sort_list */
121 /* currently allocated requests */
123 /* fifo list of requests in sort_list */
124 struct list_head fifo
;
126 /* time when queue got scheduled in to dispatch first request. */
127 unsigned long dispatch_start
;
128 unsigned int allocated_slice
;
129 unsigned int slice_dispatch
;
130 /* time when first request from queue completed and slice started. */
131 unsigned long slice_start
;
132 unsigned long slice_end
;
135 /* pending priority requests */
137 /* number of requests that are on the dispatch list or inside driver */
140 /* io prio of this group */
141 unsigned short ioprio
, org_ioprio
;
142 unsigned short ioprio_class
;
147 sector_t last_request_pos
;
149 struct cfq_rb_root
*service_tree
;
150 struct cfq_queue
*new_cfqq
;
151 struct cfq_group
*cfqg
;
152 /* Number of sectors dispatched from queue in single dispatch round */
153 unsigned long nr_sectors
;
157 * First index in the service_trees.
158 * IDLE is handled separately, so it has negative index
168 * Second index in the service_trees.
172 SYNC_NOIDLE_WORKLOAD
= 1,
177 #ifdef CONFIG_CFQ_GROUP_IOSCHED
178 /* total bytes transferred */
179 struct blkg_rwstat service_bytes
;
180 /* total IOs serviced, post merge */
181 struct blkg_rwstat serviced
;
182 /* number of ios merged */
183 struct blkg_rwstat merged
;
184 /* total time spent on device in ns, may not be accurate w/ queueing */
185 struct blkg_rwstat service_time
;
186 /* total time spent waiting in scheduler queue in ns */
187 struct blkg_rwstat wait_time
;
188 /* number of IOs queued up */
189 struct blkg_rwstat queued
;
190 /* total sectors transferred */
191 struct blkg_stat sectors
;
192 /* total disk time and nr sectors dispatched by this group */
193 struct blkg_stat time
;
194 #ifdef CONFIG_DEBUG_BLK_CGROUP
195 /* time not charged to this cgroup */
196 struct blkg_stat unaccounted_time
;
197 /* sum of number of ios queued across all samples */
198 struct blkg_stat avg_queue_size_sum
;
199 /* count of samples taken for average */
200 struct blkg_stat avg_queue_size_samples
;
201 /* how many times this group has been removed from service tree */
202 struct blkg_stat dequeue
;
203 /* total time spent waiting for it to be assigned a timeslice. */
204 struct blkg_stat group_wait_time
;
205 /* time spent idling for this blkcg_gq */
206 struct blkg_stat idle_time
;
207 /* total time with empty current active q with other requests queued */
208 struct blkg_stat empty_time
;
209 /* fields after this shouldn't be cleared on stat reset */
210 uint64_t start_group_wait_time
;
211 uint64_t start_idle_time
;
212 uint64_t start_empty_time
;
214 #endif /* CONFIG_DEBUG_BLK_CGROUP */
215 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
218 /* This is per cgroup per device grouping structure */
220 /* must be the first member */
221 struct blkg_policy_data pd
;
223 /* group service_tree member */
224 struct rb_node rb_node
;
226 /* group service_tree key */
229 unsigned int new_weight
;
230 unsigned int dev_weight
;
232 /* number of cfqq currently on this group */
236 * Per group busy queues average. Useful for workload slice calc. We
237 * create the array for each prio class but at run time it is used
238 * only for RT and BE class and slot for IDLE class remains unused.
239 * This is primarily done to avoid confusion and a gcc warning.
241 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
243 * rr lists of queues with requests. We maintain service trees for
244 * RT and BE classes. These trees are subdivided in subclasses
245 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
246 * class there is no subclassification and all the cfq queues go on
247 * a single tree service_tree_idle.
248 * Counts are embedded in the cfq_rb_root
250 struct cfq_rb_root service_trees
[2][3];
251 struct cfq_rb_root service_tree_idle
;
253 unsigned long saved_workload_slice
;
254 enum wl_type_t saved_workload
;
255 enum wl_prio_t saved_serving_prio
;
257 /* number of requests that are on the dispatch list or inside driver */
259 struct cfq_ttime ttime
;
260 struct cfqg_stats stats
;
264 struct io_cq icq
; /* must be the first member */
265 struct cfq_queue
*cfqq
[2];
266 struct cfq_ttime ttime
;
267 int ioprio
; /* the current ioprio */
268 #ifdef CONFIG_CFQ_GROUP_IOSCHED
269 uint64_t blkcg_id
; /* the current blkcg ID */
274 * Per block device queue structure
277 struct request_queue
*queue
;
278 /* Root service tree for cfq_groups */
279 struct cfq_rb_root grp_service_tree
;
280 struct cfq_group
*root_group
;
283 * The priority currently being served
285 enum wl_prio_t serving_prio
;
286 enum wl_type_t serving_type
;
287 unsigned long workload_expires
;
288 struct cfq_group
*serving_group
;
291 * Each priority tree is sorted by next_request position. These
292 * trees are used when determining if two or more queues are
293 * interleaving requests (see cfq_close_cooperator).
295 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
297 unsigned int busy_queues
;
298 unsigned int busy_sync_queues
;
304 * queue-depth detection
310 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
311 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
314 int hw_tag_est_depth
;
315 unsigned int hw_tag_samples
;
318 * idle window management
320 struct timer_list idle_slice_timer
;
321 struct work_struct unplug_work
;
323 struct cfq_queue
*active_queue
;
324 struct cfq_io_cq
*active_cic
;
327 * async queue for each priority case
329 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
330 struct cfq_queue
*async_idle_cfqq
;
332 sector_t last_position
;
335 * tunables, see top of file
337 unsigned int cfq_quantum
;
338 unsigned int cfq_fifo_expire
[2];
339 unsigned int cfq_back_penalty
;
340 unsigned int cfq_back_max
;
341 unsigned int cfq_slice
[2];
342 unsigned int cfq_slice_async_rq
;
343 unsigned int cfq_slice_idle
;
344 unsigned int cfq_group_idle
;
345 unsigned int cfq_latency
;
346 unsigned int cfq_target_latency
;
349 * Fallback dummy cfqq for extreme OOM conditions
351 struct cfq_queue oom_cfqq
;
353 unsigned long last_delayed_sync
;
356 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
358 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
365 if (prio
== IDLE_WORKLOAD
)
366 return &cfqg
->service_tree_idle
;
368 return &cfqg
->service_trees
[prio
][type
];
371 enum cfqq_state_flags
{
372 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
373 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
374 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
375 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
376 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
377 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
378 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
379 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
380 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
381 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
382 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
383 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
384 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
387 #define CFQ_CFQQ_FNS(name) \
388 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
390 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
392 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
394 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
396 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
398 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
402 CFQ_CFQQ_FNS(wait_request
);
403 CFQ_CFQQ_FNS(must_dispatch
);
404 CFQ_CFQQ_FNS(must_alloc_slice
);
405 CFQ_CFQQ_FNS(fifo_expire
);
406 CFQ_CFQQ_FNS(idle_window
);
407 CFQ_CFQQ_FNS(prio_changed
);
408 CFQ_CFQQ_FNS(slice_new
);
411 CFQ_CFQQ_FNS(split_coop
);
413 CFQ_CFQQ_FNS(wait_busy
);
416 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
418 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
421 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
423 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
426 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
428 return pd_to_blkg(&cfqg
->pd
);
431 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
433 /* cfqg stats flags */
434 enum cfqg_stats_flags
{
435 CFQG_stats_waiting
= 0,
440 #define CFQG_FLAG_FNS(name) \
441 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
443 stats->flags |= (1 << CFQG_stats_##name); \
445 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
447 stats->flags &= ~(1 << CFQG_stats_##name); \
449 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
451 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
454 CFQG_FLAG_FNS(waiting)
455 CFQG_FLAG_FNS(idling
)
459 /* This should be called with the queue_lock held. */
460 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
462 unsigned long long now
;
464 if (!cfqg_stats_waiting(stats
))
468 if (time_after64(now
, stats
->start_group_wait_time
))
469 blkg_stat_add(&stats
->group_wait_time
,
470 now
- stats
->start_group_wait_time
);
471 cfqg_stats_clear_waiting(stats
);
474 /* This should be called with the queue_lock held. */
475 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
476 struct cfq_group
*curr_cfqg
)
478 struct cfqg_stats
*stats
= &cfqg
->stats
;
480 if (cfqg_stats_waiting(stats
))
482 if (cfqg
== curr_cfqg
)
484 stats
->start_group_wait_time
= sched_clock();
485 cfqg_stats_mark_waiting(stats
);
488 /* This should be called with the queue_lock held. */
489 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
491 unsigned long long now
;
493 if (!cfqg_stats_empty(stats
))
497 if (time_after64(now
, stats
->start_empty_time
))
498 blkg_stat_add(&stats
->empty_time
,
499 now
- stats
->start_empty_time
);
500 cfqg_stats_clear_empty(stats
);
503 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
505 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
508 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
510 struct cfqg_stats
*stats
= &cfqg
->stats
;
512 if (blkg_rwstat_sum(&stats
->queued
))
516 * group is already marked empty. This can happen if cfqq got new
517 * request in parent group and moved to this group while being added
518 * to service tree. Just ignore the event and move on.
520 if (cfqg_stats_empty(stats
))
523 stats
->start_empty_time
= sched_clock();
524 cfqg_stats_mark_empty(stats
);
527 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
529 struct cfqg_stats
*stats
= &cfqg
->stats
;
531 if (cfqg_stats_idling(stats
)) {
532 unsigned long long now
= sched_clock();
534 if (time_after64(now
, stats
->start_idle_time
))
535 blkg_stat_add(&stats
->idle_time
,
536 now
- stats
->start_idle_time
);
537 cfqg_stats_clear_idling(stats
);
541 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
543 struct cfqg_stats
*stats
= &cfqg
->stats
;
545 BUG_ON(cfqg_stats_idling(stats
));
547 stats
->start_idle_time
= sched_clock();
548 cfqg_stats_mark_idling(stats
);
551 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
553 struct cfqg_stats
*stats
= &cfqg
->stats
;
555 blkg_stat_add(&stats
->avg_queue_size_sum
,
556 blkg_rwstat_sum(&stats
->queued
));
557 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
558 cfqg_stats_update_group_wait_time(stats
);
561 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
563 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
564 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
565 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
566 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
567 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
568 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
569 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
571 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
573 #ifdef CONFIG_CFQ_GROUP_IOSCHED
575 static inline void cfqg_get(struct cfq_group
*cfqg
)
577 return blkg_get(cfqg_to_blkg(cfqg
));
580 static inline void cfqg_put(struct cfq_group
*cfqg
)
582 return blkg_put(cfqg_to_blkg(cfqg
));
585 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
588 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
589 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
590 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
594 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
597 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
598 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
601 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
602 struct cfq_group
*curr_cfqg
, int rw
)
604 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, 1);
605 cfqg_stats_end_empty_time(&cfqg
->stats
);
606 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
609 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
610 unsigned long time
, unsigned long unaccounted_time
)
612 blkg_stat_add(&cfqg
->stats
.time
, time
);
613 #ifdef CONFIG_DEBUG_BLK_CGROUP
614 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
618 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
)
620 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, -1);
623 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
)
625 blkg_rwstat_add(&cfqg
->stats
.merged
, rw
, 1);
628 static inline void cfqg_stats_update_dispatch(struct cfq_group
*cfqg
,
629 uint64_t bytes
, int rw
)
631 blkg_stat_add(&cfqg
->stats
.sectors
, bytes
>> 9);
632 blkg_rwstat_add(&cfqg
->stats
.serviced
, rw
, 1);
633 blkg_rwstat_add(&cfqg
->stats
.service_bytes
, rw
, bytes
);
636 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
637 uint64_t start_time
, uint64_t io_start_time
, int rw
)
639 struct cfqg_stats
*stats
= &cfqg
->stats
;
640 unsigned long long now
= sched_clock();
642 if (time_after64(now
, io_start_time
))
643 blkg_rwstat_add(&stats
->service_time
, rw
, now
- io_start_time
);
644 if (time_after64(io_start_time
, start_time
))
645 blkg_rwstat_add(&stats
->wait_time
, rw
,
646 io_start_time
- start_time
);
649 static void cfq_pd_reset_stats(struct blkcg_gq
*blkg
)
651 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
652 struct cfqg_stats
*stats
= &cfqg
->stats
;
654 /* queued stats shouldn't be cleared */
655 blkg_rwstat_reset(&stats
->service_bytes
);
656 blkg_rwstat_reset(&stats
->serviced
);
657 blkg_rwstat_reset(&stats
->merged
);
658 blkg_rwstat_reset(&stats
->service_time
);
659 blkg_rwstat_reset(&stats
->wait_time
);
660 blkg_stat_reset(&stats
->time
);
661 #ifdef CONFIG_DEBUG_BLK_CGROUP
662 blkg_stat_reset(&stats
->unaccounted_time
);
663 blkg_stat_reset(&stats
->avg_queue_size_sum
);
664 blkg_stat_reset(&stats
->avg_queue_size_samples
);
665 blkg_stat_reset(&stats
->dequeue
);
666 blkg_stat_reset(&stats
->group_wait_time
);
667 blkg_stat_reset(&stats
->idle_time
);
668 blkg_stat_reset(&stats
->empty_time
);
672 #else /* CONFIG_CFQ_GROUP_IOSCHED */
674 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
675 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
677 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
678 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
679 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
681 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
682 struct cfq_group
*curr_cfqg
, int rw
) { }
683 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
684 unsigned long time
, unsigned long unaccounted_time
) { }
685 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
) { }
686 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
) { }
687 static inline void cfqg_stats_update_dispatch(struct cfq_group
*cfqg
,
688 uint64_t bytes
, int rw
) { }
689 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
690 uint64_t start_time
, uint64_t io_start_time
, int rw
) { }
692 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
694 #define cfq_log(cfqd, fmt, args...) \
695 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
697 /* Traverses through cfq group service trees */
698 #define for_each_cfqg_st(cfqg, i, j, st) \
699 for (i = 0; i <= IDLE_WORKLOAD; i++) \
700 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
701 : &cfqg->service_tree_idle; \
702 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
703 (i == IDLE_WORKLOAD && j == 0); \
704 j++, st = i < IDLE_WORKLOAD ? \
705 &cfqg->service_trees[i][j]: NULL) \
707 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
708 struct cfq_ttime
*ttime
, bool group_idle
)
711 if (!sample_valid(ttime
->ttime_samples
))
714 slice
= cfqd
->cfq_group_idle
;
716 slice
= cfqd
->cfq_slice_idle
;
717 return ttime
->ttime_mean
> slice
;
720 static inline bool iops_mode(struct cfq_data
*cfqd
)
723 * If we are not idling on queues and it is a NCQ drive, parallel
724 * execution of requests is on and measuring time is not possible
725 * in most of the cases until and unless we drive shallower queue
726 * depths and that becomes a performance bottleneck. In such cases
727 * switch to start providing fairness in terms of number of IOs.
729 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
735 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
737 if (cfq_class_idle(cfqq
))
738 return IDLE_WORKLOAD
;
739 if (cfq_class_rt(cfqq
))
745 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
747 if (!cfq_cfqq_sync(cfqq
))
748 return ASYNC_WORKLOAD
;
749 if (!cfq_cfqq_idle_window(cfqq
))
750 return SYNC_NOIDLE_WORKLOAD
;
751 return SYNC_WORKLOAD
;
754 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
755 struct cfq_data
*cfqd
,
756 struct cfq_group
*cfqg
)
758 if (wl
== IDLE_WORKLOAD
)
759 return cfqg
->service_tree_idle
.count
;
761 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
762 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
763 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
766 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
767 struct cfq_group
*cfqg
)
769 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
770 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
773 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
774 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
775 struct cfq_io_cq
*cic
, struct bio
*bio
,
778 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
780 /* cic->icq is the first member, %NULL will convert to %NULL */
781 return container_of(icq
, struct cfq_io_cq
, icq
);
784 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
785 struct io_context
*ioc
)
788 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
792 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
794 return cic
->cfqq
[is_sync
];
797 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
800 cic
->cfqq
[is_sync
] = cfqq
;
803 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
805 return cic
->icq
.q
->elevator
->elevator_data
;
809 * We regard a request as SYNC, if it's either a read or has the SYNC bit
810 * set (in which case it could also be direct WRITE).
812 static inline bool cfq_bio_sync(struct bio
*bio
)
814 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
818 * scheduler run of queue, if there are requests pending and no one in the
819 * driver that will restart queueing
821 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
823 if (cfqd
->busy_queues
) {
824 cfq_log(cfqd
, "schedule dispatch");
825 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
830 * Scale schedule slice based on io priority. Use the sync time slice only
831 * if a queue is marked sync and has sync io queued. A sync queue with async
832 * io only, should not get full sync slice length.
834 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
837 const int base_slice
= cfqd
->cfq_slice
[sync
];
839 WARN_ON(prio
>= IOPRIO_BE_NR
);
841 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
845 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
847 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
850 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
852 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
854 d
= d
* CFQ_WEIGHT_DEFAULT
;
855 do_div(d
, cfqg
->weight
);
859 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
861 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
863 min_vdisktime
= vdisktime
;
865 return min_vdisktime
;
868 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
870 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
872 min_vdisktime
= vdisktime
;
874 return min_vdisktime
;
877 static void update_min_vdisktime(struct cfq_rb_root
*st
)
879 struct cfq_group
*cfqg
;
882 cfqg
= rb_entry_cfqg(st
->left
);
883 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
889 * get averaged number of queues of RT/BE priority.
890 * average is updated, with a formula that gives more weight to higher numbers,
891 * to quickly follows sudden increases and decrease slowly
894 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
895 struct cfq_group
*cfqg
, bool rt
)
897 unsigned min_q
, max_q
;
898 unsigned mult
= cfq_hist_divisor
- 1;
899 unsigned round
= cfq_hist_divisor
/ 2;
900 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
902 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
903 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
904 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
906 return cfqg
->busy_queues_avg
[rt
];
909 static inline unsigned
910 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
912 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
914 return cfqd
->cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
917 static inline unsigned
918 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
920 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
921 if (cfqd
->cfq_latency
) {
923 * interested queues (we consider only the ones with the same
924 * priority class in the cfq group)
926 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
928 unsigned sync_slice
= cfqd
->cfq_slice
[1];
929 unsigned expect_latency
= sync_slice
* iq
;
930 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
932 if (expect_latency
> group_slice
) {
933 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
934 /* scale low_slice according to IO priority
935 * and sync vs async */
937 min(slice
, base_low_slice
* slice
/ sync_slice
);
938 /* the adapted slice value is scaled to fit all iqs
939 * into the target latency */
940 slice
= max(slice
* group_slice
/ expect_latency
,
948 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
950 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
952 cfqq
->slice_start
= jiffies
;
953 cfqq
->slice_end
= jiffies
+ slice
;
954 cfqq
->allocated_slice
= slice
;
955 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
959 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
960 * isn't valid until the first request from the dispatch is activated
961 * and the slice time set.
963 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
965 if (cfq_cfqq_slice_new(cfqq
))
967 if (time_before(jiffies
, cfqq
->slice_end
))
974 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
975 * We choose the request that is closest to the head right now. Distance
976 * behind the head is penalized and only allowed to a certain extent.
978 static struct request
*
979 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
981 sector_t s1
, s2
, d1
= 0, d2
= 0;
982 unsigned long back_max
;
983 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
984 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
985 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
987 if (rq1
== NULL
|| rq1
== rq2
)
992 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
993 return rq_is_sync(rq1
) ? rq1
: rq2
;
995 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
996 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
998 s1
= blk_rq_pos(rq1
);
999 s2
= blk_rq_pos(rq2
);
1002 * by definition, 1KiB is 2 sectors
1004 back_max
= cfqd
->cfq_back_max
* 2;
1007 * Strict one way elevator _except_ in the case where we allow
1008 * short backward seeks which are biased as twice the cost of a
1009 * similar forward seek.
1013 else if (s1
+ back_max
>= last
)
1014 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1016 wrap
|= CFQ_RQ1_WRAP
;
1020 else if (s2
+ back_max
>= last
)
1021 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1023 wrap
|= CFQ_RQ2_WRAP
;
1025 /* Found required data */
1028 * By doing switch() on the bit mask "wrap" we avoid having to
1029 * check two variables for all permutations: --> faster!
1032 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1048 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1051 * Since both rqs are wrapped,
1052 * start with the one that's further behind head
1053 * (--> only *one* back seek required),
1054 * since back seek takes more time than forward.
1064 * The below is leftmost cache rbtree addon
1066 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1068 /* Service tree is empty */
1073 root
->left
= rb_first(&root
->rb
);
1076 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1081 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1084 root
->left
= rb_first(&root
->rb
);
1087 return rb_entry_cfqg(root
->left
);
1092 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1098 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1100 if (root
->left
== n
)
1102 rb_erase_init(n
, &root
->rb
);
1107 * would be nice to take fifo expire time into account as well
1109 static struct request
*
1110 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1111 struct request
*last
)
1113 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1114 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1115 struct request
*next
= NULL
, *prev
= NULL
;
1117 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1120 prev
= rb_entry_rq(rbprev
);
1123 next
= rb_entry_rq(rbnext
);
1125 rbnext
= rb_first(&cfqq
->sort_list
);
1126 if (rbnext
&& rbnext
!= &last
->rb_node
)
1127 next
= rb_entry_rq(rbnext
);
1130 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1133 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
1134 struct cfq_queue
*cfqq
)
1137 * just an approximation, should be ok.
1139 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1140 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1144 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1146 return cfqg
->vdisktime
- st
->min_vdisktime
;
1150 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1152 struct rb_node
**node
= &st
->rb
.rb_node
;
1153 struct rb_node
*parent
= NULL
;
1154 struct cfq_group
*__cfqg
;
1155 s64 key
= cfqg_key(st
, cfqg
);
1158 while (*node
!= NULL
) {
1160 __cfqg
= rb_entry_cfqg(parent
);
1162 if (key
< cfqg_key(st
, __cfqg
))
1163 node
= &parent
->rb_left
;
1165 node
= &parent
->rb_right
;
1171 st
->left
= &cfqg
->rb_node
;
1173 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1174 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1178 cfq_update_group_weight(struct cfq_group
*cfqg
)
1180 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1181 if (cfqg
->new_weight
) {
1182 cfqg
->weight
= cfqg
->new_weight
;
1183 cfqg
->new_weight
= 0;
1188 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1190 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1192 cfq_update_group_weight(cfqg
);
1193 __cfq_group_service_tree_add(st
, cfqg
);
1194 st
->total_weight
+= cfqg
->weight
;
1198 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1200 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1201 struct cfq_group
*__cfqg
;
1205 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1209 * Currently put the group at the end. Later implement something
1210 * so that groups get lesser vtime based on their weights, so that
1211 * if group does not loose all if it was not continuously backlogged.
1213 n
= rb_last(&st
->rb
);
1215 __cfqg
= rb_entry_cfqg(n
);
1216 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
1218 cfqg
->vdisktime
= st
->min_vdisktime
;
1219 cfq_group_service_tree_add(st
, cfqg
);
1223 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1225 st
->total_weight
-= cfqg
->weight
;
1226 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1227 cfq_rb_erase(&cfqg
->rb_node
, st
);
1231 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1233 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1235 BUG_ON(cfqg
->nr_cfqq
< 1);
1238 /* If there are other cfq queues under this group, don't delete it */
1242 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1243 cfq_group_service_tree_del(st
, cfqg
);
1244 cfqg
->saved_workload_slice
= 0;
1245 cfqg_stats_update_dequeue(cfqg
);
1248 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1249 unsigned int *unaccounted_time
)
1251 unsigned int slice_used
;
1254 * Queue got expired before even a single request completed or
1255 * got expired immediately after first request completion.
1257 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
1259 * Also charge the seek time incurred to the group, otherwise
1260 * if there are mutiple queues in the group, each can dispatch
1261 * a single request on seeky media and cause lots of seek time
1262 * and group will never know it.
1264 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
1267 slice_used
= jiffies
- cfqq
->slice_start
;
1268 if (slice_used
> cfqq
->allocated_slice
) {
1269 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1270 slice_used
= cfqq
->allocated_slice
;
1272 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
1273 *unaccounted_time
+= cfqq
->slice_start
-
1274 cfqq
->dispatch_start
;
1280 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1281 struct cfq_queue
*cfqq
)
1283 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1284 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
1285 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1286 - cfqg
->service_tree_idle
.count
;
1288 BUG_ON(nr_sync
< 0);
1289 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1291 if (iops_mode(cfqd
))
1292 charge
= cfqq
->slice_dispatch
;
1293 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1294 charge
= cfqq
->allocated_slice
;
1296 /* Can't update vdisktime while group is on service tree */
1297 cfq_group_service_tree_del(st
, cfqg
);
1298 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
1299 /* If a new weight was requested, update now, off tree */
1300 cfq_group_service_tree_add(st
, cfqg
);
1302 /* This group is being expired. Save the context */
1303 if (time_after(cfqd
->workload_expires
, jiffies
)) {
1304 cfqg
->saved_workload_slice
= cfqd
->workload_expires
1306 cfqg
->saved_workload
= cfqd
->serving_type
;
1307 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
1309 cfqg
->saved_workload_slice
= 0;
1311 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1313 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1314 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1315 used_sl
, cfqq
->slice_dispatch
, charge
,
1316 iops_mode(cfqd
), cfqq
->nr_sectors
);
1317 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1318 cfqg_stats_set_start_empty_time(cfqg
);
1322 * cfq_init_cfqg_base - initialize base part of a cfq_group
1323 * @cfqg: cfq_group to initialize
1325 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1326 * is enabled or not.
1328 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1330 struct cfq_rb_root
*st
;
1333 for_each_cfqg_st(cfqg
, i
, j
, st
)
1335 RB_CLEAR_NODE(&cfqg
->rb_node
);
1337 cfqg
->ttime
.last_end_request
= jiffies
;
1340 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1341 static void cfq_pd_init(struct blkcg_gq
*blkg
)
1343 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1345 cfq_init_cfqg_base(cfqg
);
1346 cfqg
->weight
= blkg
->blkcg
->cfq_weight
;
1350 * Search for the cfq group current task belongs to. request_queue lock must
1353 static struct cfq_group
*cfq_lookup_create_cfqg(struct cfq_data
*cfqd
,
1354 struct blkcg
*blkcg
)
1356 struct request_queue
*q
= cfqd
->queue
;
1357 struct cfq_group
*cfqg
= NULL
;
1359 /* avoid lookup for the common case where there's no blkcg */
1360 if (blkcg
== &blkcg_root
) {
1361 cfqg
= cfqd
->root_group
;
1363 struct blkcg_gq
*blkg
;
1365 blkg
= blkg_lookup_create(blkcg
, q
);
1367 cfqg
= blkg_to_cfqg(blkg
);
1373 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1375 /* Currently, all async queues are mapped to root group */
1376 if (!cfq_cfqq_sync(cfqq
))
1377 cfqg
= cfqq
->cfqd
->root_group
;
1380 /* cfqq reference on cfqg */
1384 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1385 struct blkg_policy_data
*pd
, int off
)
1387 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1389 if (!cfqg
->dev_weight
)
1391 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1394 static int cfqg_print_weight_device(struct cgroup
*cgrp
, struct cftype
*cft
,
1395 struct seq_file
*sf
)
1397 blkcg_print_blkgs(sf
, cgroup_to_blkcg(cgrp
),
1398 cfqg_prfill_weight_device
, &blkcg_policy_cfq
, 0,
1403 static int cfq_print_weight(struct cgroup
*cgrp
, struct cftype
*cft
,
1404 struct seq_file
*sf
)
1406 seq_printf(sf
, "%u\n", cgroup_to_blkcg(cgrp
)->cfq_weight
);
1410 static int cfqg_set_weight_device(struct cgroup
*cgrp
, struct cftype
*cft
,
1413 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1414 struct blkg_conf_ctx ctx
;
1415 struct cfq_group
*cfqg
;
1418 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1423 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1424 if (!ctx
.v
|| (ctx
.v
>= CFQ_WEIGHT_MIN
&& ctx
.v
<= CFQ_WEIGHT_MAX
)) {
1425 cfqg
->dev_weight
= ctx
.v
;
1426 cfqg
->new_weight
= cfqg
->dev_weight
?: blkcg
->cfq_weight
;
1430 blkg_conf_finish(&ctx
);
1434 static int cfq_set_weight(struct cgroup
*cgrp
, struct cftype
*cft
, u64 val
)
1436 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1437 struct blkcg_gq
*blkg
;
1438 struct hlist_node
*n
;
1440 if (val
< CFQ_WEIGHT_MIN
|| val
> CFQ_WEIGHT_MAX
)
1443 spin_lock_irq(&blkcg
->lock
);
1444 blkcg
->cfq_weight
= (unsigned int)val
;
1446 hlist_for_each_entry(blkg
, n
, &blkcg
->blkg_list
, blkcg_node
) {
1447 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1449 if (cfqg
&& !cfqg
->dev_weight
)
1450 cfqg
->new_weight
= blkcg
->cfq_weight
;
1453 spin_unlock_irq(&blkcg
->lock
);
1457 static int cfqg_print_stat(struct cgroup
*cgrp
, struct cftype
*cft
,
1458 struct seq_file
*sf
)
1460 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1462 blkcg_print_blkgs(sf
, blkcg
, blkg_prfill_stat
, &blkcg_policy_cfq
,
1463 cft
->private, false);
1467 static int cfqg_print_rwstat(struct cgroup
*cgrp
, struct cftype
*cft
,
1468 struct seq_file
*sf
)
1470 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1472 blkcg_print_blkgs(sf
, blkcg
, blkg_prfill_rwstat
, &blkcg_policy_cfq
,
1473 cft
->private, true);
1477 #ifdef CONFIG_DEBUG_BLK_CGROUP
1478 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1479 struct blkg_policy_data
*pd
, int off
)
1481 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1482 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1486 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1489 __blkg_prfill_u64(sf
, pd
, v
);
1493 /* print avg_queue_size */
1494 static int cfqg_print_avg_queue_size(struct cgroup
*cgrp
, struct cftype
*cft
,
1495 struct seq_file
*sf
)
1497 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1499 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_avg_queue_size
,
1500 &blkcg_policy_cfq
, 0, false);
1503 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1505 static struct cftype cfq_blkcg_files
[] = {
1507 .name
= "weight_device",
1508 .read_seq_string
= cfqg_print_weight_device
,
1509 .write_string
= cfqg_set_weight_device
,
1510 .max_write_len
= 256,
1514 .read_seq_string
= cfq_print_weight
,
1515 .write_u64
= cfq_set_weight
,
1519 .private = offsetof(struct cfq_group
, stats
.time
),
1520 .read_seq_string
= cfqg_print_stat
,
1524 .private = offsetof(struct cfq_group
, stats
.sectors
),
1525 .read_seq_string
= cfqg_print_stat
,
1528 .name
= "io_service_bytes",
1529 .private = offsetof(struct cfq_group
, stats
.service_bytes
),
1530 .read_seq_string
= cfqg_print_rwstat
,
1533 .name
= "io_serviced",
1534 .private = offsetof(struct cfq_group
, stats
.serviced
),
1535 .read_seq_string
= cfqg_print_rwstat
,
1538 .name
= "io_service_time",
1539 .private = offsetof(struct cfq_group
, stats
.service_time
),
1540 .read_seq_string
= cfqg_print_rwstat
,
1543 .name
= "io_wait_time",
1544 .private = offsetof(struct cfq_group
, stats
.wait_time
),
1545 .read_seq_string
= cfqg_print_rwstat
,
1548 .name
= "io_merged",
1549 .private = offsetof(struct cfq_group
, stats
.merged
),
1550 .read_seq_string
= cfqg_print_rwstat
,
1553 .name
= "io_queued",
1554 .private = offsetof(struct cfq_group
, stats
.queued
),
1555 .read_seq_string
= cfqg_print_rwstat
,
1557 #ifdef CONFIG_DEBUG_BLK_CGROUP
1559 .name
= "avg_queue_size",
1560 .read_seq_string
= cfqg_print_avg_queue_size
,
1563 .name
= "group_wait_time",
1564 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
1565 .read_seq_string
= cfqg_print_stat
,
1568 .name
= "idle_time",
1569 .private = offsetof(struct cfq_group
, stats
.idle_time
),
1570 .read_seq_string
= cfqg_print_stat
,
1573 .name
= "empty_time",
1574 .private = offsetof(struct cfq_group
, stats
.empty_time
),
1575 .read_seq_string
= cfqg_print_stat
,
1579 .private = offsetof(struct cfq_group
, stats
.dequeue
),
1580 .read_seq_string
= cfqg_print_stat
,
1583 .name
= "unaccounted_time",
1584 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
1585 .read_seq_string
= cfqg_print_stat
,
1587 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1590 #else /* GROUP_IOSCHED */
1591 static struct cfq_group
*cfq_lookup_create_cfqg(struct cfq_data
*cfqd
,
1592 struct blkcg
*blkcg
)
1594 return cfqd
->root_group
;
1598 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1602 #endif /* GROUP_IOSCHED */
1605 * The cfqd->service_trees holds all pending cfq_queue's that have
1606 * requests waiting to be processed. It is sorted in the order that
1607 * we will service the queues.
1609 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1612 struct rb_node
**p
, *parent
;
1613 struct cfq_queue
*__cfqq
;
1614 unsigned long rb_key
;
1615 struct cfq_rb_root
*service_tree
;
1619 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1621 if (cfq_class_idle(cfqq
)) {
1622 rb_key
= CFQ_IDLE_DELAY
;
1623 parent
= rb_last(&service_tree
->rb
);
1624 if (parent
&& parent
!= &cfqq
->rb_node
) {
1625 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1626 rb_key
+= __cfqq
->rb_key
;
1629 } else if (!add_front
) {
1631 * Get our rb key offset. Subtract any residual slice
1632 * value carried from last service. A negative resid
1633 * count indicates slice overrun, and this should position
1634 * the next service time further away in the tree.
1636 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1637 rb_key
-= cfqq
->slice_resid
;
1638 cfqq
->slice_resid
= 0;
1641 __cfqq
= cfq_rb_first(service_tree
);
1642 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1645 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1648 * same position, nothing more to do
1650 if (rb_key
== cfqq
->rb_key
&&
1651 cfqq
->service_tree
== service_tree
)
1654 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1655 cfqq
->service_tree
= NULL
;
1660 cfqq
->service_tree
= service_tree
;
1661 p
= &service_tree
->rb
.rb_node
;
1666 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1669 * sort by key, that represents service time.
1671 if (time_before(rb_key
, __cfqq
->rb_key
))
1674 n
= &(*p
)->rb_right
;
1682 service_tree
->left
= &cfqq
->rb_node
;
1684 cfqq
->rb_key
= rb_key
;
1685 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1686 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1687 service_tree
->count
++;
1688 if (add_front
|| !new_cfqq
)
1690 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
1693 static struct cfq_queue
*
1694 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1695 sector_t sector
, struct rb_node
**ret_parent
,
1696 struct rb_node
***rb_link
)
1698 struct rb_node
**p
, *parent
;
1699 struct cfq_queue
*cfqq
= NULL
;
1707 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1710 * Sort strictly based on sector. Smallest to the left,
1711 * largest to the right.
1713 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1714 n
= &(*p
)->rb_right
;
1715 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1723 *ret_parent
= parent
;
1729 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1731 struct rb_node
**p
, *parent
;
1732 struct cfq_queue
*__cfqq
;
1735 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1736 cfqq
->p_root
= NULL
;
1739 if (cfq_class_idle(cfqq
))
1744 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1745 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1746 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1748 rb_link_node(&cfqq
->p_node
, parent
, p
);
1749 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1751 cfqq
->p_root
= NULL
;
1755 * Update cfqq's position in the service tree.
1757 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1760 * Resorting requires the cfqq to be on the RR list already.
1762 if (cfq_cfqq_on_rr(cfqq
)) {
1763 cfq_service_tree_add(cfqd
, cfqq
, 0);
1764 cfq_prio_tree_add(cfqd
, cfqq
);
1769 * add to busy list of queues for service, trying to be fair in ordering
1770 * the pending list according to last request service
1772 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1774 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1775 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1776 cfq_mark_cfqq_on_rr(cfqq
);
1777 cfqd
->busy_queues
++;
1778 if (cfq_cfqq_sync(cfqq
))
1779 cfqd
->busy_sync_queues
++;
1781 cfq_resort_rr_list(cfqd
, cfqq
);
1785 * Called when the cfqq no longer has requests pending, remove it from
1788 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1790 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1791 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1792 cfq_clear_cfqq_on_rr(cfqq
);
1794 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1795 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1796 cfqq
->service_tree
= NULL
;
1799 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1800 cfqq
->p_root
= NULL
;
1803 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
1804 BUG_ON(!cfqd
->busy_queues
);
1805 cfqd
->busy_queues
--;
1806 if (cfq_cfqq_sync(cfqq
))
1807 cfqd
->busy_sync_queues
--;
1811 * rb tree support functions
1813 static void cfq_del_rq_rb(struct request
*rq
)
1815 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1816 const int sync
= rq_is_sync(rq
);
1818 BUG_ON(!cfqq
->queued
[sync
]);
1819 cfqq
->queued
[sync
]--;
1821 elv_rb_del(&cfqq
->sort_list
, rq
);
1823 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1825 * Queue will be deleted from service tree when we actually
1826 * expire it later. Right now just remove it from prio tree
1830 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1831 cfqq
->p_root
= NULL
;
1836 static void cfq_add_rq_rb(struct request
*rq
)
1838 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1839 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1840 struct request
*prev
;
1842 cfqq
->queued
[rq_is_sync(rq
)]++;
1844 elv_rb_add(&cfqq
->sort_list
, rq
);
1846 if (!cfq_cfqq_on_rr(cfqq
))
1847 cfq_add_cfqq_rr(cfqd
, cfqq
);
1850 * check if this request is a better next-serve candidate
1852 prev
= cfqq
->next_rq
;
1853 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1856 * adjust priority tree position, if ->next_rq changes
1858 if (prev
!= cfqq
->next_rq
)
1859 cfq_prio_tree_add(cfqd
, cfqq
);
1861 BUG_ON(!cfqq
->next_rq
);
1864 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1866 elv_rb_del(&cfqq
->sort_list
, rq
);
1867 cfqq
->queued
[rq_is_sync(rq
)]--;
1868 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
1870 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
1874 static struct request
*
1875 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1877 struct task_struct
*tsk
= current
;
1878 struct cfq_io_cq
*cic
;
1879 struct cfq_queue
*cfqq
;
1881 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1885 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1887 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1889 return elv_rb_find(&cfqq
->sort_list
, sector
);
1895 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1897 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1899 cfqd
->rq_in_driver
++;
1900 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1901 cfqd
->rq_in_driver
);
1903 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1906 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1908 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1910 WARN_ON(!cfqd
->rq_in_driver
);
1911 cfqd
->rq_in_driver
--;
1912 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1913 cfqd
->rq_in_driver
);
1916 static void cfq_remove_request(struct request
*rq
)
1918 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1920 if (cfqq
->next_rq
== rq
)
1921 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1923 list_del_init(&rq
->queuelist
);
1926 cfqq
->cfqd
->rq_queued
--;
1927 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
1928 if (rq
->cmd_flags
& REQ_PRIO
) {
1929 WARN_ON(!cfqq
->prio_pending
);
1930 cfqq
->prio_pending
--;
1934 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1937 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1938 struct request
*__rq
;
1940 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1941 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1943 return ELEVATOR_FRONT_MERGE
;
1946 return ELEVATOR_NO_MERGE
;
1949 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1952 if (type
== ELEVATOR_FRONT_MERGE
) {
1953 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1955 cfq_reposition_rq_rb(cfqq
, req
);
1959 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1962 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_rw
);
1966 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1967 struct request
*next
)
1969 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1970 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1973 * reposition in fifo if next is older than rq
1975 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1976 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1977 list_move(&rq
->queuelist
, &next
->queuelist
);
1978 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1981 if (cfqq
->next_rq
== next
)
1983 cfq_remove_request(next
);
1984 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
1986 cfqq
= RQ_CFQQ(next
);
1988 * all requests of this queue are merged to other queues, delete it
1989 * from the service tree. If it's the active_queue,
1990 * cfq_dispatch_requests() will choose to expire it or do idle
1992 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
1993 cfqq
!= cfqd
->active_queue
)
1994 cfq_del_cfqq_rr(cfqd
, cfqq
);
1997 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
2000 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2001 struct cfq_io_cq
*cic
;
2002 struct cfq_queue
*cfqq
;
2005 * Disallow merge of a sync bio into an async request.
2007 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
2011 * Lookup the cfqq that this bio will be queued with and allow
2012 * merge only if rq is queued there.
2014 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2018 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2019 return cfqq
== RQ_CFQQ(rq
);
2022 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2024 del_timer(&cfqd
->idle_slice_timer
);
2025 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2028 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2029 struct cfq_queue
*cfqq
)
2032 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
2033 cfqd
->serving_prio
, cfqd
->serving_type
);
2034 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2035 cfqq
->slice_start
= 0;
2036 cfqq
->dispatch_start
= jiffies
;
2037 cfqq
->allocated_slice
= 0;
2038 cfqq
->slice_end
= 0;
2039 cfqq
->slice_dispatch
= 0;
2040 cfqq
->nr_sectors
= 0;
2042 cfq_clear_cfqq_wait_request(cfqq
);
2043 cfq_clear_cfqq_must_dispatch(cfqq
);
2044 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2045 cfq_clear_cfqq_fifo_expire(cfqq
);
2046 cfq_mark_cfqq_slice_new(cfqq
);
2048 cfq_del_timer(cfqd
, cfqq
);
2051 cfqd
->active_queue
= cfqq
;
2055 * current cfqq expired its slice (or was too idle), select new one
2058 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2061 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2063 if (cfq_cfqq_wait_request(cfqq
))
2064 cfq_del_timer(cfqd
, cfqq
);
2066 cfq_clear_cfqq_wait_request(cfqq
);
2067 cfq_clear_cfqq_wait_busy(cfqq
);
2070 * If this cfqq is shared between multiple processes, check to
2071 * make sure that those processes are still issuing I/Os within
2072 * the mean seek distance. If not, it may be time to break the
2073 * queues apart again.
2075 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2076 cfq_mark_cfqq_split_coop(cfqq
);
2079 * store what was left of this slice, if the queue idled/timed out
2082 if (cfq_cfqq_slice_new(cfqq
))
2083 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2085 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
2086 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
2089 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2091 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2092 cfq_del_cfqq_rr(cfqd
, cfqq
);
2094 cfq_resort_rr_list(cfqd
, cfqq
);
2096 if (cfqq
== cfqd
->active_queue
)
2097 cfqd
->active_queue
= NULL
;
2099 if (cfqd
->active_cic
) {
2100 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2101 cfqd
->active_cic
= NULL
;
2105 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2107 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2110 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2114 * Get next queue for service. Unless we have a queue preemption,
2115 * we'll simply select the first cfqq in the service tree.
2117 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2119 struct cfq_rb_root
*service_tree
=
2120 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
2121 cfqd
->serving_type
);
2123 if (!cfqd
->rq_queued
)
2126 /* There is nothing to dispatch */
2129 if (RB_EMPTY_ROOT(&service_tree
->rb
))
2131 return cfq_rb_first(service_tree
);
2134 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2136 struct cfq_group
*cfqg
;
2137 struct cfq_queue
*cfqq
;
2139 struct cfq_rb_root
*st
;
2141 if (!cfqd
->rq_queued
)
2144 cfqg
= cfq_get_next_cfqg(cfqd
);
2148 for_each_cfqg_st(cfqg
, i
, j
, st
)
2149 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
2155 * Get and set a new active queue for service.
2157 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2158 struct cfq_queue
*cfqq
)
2161 cfqq
= cfq_get_next_queue(cfqd
);
2163 __cfq_set_active_queue(cfqd
, cfqq
);
2167 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2170 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2171 return blk_rq_pos(rq
) - cfqd
->last_position
;
2173 return cfqd
->last_position
- blk_rq_pos(rq
);
2176 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2179 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2182 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2183 struct cfq_queue
*cur_cfqq
)
2185 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2186 struct rb_node
*parent
, *node
;
2187 struct cfq_queue
*__cfqq
;
2188 sector_t sector
= cfqd
->last_position
;
2190 if (RB_EMPTY_ROOT(root
))
2194 * First, if we find a request starting at the end of the last
2195 * request, choose it.
2197 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2202 * If the exact sector wasn't found, the parent of the NULL leaf
2203 * will contain the closest sector.
2205 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2206 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2209 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2210 node
= rb_next(&__cfqq
->p_node
);
2212 node
= rb_prev(&__cfqq
->p_node
);
2216 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2217 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2225 * cur_cfqq - passed in so that we don't decide that the current queue is
2226 * closely cooperating with itself.
2228 * So, basically we're assuming that that cur_cfqq has dispatched at least
2229 * one request, and that cfqd->last_position reflects a position on the disk
2230 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2233 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2234 struct cfq_queue
*cur_cfqq
)
2236 struct cfq_queue
*cfqq
;
2238 if (cfq_class_idle(cur_cfqq
))
2240 if (!cfq_cfqq_sync(cur_cfqq
))
2242 if (CFQQ_SEEKY(cur_cfqq
))
2246 * Don't search priority tree if it's the only queue in the group.
2248 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2252 * We should notice if some of the queues are cooperating, eg
2253 * working closely on the same area of the disk. In that case,
2254 * we can group them together and don't waste time idling.
2256 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2260 /* If new queue belongs to different cfq_group, don't choose it */
2261 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2265 * It only makes sense to merge sync queues.
2267 if (!cfq_cfqq_sync(cfqq
))
2269 if (CFQQ_SEEKY(cfqq
))
2273 * Do not merge queues of different priority classes
2275 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2282 * Determine whether we should enforce idle window for this queue.
2285 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2287 enum wl_prio_t prio
= cfqq_prio(cfqq
);
2288 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
2290 BUG_ON(!service_tree
);
2291 BUG_ON(!service_tree
->count
);
2293 if (!cfqd
->cfq_slice_idle
)
2296 /* We never do for idle class queues. */
2297 if (prio
== IDLE_WORKLOAD
)
2300 /* We do for queues that were marked with idle window flag. */
2301 if (cfq_cfqq_idle_window(cfqq
) &&
2302 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2306 * Otherwise, we do only if they are the last ones
2307 * in their service tree.
2309 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2310 !cfq_io_thinktime_big(cfqd
, &service_tree
->ttime
, false))
2312 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
2313 service_tree
->count
);
2317 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2319 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2320 struct cfq_io_cq
*cic
;
2321 unsigned long sl
, group_idle
= 0;
2324 * SSD device without seek penalty, disable idling. But only do so
2325 * for devices that support queuing, otherwise we still have a problem
2326 * with sync vs async workloads.
2328 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2331 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2332 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2335 * idle is disabled, either manually or by past process history
2337 if (!cfq_should_idle(cfqd
, cfqq
)) {
2338 /* no queue idling. Check for group idling */
2339 if (cfqd
->cfq_group_idle
)
2340 group_idle
= cfqd
->cfq_group_idle
;
2346 * still active requests from this queue, don't idle
2348 if (cfqq
->dispatched
)
2352 * task has exited, don't wait
2354 cic
= cfqd
->active_cic
;
2355 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2359 * If our average think time is larger than the remaining time
2360 * slice, then don't idle. This avoids overrunning the allotted
2363 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2364 (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
)) {
2365 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%lu",
2366 cic
->ttime
.ttime_mean
);
2370 /* There are other queues in the group, don't do group idle */
2371 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
2374 cfq_mark_cfqq_wait_request(cfqq
);
2377 sl
= cfqd
->cfq_group_idle
;
2379 sl
= cfqd
->cfq_slice_idle
;
2381 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
2382 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
2383 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
2384 group_idle
? 1 : 0);
2388 * Move request from internal lists to the request queue dispatch list.
2390 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2392 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2393 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2395 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
2397 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
2398 cfq_remove_request(rq
);
2400 (RQ_CFQG(rq
))->dispatched
++;
2401 elv_dispatch_sort(q
, rq
);
2403 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
2404 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
2405 cfqg_stats_update_dispatch(cfqq
->cfqg
, blk_rq_bytes(rq
), rq
->cmd_flags
);
2409 * return expired entry, or NULL to just start from scratch in rbtree
2411 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2413 struct request
*rq
= NULL
;
2415 if (cfq_cfqq_fifo_expire(cfqq
))
2418 cfq_mark_cfqq_fifo_expire(cfqq
);
2420 if (list_empty(&cfqq
->fifo
))
2423 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2424 if (time_before(jiffies
, rq_fifo_time(rq
)))
2427 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2432 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2434 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2436 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2438 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
2442 * Must be called with the queue_lock held.
2444 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2446 int process_refs
, io_refs
;
2448 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2449 process_refs
= cfqq
->ref
- io_refs
;
2450 BUG_ON(process_refs
< 0);
2451 return process_refs
;
2454 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2456 int process_refs
, new_process_refs
;
2457 struct cfq_queue
*__cfqq
;
2460 * If there are no process references on the new_cfqq, then it is
2461 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2462 * chain may have dropped their last reference (not just their
2463 * last process reference).
2465 if (!cfqq_process_refs(new_cfqq
))
2468 /* Avoid a circular list and skip interim queue merges */
2469 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2475 process_refs
= cfqq_process_refs(cfqq
);
2476 new_process_refs
= cfqq_process_refs(new_cfqq
);
2478 * If the process for the cfqq has gone away, there is no
2479 * sense in merging the queues.
2481 if (process_refs
== 0 || new_process_refs
== 0)
2485 * Merge in the direction of the lesser amount of work.
2487 if (new_process_refs
>= process_refs
) {
2488 cfqq
->new_cfqq
= new_cfqq
;
2489 new_cfqq
->ref
+= process_refs
;
2491 new_cfqq
->new_cfqq
= cfqq
;
2492 cfqq
->ref
+= new_process_refs
;
2496 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2497 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2499 struct cfq_queue
*queue
;
2501 bool key_valid
= false;
2502 unsigned long lowest_key
= 0;
2503 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2505 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2506 /* select the one with lowest rb_key */
2507 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2509 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2510 lowest_key
= queue
->rb_key
;
2519 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2523 struct cfq_rb_root
*st
;
2524 unsigned group_slice
;
2525 enum wl_prio_t original_prio
= cfqd
->serving_prio
;
2527 /* Choose next priority. RT > BE > IDLE */
2528 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2529 cfqd
->serving_prio
= RT_WORKLOAD
;
2530 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2531 cfqd
->serving_prio
= BE_WORKLOAD
;
2533 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2534 cfqd
->workload_expires
= jiffies
+ 1;
2538 if (original_prio
!= cfqd
->serving_prio
)
2542 * For RT and BE, we have to choose also the type
2543 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2546 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2550 * check workload expiration, and that we still have other queues ready
2552 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2556 /* otherwise select new workload type */
2557 cfqd
->serving_type
=
2558 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2559 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2563 * the workload slice is computed as a fraction of target latency
2564 * proportional to the number of queues in that workload, over
2565 * all the queues in the same priority class
2567 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2569 slice
= group_slice
* count
/
2570 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2571 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2573 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2577 * Async queues are currently system wide. Just taking
2578 * proportion of queues with-in same group will lead to higher
2579 * async ratio system wide as generally root group is going
2580 * to have higher weight. A more accurate thing would be to
2581 * calculate system wide asnc/sync ratio.
2583 tmp
= cfqd
->cfq_target_latency
*
2584 cfqg_busy_async_queues(cfqd
, cfqg
);
2585 tmp
= tmp
/cfqd
->busy_queues
;
2586 slice
= min_t(unsigned, slice
, tmp
);
2588 /* async workload slice is scaled down according to
2589 * the sync/async slice ratio. */
2590 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2592 /* sync workload slice is at least 2 * cfq_slice_idle */
2593 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2595 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2596 cfq_log(cfqd
, "workload slice:%d", slice
);
2597 cfqd
->workload_expires
= jiffies
+ slice
;
2600 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2602 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2603 struct cfq_group
*cfqg
;
2605 if (RB_EMPTY_ROOT(&st
->rb
))
2607 cfqg
= cfq_rb_first_group(st
);
2608 update_min_vdisktime(st
);
2612 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2614 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2616 cfqd
->serving_group
= cfqg
;
2618 /* Restore the workload type data */
2619 if (cfqg
->saved_workload_slice
) {
2620 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2621 cfqd
->serving_type
= cfqg
->saved_workload
;
2622 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2624 cfqd
->workload_expires
= jiffies
- 1;
2626 choose_service_tree(cfqd
, cfqg
);
2630 * Select a queue for service. If we have a current active queue,
2631 * check whether to continue servicing it, or retrieve and set a new one.
2633 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2635 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2637 cfqq
= cfqd
->active_queue
;
2641 if (!cfqd
->rq_queued
)
2645 * We were waiting for group to get backlogged. Expire the queue
2647 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2651 * The active queue has run out of time, expire it and select new.
2653 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2655 * If slice had not expired at the completion of last request
2656 * we might not have turned on wait_busy flag. Don't expire
2657 * the queue yet. Allow the group to get backlogged.
2659 * The very fact that we have used the slice, that means we
2660 * have been idling all along on this queue and it should be
2661 * ok to wait for this request to complete.
2663 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2664 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2668 goto check_group_idle
;
2672 * The active queue has requests and isn't expired, allow it to
2675 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2679 * If another queue has a request waiting within our mean seek
2680 * distance, let it run. The expire code will check for close
2681 * cooperators and put the close queue at the front of the service
2682 * tree. If possible, merge the expiring queue with the new cfqq.
2684 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2686 if (!cfqq
->new_cfqq
)
2687 cfq_setup_merge(cfqq
, new_cfqq
);
2692 * No requests pending. If the active queue still has requests in
2693 * flight or is idling for a new request, allow either of these
2694 * conditions to happen (or time out) before selecting a new queue.
2696 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2702 * This is a deep seek queue, but the device is much faster than
2703 * the queue can deliver, don't idle
2705 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
2706 (cfq_cfqq_slice_new(cfqq
) ||
2707 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
2708 cfq_clear_cfqq_deep(cfqq
);
2709 cfq_clear_cfqq_idle_window(cfqq
);
2712 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2718 * If group idle is enabled and there are requests dispatched from
2719 * this group, wait for requests to complete.
2722 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
2723 cfqq
->cfqg
->dispatched
&&
2724 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
2730 cfq_slice_expired(cfqd
, 0);
2733 * Current queue expired. Check if we have to switch to a new
2737 cfq_choose_cfqg(cfqd
);
2739 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2744 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2748 while (cfqq
->next_rq
) {
2749 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2753 BUG_ON(!list_empty(&cfqq
->fifo
));
2755 /* By default cfqq is not expired if it is empty. Do it explicitly */
2756 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2761 * Drain our current requests. Used for barriers and when switching
2762 * io schedulers on-the-fly.
2764 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2766 struct cfq_queue
*cfqq
;
2769 /* Expire the timeslice of the current active queue first */
2770 cfq_slice_expired(cfqd
, 0);
2771 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2772 __cfq_set_active_queue(cfqd
, cfqq
);
2773 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2776 BUG_ON(cfqd
->busy_queues
);
2778 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2782 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2783 struct cfq_queue
*cfqq
)
2785 /* the queue hasn't finished any request, can't estimate */
2786 if (cfq_cfqq_slice_new(cfqq
))
2788 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2795 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2797 unsigned int max_dispatch
;
2800 * Drain async requests before we start sync IO
2802 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2806 * If this is an async queue and we have sync IO in flight, let it wait
2808 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2811 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2812 if (cfq_class_idle(cfqq
))
2816 * Does this cfqq already have too much IO in flight?
2818 if (cfqq
->dispatched
>= max_dispatch
) {
2819 bool promote_sync
= false;
2821 * idle queue must always only have a single IO in flight
2823 if (cfq_class_idle(cfqq
))
2827 * If there is only one sync queue
2828 * we can ignore async queue here and give the sync
2829 * queue no dispatch limit. The reason is a sync queue can
2830 * preempt async queue, limiting the sync queue doesn't make
2831 * sense. This is useful for aiostress test.
2833 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
2834 promote_sync
= true;
2837 * We have other queues, don't allow more IO from this one
2839 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
2844 * Sole queue user, no limit
2846 if (cfqd
->busy_queues
== 1 || promote_sync
)
2850 * Normally we start throttling cfqq when cfq_quantum/2
2851 * requests have been dispatched. But we can drive
2852 * deeper queue depths at the beginning of slice
2853 * subjected to upper limit of cfq_quantum.
2855 max_dispatch
= cfqd
->cfq_quantum
;
2859 * Async queues must wait a bit before being allowed dispatch.
2860 * We also ramp up the dispatch depth gradually for async IO,
2861 * based on the last sync IO we serviced
2863 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2864 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2867 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2868 if (!depth
&& !cfqq
->dispatched
)
2870 if (depth
< max_dispatch
)
2871 max_dispatch
= depth
;
2875 * If we're below the current max, allow a dispatch
2877 return cfqq
->dispatched
< max_dispatch
;
2881 * Dispatch a request from cfqq, moving them to the request queue
2884 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2888 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2890 if (!cfq_may_dispatch(cfqd
, cfqq
))
2894 * follow expired path, else get first next available
2896 rq
= cfq_check_fifo(cfqq
);
2901 * insert request into driver dispatch list
2903 cfq_dispatch_insert(cfqd
->queue
, rq
);
2905 if (!cfqd
->active_cic
) {
2906 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
2908 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
2909 cfqd
->active_cic
= cic
;
2916 * Find the cfqq that we need to service and move a request from that to the
2919 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2921 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2922 struct cfq_queue
*cfqq
;
2924 if (!cfqd
->busy_queues
)
2927 if (unlikely(force
))
2928 return cfq_forced_dispatch(cfqd
);
2930 cfqq
= cfq_select_queue(cfqd
);
2935 * Dispatch a request from this cfqq, if it is allowed
2937 if (!cfq_dispatch_request(cfqd
, cfqq
))
2940 cfqq
->slice_dispatch
++;
2941 cfq_clear_cfqq_must_dispatch(cfqq
);
2944 * expire an async queue immediately if it has used up its slice. idle
2945 * queue always expire after 1 dispatch round.
2947 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2948 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2949 cfq_class_idle(cfqq
))) {
2950 cfqq
->slice_end
= jiffies
+ 1;
2951 cfq_slice_expired(cfqd
, 0);
2954 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2959 * task holds one reference to the queue, dropped when task exits. each rq
2960 * in-flight on this queue also holds a reference, dropped when rq is freed.
2962 * Each cfq queue took a reference on the parent group. Drop it now.
2963 * queue lock must be held here.
2965 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2967 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2968 struct cfq_group
*cfqg
;
2970 BUG_ON(cfqq
->ref
<= 0);
2976 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2977 BUG_ON(rb_first(&cfqq
->sort_list
));
2978 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2981 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2982 __cfq_slice_expired(cfqd
, cfqq
, 0);
2983 cfq_schedule_dispatch(cfqd
);
2986 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2987 kmem_cache_free(cfq_pool
, cfqq
);
2991 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2993 struct cfq_queue
*__cfqq
, *next
;
2996 * If this queue was scheduled to merge with another queue, be
2997 * sure to drop the reference taken on that queue (and others in
2998 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3000 __cfqq
= cfqq
->new_cfqq
;
3002 if (__cfqq
== cfqq
) {
3003 WARN(1, "cfqq->new_cfqq loop detected\n");
3006 next
= __cfqq
->new_cfqq
;
3007 cfq_put_queue(__cfqq
);
3012 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3014 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3015 __cfq_slice_expired(cfqd
, cfqq
, 0);
3016 cfq_schedule_dispatch(cfqd
);
3019 cfq_put_cooperator(cfqq
);
3021 cfq_put_queue(cfqq
);
3024 static void cfq_init_icq(struct io_cq
*icq
)
3026 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3028 cic
->ttime
.last_end_request
= jiffies
;
3031 static void cfq_exit_icq(struct io_cq
*icq
)
3033 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3034 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3036 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
3037 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
3038 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
3041 if (cic
->cfqq
[BLK_RW_SYNC
]) {
3042 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
3043 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
3047 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3049 struct task_struct
*tsk
= current
;
3052 if (!cfq_cfqq_prio_changed(cfqq
))
3055 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3056 switch (ioprio_class
) {
3058 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3059 case IOPRIO_CLASS_NONE
:
3061 * no prio set, inherit CPU scheduling settings
3063 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3064 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3066 case IOPRIO_CLASS_RT
:
3067 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3068 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3070 case IOPRIO_CLASS_BE
:
3071 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3072 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3074 case IOPRIO_CLASS_IDLE
:
3075 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3077 cfq_clear_cfqq_idle_window(cfqq
);
3082 * keep track of original prio settings in case we have to temporarily
3083 * elevate the priority of this queue
3085 cfqq
->org_ioprio
= cfqq
->ioprio
;
3086 cfq_clear_cfqq_prio_changed(cfqq
);
3089 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3091 int ioprio
= cic
->icq
.ioc
->ioprio
;
3092 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3093 struct cfq_queue
*cfqq
;
3096 * Check whether ioprio has changed. The condition may trigger
3097 * spuriously on a newly created cic but there's no harm.
3099 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3102 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
3104 struct cfq_queue
*new_cfqq
;
3105 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
,
3108 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
3109 cfq_put_queue(cfqq
);
3113 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
3115 cfq_mark_cfqq_prio_changed(cfqq
);
3117 cic
->ioprio
= ioprio
;
3120 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3121 pid_t pid
, bool is_sync
)
3123 RB_CLEAR_NODE(&cfqq
->rb_node
);
3124 RB_CLEAR_NODE(&cfqq
->p_node
);
3125 INIT_LIST_HEAD(&cfqq
->fifo
);
3130 cfq_mark_cfqq_prio_changed(cfqq
);
3133 if (!cfq_class_idle(cfqq
))
3134 cfq_mark_cfqq_idle_window(cfqq
);
3135 cfq_mark_cfqq_sync(cfqq
);
3140 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3141 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3143 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3144 struct cfq_queue
*sync_cfqq
;
3148 id
= bio_blkcg(bio
)->id
;
3152 * Check whether blkcg has changed. The condition may trigger
3153 * spuriously on a newly created cic but there's no harm.
3155 if (unlikely(!cfqd
) || likely(cic
->blkcg_id
== id
))
3158 sync_cfqq
= cic_to_cfqq(cic
, 1);
3161 * Drop reference to sync queue. A new sync queue will be
3162 * assigned in new group upon arrival of a fresh request.
3164 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
3165 cic_set_cfqq(cic
, NULL
, 1);
3166 cfq_put_queue(sync_cfqq
);
3172 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
) { }
3173 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3175 static struct cfq_queue
*
3176 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3177 struct bio
*bio
, gfp_t gfp_mask
)
3179 struct blkcg
*blkcg
;
3180 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3181 struct cfq_group
*cfqg
;
3186 blkcg
= bio_blkcg(bio
);
3187 cfqg
= cfq_lookup_create_cfqg(cfqd
, blkcg
);
3188 cfqq
= cic_to_cfqq(cic
, is_sync
);
3191 * Always try a new alloc if we fell back to the OOM cfqq
3192 * originally, since it should just be a temporary situation.
3194 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3199 } else if (gfp_mask
& __GFP_WAIT
) {
3201 spin_unlock_irq(cfqd
->queue
->queue_lock
);
3202 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
3203 gfp_mask
| __GFP_ZERO
,
3205 spin_lock_irq(cfqd
->queue
->queue_lock
);
3209 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3210 gfp_mask
| __GFP_ZERO
,
3215 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3216 cfq_init_prio_data(cfqq
, cic
);
3217 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3218 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3220 cfqq
= &cfqd
->oom_cfqq
;
3224 kmem_cache_free(cfq_pool
, new_cfqq
);
3230 static struct cfq_queue
**
3231 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
3233 switch (ioprio_class
) {
3234 case IOPRIO_CLASS_RT
:
3235 return &cfqd
->async_cfqq
[0][ioprio
];
3236 case IOPRIO_CLASS_NONE
:
3237 ioprio
= IOPRIO_NORM
;
3239 case IOPRIO_CLASS_BE
:
3240 return &cfqd
->async_cfqq
[1][ioprio
];
3241 case IOPRIO_CLASS_IDLE
:
3242 return &cfqd
->async_idle_cfqq
;
3248 static struct cfq_queue
*
3249 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3250 struct bio
*bio
, gfp_t gfp_mask
)
3252 const int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3253 const int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3254 struct cfq_queue
**async_cfqq
= NULL
;
3255 struct cfq_queue
*cfqq
= NULL
;
3258 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
3263 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, cic
, bio
, gfp_mask
);
3266 * pin the queue now that it's allocated, scheduler exit will prune it
3268 if (!is_sync
&& !(*async_cfqq
)) {
3278 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, unsigned long slice_idle
)
3280 unsigned long elapsed
= jiffies
- ttime
->last_end_request
;
3281 elapsed
= min(elapsed
, 2UL * slice_idle
);
3283 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3284 ttime
->ttime_total
= (7*ttime
->ttime_total
+ 256*elapsed
) / 8;
3285 ttime
->ttime_mean
= (ttime
->ttime_total
+ 128) / ttime
->ttime_samples
;
3289 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3290 struct cfq_io_cq
*cic
)
3292 if (cfq_cfqq_sync(cfqq
)) {
3293 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3294 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3295 cfqd
->cfq_slice_idle
);
3297 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3298 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3303 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3307 sector_t n_sec
= blk_rq_sectors(rq
);
3308 if (cfqq
->last_request_pos
) {
3309 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3310 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3312 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3315 cfqq
->seek_history
<<= 1;
3316 if (blk_queue_nonrot(cfqd
->queue
))
3317 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3319 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3323 * Disable idle window if the process thinks too long or seeks so much that
3327 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3328 struct cfq_io_cq
*cic
)
3330 int old_idle
, enable_idle
;
3333 * Don't idle for async or idle io prio class
3335 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3338 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3340 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3341 cfq_mark_cfqq_deep(cfqq
);
3343 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3345 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3346 !cfqd
->cfq_slice_idle
||
3347 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3349 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3350 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3356 if (old_idle
!= enable_idle
) {
3357 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3359 cfq_mark_cfqq_idle_window(cfqq
);
3361 cfq_clear_cfqq_idle_window(cfqq
);
3366 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3367 * no or if we aren't sure, a 1 will cause a preempt.
3370 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3373 struct cfq_queue
*cfqq
;
3375 cfqq
= cfqd
->active_queue
;
3379 if (cfq_class_idle(new_cfqq
))
3382 if (cfq_class_idle(cfqq
))
3386 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3388 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3392 * if the new request is sync, but the currently running queue is
3393 * not, let the sync request have priority.
3395 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3398 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3401 if (cfq_slice_used(cfqq
))
3404 /* Allow preemption only if we are idling on sync-noidle tree */
3405 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3406 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3407 new_cfqq
->service_tree
->count
== 2 &&
3408 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3412 * So both queues are sync. Let the new request get disk time if
3413 * it's a metadata request and the current queue is doing regular IO.
3415 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
3419 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3421 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3424 /* An idle queue should not be idle now for some reason */
3425 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3428 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3432 * if this request is as-good as one we would expect from the
3433 * current cfqq, let it preempt
3435 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3442 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3443 * let it have half of its nominal slice.
3445 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3447 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
3449 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3450 cfq_slice_expired(cfqd
, 1);
3453 * workload type is changed, don't save slice, otherwise preempt
3456 if (old_type
!= cfqq_type(cfqq
))
3457 cfqq
->cfqg
->saved_workload_slice
= 0;
3460 * Put the new queue at the front of the of the current list,
3461 * so we know that it will be selected next.
3463 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3465 cfq_service_tree_add(cfqd
, cfqq
, 1);
3467 cfqq
->slice_end
= 0;
3468 cfq_mark_cfqq_slice_new(cfqq
);
3472 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3473 * something we should do about it
3476 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3479 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3482 if (rq
->cmd_flags
& REQ_PRIO
)
3483 cfqq
->prio_pending
++;
3485 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
3486 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3487 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3489 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3491 if (cfqq
== cfqd
->active_queue
) {
3493 * Remember that we saw a request from this process, but
3494 * don't start queuing just yet. Otherwise we risk seeing lots
3495 * of tiny requests, because we disrupt the normal plugging
3496 * and merging. If the request is already larger than a single
3497 * page, let it rip immediately. For that case we assume that
3498 * merging is already done. Ditto for a busy system that
3499 * has other work pending, don't risk delaying until the
3500 * idle timer unplug to continue working.
3502 if (cfq_cfqq_wait_request(cfqq
)) {
3503 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3504 cfqd
->busy_queues
> 1) {
3505 cfq_del_timer(cfqd
, cfqq
);
3506 cfq_clear_cfqq_wait_request(cfqq
);
3507 __blk_run_queue(cfqd
->queue
);
3509 cfqg_stats_update_idle_time(cfqq
->cfqg
);
3510 cfq_mark_cfqq_must_dispatch(cfqq
);
3513 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3515 * not the active queue - expire current slice if it is
3516 * idle and has expired it's mean thinktime or this new queue
3517 * has some old slice time left and is of higher priority or
3518 * this new queue is RT and the current one is BE
3520 cfq_preempt_queue(cfqd
, cfqq
);
3521 __blk_run_queue(cfqd
->queue
);
3525 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3527 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3528 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3530 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3531 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
3533 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3534 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3536 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
3538 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3542 * Update hw_tag based on peak queue depth over 50 samples under
3545 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3547 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3549 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3550 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3552 if (cfqd
->hw_tag
== 1)
3555 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3556 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3560 * If active queue hasn't enough requests and can idle, cfq might not
3561 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3564 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3565 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3566 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3569 if (cfqd
->hw_tag_samples
++ < 50)
3572 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3578 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3580 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
3582 /* If the queue already has requests, don't wait */
3583 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3586 /* If there are other queues in the group, don't wait */
3587 if (cfqq
->cfqg
->nr_cfqq
> 1)
3590 /* the only queue in the group, but think time is big */
3591 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
3594 if (cfq_slice_used(cfqq
))
3597 /* if slice left is less than think time, wait busy */
3598 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
3599 && (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
))
3603 * If think times is less than a jiffy than ttime_mean=0 and above
3604 * will not be true. It might happen that slice has not expired yet
3605 * but will expire soon (4-5 ns) during select_queue(). To cover the
3606 * case where think time is less than a jiffy, mark the queue wait
3607 * busy if only 1 jiffy is left in the slice.
3609 if (cfqq
->slice_end
- jiffies
== 1)
3615 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3617 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3618 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3619 const int sync
= rq_is_sync(rq
);
3623 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3624 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3626 cfq_update_hw_tag(cfqd
);
3628 WARN_ON(!cfqd
->rq_in_driver
);
3629 WARN_ON(!cfqq
->dispatched
);
3630 cfqd
->rq_in_driver
--;
3632 (RQ_CFQG(rq
))->dispatched
--;
3633 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
3634 rq_io_start_time_ns(rq
), rq
->cmd_flags
);
3636 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3639 struct cfq_rb_root
*service_tree
;
3641 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
3643 if (cfq_cfqq_on_rr(cfqq
))
3644 service_tree
= cfqq
->service_tree
;
3646 service_tree
= service_tree_for(cfqq
->cfqg
,
3647 cfqq_prio(cfqq
), cfqq_type(cfqq
));
3648 service_tree
->ttime
.last_end_request
= now
;
3649 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3650 cfqd
->last_delayed_sync
= now
;
3653 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3654 cfqq
->cfqg
->ttime
.last_end_request
= now
;
3658 * If this is the active queue, check if it needs to be expired,
3659 * or if we want to idle in case it has no pending requests.
3661 if (cfqd
->active_queue
== cfqq
) {
3662 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3664 if (cfq_cfqq_slice_new(cfqq
)) {
3665 cfq_set_prio_slice(cfqd
, cfqq
);
3666 cfq_clear_cfqq_slice_new(cfqq
);
3670 * Should we wait for next request to come in before we expire
3673 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3674 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3675 if (!cfqd
->cfq_slice_idle
)
3676 extend_sl
= cfqd
->cfq_group_idle
;
3677 cfqq
->slice_end
= jiffies
+ extend_sl
;
3678 cfq_mark_cfqq_wait_busy(cfqq
);
3679 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3683 * Idling is not enabled on:
3685 * - idle-priority queues
3687 * - queues with still some requests queued
3688 * - when there is a close cooperator
3690 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3691 cfq_slice_expired(cfqd
, 1);
3692 else if (sync
&& cfqq_empty
&&
3693 !cfq_close_cooperator(cfqd
, cfqq
)) {
3694 cfq_arm_slice_timer(cfqd
);
3698 if (!cfqd
->rq_in_driver
)
3699 cfq_schedule_dispatch(cfqd
);
3702 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3704 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3705 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3706 return ELV_MQUEUE_MUST
;
3709 return ELV_MQUEUE_MAY
;
3712 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3714 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3715 struct task_struct
*tsk
= current
;
3716 struct cfq_io_cq
*cic
;
3717 struct cfq_queue
*cfqq
;
3720 * don't force setup of a queue from here, as a call to may_queue
3721 * does not necessarily imply that a request actually will be queued.
3722 * so just lookup a possibly existing queue, or return 'may queue'
3725 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3727 return ELV_MQUEUE_MAY
;
3729 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3731 cfq_init_prio_data(cfqq
, cic
);
3733 return __cfq_may_queue(cfqq
);
3736 return ELV_MQUEUE_MAY
;
3740 * queue lock held here
3742 static void cfq_put_request(struct request
*rq
)
3744 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3747 const int rw
= rq_data_dir(rq
);
3749 BUG_ON(!cfqq
->allocated
[rw
]);
3750 cfqq
->allocated
[rw
]--;
3752 /* Put down rq reference on cfqg */
3753 cfqg_put(RQ_CFQG(rq
));
3754 rq
->elv
.priv
[0] = NULL
;
3755 rq
->elv
.priv
[1] = NULL
;
3757 cfq_put_queue(cfqq
);
3761 static struct cfq_queue
*
3762 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
3763 struct cfq_queue
*cfqq
)
3765 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3766 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3767 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3768 cfq_put_queue(cfqq
);
3769 return cic_to_cfqq(cic
, 1);
3773 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3774 * was the last process referring to said cfqq.
3776 static struct cfq_queue
*
3777 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
3779 if (cfqq_process_refs(cfqq
) == 1) {
3780 cfqq
->pid
= current
->pid
;
3781 cfq_clear_cfqq_coop(cfqq
);
3782 cfq_clear_cfqq_split_coop(cfqq
);
3786 cic_set_cfqq(cic
, NULL
, 1);
3788 cfq_put_cooperator(cfqq
);
3790 cfq_put_queue(cfqq
);
3794 * Allocate cfq data structures associated with this request.
3797 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
3800 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3801 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
3802 const int rw
= rq_data_dir(rq
);
3803 const bool is_sync
= rq_is_sync(rq
);
3804 struct cfq_queue
*cfqq
;
3806 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3808 spin_lock_irq(q
->queue_lock
);
3810 check_ioprio_changed(cic
, bio
);
3811 check_blkcg_changed(cic
, bio
);
3813 cfqq
= cic_to_cfqq(cic
, is_sync
);
3814 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3815 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
, gfp_mask
);
3816 cic_set_cfqq(cic
, cfqq
, is_sync
);
3819 * If the queue was seeky for too long, break it apart.
3821 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3822 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3823 cfqq
= split_cfqq(cic
, cfqq
);
3829 * Check to see if this queue is scheduled to merge with
3830 * another, closely cooperating queue. The merging of
3831 * queues happens here as it must be done in process context.
3832 * The reference on new_cfqq was taken in merge_cfqqs.
3835 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3838 cfqq
->allocated
[rw
]++;
3841 cfqg_get(cfqq
->cfqg
);
3842 rq
->elv
.priv
[0] = cfqq
;
3843 rq
->elv
.priv
[1] = cfqq
->cfqg
;
3844 spin_unlock_irq(q
->queue_lock
);
3848 static void cfq_kick_queue(struct work_struct
*work
)
3850 struct cfq_data
*cfqd
=
3851 container_of(work
, struct cfq_data
, unplug_work
);
3852 struct request_queue
*q
= cfqd
->queue
;
3854 spin_lock_irq(q
->queue_lock
);
3855 __blk_run_queue(cfqd
->queue
);
3856 spin_unlock_irq(q
->queue_lock
);
3860 * Timer running if the active_queue is currently idling inside its time slice
3862 static void cfq_idle_slice_timer(unsigned long data
)
3864 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3865 struct cfq_queue
*cfqq
;
3866 unsigned long flags
;
3869 cfq_log(cfqd
, "idle timer fired");
3871 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3873 cfqq
= cfqd
->active_queue
;
3878 * We saw a request before the queue expired, let it through
3880 if (cfq_cfqq_must_dispatch(cfqq
))
3886 if (cfq_slice_used(cfqq
))
3890 * only expire and reinvoke request handler, if there are
3891 * other queues with pending requests
3893 if (!cfqd
->busy_queues
)
3897 * not expired and it has a request pending, let it dispatch
3899 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3903 * Queue depth flag is reset only when the idle didn't succeed
3905 cfq_clear_cfqq_deep(cfqq
);
3908 cfq_slice_expired(cfqd
, timed_out
);
3910 cfq_schedule_dispatch(cfqd
);
3912 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3915 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3917 del_timer_sync(&cfqd
->idle_slice_timer
);
3918 cancel_work_sync(&cfqd
->unplug_work
);
3921 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3925 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3926 if (cfqd
->async_cfqq
[0][i
])
3927 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3928 if (cfqd
->async_cfqq
[1][i
])
3929 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3932 if (cfqd
->async_idle_cfqq
)
3933 cfq_put_queue(cfqd
->async_idle_cfqq
);
3936 static void cfq_exit_queue(struct elevator_queue
*e
)
3938 struct cfq_data
*cfqd
= e
->elevator_data
;
3939 struct request_queue
*q
= cfqd
->queue
;
3941 cfq_shutdown_timer_wq(cfqd
);
3943 spin_lock_irq(q
->queue_lock
);
3945 if (cfqd
->active_queue
)
3946 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3948 cfq_put_async_queues(cfqd
);
3950 spin_unlock_irq(q
->queue_lock
);
3952 cfq_shutdown_timer_wq(cfqd
);
3954 #ifndef CONFIG_CFQ_GROUP_IOSCHED
3955 kfree(cfqd
->root_group
);
3957 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
3961 static int cfq_init_queue(struct request_queue
*q
)
3963 struct cfq_data
*cfqd
;
3964 struct blkcg_gq
*blkg __maybe_unused
;
3967 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3972 q
->elevator
->elevator_data
= cfqd
;
3974 /* Init root service tree */
3975 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3977 /* Init root group and prefer root group over other groups by default */
3978 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3979 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
3983 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
3986 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
3987 GFP_KERNEL
, cfqd
->queue
->node
);
3988 if (!cfqd
->root_group
)
3991 cfq_init_cfqg_base(cfqd
->root_group
);
3993 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_DEFAULT
;
3996 * Not strictly needed (since RB_ROOT just clears the node and we
3997 * zeroed cfqd on alloc), but better be safe in case someone decides
3998 * to add magic to the rb code
4000 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4001 cfqd
->prio_trees
[i
] = RB_ROOT
;
4004 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4005 * Grab a permanent reference to it, so that the normal code flow
4006 * will not attempt to free it. oom_cfqq is linked to root_group
4007 * but shouldn't hold a reference as it'll never be unlinked. Lose
4008 * the reference from linking right away.
4010 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4011 cfqd
->oom_cfqq
.ref
++;
4013 spin_lock_irq(q
->queue_lock
);
4014 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4015 cfqg_put(cfqd
->root_group
);
4016 spin_unlock_irq(q
->queue_lock
);
4018 init_timer(&cfqd
->idle_slice_timer
);
4019 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4020 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
4022 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4024 cfqd
->cfq_quantum
= cfq_quantum
;
4025 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4026 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4027 cfqd
->cfq_back_max
= cfq_back_max
;
4028 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4029 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4030 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4031 cfqd
->cfq_target_latency
= cfq_target_latency
;
4032 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4033 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4034 cfqd
->cfq_group_idle
= cfq_group_idle
;
4035 cfqd
->cfq_latency
= 1;
4038 * we optimistically start assuming sync ops weren't delayed in last
4039 * second, in order to have larger depth for async operations.
4041 cfqd
->last_delayed_sync
= jiffies
- HZ
;
4050 * sysfs parts below -->
4053 cfq_var_show(unsigned int var
, char *page
)
4055 return sprintf(page
, "%d\n", var
);
4059 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4061 char *p
= (char *) page
;
4063 *var
= simple_strtoul(p
, &p
, 10);
4067 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4068 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4070 struct cfq_data *cfqd = e->elevator_data; \
4071 unsigned int __data = __VAR; \
4073 __data = jiffies_to_msecs(__data); \
4074 return cfq_var_show(__data, (page)); \
4076 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4077 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4078 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4079 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4080 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4081 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4082 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4083 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4084 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4085 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4086 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4087 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4088 #undef SHOW_FUNCTION
4090 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4091 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4093 struct cfq_data *cfqd = e->elevator_data; \
4094 unsigned int __data; \
4095 int ret = cfq_var_store(&__data, (page), count); \
4096 if (__data < (MIN)) \
4098 else if (__data > (MAX)) \
4101 *(__PTR) = msecs_to_jiffies(__data); \
4103 *(__PTR) = __data; \
4106 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4107 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4109 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4111 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4112 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4114 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4115 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4116 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4117 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4118 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4120 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4121 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4122 #undef STORE_FUNCTION
4124 #define CFQ_ATTR(name) \
4125 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4127 static struct elv_fs_entry cfq_attrs
[] = {
4129 CFQ_ATTR(fifo_expire_sync
),
4130 CFQ_ATTR(fifo_expire_async
),
4131 CFQ_ATTR(back_seek_max
),
4132 CFQ_ATTR(back_seek_penalty
),
4133 CFQ_ATTR(slice_sync
),
4134 CFQ_ATTR(slice_async
),
4135 CFQ_ATTR(slice_async_rq
),
4136 CFQ_ATTR(slice_idle
),
4137 CFQ_ATTR(group_idle
),
4138 CFQ_ATTR(low_latency
),
4139 CFQ_ATTR(target_latency
),
4143 static struct elevator_type iosched_cfq
= {
4145 .elevator_merge_fn
= cfq_merge
,
4146 .elevator_merged_fn
= cfq_merged_request
,
4147 .elevator_merge_req_fn
= cfq_merged_requests
,
4148 .elevator_allow_merge_fn
= cfq_allow_merge
,
4149 .elevator_bio_merged_fn
= cfq_bio_merged
,
4150 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4151 .elevator_add_req_fn
= cfq_insert_request
,
4152 .elevator_activate_req_fn
= cfq_activate_request
,
4153 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4154 .elevator_completed_req_fn
= cfq_completed_request
,
4155 .elevator_former_req_fn
= elv_rb_former_request
,
4156 .elevator_latter_req_fn
= elv_rb_latter_request
,
4157 .elevator_init_icq_fn
= cfq_init_icq
,
4158 .elevator_exit_icq_fn
= cfq_exit_icq
,
4159 .elevator_set_req_fn
= cfq_set_request
,
4160 .elevator_put_req_fn
= cfq_put_request
,
4161 .elevator_may_queue_fn
= cfq_may_queue
,
4162 .elevator_init_fn
= cfq_init_queue
,
4163 .elevator_exit_fn
= cfq_exit_queue
,
4165 .icq_size
= sizeof(struct cfq_io_cq
),
4166 .icq_align
= __alignof__(struct cfq_io_cq
),
4167 .elevator_attrs
= cfq_attrs
,
4168 .elevator_name
= "cfq",
4169 .elevator_owner
= THIS_MODULE
,
4172 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4173 static struct blkcg_policy blkcg_policy_cfq
= {
4174 .pd_size
= sizeof(struct cfq_group
),
4175 .cftypes
= cfq_blkcg_files
,
4177 .pd_init_fn
= cfq_pd_init
,
4178 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4182 static int __init
cfq_init(void)
4187 * could be 0 on HZ < 1000 setups
4189 if (!cfq_slice_async
)
4190 cfq_slice_async
= 1;
4191 if (!cfq_slice_idle
)
4194 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4195 if (!cfq_group_idle
)
4201 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4205 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4209 ret
= elv_register(&iosched_cfq
);
4216 kmem_cache_destroy(cfq_pool
);
4218 blkcg_policy_unregister(&blkcg_policy_cfq
);
4222 static void __exit
cfq_exit(void)
4224 blkcg_policy_unregister(&blkcg_policy_cfq
);
4225 elv_unregister(&iosched_cfq
);
4226 kmem_cache_destroy(cfq_pool
);
4229 module_init(cfq_init
);
4230 module_exit(cfq_exit
);
4232 MODULE_AUTHOR("Jens Axboe");
4233 MODULE_LICENSE("GPL");
4234 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");