2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 static inline int rt_overloaded(struct rq
*rq
)
10 return atomic_read(&rq
->rd
->rto_count
);
13 static inline void rt_set_overload(struct rq
*rq
)
15 cpu_set(rq
->cpu
, rq
->rd
->rto_mask
);
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
24 atomic_inc(&rq
->rd
->rto_count
);
27 static inline void rt_clear_overload(struct rq
*rq
)
29 /* the order here really doesn't matter */
30 atomic_dec(&rq
->rd
->rto_count
);
31 cpu_clear(rq
->cpu
, rq
->rd
->rto_mask
);
34 static void update_rt_migration(struct rq
*rq
)
36 if (rq
->rt
.rt_nr_migratory
&& (rq
->rt
.rt_nr_running
> 1)) {
37 if (!rq
->rt
.overloaded
) {
39 rq
->rt
.overloaded
= 1;
41 } else if (rq
->rt
.overloaded
) {
42 rt_clear_overload(rq
);
43 rq
->rt
.overloaded
= 0;
46 #endif /* CONFIG_SMP */
48 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
50 return container_of(rt_se
, struct task_struct
, rt
);
53 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
55 return !list_empty(&rt_se
->run_list
);
58 #ifdef CONFIG_RT_GROUP_SCHED
60 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
65 return rt_rq
->rt_runtime
;
68 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
70 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
73 #define for_each_leaf_rt_rq(rt_rq, rq) \
74 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
76 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
81 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
86 #define for_each_sched_rt_entity(rt_se) \
87 for (; rt_se; rt_se = rt_se->parent)
89 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
94 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
);
95 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
97 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
99 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
101 if (rt_se
&& !on_rt_rq(rt_se
) && rt_rq
->rt_nr_running
) {
102 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
104 enqueue_rt_entity(rt_se
);
105 if (rt_rq
->highest_prio
< curr
->prio
)
110 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
112 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
114 if (rt_se
&& on_rt_rq(rt_se
))
115 dequeue_rt_entity(rt_se
);
118 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
120 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
123 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
125 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
126 struct task_struct
*p
;
129 return !!rt_rq
->rt_nr_boosted
;
131 p
= rt_task_of(rt_se
);
132 return p
->prio
!= p
->normal_prio
;
136 static inline cpumask_t
sched_rt_period_mask(void)
138 return cpu_rq(smp_processor_id())->rd
->span
;
141 static inline cpumask_t
sched_rt_period_mask(void)
143 return cpu_online_map
;
148 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
150 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
153 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
155 return &rt_rq
->tg
->rt_bandwidth
;
160 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
162 return rt_rq
->rt_runtime
;
165 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
167 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
170 #define for_each_leaf_rt_rq(rt_rq, rq) \
171 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
173 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
175 return container_of(rt_rq
, struct rq
, rt
);
178 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
180 struct task_struct
*p
= rt_task_of(rt_se
);
181 struct rq
*rq
= task_rq(p
);
186 #define for_each_sched_rt_entity(rt_se) \
187 for (; rt_se; rt_se = NULL)
189 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
194 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
198 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
202 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
204 return rt_rq
->rt_throttled
;
207 static inline cpumask_t
sched_rt_period_mask(void)
209 return cpu_online_map
;
213 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
215 return &cpu_rq(cpu
)->rt
;
218 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
220 return &def_rt_bandwidth
;
225 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
230 if (rt_b
->rt_runtime
== RUNTIME_INF
)
233 span
= sched_rt_period_mask();
234 for_each_cpu_mask(i
, span
) {
236 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
237 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
239 spin_lock(&rq
->lock
);
240 if (rt_rq
->rt_time
) {
243 spin_lock(&rt_rq
->rt_runtime_lock
);
244 runtime
= rt_rq
->rt_runtime
;
245 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
246 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
247 rt_rq
->rt_throttled
= 0;
250 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
252 spin_unlock(&rt_rq
->rt_runtime_lock
);
253 } else if (rt_rq
->rt_nr_running
)
257 sched_rt_rq_enqueue(rt_rq
);
258 spin_unlock(&rq
->lock
);
265 static int balance_runtime(struct rt_rq
*rt_rq
)
267 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
268 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
269 int i
, weight
, more
= 0;
272 weight
= cpus_weight(rd
->span
);
274 spin_lock(&rt_b
->rt_runtime_lock
);
275 rt_period
= ktime_to_ns(rt_b
->rt_period
);
276 for_each_cpu_mask(i
, rd
->span
) {
277 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
283 spin_lock(&iter
->rt_runtime_lock
);
284 diff
= iter
->rt_runtime
- iter
->rt_time
;
286 do_div(diff
, weight
);
287 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
288 diff
= rt_period
- rt_rq
->rt_runtime
;
289 iter
->rt_runtime
-= diff
;
290 rt_rq
->rt_runtime
+= diff
;
292 if (rt_rq
->rt_runtime
== rt_period
) {
293 spin_unlock(&iter
->rt_runtime_lock
);
297 spin_unlock(&iter
->rt_runtime_lock
);
299 spin_unlock(&rt_b
->rt_runtime_lock
);
305 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
307 #ifdef CONFIG_RT_GROUP_SCHED
308 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
311 return rt_rq
->highest_prio
;
314 return rt_task_of(rt_se
)->prio
;
317 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
319 u64 runtime
= sched_rt_runtime(rt_rq
);
321 if (runtime
== RUNTIME_INF
)
324 if (rt_rq
->rt_throttled
)
325 return rt_rq_throttled(rt_rq
);
327 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
331 if (rt_rq
->rt_time
> runtime
) {
334 spin_unlock(&rt_rq
->rt_runtime_lock
);
335 more
= balance_runtime(rt_rq
);
336 spin_lock(&rt_rq
->rt_runtime_lock
);
339 runtime
= sched_rt_runtime(rt_rq
);
343 if (rt_rq
->rt_time
> runtime
) {
344 rt_rq
->rt_throttled
= 1;
345 if (rt_rq_throttled(rt_rq
)) {
346 sched_rt_rq_dequeue(rt_rq
);
355 * Update the current task's runtime statistics. Skip current tasks that
356 * are not in our scheduling class.
358 static void update_curr_rt(struct rq
*rq
)
360 struct task_struct
*curr
= rq
->curr
;
361 struct sched_rt_entity
*rt_se
= &curr
->rt
;
362 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
365 if (!task_has_rt_policy(curr
))
368 delta_exec
= rq
->clock
- curr
->se
.exec_start
;
369 if (unlikely((s64
)delta_exec
< 0))
372 schedstat_set(curr
->se
.exec_max
, max(curr
->se
.exec_max
, delta_exec
));
374 curr
->se
.sum_exec_runtime
+= delta_exec
;
375 curr
->se
.exec_start
= rq
->clock
;
376 cpuacct_charge(curr
, delta_exec
);
378 for_each_sched_rt_entity(rt_se
) {
379 rt_rq
= rt_rq_of_se(rt_se
);
381 spin_lock(&rt_rq
->rt_runtime_lock
);
382 rt_rq
->rt_time
+= delta_exec
;
383 if (sched_rt_runtime_exceeded(rt_rq
))
385 spin_unlock(&rt_rq
->rt_runtime_lock
);
390 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
392 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
393 rt_rq
->rt_nr_running
++;
394 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
395 if (rt_se_prio(rt_se
) < rt_rq
->highest_prio
)
396 rt_rq
->highest_prio
= rt_se_prio(rt_se
);
399 if (rt_se
->nr_cpus_allowed
> 1) {
400 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
401 rq
->rt
.rt_nr_migratory
++;
404 update_rt_migration(rq_of_rt_rq(rt_rq
));
406 #ifdef CONFIG_RT_GROUP_SCHED
407 if (rt_se_boosted(rt_se
))
408 rt_rq
->rt_nr_boosted
++;
411 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
413 start_rt_bandwidth(&def_rt_bandwidth
);
418 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
420 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
421 WARN_ON(!rt_rq
->rt_nr_running
);
422 rt_rq
->rt_nr_running
--;
423 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
424 if (rt_rq
->rt_nr_running
) {
425 struct rt_prio_array
*array
;
427 WARN_ON(rt_se_prio(rt_se
) < rt_rq
->highest_prio
);
428 if (rt_se_prio(rt_se
) == rt_rq
->highest_prio
) {
430 array
= &rt_rq
->active
;
431 rt_rq
->highest_prio
=
432 sched_find_first_bit(array
->bitmap
);
433 } /* otherwise leave rq->highest prio alone */
435 rt_rq
->highest_prio
= MAX_RT_PRIO
;
438 if (rt_se
->nr_cpus_allowed
> 1) {
439 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
440 rq
->rt
.rt_nr_migratory
--;
443 update_rt_migration(rq_of_rt_rq(rt_rq
));
444 #endif /* CONFIG_SMP */
445 #ifdef CONFIG_RT_GROUP_SCHED
446 if (rt_se_boosted(rt_se
))
447 rt_rq
->rt_nr_boosted
--;
449 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
453 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
455 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
456 struct rt_prio_array
*array
= &rt_rq
->active
;
457 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
460 * Don't enqueue the group if its throttled, or when empty.
461 * The latter is a consequence of the former when a child group
462 * get throttled and the current group doesn't have any other
465 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
468 list_add_tail(&rt_se
->run_list
, array
->queue
+ rt_se_prio(rt_se
));
469 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
471 inc_rt_tasks(rt_se
, rt_rq
);
474 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
476 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
477 struct rt_prio_array
*array
= &rt_rq
->active
;
479 list_del_init(&rt_se
->run_list
);
480 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
481 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
483 dec_rt_tasks(rt_se
, rt_rq
);
487 * Because the prio of an upper entry depends on the lower
488 * entries, we must remove entries top - down.
490 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
492 struct sched_rt_entity
*back
= NULL
;
494 for_each_sched_rt_entity(rt_se
) {
499 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
501 __dequeue_rt_entity(rt_se
);
505 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
507 dequeue_rt_stack(rt_se
);
508 for_each_sched_rt_entity(rt_se
)
509 __enqueue_rt_entity(rt_se
);
512 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
514 dequeue_rt_stack(rt_se
);
516 for_each_sched_rt_entity(rt_se
) {
517 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
519 if (rt_rq
&& rt_rq
->rt_nr_running
)
520 __enqueue_rt_entity(rt_se
);
525 * Adding/removing a task to/from a priority array:
527 static void enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
529 struct sched_rt_entity
*rt_se
= &p
->rt
;
534 enqueue_rt_entity(rt_se
);
537 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int sleep
)
539 struct sched_rt_entity
*rt_se
= &p
->rt
;
542 dequeue_rt_entity(rt_se
);
546 * Put task to the end of the run list without the overhead of dequeue
547 * followed by enqueue.
550 void requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
)
552 struct rt_prio_array
*array
= &rt_rq
->active
;
553 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
556 list_move_tail(&rt_se
->run_list
, queue
);
559 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
)
561 struct sched_rt_entity
*rt_se
= &p
->rt
;
564 for_each_sched_rt_entity(rt_se
) {
565 rt_rq
= rt_rq_of_se(rt_se
);
566 requeue_rt_entity(rt_rq
, rt_se
);
570 static void yield_task_rt(struct rq
*rq
)
572 requeue_task_rt(rq
, rq
->curr
);
576 static int find_lowest_rq(struct task_struct
*task
);
578 static int select_task_rq_rt(struct task_struct
*p
, int sync
)
580 struct rq
*rq
= task_rq(p
);
583 * If the current task is an RT task, then
584 * try to see if we can wake this RT task up on another
585 * runqueue. Otherwise simply start this RT task
586 * on its current runqueue.
588 * We want to avoid overloading runqueues. Even if
589 * the RT task is of higher priority than the current RT task.
590 * RT tasks behave differently than other tasks. If
591 * one gets preempted, we try to push it off to another queue.
592 * So trying to keep a preempting RT task on the same
593 * cache hot CPU will force the running RT task to
594 * a cold CPU. So we waste all the cache for the lower
595 * RT task in hopes of saving some of a RT task
596 * that is just being woken and probably will have
599 if (unlikely(rt_task(rq
->curr
)) &&
600 (p
->rt
.nr_cpus_allowed
> 1)) {
601 int cpu
= find_lowest_rq(p
);
603 return (cpu
== -1) ? task_cpu(p
) : cpu
;
607 * Otherwise, just let it ride on the affined RQ and the
608 * post-schedule router will push the preempted task away
612 #endif /* CONFIG_SMP */
615 * Preempt the current task with a newly woken task if needed:
617 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
)
619 if (p
->prio
< rq
->curr
->prio
)
620 resched_task(rq
->curr
);
623 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
626 struct rt_prio_array
*array
= &rt_rq
->active
;
627 struct sched_rt_entity
*next
= NULL
;
628 struct list_head
*queue
;
631 idx
= sched_find_first_bit(array
->bitmap
);
632 BUG_ON(idx
>= MAX_RT_PRIO
);
634 queue
= array
->queue
+ idx
;
635 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
640 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
642 struct sched_rt_entity
*rt_se
;
643 struct task_struct
*p
;
648 if (unlikely(!rt_rq
->rt_nr_running
))
651 if (rt_rq_throttled(rt_rq
))
655 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
657 rt_rq
= group_rt_rq(rt_se
);
660 p
= rt_task_of(rt_se
);
661 p
->se
.exec_start
= rq
->clock
;
665 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
668 p
->se
.exec_start
= 0;
673 /* Only try algorithms three times */
674 #define RT_MAX_TRIES 3
676 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
);
677 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
679 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
681 if (!task_running(rq
, p
) &&
682 (cpu
< 0 || cpu_isset(cpu
, p
->cpus_allowed
)) &&
683 (p
->rt
.nr_cpus_allowed
> 1))
688 /* Return the second highest RT task, NULL otherwise */
689 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
691 struct task_struct
*next
= NULL
;
692 struct sched_rt_entity
*rt_se
;
693 struct rt_prio_array
*array
;
697 for_each_leaf_rt_rq(rt_rq
, rq
) {
698 array
= &rt_rq
->active
;
699 idx
= sched_find_first_bit(array
->bitmap
);
701 if (idx
>= MAX_RT_PRIO
)
703 if (next
&& next
->prio
< idx
)
705 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
706 struct task_struct
*p
= rt_task_of(rt_se
);
707 if (pick_rt_task(rq
, p
, cpu
)) {
713 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
721 static DEFINE_PER_CPU(cpumask_t
, local_cpu_mask
);
723 static int find_lowest_cpus(struct task_struct
*task
, cpumask_t
*lowest_mask
)
725 int lowest_prio
= -1;
730 cpus_and(*lowest_mask
, task_rq(task
)->rd
->online
, task
->cpus_allowed
);
733 * Scan each rq for the lowest prio.
735 for_each_cpu_mask(cpu
, *lowest_mask
) {
736 struct rq
*rq
= cpu_rq(cpu
);
738 /* We look for lowest RT prio or non-rt CPU */
739 if (rq
->rt
.highest_prio
>= MAX_RT_PRIO
) {
741 * if we already found a low RT queue
742 * and now we found this non-rt queue
743 * clear the mask and set our bit.
744 * Otherwise just return the queue as is
745 * and the count==1 will cause the algorithm
746 * to use the first bit found.
748 if (lowest_cpu
!= -1) {
749 cpus_clear(*lowest_mask
);
750 cpu_set(rq
->cpu
, *lowest_mask
);
755 /* no locking for now */
756 if ((rq
->rt
.highest_prio
> task
->prio
)
757 && (rq
->rt
.highest_prio
>= lowest_prio
)) {
758 if (rq
->rt
.highest_prio
> lowest_prio
) {
759 /* new low - clear old data */
760 lowest_prio
= rq
->rt
.highest_prio
;
766 cpu_clear(cpu
, *lowest_mask
);
770 * Clear out all the set bits that represent
771 * runqueues that were of higher prio than
774 if (lowest_cpu
> 0) {
776 * Perhaps we could add another cpumask op to
777 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
778 * Then that could be optimized to use memset and such.
780 for_each_cpu_mask(cpu
, *lowest_mask
) {
781 if (cpu
>= lowest_cpu
)
783 cpu_clear(cpu
, *lowest_mask
);
790 static inline int pick_optimal_cpu(int this_cpu
, cpumask_t
*mask
)
794 /* "this_cpu" is cheaper to preempt than a remote processor */
795 if ((this_cpu
!= -1) && cpu_isset(this_cpu
, *mask
))
798 first
= first_cpu(*mask
);
799 if (first
!= NR_CPUS
)
805 static int find_lowest_rq(struct task_struct
*task
)
807 struct sched_domain
*sd
;
808 cpumask_t
*lowest_mask
= &__get_cpu_var(local_cpu_mask
);
809 int this_cpu
= smp_processor_id();
810 int cpu
= task_cpu(task
);
811 int count
= find_lowest_cpus(task
, lowest_mask
);
814 return -1; /* No targets found */
817 * There is no sense in performing an optimal search if only one
821 return first_cpu(*lowest_mask
);
824 * At this point we have built a mask of cpus representing the
825 * lowest priority tasks in the system. Now we want to elect
826 * the best one based on our affinity and topology.
828 * We prioritize the last cpu that the task executed on since
829 * it is most likely cache-hot in that location.
831 if (cpu_isset(cpu
, *lowest_mask
))
835 * Otherwise, we consult the sched_domains span maps to figure
836 * out which cpu is logically closest to our hot cache data.
839 this_cpu
= -1; /* Skip this_cpu opt if the same */
841 for_each_domain(cpu
, sd
) {
842 if (sd
->flags
& SD_WAKE_AFFINE
) {
843 cpumask_t domain_mask
;
846 cpus_and(domain_mask
, sd
->span
, *lowest_mask
);
848 best_cpu
= pick_optimal_cpu(this_cpu
,
856 * And finally, if there were no matches within the domains
857 * just give the caller *something* to work with from the compatible
860 return pick_optimal_cpu(this_cpu
, lowest_mask
);
863 /* Will lock the rq it finds */
864 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
866 struct rq
*lowest_rq
= NULL
;
870 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
871 cpu
= find_lowest_rq(task
);
873 if ((cpu
== -1) || (cpu
== rq
->cpu
))
876 lowest_rq
= cpu_rq(cpu
);
878 /* if the prio of this runqueue changed, try again */
879 if (double_lock_balance(rq
, lowest_rq
)) {
881 * We had to unlock the run queue. In
882 * the mean time, task could have
883 * migrated already or had its affinity changed.
884 * Also make sure that it wasn't scheduled on its rq.
886 if (unlikely(task_rq(task
) != rq
||
887 !cpu_isset(lowest_rq
->cpu
,
888 task
->cpus_allowed
) ||
889 task_running(rq
, task
) ||
892 spin_unlock(&lowest_rq
->lock
);
898 /* If this rq is still suitable use it. */
899 if (lowest_rq
->rt
.highest_prio
> task
->prio
)
903 spin_unlock(&lowest_rq
->lock
);
911 * If the current CPU has more than one RT task, see if the non
912 * running task can migrate over to a CPU that is running a task
913 * of lesser priority.
915 static int push_rt_task(struct rq
*rq
)
917 struct task_struct
*next_task
;
918 struct rq
*lowest_rq
;
920 int paranoid
= RT_MAX_TRIES
;
922 if (!rq
->rt
.overloaded
)
925 next_task
= pick_next_highest_task_rt(rq
, -1);
930 if (unlikely(next_task
== rq
->curr
)) {
936 * It's possible that the next_task slipped in of
937 * higher priority than current. If that's the case
938 * just reschedule current.
940 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
941 resched_task(rq
->curr
);
945 /* We might release rq lock */
946 get_task_struct(next_task
);
948 /* find_lock_lowest_rq locks the rq if found */
949 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
951 struct task_struct
*task
;
953 * find lock_lowest_rq releases rq->lock
954 * so it is possible that next_task has changed.
955 * If it has, then try again.
957 task
= pick_next_highest_task_rt(rq
, -1);
958 if (unlikely(task
!= next_task
) && task
&& paranoid
--) {
959 put_task_struct(next_task
);
966 deactivate_task(rq
, next_task
, 0);
967 set_task_cpu(next_task
, lowest_rq
->cpu
);
968 activate_task(lowest_rq
, next_task
, 0);
970 resched_task(lowest_rq
->curr
);
972 spin_unlock(&lowest_rq
->lock
);
976 put_task_struct(next_task
);
982 * TODO: Currently we just use the second highest prio task on
983 * the queue, and stop when it can't migrate (or there's
984 * no more RT tasks). There may be a case where a lower
985 * priority RT task has a different affinity than the
986 * higher RT task. In this case the lower RT task could
987 * possibly be able to migrate where as the higher priority
988 * RT task could not. We currently ignore this issue.
989 * Enhancements are welcome!
991 static void push_rt_tasks(struct rq
*rq
)
993 /* push_rt_task will return true if it moved an RT */
994 while (push_rt_task(rq
))
998 static int pull_rt_task(struct rq
*this_rq
)
1000 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1001 struct task_struct
*p
, *next
;
1004 if (likely(!rt_overloaded(this_rq
)))
1007 next
= pick_next_task_rt(this_rq
);
1009 for_each_cpu_mask(cpu
, this_rq
->rd
->rto_mask
) {
1010 if (this_cpu
== cpu
)
1013 src_rq
= cpu_rq(cpu
);
1015 * We can potentially drop this_rq's lock in
1016 * double_lock_balance, and another CPU could
1017 * steal our next task - hence we must cause
1018 * the caller to recalculate the next task
1021 if (double_lock_balance(this_rq
, src_rq
)) {
1022 struct task_struct
*old_next
= next
;
1024 next
= pick_next_task_rt(this_rq
);
1025 if (next
!= old_next
)
1030 * Are there still pullable RT tasks?
1032 if (src_rq
->rt
.rt_nr_running
<= 1)
1035 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1038 * Do we have an RT task that preempts
1039 * the to-be-scheduled task?
1041 if (p
&& (!next
|| (p
->prio
< next
->prio
))) {
1042 WARN_ON(p
== src_rq
->curr
);
1043 WARN_ON(!p
->se
.on_rq
);
1046 * There's a chance that p is higher in priority
1047 * than what's currently running on its cpu.
1048 * This is just that p is wakeing up and hasn't
1049 * had a chance to schedule. We only pull
1050 * p if it is lower in priority than the
1051 * current task on the run queue or
1052 * this_rq next task is lower in prio than
1053 * the current task on that rq.
1055 if (p
->prio
< src_rq
->curr
->prio
||
1056 (next
&& next
->prio
< src_rq
->curr
->prio
))
1061 deactivate_task(src_rq
, p
, 0);
1062 set_task_cpu(p
, this_cpu
);
1063 activate_task(this_rq
, p
, 0);
1065 * We continue with the search, just in
1066 * case there's an even higher prio task
1067 * in another runqueue. (low likelyhood
1070 * Update next so that we won't pick a task
1071 * on another cpu with a priority lower (or equal)
1072 * than the one we just picked.
1078 spin_unlock(&src_rq
->lock
);
1084 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1086 /* Try to pull RT tasks here if we lower this rq's prio */
1087 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
> prev
->prio
)
1091 static void post_schedule_rt(struct rq
*rq
)
1094 * If we have more than one rt_task queued, then
1095 * see if we can push the other rt_tasks off to other CPUS.
1096 * Note we may release the rq lock, and since
1097 * the lock was owned by prev, we need to release it
1098 * first via finish_lock_switch and then reaquire it here.
1100 if (unlikely(rq
->rt
.overloaded
)) {
1101 spin_lock_irq(&rq
->lock
);
1103 spin_unlock_irq(&rq
->lock
);
1108 * If we are not running and we are not going to reschedule soon, we should
1109 * try to push tasks away now
1111 static void task_wake_up_rt(struct rq
*rq
, struct task_struct
*p
)
1113 if (!task_running(rq
, p
) &&
1114 !test_tsk_need_resched(rq
->curr
) &&
1119 static unsigned long
1120 load_balance_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1121 unsigned long max_load_move
,
1122 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1123 int *all_pinned
, int *this_best_prio
)
1125 /* don't touch RT tasks */
1130 move_one_task_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1131 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1133 /* don't touch RT tasks */
1137 static void set_cpus_allowed_rt(struct task_struct
*p
,
1138 const cpumask_t
*new_mask
)
1140 int weight
= cpus_weight(*new_mask
);
1142 BUG_ON(!rt_task(p
));
1145 * Update the migration status of the RQ if we have an RT task
1146 * which is running AND changing its weight value.
1148 if (p
->se
.on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1149 struct rq
*rq
= task_rq(p
);
1151 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1152 rq
->rt
.rt_nr_migratory
++;
1153 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1154 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1155 rq
->rt
.rt_nr_migratory
--;
1158 update_rt_migration(rq
);
1161 p
->cpus_allowed
= *new_mask
;
1162 p
->rt
.nr_cpus_allowed
= weight
;
1165 /* Assumes rq->lock is held */
1166 static void join_domain_rt(struct rq
*rq
)
1168 if (rq
->rt
.overloaded
)
1169 rt_set_overload(rq
);
1172 /* Assumes rq->lock is held */
1173 static void leave_domain_rt(struct rq
*rq
)
1175 if (rq
->rt
.overloaded
)
1176 rt_clear_overload(rq
);
1180 * When switch from the rt queue, we bring ourselves to a position
1181 * that we might want to pull RT tasks from other runqueues.
1183 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
,
1187 * If there are other RT tasks then we will reschedule
1188 * and the scheduling of the other RT tasks will handle
1189 * the balancing. But if we are the last RT task
1190 * we may need to handle the pulling of RT tasks
1193 if (!rq
->rt
.rt_nr_running
)
1196 #endif /* CONFIG_SMP */
1199 * When switching a task to RT, we may overload the runqueue
1200 * with RT tasks. In this case we try to push them off to
1203 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
,
1206 int check_resched
= 1;
1209 * If we are already running, then there's nothing
1210 * that needs to be done. But if we are not running
1211 * we may need to preempt the current running task.
1212 * If that current running task is also an RT task
1213 * then see if we can move to another run queue.
1217 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1218 /* Don't resched if we changed runqueues */
1221 #endif /* CONFIG_SMP */
1222 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1223 resched_task(rq
->curr
);
1228 * Priority of the task has changed. This may cause
1229 * us to initiate a push or pull.
1231 static void prio_changed_rt(struct rq
*rq
, struct task_struct
*p
,
1232 int oldprio
, int running
)
1237 * If our priority decreases while running, we
1238 * may need to pull tasks to this runqueue.
1240 if (oldprio
< p
->prio
)
1243 * If there's a higher priority task waiting to run
1244 * then reschedule. Note, the above pull_rt_task
1245 * can release the rq lock and p could migrate.
1246 * Only reschedule if p is still on the same runqueue.
1248 if (p
->prio
> rq
->rt
.highest_prio
&& rq
->curr
== p
)
1251 /* For UP simply resched on drop of prio */
1252 if (oldprio
< p
->prio
)
1254 #endif /* CONFIG_SMP */
1257 * This task is not running, but if it is
1258 * greater than the current running task
1261 if (p
->prio
< rq
->curr
->prio
)
1262 resched_task(rq
->curr
);
1266 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1268 unsigned long soft
, hard
;
1273 soft
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1274 hard
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1276 if (soft
!= RLIM_INFINITY
) {
1280 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1281 if (p
->rt
.timeout
> next
)
1282 p
->it_sched_expires
= p
->se
.sum_exec_runtime
;
1286 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1293 * RR tasks need a special form of timeslice management.
1294 * FIFO tasks have no timeslices.
1296 if (p
->policy
!= SCHED_RR
)
1299 if (--p
->rt
.time_slice
)
1302 p
->rt
.time_slice
= DEF_TIMESLICE
;
1305 * Requeue to the end of queue if we are not the only element
1308 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1309 requeue_task_rt(rq
, p
);
1310 set_tsk_need_resched(p
);
1314 static void set_curr_task_rt(struct rq
*rq
)
1316 struct task_struct
*p
= rq
->curr
;
1318 p
->se
.exec_start
= rq
->clock
;
1321 static const struct sched_class rt_sched_class
= {
1322 .next
= &fair_sched_class
,
1323 .enqueue_task
= enqueue_task_rt
,
1324 .dequeue_task
= dequeue_task_rt
,
1325 .yield_task
= yield_task_rt
,
1327 .select_task_rq
= select_task_rq_rt
,
1328 #endif /* CONFIG_SMP */
1330 .check_preempt_curr
= check_preempt_curr_rt
,
1332 .pick_next_task
= pick_next_task_rt
,
1333 .put_prev_task
= put_prev_task_rt
,
1336 .load_balance
= load_balance_rt
,
1337 .move_one_task
= move_one_task_rt
,
1338 .set_cpus_allowed
= set_cpus_allowed_rt
,
1339 .join_domain
= join_domain_rt
,
1340 .leave_domain
= leave_domain_rt
,
1341 .pre_schedule
= pre_schedule_rt
,
1342 .post_schedule
= post_schedule_rt
,
1343 .task_wake_up
= task_wake_up_rt
,
1344 .switched_from
= switched_from_rt
,
1347 .set_curr_task
= set_curr_task_rt
,
1348 .task_tick
= task_tick_rt
,
1350 .prio_changed
= prio_changed_rt
,
1351 .switched_to
= switched_to_rt
,