1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
87 /* number of audit rules */
90 /* determines whether we collect data for signals sent */
93 struct audit_cap_data
{
94 kernel_cap_t permitted
;
95 kernel_cap_t inheritable
;
97 unsigned int fE
; /* effective bit of a file capability */
98 kernel_cap_t effective
; /* effective set of a process */
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103 * we don't let putname() free it (instead we free all of the saved
104 * pointers at syscall exit time).
106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
109 struct list_head list
; /* audit_context->names_list */
110 struct filename
*name
;
118 struct audit_cap_data fcap
;
119 unsigned int fcap_ver
;
120 int name_len
; /* number of name's characters to log */
121 unsigned char type
; /* record type */
122 bool name_put
; /* call __putname() for this name */
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
131 struct audit_aux_data
{
132 struct audit_aux_data
*next
;
136 #define AUDIT_AUX_IPCPERM 0
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
141 struct audit_aux_data_execve
{
142 struct audit_aux_data d
;
145 struct mm_struct
*mm
;
148 struct audit_aux_data_pids
{
149 struct audit_aux_data d
;
150 pid_t target_pid
[AUDIT_AUX_PIDS
];
151 kuid_t target_auid
[AUDIT_AUX_PIDS
];
152 kuid_t target_uid
[AUDIT_AUX_PIDS
];
153 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
154 u32 target_sid
[AUDIT_AUX_PIDS
];
155 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
159 struct audit_aux_data_bprm_fcaps
{
160 struct audit_aux_data d
;
161 struct audit_cap_data fcap
;
162 unsigned int fcap_ver
;
163 struct audit_cap_data old_pcap
;
164 struct audit_cap_data new_pcap
;
167 struct audit_aux_data_capset
{
168 struct audit_aux_data d
;
170 struct audit_cap_data cap
;
173 struct audit_tree_refs
{
174 struct audit_tree_refs
*next
;
175 struct audit_chunk
*c
[31];
178 /* The per-task audit context. */
179 struct audit_context
{
180 int dummy
; /* must be the first element */
181 int in_syscall
; /* 1 if task is in a syscall */
182 enum audit_state state
, current_state
;
183 unsigned int serial
; /* serial number for record */
184 int major
; /* syscall number */
185 struct timespec ctime
; /* time of syscall entry */
186 unsigned long argv
[4]; /* syscall arguments */
187 long return_code
;/* syscall return code */
189 int return_valid
; /* return code is valid */
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
198 struct audit_names preallocated_names
[AUDIT_NAMES
];
199 int name_count
; /* total records in names_list */
200 struct list_head names_list
; /* anchor for struct audit_names->list */
201 char * filterkey
; /* key for rule that triggered record */
203 struct audit_context
*previous
; /* For nested syscalls */
204 struct audit_aux_data
*aux
;
205 struct audit_aux_data
*aux_pids
;
206 struct sockaddr_storage
*sockaddr
;
208 /* Save things to print about task_struct */
210 kuid_t uid
, euid
, suid
, fsuid
;
211 kgid_t gid
, egid
, sgid
, fsgid
;
212 unsigned long personality
;
218 unsigned int target_sessionid
;
220 char target_comm
[TASK_COMM_LEN
];
222 struct audit_tree_refs
*trees
, *first_trees
;
223 struct list_head killed_trees
;
241 unsigned long qbytes
;
245 struct mq_attr mqstat
;
254 unsigned int msg_prio
;
255 struct timespec abs_timeout
;
264 struct audit_cap_data cap
;
279 static inline int open_arg(int flags
, int mask
)
281 int n
= ACC_MODE(flags
);
282 if (flags
& (O_TRUNC
| O_CREAT
))
283 n
|= AUDIT_PERM_WRITE
;
287 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
294 switch (audit_classify_syscall(ctx
->arch
, n
)) {
296 if ((mask
& AUDIT_PERM_WRITE
) &&
297 audit_match_class(AUDIT_CLASS_WRITE
, n
))
299 if ((mask
& AUDIT_PERM_READ
) &&
300 audit_match_class(AUDIT_CLASS_READ
, n
))
302 if ((mask
& AUDIT_PERM_ATTR
) &&
303 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
306 case 1: /* 32bit on biarch */
307 if ((mask
& AUDIT_PERM_WRITE
) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
310 if ((mask
& AUDIT_PERM_READ
) &&
311 audit_match_class(AUDIT_CLASS_READ_32
, n
))
313 if ((mask
& AUDIT_PERM_ATTR
) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
318 return mask
& ACC_MODE(ctx
->argv
[1]);
320 return mask
& ACC_MODE(ctx
->argv
[2]);
321 case 4: /* socketcall */
322 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
324 return mask
& AUDIT_PERM_EXEC
;
330 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
332 struct audit_names
*n
;
333 umode_t mode
= (umode_t
)val
;
338 list_for_each_entry(n
, &ctx
->names_list
, list
) {
339 if ((n
->ino
!= -1) &&
340 ((n
->mode
& S_IFMT
) == mode
))
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context
*ctx
)
362 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
366 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
368 struct audit_tree_refs
*p
= ctx
->trees
;
369 int left
= ctx
->tree_count
;
371 p
->c
[--left
] = chunk
;
372 ctx
->tree_count
= left
;
381 ctx
->tree_count
= 30;
387 static int grow_tree_refs(struct audit_context
*ctx
)
389 struct audit_tree_refs
*p
= ctx
->trees
;
390 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
396 p
->next
= ctx
->trees
;
398 ctx
->first_trees
= ctx
->trees
;
399 ctx
->tree_count
= 31;
404 static void unroll_tree_refs(struct audit_context
*ctx
,
405 struct audit_tree_refs
*p
, int count
)
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs
*q
;
411 /* we started with empty chain */
412 p
= ctx
->first_trees
;
414 /* if the very first allocation has failed, nothing to do */
419 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
421 audit_put_chunk(q
->c
[n
]);
425 while (n
-- > ctx
->tree_count
) {
426 audit_put_chunk(q
->c
[n
]);
430 ctx
->tree_count
= count
;
434 static void free_tree_refs(struct audit_context
*ctx
)
436 struct audit_tree_refs
*p
, *q
;
437 for (p
= ctx
->first_trees
; p
; p
= q
) {
443 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs
*p
;
451 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
452 for (n
= 0; n
< 31; n
++)
453 if (audit_tree_match(p
->c
[n
], tree
))
458 for (n
= ctx
->tree_count
; n
< 31; n
++)
459 if (audit_tree_match(p
->c
[n
], tree
))
466 static int audit_compare_uid(kuid_t uid
,
467 struct audit_names
*name
,
468 struct audit_field
*f
,
469 struct audit_context
*ctx
)
471 struct audit_names
*n
;
475 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
481 list_for_each_entry(n
, &ctx
->names_list
, list
) {
482 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
490 static int audit_compare_gid(kgid_t gid
,
491 struct audit_names
*name
,
492 struct audit_field
*f
,
493 struct audit_context
*ctx
)
495 struct audit_names
*n
;
499 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
505 list_for_each_entry(n
, &ctx
->names_list
, list
) {
506 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
514 static int audit_field_compare(struct task_struct
*tsk
,
515 const struct cred
*cred
,
516 struct audit_field
*f
,
517 struct audit_context
*ctx
,
518 struct audit_names
*name
)
521 /* process to file object comparisons */
522 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
523 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
524 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
525 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
526 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
527 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
528 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
529 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
530 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
531 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
532 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
533 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
534 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
535 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
536 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
537 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
538 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
539 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
540 /* uid comparisons */
541 case AUDIT_COMPARE_UID_TO_AUID
:
542 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
543 case AUDIT_COMPARE_UID_TO_EUID
:
544 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
545 case AUDIT_COMPARE_UID_TO_SUID
:
546 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
547 case AUDIT_COMPARE_UID_TO_FSUID
:
548 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
549 /* auid comparisons */
550 case AUDIT_COMPARE_AUID_TO_EUID
:
551 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
552 case AUDIT_COMPARE_AUID_TO_SUID
:
553 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
554 case AUDIT_COMPARE_AUID_TO_FSUID
:
555 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
556 /* euid comparisons */
557 case AUDIT_COMPARE_EUID_TO_SUID
:
558 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
559 case AUDIT_COMPARE_EUID_TO_FSUID
:
560 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
561 /* suid comparisons */
562 case AUDIT_COMPARE_SUID_TO_FSUID
:
563 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
564 /* gid comparisons */
565 case AUDIT_COMPARE_GID_TO_EGID
:
566 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
567 case AUDIT_COMPARE_GID_TO_SGID
:
568 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
569 case AUDIT_COMPARE_GID_TO_FSGID
:
570 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
571 /* egid comparisons */
572 case AUDIT_COMPARE_EGID_TO_SGID
:
573 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
574 case AUDIT_COMPARE_EGID_TO_FSGID
:
575 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
576 /* sgid comparison */
577 case AUDIT_COMPARE_SGID_TO_FSGID
:
578 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
580 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
586 /* Determine if any context name data matches a rule's watch data */
587 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
590 * If task_creation is true, this is an explicit indication that we are
591 * filtering a task rule at task creation time. This and tsk == current are
592 * the only situations where tsk->cred may be accessed without an rcu read lock.
594 static int audit_filter_rules(struct task_struct
*tsk
,
595 struct audit_krule
*rule
,
596 struct audit_context
*ctx
,
597 struct audit_names
*name
,
598 enum audit_state
*state
,
601 const struct cred
*cred
;
605 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
607 for (i
= 0; i
< rule
->field_count
; i
++) {
608 struct audit_field
*f
= &rule
->fields
[i
];
609 struct audit_names
*n
;
614 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
619 ctx
->ppid
= sys_getppid();
620 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
624 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
627 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
630 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
633 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
636 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
639 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
642 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
645 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
648 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
652 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
656 if (ctx
&& ctx
->return_valid
)
657 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
660 if (ctx
&& ctx
->return_valid
) {
662 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
664 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
669 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
670 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
673 list_for_each_entry(n
, &ctx
->names_list
, list
) {
674 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
675 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
684 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
685 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
688 list_for_each_entry(n
, &ctx
->names_list
, list
) {
689 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
690 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
699 result
= (name
->ino
== f
->val
);
701 list_for_each_entry(n
, &ctx
->names_list
, list
) {
702 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
711 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
713 list_for_each_entry(n
, &ctx
->names_list
, list
) {
714 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
723 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
725 list_for_each_entry(n
, &ctx
->names_list
, list
) {
726 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
735 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
739 result
= match_tree_refs(ctx
, rule
->tree
);
744 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
746 case AUDIT_SUBJ_USER
:
747 case AUDIT_SUBJ_ROLE
:
748 case AUDIT_SUBJ_TYPE
:
751 /* NOTE: this may return negative values indicating
752 a temporary error. We simply treat this as a
753 match for now to avoid losing information that
754 may be wanted. An error message will also be
758 security_task_getsecid(tsk
, &sid
);
761 result
= security_audit_rule_match(sid
, f
->type
,
770 case AUDIT_OBJ_LEV_LOW
:
771 case AUDIT_OBJ_LEV_HIGH
:
772 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
775 /* Find files that match */
777 result
= security_audit_rule_match(
778 name
->osid
, f
->type
, f
->op
,
781 list_for_each_entry(n
, &ctx
->names_list
, list
) {
782 if (security_audit_rule_match(n
->osid
, f
->type
,
790 /* Find ipc objects that match */
791 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
793 if (security_audit_rule_match(ctx
->ipc
.osid
,
804 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
806 case AUDIT_FILTERKEY
:
807 /* ignore this field for filtering */
811 result
= audit_match_perm(ctx
, f
->val
);
814 result
= audit_match_filetype(ctx
, f
->val
);
816 case AUDIT_FIELD_COMPARE
:
817 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
825 if (rule
->prio
<= ctx
->prio
)
827 if (rule
->filterkey
) {
828 kfree(ctx
->filterkey
);
829 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
831 ctx
->prio
= rule
->prio
;
833 switch (rule
->action
) {
834 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
835 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
840 /* At process creation time, we can determine if system-call auditing is
841 * completely disabled for this task. Since we only have the task
842 * structure at this point, we can only check uid and gid.
844 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
846 struct audit_entry
*e
;
847 enum audit_state state
;
850 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
851 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
853 if (state
== AUDIT_RECORD_CONTEXT
)
854 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
860 return AUDIT_BUILD_CONTEXT
;
863 /* At syscall entry and exit time, this filter is called if the
864 * audit_state is not low enough that auditing cannot take place, but is
865 * also not high enough that we already know we have to write an audit
866 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
868 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
869 struct audit_context
*ctx
,
870 struct list_head
*list
)
872 struct audit_entry
*e
;
873 enum audit_state state
;
875 if (audit_pid
&& tsk
->tgid
== audit_pid
)
876 return AUDIT_DISABLED
;
879 if (!list_empty(list
)) {
880 int word
= AUDIT_WORD(ctx
->major
);
881 int bit
= AUDIT_BIT(ctx
->major
);
883 list_for_each_entry_rcu(e
, list
, list
) {
884 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
885 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
888 ctx
->current_state
= state
;
894 return AUDIT_BUILD_CONTEXT
;
898 * Given an audit_name check the inode hash table to see if they match.
899 * Called holding the rcu read lock to protect the use of audit_inode_hash
901 static int audit_filter_inode_name(struct task_struct
*tsk
,
902 struct audit_names
*n
,
903 struct audit_context
*ctx
) {
905 int h
= audit_hash_ino((u32
)n
->ino
);
906 struct list_head
*list
= &audit_inode_hash
[h
];
907 struct audit_entry
*e
;
908 enum audit_state state
;
910 word
= AUDIT_WORD(ctx
->major
);
911 bit
= AUDIT_BIT(ctx
->major
);
913 if (list_empty(list
))
916 list_for_each_entry_rcu(e
, list
, list
) {
917 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
918 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
919 ctx
->current_state
= state
;
927 /* At syscall exit time, this filter is called if any audit_names have been
928 * collected during syscall processing. We only check rules in sublists at hash
929 * buckets applicable to the inode numbers in audit_names.
930 * Regarding audit_state, same rules apply as for audit_filter_syscall().
932 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
934 struct audit_names
*n
;
936 if (audit_pid
&& tsk
->tgid
== audit_pid
)
941 list_for_each_entry(n
, &ctx
->names_list
, list
) {
942 if (audit_filter_inode_name(tsk
, n
, ctx
))
948 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
952 struct audit_context
*context
= tsk
->audit_context
;
956 context
->return_valid
= return_valid
;
959 * we need to fix up the return code in the audit logs if the actual
960 * return codes are later going to be fixed up by the arch specific
963 * This is actually a test for:
964 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
965 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
967 * but is faster than a bunch of ||
969 if (unlikely(return_code
<= -ERESTARTSYS
) &&
970 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
971 (return_code
!= -ENOIOCTLCMD
))
972 context
->return_code
= -EINTR
;
974 context
->return_code
= return_code
;
976 if (context
->in_syscall
&& !context
->dummy
) {
977 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
978 audit_filter_inodes(tsk
, context
);
981 tsk
->audit_context
= NULL
;
985 static inline void audit_free_names(struct audit_context
*context
)
987 struct audit_names
*n
, *next
;
990 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
991 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
992 " name_count=%d put_count=%d"
993 " ino_count=%d [NOT freeing]\n",
995 context
->serial
, context
->major
, context
->in_syscall
,
996 context
->name_count
, context
->put_count
,
998 list_for_each_entry(n
, &context
->names_list
, list
) {
999 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
1000 n
->name
, n
->name
->name
?: "(null)");
1007 context
->put_count
= 0;
1008 context
->ino_count
= 0;
1011 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
1013 if (n
->name
&& n
->name_put
)
1018 context
->name_count
= 0;
1019 path_put(&context
->pwd
);
1020 context
->pwd
.dentry
= NULL
;
1021 context
->pwd
.mnt
= NULL
;
1024 static inline void audit_free_aux(struct audit_context
*context
)
1026 struct audit_aux_data
*aux
;
1028 while ((aux
= context
->aux
)) {
1029 context
->aux
= aux
->next
;
1032 while ((aux
= context
->aux_pids
)) {
1033 context
->aux_pids
= aux
->next
;
1038 static inline void audit_zero_context(struct audit_context
*context
,
1039 enum audit_state state
)
1041 memset(context
, 0, sizeof(*context
));
1042 context
->state
= state
;
1043 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1046 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
1048 struct audit_context
*context
;
1050 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
1052 audit_zero_context(context
, state
);
1053 INIT_LIST_HEAD(&context
->killed_trees
);
1054 INIT_LIST_HEAD(&context
->names_list
);
1059 * audit_alloc - allocate an audit context block for a task
1062 * Filter on the task information and allocate a per-task audit context
1063 * if necessary. Doing so turns on system call auditing for the
1064 * specified task. This is called from copy_process, so no lock is
1067 int audit_alloc(struct task_struct
*tsk
)
1069 struct audit_context
*context
;
1070 enum audit_state state
;
1073 if (likely(!audit_ever_enabled
))
1074 return 0; /* Return if not auditing. */
1076 state
= audit_filter_task(tsk
, &key
);
1077 if (state
== AUDIT_DISABLED
)
1080 if (!(context
= audit_alloc_context(state
))) {
1082 audit_log_lost("out of memory in audit_alloc");
1085 context
->filterkey
= key
;
1087 tsk
->audit_context
= context
;
1088 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
1092 static inline void audit_free_context(struct audit_context
*context
)
1094 struct audit_context
*previous
;
1098 previous
= context
->previous
;
1099 if (previous
|| (count
&& count
< 10)) {
1101 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
1102 " freeing multiple contexts (%d)\n",
1103 context
->serial
, context
->major
,
1104 context
->name_count
, count
);
1106 audit_free_names(context
);
1107 unroll_tree_refs(context
, NULL
, 0);
1108 free_tree_refs(context
);
1109 audit_free_aux(context
);
1110 kfree(context
->filterkey
);
1111 kfree(context
->sockaddr
);
1116 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
1119 void audit_log_task_context(struct audit_buffer
*ab
)
1126 security_task_getsecid(current
, &sid
);
1130 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
1132 if (error
!= -EINVAL
)
1137 audit_log_format(ab
, " subj=%s", ctx
);
1138 security_release_secctx(ctx
, len
);
1142 audit_panic("error in audit_log_task_context");
1146 EXPORT_SYMBOL(audit_log_task_context
);
1148 void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
1150 const struct cred
*cred
;
1151 char name
[sizeof(tsk
->comm
)];
1152 struct mm_struct
*mm
= tsk
->mm
;
1158 /* tsk == current */
1159 cred
= current_cred();
1161 spin_lock_irq(&tsk
->sighand
->siglock
);
1162 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1163 tty
= tsk
->signal
->tty
->name
;
1166 spin_unlock_irq(&tsk
->sighand
->siglock
);
1169 audit_log_format(ab
,
1170 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1171 " euid=%u suid=%u fsuid=%u"
1172 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1175 from_kuid(&init_user_ns
, tsk
->loginuid
),
1176 from_kuid(&init_user_ns
, cred
->uid
),
1177 from_kgid(&init_user_ns
, cred
->gid
),
1178 from_kuid(&init_user_ns
, cred
->euid
),
1179 from_kuid(&init_user_ns
, cred
->suid
),
1180 from_kuid(&init_user_ns
, cred
->fsuid
),
1181 from_kgid(&init_user_ns
, cred
->egid
),
1182 from_kgid(&init_user_ns
, cred
->sgid
),
1183 from_kgid(&init_user_ns
, cred
->fsgid
),
1184 tsk
->sessionid
, tty
);
1186 get_task_comm(name
, tsk
);
1187 audit_log_format(ab
, " comm=");
1188 audit_log_untrustedstring(ab
, name
);
1191 down_read(&mm
->mmap_sem
);
1193 audit_log_d_path(ab
, " exe=", &mm
->exe_file
->f_path
);
1194 up_read(&mm
->mmap_sem
);
1196 audit_log_task_context(ab
);
1199 EXPORT_SYMBOL(audit_log_task_info
);
1201 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
1202 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
1203 u32 sid
, char *comm
)
1205 struct audit_buffer
*ab
;
1210 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
1214 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
1215 from_kuid(&init_user_ns
, auid
),
1216 from_kuid(&init_user_ns
, uid
), sessionid
);
1217 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
1218 audit_log_format(ab
, " obj=(none)");
1221 audit_log_format(ab
, " obj=%s", ctx
);
1222 security_release_secctx(ctx
, len
);
1224 audit_log_format(ab
, " ocomm=");
1225 audit_log_untrustedstring(ab
, comm
);
1232 * to_send and len_sent accounting are very loose estimates. We aren't
1233 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1234 * within about 500 bytes (next page boundary)
1236 * why snprintf? an int is up to 12 digits long. if we just assumed when
1237 * logging that a[%d]= was going to be 16 characters long we would be wasting
1238 * space in every audit message. In one 7500 byte message we can log up to
1239 * about 1000 min size arguments. That comes down to about 50% waste of space
1240 * if we didn't do the snprintf to find out how long arg_num_len was.
1242 static int audit_log_single_execve_arg(struct audit_context
*context
,
1243 struct audit_buffer
**ab
,
1246 const char __user
*p
,
1249 char arg_num_len_buf
[12];
1250 const char __user
*tmp_p
= p
;
1251 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1252 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1253 size_t len
, len_left
, to_send
;
1254 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1255 unsigned int i
, has_cntl
= 0, too_long
= 0;
1258 /* strnlen_user includes the null we don't want to send */
1259 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1262 * We just created this mm, if we can't find the strings
1263 * we just copied into it something is _very_ wrong. Similar
1264 * for strings that are too long, we should not have created
1267 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1269 send_sig(SIGKILL
, current
, 0);
1273 /* walk the whole argument looking for non-ascii chars */
1275 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1276 to_send
= MAX_EXECVE_AUDIT_LEN
;
1279 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1281 * There is no reason for this copy to be short. We just
1282 * copied them here, and the mm hasn't been exposed to user-
1287 send_sig(SIGKILL
, current
, 0);
1290 buf
[to_send
] = '\0';
1291 has_cntl
= audit_string_contains_control(buf
, to_send
);
1294 * hex messages get logged as 2 bytes, so we can only
1295 * send half as much in each message
1297 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1300 len_left
-= to_send
;
1302 } while (len_left
> 0);
1306 if (len
> max_execve_audit_len
)
1309 /* rewalk the argument actually logging the message */
1310 for (i
= 0; len_left
> 0; i
++) {
1313 if (len_left
> max_execve_audit_len
)
1314 to_send
= max_execve_audit_len
;
1318 /* do we have space left to send this argument in this ab? */
1319 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1321 room_left
-= (to_send
* 2);
1323 room_left
-= to_send
;
1324 if (room_left
< 0) {
1327 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1333 * first record needs to say how long the original string was
1334 * so we can be sure nothing was lost.
1336 if ((i
== 0) && (too_long
))
1337 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1338 has_cntl
? 2*len
: len
);
1341 * normally arguments are small enough to fit and we already
1342 * filled buf above when we checked for control characters
1343 * so don't bother with another copy_from_user
1345 if (len
>= max_execve_audit_len
)
1346 ret
= copy_from_user(buf
, p
, to_send
);
1351 send_sig(SIGKILL
, current
, 0);
1354 buf
[to_send
] = '\0';
1356 /* actually log it */
1357 audit_log_format(*ab
, " a%d", arg_num
);
1359 audit_log_format(*ab
, "[%d]", i
);
1360 audit_log_format(*ab
, "=");
1362 audit_log_n_hex(*ab
, buf
, to_send
);
1364 audit_log_string(*ab
, buf
);
1367 len_left
-= to_send
;
1368 *len_sent
+= arg_num_len
;
1370 *len_sent
+= to_send
* 2;
1372 *len_sent
+= to_send
;
1374 /* include the null we didn't log */
1378 static void audit_log_execve_info(struct audit_context
*context
,
1379 struct audit_buffer
**ab
,
1380 struct audit_aux_data_execve
*axi
)
1383 size_t len_sent
= 0;
1384 const char __user
*p
;
1387 if (axi
->mm
!= current
->mm
)
1388 return; /* execve failed, no additional info */
1390 p
= (const char __user
*)axi
->mm
->arg_start
;
1392 audit_log_format(*ab
, "argc=%d", axi
->argc
);
1395 * we need some kernel buffer to hold the userspace args. Just
1396 * allocate one big one rather than allocating one of the right size
1397 * for every single argument inside audit_log_single_execve_arg()
1398 * should be <8k allocation so should be pretty safe.
1400 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1402 audit_panic("out of memory for argv string\n");
1406 for (i
= 0; i
< axi
->argc
; i
++) {
1407 len
= audit_log_single_execve_arg(context
, ab
, i
,
1416 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
, kernel_cap_t
*cap
)
1420 audit_log_format(ab
, " %s=", prefix
);
1421 CAP_FOR_EACH_U32(i
) {
1422 audit_log_format(ab
, "%08x", cap
->cap
[(_KERNEL_CAPABILITY_U32S
-1) - i
]);
1426 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1428 kernel_cap_t
*perm
= &name
->fcap
.permitted
;
1429 kernel_cap_t
*inh
= &name
->fcap
.inheritable
;
1432 if (!cap_isclear(*perm
)) {
1433 audit_log_cap(ab
, "cap_fp", perm
);
1436 if (!cap_isclear(*inh
)) {
1437 audit_log_cap(ab
, "cap_fi", inh
);
1442 audit_log_format(ab
, " cap_fe=%d cap_fver=%x", name
->fcap
.fE
, name
->fcap_ver
);
1445 static void show_special(struct audit_context
*context
, int *call_panic
)
1447 struct audit_buffer
*ab
;
1450 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1454 switch (context
->type
) {
1455 case AUDIT_SOCKETCALL
: {
1456 int nargs
= context
->socketcall
.nargs
;
1457 audit_log_format(ab
, "nargs=%d", nargs
);
1458 for (i
= 0; i
< nargs
; i
++)
1459 audit_log_format(ab
, " a%d=%lx", i
,
1460 context
->socketcall
.args
[i
]);
1463 u32 osid
= context
->ipc
.osid
;
1465 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1466 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1467 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1472 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1473 audit_log_format(ab
, " osid=%u", osid
);
1476 audit_log_format(ab
, " obj=%s", ctx
);
1477 security_release_secctx(ctx
, len
);
1480 if (context
->ipc
.has_perm
) {
1482 ab
= audit_log_start(context
, GFP_KERNEL
,
1483 AUDIT_IPC_SET_PERM
);
1484 audit_log_format(ab
,
1485 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1486 context
->ipc
.qbytes
,
1487 context
->ipc
.perm_uid
,
1488 context
->ipc
.perm_gid
,
1489 context
->ipc
.perm_mode
);
1494 case AUDIT_MQ_OPEN
: {
1495 audit_log_format(ab
,
1496 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1497 "mq_msgsize=%ld mq_curmsgs=%ld",
1498 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1499 context
->mq_open
.attr
.mq_flags
,
1500 context
->mq_open
.attr
.mq_maxmsg
,
1501 context
->mq_open
.attr
.mq_msgsize
,
1502 context
->mq_open
.attr
.mq_curmsgs
);
1504 case AUDIT_MQ_SENDRECV
: {
1505 audit_log_format(ab
,
1506 "mqdes=%d msg_len=%zd msg_prio=%u "
1507 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1508 context
->mq_sendrecv
.mqdes
,
1509 context
->mq_sendrecv
.msg_len
,
1510 context
->mq_sendrecv
.msg_prio
,
1511 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1512 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1514 case AUDIT_MQ_NOTIFY
: {
1515 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1516 context
->mq_notify
.mqdes
,
1517 context
->mq_notify
.sigev_signo
);
1519 case AUDIT_MQ_GETSETATTR
: {
1520 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1521 audit_log_format(ab
,
1522 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1524 context
->mq_getsetattr
.mqdes
,
1525 attr
->mq_flags
, attr
->mq_maxmsg
,
1526 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1528 case AUDIT_CAPSET
: {
1529 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1530 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1531 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1532 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1535 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1536 context
->mmap
.flags
);
1542 static void audit_log_name(struct audit_context
*context
, struct audit_names
*n
,
1543 int record_num
, int *call_panic
)
1545 struct audit_buffer
*ab
;
1546 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1548 return; /* audit_panic has been called */
1550 audit_log_format(ab
, "item=%d", record_num
);
1553 switch (n
->name_len
) {
1554 case AUDIT_NAME_FULL
:
1555 /* log the full path */
1556 audit_log_format(ab
, " name=");
1557 audit_log_untrustedstring(ab
, n
->name
->name
);
1560 /* name was specified as a relative path and the
1561 * directory component is the cwd */
1562 audit_log_d_path(ab
, " name=", &context
->pwd
);
1565 /* log the name's directory component */
1566 audit_log_format(ab
, " name=");
1567 audit_log_n_untrustedstring(ab
, n
->name
->name
,
1571 audit_log_format(ab
, " name=(null)");
1573 if (n
->ino
!= (unsigned long)-1) {
1574 audit_log_format(ab
, " inode=%lu"
1575 " dev=%02x:%02x mode=%#ho"
1576 " ouid=%u ogid=%u rdev=%02x:%02x",
1581 from_kuid(&init_user_ns
, n
->uid
),
1582 from_kgid(&init_user_ns
, n
->gid
),
1589 if (security_secid_to_secctx(
1590 n
->osid
, &ctx
, &len
)) {
1591 audit_log_format(ab
, " osid=%u", n
->osid
);
1594 audit_log_format(ab
, " obj=%s", ctx
);
1595 security_release_secctx(ctx
, len
);
1599 audit_log_fcaps(ab
, n
);
1604 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1606 int i
, call_panic
= 0;
1607 struct audit_buffer
*ab
;
1608 struct audit_aux_data
*aux
;
1609 struct audit_names
*n
;
1611 /* tsk == current */
1612 context
->personality
= tsk
->personality
;
1614 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1616 return; /* audit_panic has been called */
1617 audit_log_format(ab
, "arch=%x syscall=%d",
1618 context
->arch
, context
->major
);
1619 if (context
->personality
!= PER_LINUX
)
1620 audit_log_format(ab
, " per=%lx", context
->personality
);
1621 if (context
->return_valid
)
1622 audit_log_format(ab
, " success=%s exit=%ld",
1623 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1624 context
->return_code
);
1626 audit_log_format(ab
,
1627 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1632 context
->name_count
);
1634 audit_log_task_info(ab
, tsk
);
1635 audit_log_key(ab
, context
->filterkey
);
1638 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1640 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1642 continue; /* audit_panic has been called */
1644 switch (aux
->type
) {
1646 case AUDIT_EXECVE
: {
1647 struct audit_aux_data_execve
*axi
= (void *)aux
;
1648 audit_log_execve_info(context
, &ab
, axi
);
1651 case AUDIT_BPRM_FCAPS
: {
1652 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1653 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1654 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1655 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1656 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1657 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1658 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1659 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1660 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1661 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1662 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1670 show_special(context
, &call_panic
);
1672 if (context
->fds
[0] >= 0) {
1673 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1675 audit_log_format(ab
, "fd0=%d fd1=%d",
1676 context
->fds
[0], context
->fds
[1]);
1681 if (context
->sockaddr_len
) {
1682 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1684 audit_log_format(ab
, "saddr=");
1685 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1686 context
->sockaddr_len
);
1691 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1692 struct audit_aux_data_pids
*axs
= (void *)aux
;
1694 for (i
= 0; i
< axs
->pid_count
; i
++)
1695 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1696 axs
->target_auid
[i
],
1698 axs
->target_sessionid
[i
],
1700 axs
->target_comm
[i
]))
1704 if (context
->target_pid
&&
1705 audit_log_pid_context(context
, context
->target_pid
,
1706 context
->target_auid
, context
->target_uid
,
1707 context
->target_sessionid
,
1708 context
->target_sid
, context
->target_comm
))
1711 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1712 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1714 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1720 list_for_each_entry(n
, &context
->names_list
, list
)
1721 audit_log_name(context
, n
, i
++, &call_panic
);
1723 /* Send end of event record to help user space know we are finished */
1724 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1728 audit_panic("error converting sid to string");
1732 * audit_free - free a per-task audit context
1733 * @tsk: task whose audit context block to free
1735 * Called from copy_process and do_exit
1737 void __audit_free(struct task_struct
*tsk
)
1739 struct audit_context
*context
;
1741 context
= audit_get_context(tsk
, 0, 0);
1745 /* Check for system calls that do not go through the exit
1746 * function (e.g., exit_group), then free context block.
1747 * We use GFP_ATOMIC here because we might be doing this
1748 * in the context of the idle thread */
1749 /* that can happen only if we are called from do_exit() */
1750 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1751 audit_log_exit(context
, tsk
);
1752 if (!list_empty(&context
->killed_trees
))
1753 audit_kill_trees(&context
->killed_trees
);
1755 audit_free_context(context
);
1759 * audit_syscall_entry - fill in an audit record at syscall entry
1760 * @arch: architecture type
1761 * @major: major syscall type (function)
1762 * @a1: additional syscall register 1
1763 * @a2: additional syscall register 2
1764 * @a3: additional syscall register 3
1765 * @a4: additional syscall register 4
1767 * Fill in audit context at syscall entry. This only happens if the
1768 * audit context was created when the task was created and the state or
1769 * filters demand the audit context be built. If the state from the
1770 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1771 * then the record will be written at syscall exit time (otherwise, it
1772 * will only be written if another part of the kernel requests that it
1775 void __audit_syscall_entry(int arch
, int major
,
1776 unsigned long a1
, unsigned long a2
,
1777 unsigned long a3
, unsigned long a4
)
1779 struct task_struct
*tsk
= current
;
1780 struct audit_context
*context
= tsk
->audit_context
;
1781 enum audit_state state
;
1787 * This happens only on certain architectures that make system
1788 * calls in kernel_thread via the entry.S interface, instead of
1789 * with direct calls. (If you are porting to a new
1790 * architecture, hitting this condition can indicate that you
1791 * got the _exit/_leave calls backward in entry.S.)
1795 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1797 * This also happens with vm86 emulation in a non-nested manner
1798 * (entries without exits), so this case must be caught.
1800 if (context
->in_syscall
) {
1801 struct audit_context
*newctx
;
1805 "audit(:%d) pid=%d in syscall=%d;"
1806 " entering syscall=%d\n",
1807 context
->serial
, tsk
->pid
, context
->major
, major
);
1809 newctx
= audit_alloc_context(context
->state
);
1811 newctx
->previous
= context
;
1813 tsk
->audit_context
= newctx
;
1815 /* If we can't alloc a new context, the best we
1816 * can do is to leak memory (any pending putname
1817 * will be lost). The only other alternative is
1818 * to abandon auditing. */
1819 audit_zero_context(context
, context
->state
);
1822 BUG_ON(context
->in_syscall
|| context
->name_count
);
1827 context
->arch
= arch
;
1828 context
->major
= major
;
1829 context
->argv
[0] = a1
;
1830 context
->argv
[1] = a2
;
1831 context
->argv
[2] = a3
;
1832 context
->argv
[3] = a4
;
1834 state
= context
->state
;
1835 context
->dummy
= !audit_n_rules
;
1836 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1838 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1840 if (state
== AUDIT_DISABLED
)
1843 context
->serial
= 0;
1844 context
->ctime
= CURRENT_TIME
;
1845 context
->in_syscall
= 1;
1846 context
->current_state
= state
;
1851 * audit_syscall_exit - deallocate audit context after a system call
1852 * @success: success value of the syscall
1853 * @return_code: return value of the syscall
1855 * Tear down after system call. If the audit context has been marked as
1856 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1857 * filtering, or because some other part of the kernel wrote an audit
1858 * message), then write out the syscall information. In call cases,
1859 * free the names stored from getname().
1861 void __audit_syscall_exit(int success
, long return_code
)
1863 struct task_struct
*tsk
= current
;
1864 struct audit_context
*context
;
1867 success
= AUDITSC_SUCCESS
;
1869 success
= AUDITSC_FAILURE
;
1871 context
= audit_get_context(tsk
, success
, return_code
);
1875 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1876 audit_log_exit(context
, tsk
);
1878 context
->in_syscall
= 0;
1879 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1881 if (!list_empty(&context
->killed_trees
))
1882 audit_kill_trees(&context
->killed_trees
);
1884 if (context
->previous
) {
1885 struct audit_context
*new_context
= context
->previous
;
1886 context
->previous
= NULL
;
1887 audit_free_context(context
);
1888 tsk
->audit_context
= new_context
;
1890 audit_free_names(context
);
1891 unroll_tree_refs(context
, NULL
, 0);
1892 audit_free_aux(context
);
1893 context
->aux
= NULL
;
1894 context
->aux_pids
= NULL
;
1895 context
->target_pid
= 0;
1896 context
->target_sid
= 0;
1897 context
->sockaddr_len
= 0;
1899 context
->fds
[0] = -1;
1900 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1901 kfree(context
->filterkey
);
1902 context
->filterkey
= NULL
;
1904 tsk
->audit_context
= context
;
1908 static inline void handle_one(const struct inode
*inode
)
1910 #ifdef CONFIG_AUDIT_TREE
1911 struct audit_context
*context
;
1912 struct audit_tree_refs
*p
;
1913 struct audit_chunk
*chunk
;
1915 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1917 context
= current
->audit_context
;
1919 count
= context
->tree_count
;
1921 chunk
= audit_tree_lookup(inode
);
1925 if (likely(put_tree_ref(context
, chunk
)))
1927 if (unlikely(!grow_tree_refs(context
))) {
1928 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1929 audit_set_auditable(context
);
1930 audit_put_chunk(chunk
);
1931 unroll_tree_refs(context
, p
, count
);
1934 put_tree_ref(context
, chunk
);
1938 static void handle_path(const struct dentry
*dentry
)
1940 #ifdef CONFIG_AUDIT_TREE
1941 struct audit_context
*context
;
1942 struct audit_tree_refs
*p
;
1943 const struct dentry
*d
, *parent
;
1944 struct audit_chunk
*drop
;
1948 context
= current
->audit_context
;
1950 count
= context
->tree_count
;
1955 seq
= read_seqbegin(&rename_lock
);
1957 struct inode
*inode
= d
->d_inode
;
1958 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1959 struct audit_chunk
*chunk
;
1960 chunk
= audit_tree_lookup(inode
);
1962 if (unlikely(!put_tree_ref(context
, chunk
))) {
1968 parent
= d
->d_parent
;
1973 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1976 /* just a race with rename */
1977 unroll_tree_refs(context
, p
, count
);
1980 audit_put_chunk(drop
);
1981 if (grow_tree_refs(context
)) {
1982 /* OK, got more space */
1983 unroll_tree_refs(context
, p
, count
);
1988 "out of memory, audit has lost a tree reference\n");
1989 unroll_tree_refs(context
, p
, count
);
1990 audit_set_auditable(context
);
1997 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
2000 struct audit_names
*aname
;
2002 if (context
->name_count
< AUDIT_NAMES
) {
2003 aname
= &context
->preallocated_names
[context
->name_count
];
2004 memset(aname
, 0, sizeof(*aname
));
2006 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
2009 aname
->should_free
= true;
2012 aname
->ino
= (unsigned long)-1;
2014 list_add_tail(&aname
->list
, &context
->names_list
);
2016 context
->name_count
++;
2018 context
->ino_count
++;
2024 * audit_reusename - fill out filename with info from existing entry
2025 * @uptr: userland ptr to pathname
2027 * Search the audit_names list for the current audit context. If there is an
2028 * existing entry with a matching "uptr" then return the filename
2029 * associated with that audit_name. If not, return NULL.
2032 __audit_reusename(const __user
char *uptr
)
2034 struct audit_context
*context
= current
->audit_context
;
2035 struct audit_names
*n
;
2037 list_for_each_entry(n
, &context
->names_list
, list
) {
2040 if (n
->name
->uptr
== uptr
)
2047 * audit_getname - add a name to the list
2048 * @name: name to add
2050 * Add a name to the list of audit names for this context.
2051 * Called from fs/namei.c:getname().
2053 void __audit_getname(struct filename
*name
)
2055 struct audit_context
*context
= current
->audit_context
;
2056 struct audit_names
*n
;
2058 if (!context
->in_syscall
) {
2059 #if AUDIT_DEBUG == 2
2060 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
2061 __FILE__
, __LINE__
, context
->serial
, name
);
2068 /* The filename _must_ have a populated ->name */
2069 BUG_ON(!name
->name
);
2072 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
2077 n
->name_len
= AUDIT_NAME_FULL
;
2081 if (!context
->pwd
.dentry
)
2082 get_fs_pwd(current
->fs
, &context
->pwd
);
2085 /* audit_putname - intercept a putname request
2086 * @name: name to intercept and delay for putname
2088 * If we have stored the name from getname in the audit context,
2089 * then we delay the putname until syscall exit.
2090 * Called from include/linux/fs.h:putname().
2092 void audit_putname(struct filename
*name
)
2094 struct audit_context
*context
= current
->audit_context
;
2097 if (!context
->in_syscall
) {
2098 #if AUDIT_DEBUG == 2
2099 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
2100 __FILE__
, __LINE__
, context
->serial
, name
);
2101 if (context
->name_count
) {
2102 struct audit_names
*n
;
2105 list_for_each_entry(n
, &context
->names_list
, list
)
2106 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
2107 n
->name
, n
->name
->name
?: "(null)");
2114 ++context
->put_count
;
2115 if (context
->put_count
> context
->name_count
) {
2116 printk(KERN_ERR
"%s:%d(:%d): major=%d"
2117 " in_syscall=%d putname(%p) name_count=%d"
2120 context
->serial
, context
->major
,
2121 context
->in_syscall
, name
->name
,
2122 context
->name_count
, context
->put_count
);
2129 static inline int audit_copy_fcaps(struct audit_names
*name
, const struct dentry
*dentry
)
2131 struct cpu_vfs_cap_data caps
;
2137 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
2141 name
->fcap
.permitted
= caps
.permitted
;
2142 name
->fcap
.inheritable
= caps
.inheritable
;
2143 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2144 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2150 /* Copy inode data into an audit_names. */
2151 static void audit_copy_inode(struct audit_names
*name
, const struct dentry
*dentry
,
2152 const struct inode
*inode
)
2154 name
->ino
= inode
->i_ino
;
2155 name
->dev
= inode
->i_sb
->s_dev
;
2156 name
->mode
= inode
->i_mode
;
2157 name
->uid
= inode
->i_uid
;
2158 name
->gid
= inode
->i_gid
;
2159 name
->rdev
= inode
->i_rdev
;
2160 security_inode_getsecid(inode
, &name
->osid
);
2161 audit_copy_fcaps(name
, dentry
);
2165 * __audit_inode - store the inode and device from a lookup
2166 * @name: name being audited
2167 * @dentry: dentry being audited
2168 * @parent: does this dentry represent the parent?
2170 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
2171 unsigned int parent
)
2173 struct audit_context
*context
= current
->audit_context
;
2174 const struct inode
*inode
= dentry
->d_inode
;
2175 struct audit_names
*n
;
2177 if (!context
->in_syscall
)
2184 /* The struct filename _must_ have a populated ->name */
2185 BUG_ON(!name
->name
);
2188 * If we have a pointer to an audit_names entry already, then we can
2189 * just use it directly if the type is correct.
2194 if (n
->type
== AUDIT_TYPE_PARENT
||
2195 n
->type
== AUDIT_TYPE_UNKNOWN
)
2198 if (n
->type
!= AUDIT_TYPE_PARENT
)
2203 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
2204 /* does the name pointer match? */
2205 if (!n
->name
|| n
->name
->name
!= name
->name
)
2208 /* match the correct record type */
2210 if (n
->type
== AUDIT_TYPE_PARENT
||
2211 n
->type
== AUDIT_TYPE_UNKNOWN
)
2214 if (n
->type
!= AUDIT_TYPE_PARENT
)
2220 /* unable to find the name from a previous getname(). Allocate a new
2223 n
= audit_alloc_name(context
, AUDIT_TYPE_NORMAL
);
2228 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
2229 n
->type
= AUDIT_TYPE_PARENT
;
2231 n
->name_len
= AUDIT_NAME_FULL
;
2232 n
->type
= AUDIT_TYPE_NORMAL
;
2234 handle_path(dentry
);
2235 audit_copy_inode(n
, dentry
, inode
);
2239 * __audit_inode_child - collect inode info for created/removed objects
2240 * @parent: inode of dentry parent
2241 * @dentry: dentry being audited
2242 * @type: AUDIT_TYPE_* value that we're looking for
2244 * For syscalls that create or remove filesystem objects, audit_inode
2245 * can only collect information for the filesystem object's parent.
2246 * This call updates the audit context with the child's information.
2247 * Syscalls that create a new filesystem object must be hooked after
2248 * the object is created. Syscalls that remove a filesystem object
2249 * must be hooked prior, in order to capture the target inode during
2250 * unsuccessful attempts.
2252 void __audit_inode_child(const struct inode
*parent
,
2253 const struct dentry
*dentry
,
2254 const unsigned char type
)
2256 struct audit_context
*context
= current
->audit_context
;
2257 const struct inode
*inode
= dentry
->d_inode
;
2258 const char *dname
= dentry
->d_name
.name
;
2259 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
2261 if (!context
->in_syscall
)
2267 /* look for a parent entry first */
2268 list_for_each_entry(n
, &context
->names_list
, list
) {
2269 if (!n
->name
|| n
->type
!= AUDIT_TYPE_PARENT
)
2272 if (n
->ino
== parent
->i_ino
&&
2273 !audit_compare_dname_path(dname
, n
->name
->name
, n
->name_len
)) {
2279 /* is there a matching child entry? */
2280 list_for_each_entry(n
, &context
->names_list
, list
) {
2281 /* can only match entries that have a name */
2282 if (!n
->name
|| n
->type
!= type
)
2285 /* if we found a parent, make sure this one is a child of it */
2286 if (found_parent
&& (n
->name
!= found_parent
->name
))
2289 if (!strcmp(dname
, n
->name
->name
) ||
2290 !audit_compare_dname_path(dname
, n
->name
->name
,
2292 found_parent
->name_len
:
2299 if (!found_parent
) {
2300 /* create a new, "anonymous" parent record */
2301 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
2304 audit_copy_inode(n
, NULL
, parent
);
2308 found_child
= audit_alloc_name(context
, type
);
2312 /* Re-use the name belonging to the slot for a matching parent
2313 * directory. All names for this context are relinquished in
2314 * audit_free_names() */
2316 found_child
->name
= found_parent
->name
;
2317 found_child
->name_len
= AUDIT_NAME_FULL
;
2318 /* don't call __putname() */
2319 found_child
->name_put
= false;
2323 audit_copy_inode(found_child
, dentry
, inode
);
2325 found_child
->ino
= (unsigned long)-1;
2327 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2330 * auditsc_get_stamp - get local copies of audit_context values
2331 * @ctx: audit_context for the task
2332 * @t: timespec to store time recorded in the audit_context
2333 * @serial: serial value that is recorded in the audit_context
2335 * Also sets the context as auditable.
2337 int auditsc_get_stamp(struct audit_context
*ctx
,
2338 struct timespec
*t
, unsigned int *serial
)
2340 if (!ctx
->in_syscall
)
2343 ctx
->serial
= audit_serial();
2344 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2345 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2346 *serial
= ctx
->serial
;
2349 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2354 /* global counter which is incremented every time something logs in */
2355 static atomic_t session_id
= ATOMIC_INIT(0);
2358 * audit_set_loginuid - set current task's audit_context loginuid
2359 * @loginuid: loginuid value
2363 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2365 int audit_set_loginuid(kuid_t loginuid
)
2367 struct task_struct
*task
= current
;
2368 struct audit_context
*context
= task
->audit_context
;
2369 unsigned int sessionid
;
2371 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2372 if (uid_valid(task
->loginuid
))
2374 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2375 if (!capable(CAP_AUDIT_CONTROL
))
2377 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2379 sessionid
= atomic_inc_return(&session_id
);
2380 if (context
&& context
->in_syscall
) {
2381 struct audit_buffer
*ab
;
2383 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2385 audit_log_format(ab
, "login pid=%d uid=%u "
2386 "old auid=%u new auid=%u"
2387 " old ses=%u new ses=%u",
2389 from_kuid(&init_user_ns
, task_uid(task
)),
2390 from_kuid(&init_user_ns
, task
->loginuid
),
2391 from_kuid(&init_user_ns
, loginuid
),
2392 task
->sessionid
, sessionid
);
2396 task
->sessionid
= sessionid
;
2397 task
->loginuid
= loginuid
;
2402 * __audit_mq_open - record audit data for a POSIX MQ open
2405 * @attr: queue attributes
2408 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2410 struct audit_context
*context
= current
->audit_context
;
2413 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2415 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2417 context
->mq_open
.oflag
= oflag
;
2418 context
->mq_open
.mode
= mode
;
2420 context
->type
= AUDIT_MQ_OPEN
;
2424 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2425 * @mqdes: MQ descriptor
2426 * @msg_len: Message length
2427 * @msg_prio: Message priority
2428 * @abs_timeout: Message timeout in absolute time
2431 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2432 const struct timespec
*abs_timeout
)
2434 struct audit_context
*context
= current
->audit_context
;
2435 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2438 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2440 memset(p
, 0, sizeof(struct timespec
));
2442 context
->mq_sendrecv
.mqdes
= mqdes
;
2443 context
->mq_sendrecv
.msg_len
= msg_len
;
2444 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2446 context
->type
= AUDIT_MQ_SENDRECV
;
2450 * __audit_mq_notify - record audit data for a POSIX MQ notify
2451 * @mqdes: MQ descriptor
2452 * @notification: Notification event
2456 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2458 struct audit_context
*context
= current
->audit_context
;
2461 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2463 context
->mq_notify
.sigev_signo
= 0;
2465 context
->mq_notify
.mqdes
= mqdes
;
2466 context
->type
= AUDIT_MQ_NOTIFY
;
2470 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2471 * @mqdes: MQ descriptor
2475 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2477 struct audit_context
*context
= current
->audit_context
;
2478 context
->mq_getsetattr
.mqdes
= mqdes
;
2479 context
->mq_getsetattr
.mqstat
= *mqstat
;
2480 context
->type
= AUDIT_MQ_GETSETATTR
;
2484 * audit_ipc_obj - record audit data for ipc object
2485 * @ipcp: ipc permissions
2488 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2490 struct audit_context
*context
= current
->audit_context
;
2491 context
->ipc
.uid
= ipcp
->uid
;
2492 context
->ipc
.gid
= ipcp
->gid
;
2493 context
->ipc
.mode
= ipcp
->mode
;
2494 context
->ipc
.has_perm
= 0;
2495 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2496 context
->type
= AUDIT_IPC
;
2500 * audit_ipc_set_perm - record audit data for new ipc permissions
2501 * @qbytes: msgq bytes
2502 * @uid: msgq user id
2503 * @gid: msgq group id
2504 * @mode: msgq mode (permissions)
2506 * Called only after audit_ipc_obj().
2508 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2510 struct audit_context
*context
= current
->audit_context
;
2512 context
->ipc
.qbytes
= qbytes
;
2513 context
->ipc
.perm_uid
= uid
;
2514 context
->ipc
.perm_gid
= gid
;
2515 context
->ipc
.perm_mode
= mode
;
2516 context
->ipc
.has_perm
= 1;
2519 int __audit_bprm(struct linux_binprm
*bprm
)
2521 struct audit_aux_data_execve
*ax
;
2522 struct audit_context
*context
= current
->audit_context
;
2524 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2528 ax
->argc
= bprm
->argc
;
2529 ax
->envc
= bprm
->envc
;
2531 ax
->d
.type
= AUDIT_EXECVE
;
2532 ax
->d
.next
= context
->aux
;
2533 context
->aux
= (void *)ax
;
2539 * audit_socketcall - record audit data for sys_socketcall
2540 * @nargs: number of args
2544 void __audit_socketcall(int nargs
, unsigned long *args
)
2546 struct audit_context
*context
= current
->audit_context
;
2548 context
->type
= AUDIT_SOCKETCALL
;
2549 context
->socketcall
.nargs
= nargs
;
2550 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2554 * __audit_fd_pair - record audit data for pipe and socketpair
2555 * @fd1: the first file descriptor
2556 * @fd2: the second file descriptor
2559 void __audit_fd_pair(int fd1
, int fd2
)
2561 struct audit_context
*context
= current
->audit_context
;
2562 context
->fds
[0] = fd1
;
2563 context
->fds
[1] = fd2
;
2567 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2568 * @len: data length in user space
2569 * @a: data address in kernel space
2571 * Returns 0 for success or NULL context or < 0 on error.
2573 int __audit_sockaddr(int len
, void *a
)
2575 struct audit_context
*context
= current
->audit_context
;
2577 if (!context
->sockaddr
) {
2578 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2581 context
->sockaddr
= p
;
2584 context
->sockaddr_len
= len
;
2585 memcpy(context
->sockaddr
, a
, len
);
2589 void __audit_ptrace(struct task_struct
*t
)
2591 struct audit_context
*context
= current
->audit_context
;
2593 context
->target_pid
= t
->pid
;
2594 context
->target_auid
= audit_get_loginuid(t
);
2595 context
->target_uid
= task_uid(t
);
2596 context
->target_sessionid
= audit_get_sessionid(t
);
2597 security_task_getsecid(t
, &context
->target_sid
);
2598 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2602 * audit_signal_info - record signal info for shutting down audit subsystem
2603 * @sig: signal value
2604 * @t: task being signaled
2606 * If the audit subsystem is being terminated, record the task (pid)
2607 * and uid that is doing that.
2609 int __audit_signal_info(int sig
, struct task_struct
*t
)
2611 struct audit_aux_data_pids
*axp
;
2612 struct task_struct
*tsk
= current
;
2613 struct audit_context
*ctx
= tsk
->audit_context
;
2614 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2616 if (audit_pid
&& t
->tgid
== audit_pid
) {
2617 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2618 audit_sig_pid
= tsk
->pid
;
2619 if (uid_valid(tsk
->loginuid
))
2620 audit_sig_uid
= tsk
->loginuid
;
2622 audit_sig_uid
= uid
;
2623 security_task_getsecid(tsk
, &audit_sig_sid
);
2625 if (!audit_signals
|| audit_dummy_context())
2629 /* optimize the common case by putting first signal recipient directly
2630 * in audit_context */
2631 if (!ctx
->target_pid
) {
2632 ctx
->target_pid
= t
->tgid
;
2633 ctx
->target_auid
= audit_get_loginuid(t
);
2634 ctx
->target_uid
= t_uid
;
2635 ctx
->target_sessionid
= audit_get_sessionid(t
);
2636 security_task_getsecid(t
, &ctx
->target_sid
);
2637 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2641 axp
= (void *)ctx
->aux_pids
;
2642 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2643 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2647 axp
->d
.type
= AUDIT_OBJ_PID
;
2648 axp
->d
.next
= ctx
->aux_pids
;
2649 ctx
->aux_pids
= (void *)axp
;
2651 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2653 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2654 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2655 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2656 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2657 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2658 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2665 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2666 * @bprm: pointer to the bprm being processed
2667 * @new: the proposed new credentials
2668 * @old: the old credentials
2670 * Simply check if the proc already has the caps given by the file and if not
2671 * store the priv escalation info for later auditing at the end of the syscall
2675 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2676 const struct cred
*new, const struct cred
*old
)
2678 struct audit_aux_data_bprm_fcaps
*ax
;
2679 struct audit_context
*context
= current
->audit_context
;
2680 struct cpu_vfs_cap_data vcaps
;
2681 struct dentry
*dentry
;
2683 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2687 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2688 ax
->d
.next
= context
->aux
;
2689 context
->aux
= (void *)ax
;
2691 dentry
= dget(bprm
->file
->f_dentry
);
2692 get_vfs_caps_from_disk(dentry
, &vcaps
);
2695 ax
->fcap
.permitted
= vcaps
.permitted
;
2696 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2697 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2698 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2700 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2701 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2702 ax
->old_pcap
.effective
= old
->cap_effective
;
2704 ax
->new_pcap
.permitted
= new->cap_permitted
;
2705 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2706 ax
->new_pcap
.effective
= new->cap_effective
;
2711 * __audit_log_capset - store information about the arguments to the capset syscall
2712 * @pid: target pid of the capset call
2713 * @new: the new credentials
2714 * @old: the old (current) credentials
2716 * Record the aguments userspace sent to sys_capset for later printing by the
2717 * audit system if applicable
2719 void __audit_log_capset(pid_t pid
,
2720 const struct cred
*new, const struct cred
*old
)
2722 struct audit_context
*context
= current
->audit_context
;
2723 context
->capset
.pid
= pid
;
2724 context
->capset
.cap
.effective
= new->cap_effective
;
2725 context
->capset
.cap
.inheritable
= new->cap_effective
;
2726 context
->capset
.cap
.permitted
= new->cap_permitted
;
2727 context
->type
= AUDIT_CAPSET
;
2730 void __audit_mmap_fd(int fd
, int flags
)
2732 struct audit_context
*context
= current
->audit_context
;
2733 context
->mmap
.fd
= fd
;
2734 context
->mmap
.flags
= flags
;
2735 context
->type
= AUDIT_MMAP
;
2738 static void audit_log_abend(struct audit_buffer
*ab
, char *reason
, long signr
)
2742 unsigned int sessionid
;
2744 auid
= audit_get_loginuid(current
);
2745 sessionid
= audit_get_sessionid(current
);
2746 current_uid_gid(&uid
, &gid
);
2748 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2749 from_kuid(&init_user_ns
, auid
),
2750 from_kuid(&init_user_ns
, uid
),
2751 from_kgid(&init_user_ns
, gid
),
2753 audit_log_task_context(ab
);
2754 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2755 audit_log_untrustedstring(ab
, current
->comm
);
2756 audit_log_format(ab
, " reason=");
2757 audit_log_string(ab
, reason
);
2758 audit_log_format(ab
, " sig=%ld", signr
);
2761 * audit_core_dumps - record information about processes that end abnormally
2762 * @signr: signal value
2764 * If a process ends with a core dump, something fishy is going on and we
2765 * should record the event for investigation.
2767 void audit_core_dumps(long signr
)
2769 struct audit_buffer
*ab
;
2774 if (signr
== SIGQUIT
) /* don't care for those */
2777 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2778 audit_log_abend(ab
, "memory violation", signr
);
2782 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2784 struct audit_buffer
*ab
;
2786 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2787 audit_log_abend(ab
, "seccomp", signr
);
2788 audit_log_format(ab
, " syscall=%ld", syscall
);
2789 audit_log_format(ab
, " compat=%d", is_compat_task());
2790 audit_log_format(ab
, " ip=0x%lx", KSTK_EIP(current
));
2791 audit_log_format(ab
, " code=0x%x", code
);
2795 struct list_head
*audit_killed_trees(void)
2797 struct audit_context
*ctx
= current
->audit_context
;
2798 if (likely(!ctx
|| !ctx
->in_syscall
))
2800 return &ctx
->killed_trees
;