4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
33 * 4MB minimal write chunk size
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_work
{
42 struct super_block
*sb
;
43 unsigned long *older_than_this
;
44 enum writeback_sync_modes sync_mode
;
45 unsigned int tagged_writepages
:1;
46 unsigned int for_kupdate
:1;
47 unsigned int range_cyclic
:1;
48 unsigned int for_background
:1;
49 enum wb_reason reason
; /* why was writeback initiated? */
51 struct list_head list
; /* pending work list */
52 struct completion
*done
; /* set if the caller waits */
56 * We don't actually have pdflush, but this one is exported though /proc...
58 int nr_pdflush_threads
;
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
64 * Determine whether there is writeback waiting to be handled against a
67 int writeback_in_progress(struct backing_dev_info
*bdi
)
69 return test_bit(BDI_writeback_running
, &bdi
->state
);
72 static inline struct backing_dev_info
*inode_to_bdi(struct inode
*inode
)
74 struct super_block
*sb
= inode
->i_sb
;
76 if (strcmp(sb
->s_type
->name
, "bdev") == 0)
77 return inode
->i_mapping
->backing_dev_info
;
82 static inline struct inode
*wb_inode(struct list_head
*head
)
84 return list_entry(head
, struct inode
, i_wb_list
);
88 * Include the creation of the trace points after defining the
89 * wb_writeback_work structure and inline functions so that the definition
90 * remains local to this file.
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info
*bdi
)
99 wake_up_process(bdi
->wb
.task
);
102 * The bdi thread isn't there, wake up the forker thread which
103 * will create and run it.
105 wake_up_process(default_backing_dev_info
.wb
.task
);
109 static void bdi_queue_work(struct backing_dev_info
*bdi
,
110 struct wb_writeback_work
*work
)
112 trace_writeback_queue(bdi
, work
);
114 spin_lock_bh(&bdi
->wb_lock
);
115 list_add_tail(&work
->list
, &bdi
->work_list
);
117 trace_writeback_nothread(bdi
, work
);
118 bdi_wakeup_flusher(bdi
);
119 spin_unlock_bh(&bdi
->wb_lock
);
123 __bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
124 bool range_cyclic
, enum wb_reason reason
)
126 struct wb_writeback_work
*work
;
129 * This is WB_SYNC_NONE writeback, so if allocation fails just
130 * wakeup the thread for old dirty data writeback
132 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
135 trace_writeback_nowork(bdi
);
136 wake_up_process(bdi
->wb
.task
);
141 work
->sync_mode
= WB_SYNC_NONE
;
142 work
->nr_pages
= nr_pages
;
143 work
->range_cyclic
= range_cyclic
;
144 work
->reason
= reason
;
146 bdi_queue_work(bdi
, work
);
150 * bdi_start_writeback - start writeback
151 * @bdi: the backing device to write from
152 * @nr_pages: the number of pages to write
153 * @reason: reason why some writeback work was initiated
156 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
157 * started when this function returns, we make no guarantees on
158 * completion. Caller need not hold sb s_umount semaphore.
161 void bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
162 enum wb_reason reason
)
164 __bdi_start_writeback(bdi
, nr_pages
, true, reason
);
168 * bdi_start_background_writeback - start background writeback
169 * @bdi: the backing device to write from
172 * This makes sure WB_SYNC_NONE background writeback happens. When
173 * this function returns, it is only guaranteed that for given BDI
174 * some IO is happening if we are over background dirty threshold.
175 * Caller need not hold sb s_umount semaphore.
177 void bdi_start_background_writeback(struct backing_dev_info
*bdi
)
180 * We just wake up the flusher thread. It will perform background
181 * writeback as soon as there is no other work to do.
183 trace_writeback_wake_background(bdi
);
184 spin_lock_bh(&bdi
->wb_lock
);
185 bdi_wakeup_flusher(bdi
);
186 spin_unlock_bh(&bdi
->wb_lock
);
190 * Remove the inode from the writeback list it is on.
192 void inode_wb_list_del(struct inode
*inode
)
194 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
196 spin_lock(&bdi
->wb
.list_lock
);
197 list_del_init(&inode
->i_wb_list
);
198 spin_unlock(&bdi
->wb
.list_lock
);
202 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203 * furthest end of its superblock's dirty-inode list.
205 * Before stamping the inode's ->dirtied_when, we check to see whether it is
206 * already the most-recently-dirtied inode on the b_dirty list. If that is
207 * the case then the inode must have been redirtied while it was being written
208 * out and we don't reset its dirtied_when.
210 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
212 assert_spin_locked(&wb
->list_lock
);
213 if (!list_empty(&wb
->b_dirty
)) {
216 tail
= wb_inode(wb
->b_dirty
.next
);
217 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
218 inode
->dirtied_when
= jiffies
;
220 list_move(&inode
->i_wb_list
, &wb
->b_dirty
);
224 * requeue inode for re-scanning after bdi->b_io list is exhausted.
226 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
228 assert_spin_locked(&wb
->list_lock
);
229 list_move(&inode
->i_wb_list
, &wb
->b_more_io
);
232 static void inode_sync_complete(struct inode
*inode
)
234 inode
->i_state
&= ~I_SYNC
;
235 /* Waiters must see I_SYNC cleared before being woken up */
237 wake_up_bit(&inode
->i_state
, __I_SYNC
);
240 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
242 bool ret
= time_after(inode
->dirtied_when
, t
);
245 * For inodes being constantly redirtied, dirtied_when can get stuck.
246 * It _appears_ to be in the future, but is actually in distant past.
247 * This test is necessary to prevent such wrapped-around relative times
248 * from permanently stopping the whole bdi writeback.
250 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
256 * Move expired (dirtied after work->older_than_this) dirty inodes from
257 * @delaying_queue to @dispatch_queue.
259 static int move_expired_inodes(struct list_head
*delaying_queue
,
260 struct list_head
*dispatch_queue
,
261 struct wb_writeback_work
*work
)
264 struct list_head
*pos
, *node
;
265 struct super_block
*sb
= NULL
;
270 while (!list_empty(delaying_queue
)) {
271 inode
= wb_inode(delaying_queue
->prev
);
272 if (work
->older_than_this
&&
273 inode_dirtied_after(inode
, *work
->older_than_this
))
275 if (sb
&& sb
!= inode
->i_sb
)
278 list_move(&inode
->i_wb_list
, &tmp
);
282 /* just one sb in list, splice to dispatch_queue and we're done */
284 list_splice(&tmp
, dispatch_queue
);
288 /* Move inodes from one superblock together */
289 while (!list_empty(&tmp
)) {
290 sb
= wb_inode(tmp
.prev
)->i_sb
;
291 list_for_each_prev_safe(pos
, node
, &tmp
) {
292 inode
= wb_inode(pos
);
293 if (inode
->i_sb
== sb
)
294 list_move(&inode
->i_wb_list
, dispatch_queue
);
302 * Queue all expired dirty inodes for io, eldest first.
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> gf edc BA
307 * newly dirtied b_dirty b_io b_more_io
308 * =============> g fBAedc
310 * +--> dequeue for IO
312 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
315 assert_spin_locked(&wb
->list_lock
);
316 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
317 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, work
);
318 trace_writeback_queue_io(wb
, work
, moved
);
321 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
323 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
324 return inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
329 * Wait for writeback on an inode to complete. Called with i_lock held.
330 * Caller must make sure inode cannot go away when we drop i_lock.
332 static void __inode_wait_for_writeback(struct inode
*inode
)
333 __releases(inode
->i_lock
)
334 __acquires(inode
->i_lock
)
336 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
337 wait_queue_head_t
*wqh
;
339 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
340 while (inode
->i_state
& I_SYNC
) {
341 spin_unlock(&inode
->i_lock
);
342 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
343 spin_lock(&inode
->i_lock
);
348 * Wait for writeback on an inode to complete. Caller must have inode pinned.
350 void inode_wait_for_writeback(struct inode
*inode
)
352 spin_lock(&inode
->i_lock
);
353 __inode_wait_for_writeback(inode
);
354 spin_unlock(&inode
->i_lock
);
358 * Sleep until I_SYNC is cleared. This function must be called with i_lock
359 * held and drops it. It is aimed for callers not holding any inode reference
360 * so once i_lock is dropped, inode can go away.
362 static void inode_sleep_on_writeback(struct inode
*inode
)
363 __releases(inode
->i_lock
)
366 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
369 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
370 sleep
= inode
->i_state
& I_SYNC
;
371 spin_unlock(&inode
->i_lock
);
374 finish_wait(wqh
, &wait
);
378 * Find proper writeback list for the inode depending on its current state and
379 * possibly also change of its state while we were doing writeback. Here we
380 * handle things such as livelock prevention or fairness of writeback among
381 * inodes. This function can be called only by flusher thread - noone else
382 * processes all inodes in writeback lists and requeueing inodes behind flusher
383 * thread's back can have unexpected consequences.
385 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
386 struct writeback_control
*wbc
)
388 if (inode
->i_state
& I_FREEING
)
392 * Sync livelock prevention. Each inode is tagged and synced in one
393 * shot. If still dirty, it will be redirty_tail()'ed below. Update
394 * the dirty time to prevent enqueue and sync it again.
396 if ((inode
->i_state
& I_DIRTY
) &&
397 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
398 inode
->dirtied_when
= jiffies
;
400 if (wbc
->pages_skipped
) {
402 * writeback is not making progress due to locked
403 * buffers. Skip this inode for now.
405 redirty_tail(inode
, wb
);
409 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
411 * We didn't write back all the pages. nfs_writepages()
412 * sometimes bales out without doing anything.
414 if (wbc
->nr_to_write
<= 0) {
415 /* Slice used up. Queue for next turn. */
416 requeue_io(inode
, wb
);
419 * Writeback blocked by something other than
420 * congestion. Delay the inode for some time to
421 * avoid spinning on the CPU (100% iowait)
422 * retrying writeback of the dirty page/inode
423 * that cannot be performed immediately.
425 redirty_tail(inode
, wb
);
427 } else if (inode
->i_state
& I_DIRTY
) {
429 * Filesystems can dirty the inode during writeback operations,
430 * such as delayed allocation during submission or metadata
431 * updates after data IO completion.
433 redirty_tail(inode
, wb
);
435 /* The inode is clean. Remove from writeback lists. */
436 list_del_init(&inode
->i_wb_list
);
441 * Write out an inode and its dirty pages. Do not update the writeback list
442 * linkage. That is left to the caller. The caller is also responsible for
443 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
446 __writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
447 struct writeback_control
*wbc
)
449 struct address_space
*mapping
= inode
->i_mapping
;
450 long nr_to_write
= wbc
->nr_to_write
;
454 WARN_ON(!(inode
->i_state
& I_SYNC
));
456 ret
= do_writepages(mapping
, wbc
);
459 * Make sure to wait on the data before writing out the metadata.
460 * This is important for filesystems that modify metadata on data
463 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
464 int err
= filemap_fdatawait(mapping
);
470 * Some filesystems may redirty the inode during the writeback
471 * due to delalloc, clear dirty metadata flags right before
474 spin_lock(&inode
->i_lock
);
475 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
476 if (!mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
477 inode
->i_state
&= ~I_DIRTY_PAGES
;
478 dirty
= inode
->i_state
& I_DIRTY
;
479 inode
->i_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
480 spin_unlock(&inode
->i_lock
);
481 /* Don't write the inode if only I_DIRTY_PAGES was set */
482 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
483 int err
= write_inode(inode
, wbc
);
487 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
492 * Write out an inode's dirty pages. Either the caller has an active reference
493 * on the inode or the inode has I_WILL_FREE set.
495 * This function is designed to be called for writing back one inode which
496 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
497 * and does more profound writeback list handling in writeback_sb_inodes().
500 writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
501 struct writeback_control
*wbc
)
505 spin_lock(&inode
->i_lock
);
506 if (!atomic_read(&inode
->i_count
))
507 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
509 WARN_ON(inode
->i_state
& I_WILL_FREE
);
511 if (inode
->i_state
& I_SYNC
) {
512 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
515 * It's a data-integrity sync. We must wait. Since callers hold
516 * inode reference or inode has I_WILL_FREE set, it cannot go
519 __inode_wait_for_writeback(inode
);
521 WARN_ON(inode
->i_state
& I_SYNC
);
523 * Skip inode if it is clean. We don't want to mess with writeback
524 * lists in this function since flusher thread may be doing for example
525 * sync in parallel and if we move the inode, it could get skipped. So
526 * here we make sure inode is on some writeback list and leave it there
527 * unless we have completely cleaned the inode.
529 if (!(inode
->i_state
& I_DIRTY
))
531 inode
->i_state
|= I_SYNC
;
532 spin_unlock(&inode
->i_lock
);
534 ret
= __writeback_single_inode(inode
, wb
, wbc
);
536 spin_lock(&wb
->list_lock
);
537 spin_lock(&inode
->i_lock
);
539 * If inode is clean, remove it from writeback lists. Otherwise don't
540 * touch it. See comment above for explanation.
542 if (!(inode
->i_state
& I_DIRTY
))
543 list_del_init(&inode
->i_wb_list
);
544 spin_unlock(&wb
->list_lock
);
545 inode_sync_complete(inode
);
547 spin_unlock(&inode
->i_lock
);
551 static long writeback_chunk_size(struct backing_dev_info
*bdi
,
552 struct wb_writeback_work
*work
)
557 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
558 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
559 * here avoids calling into writeback_inodes_wb() more than once.
561 * The intended call sequence for WB_SYNC_ALL writeback is:
564 * writeback_sb_inodes() <== called only once
565 * write_cache_pages() <== called once for each inode
566 * (quickly) tag currently dirty pages
567 * (maybe slowly) sync all tagged pages
569 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
572 pages
= min(bdi
->avg_write_bandwidth
/ 2,
573 global_dirty_limit
/ DIRTY_SCOPE
);
574 pages
= min(pages
, work
->nr_pages
);
575 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
576 MIN_WRITEBACK_PAGES
);
583 * Write a portion of b_io inodes which belong to @sb.
585 * If @only_this_sb is true, then find and write all such
586 * inodes. Otherwise write only ones which go sequentially
589 * Return the number of pages and/or inodes written.
591 static long writeback_sb_inodes(struct super_block
*sb
,
592 struct bdi_writeback
*wb
,
593 struct wb_writeback_work
*work
)
595 struct writeback_control wbc
= {
596 .sync_mode
= work
->sync_mode
,
597 .tagged_writepages
= work
->tagged_writepages
,
598 .for_kupdate
= work
->for_kupdate
,
599 .for_background
= work
->for_background
,
600 .range_cyclic
= work
->range_cyclic
,
602 .range_end
= LLONG_MAX
,
604 unsigned long start_time
= jiffies
;
606 long wrote
= 0; /* count both pages and inodes */
608 while (!list_empty(&wb
->b_io
)) {
609 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
611 if (inode
->i_sb
!= sb
) {
614 * We only want to write back data for this
615 * superblock, move all inodes not belonging
616 * to it back onto the dirty list.
618 redirty_tail(inode
, wb
);
623 * The inode belongs to a different superblock.
624 * Bounce back to the caller to unpin this and
625 * pin the next superblock.
631 * Don't bother with new inodes or inodes beeing freed, first
632 * kind does not need peridic writeout yet, and for the latter
633 * kind writeout is handled by the freer.
635 spin_lock(&inode
->i_lock
);
636 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
637 spin_unlock(&inode
->i_lock
);
638 redirty_tail(inode
, wb
);
641 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
643 * If this inode is locked for writeback and we are not
644 * doing writeback-for-data-integrity, move it to
645 * b_more_io so that writeback can proceed with the
646 * other inodes on s_io.
648 * We'll have another go at writing back this inode
649 * when we completed a full scan of b_io.
651 spin_unlock(&inode
->i_lock
);
652 requeue_io(inode
, wb
);
653 trace_writeback_sb_inodes_requeue(inode
);
656 spin_unlock(&wb
->list_lock
);
659 * We already requeued the inode if it had I_SYNC set and we
660 * are doing WB_SYNC_NONE writeback. So this catches only the
663 if (inode
->i_state
& I_SYNC
) {
664 /* Wait for I_SYNC. This function drops i_lock... */
665 inode_sleep_on_writeback(inode
);
666 /* Inode may be gone, start again */
669 inode
->i_state
|= I_SYNC
;
670 spin_unlock(&inode
->i_lock
);
672 write_chunk
= writeback_chunk_size(wb
->bdi
, work
);
673 wbc
.nr_to_write
= write_chunk
;
674 wbc
.pages_skipped
= 0;
677 * We use I_SYNC to pin the inode in memory. While it is set
678 * evict_inode() will wait so the inode cannot be freed.
680 __writeback_single_inode(inode
, wb
, &wbc
);
682 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
683 wrote
+= write_chunk
- wbc
.nr_to_write
;
684 spin_lock(&wb
->list_lock
);
685 spin_lock(&inode
->i_lock
);
686 if (!(inode
->i_state
& I_DIRTY
))
688 requeue_inode(inode
, wb
, &wbc
);
689 inode_sync_complete(inode
);
690 spin_unlock(&inode
->i_lock
);
691 cond_resched_lock(&wb
->list_lock
);
693 * bail out to wb_writeback() often enough to check
694 * background threshold and other termination conditions.
697 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
699 if (work
->nr_pages
<= 0)
706 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
707 struct wb_writeback_work
*work
)
709 unsigned long start_time
= jiffies
;
712 while (!list_empty(&wb
->b_io
)) {
713 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
714 struct super_block
*sb
= inode
->i_sb
;
716 if (!grab_super_passive(sb
)) {
718 * grab_super_passive() may fail consistently due to
719 * s_umount being grabbed by someone else. Don't use
720 * requeue_io() to avoid busy retrying the inode/sb.
722 redirty_tail(inode
, wb
);
725 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
728 /* refer to the same tests at the end of writeback_sb_inodes */
730 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
732 if (work
->nr_pages
<= 0)
736 /* Leave any unwritten inodes on b_io */
740 long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
741 enum wb_reason reason
)
743 struct wb_writeback_work work
= {
744 .nr_pages
= nr_pages
,
745 .sync_mode
= WB_SYNC_NONE
,
750 spin_lock(&wb
->list_lock
);
751 if (list_empty(&wb
->b_io
))
753 __writeback_inodes_wb(wb
, &work
);
754 spin_unlock(&wb
->list_lock
);
756 return nr_pages
- work
.nr_pages
;
759 static bool over_bground_thresh(struct backing_dev_info
*bdi
)
761 unsigned long background_thresh
, dirty_thresh
;
763 global_dirty_limits(&background_thresh
, &dirty_thresh
);
765 if (global_page_state(NR_FILE_DIRTY
) +
766 global_page_state(NR_UNSTABLE_NFS
) > background_thresh
)
769 if (bdi_stat(bdi
, BDI_RECLAIMABLE
) >
770 bdi_dirty_limit(bdi
, background_thresh
))
777 * Called under wb->list_lock. If there are multiple wb per bdi,
778 * only the flusher working on the first wb should do it.
780 static void wb_update_bandwidth(struct bdi_writeback
*wb
,
781 unsigned long start_time
)
783 __bdi_update_bandwidth(wb
->bdi
, 0, 0, 0, 0, 0, start_time
);
787 * Explicit flushing or periodic writeback of "old" data.
789 * Define "old": the first time one of an inode's pages is dirtied, we mark the
790 * dirtying-time in the inode's address_space. So this periodic writeback code
791 * just walks the superblock inode list, writing back any inodes which are
792 * older than a specific point in time.
794 * Try to run once per dirty_writeback_interval. But if a writeback event
795 * takes longer than a dirty_writeback_interval interval, then leave a
798 * older_than_this takes precedence over nr_to_write. So we'll only write back
799 * all dirty pages if they are all attached to "old" mappings.
801 static long wb_writeback(struct bdi_writeback
*wb
,
802 struct wb_writeback_work
*work
)
804 unsigned long wb_start
= jiffies
;
805 long nr_pages
= work
->nr_pages
;
806 unsigned long oldest_jif
;
810 oldest_jif
= jiffies
;
811 work
->older_than_this
= &oldest_jif
;
813 spin_lock(&wb
->list_lock
);
816 * Stop writeback when nr_pages has been consumed
818 if (work
->nr_pages
<= 0)
822 * Background writeout and kupdate-style writeback may
823 * run forever. Stop them if there is other work to do
824 * so that e.g. sync can proceed. They'll be restarted
825 * after the other works are all done.
827 if ((work
->for_background
|| work
->for_kupdate
) &&
828 !list_empty(&wb
->bdi
->work_list
))
832 * For background writeout, stop when we are below the
833 * background dirty threshold
835 if (work
->for_background
&& !over_bground_thresh(wb
->bdi
))
839 * Kupdate and background works are special and we want to
840 * include all inodes that need writing. Livelock avoidance is
841 * handled by these works yielding to any other work so we are
844 if (work
->for_kupdate
) {
845 oldest_jif
= jiffies
-
846 msecs_to_jiffies(dirty_expire_interval
* 10);
847 } else if (work
->for_background
)
848 oldest_jif
= jiffies
;
850 trace_writeback_start(wb
->bdi
, work
);
851 if (list_empty(&wb
->b_io
))
854 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
856 progress
= __writeback_inodes_wb(wb
, work
);
857 trace_writeback_written(wb
->bdi
, work
);
859 wb_update_bandwidth(wb
, wb_start
);
862 * Did we write something? Try for more
864 * Dirty inodes are moved to b_io for writeback in batches.
865 * The completion of the current batch does not necessarily
866 * mean the overall work is done. So we keep looping as long
867 * as made some progress on cleaning pages or inodes.
872 * No more inodes for IO, bail
874 if (list_empty(&wb
->b_more_io
))
877 * Nothing written. Wait for some inode to
878 * become available for writeback. Otherwise
879 * we'll just busyloop.
881 if (!list_empty(&wb
->b_more_io
)) {
882 trace_writeback_wait(wb
->bdi
, work
);
883 inode
= wb_inode(wb
->b_more_io
.prev
);
884 spin_lock(&inode
->i_lock
);
885 spin_unlock(&wb
->list_lock
);
886 /* This function drops i_lock... */
887 inode_sleep_on_writeback(inode
);
888 spin_lock(&wb
->list_lock
);
891 spin_unlock(&wb
->list_lock
);
893 return nr_pages
- work
->nr_pages
;
897 * Return the next wb_writeback_work struct that hasn't been processed yet.
899 static struct wb_writeback_work
*
900 get_next_work_item(struct backing_dev_info
*bdi
)
902 struct wb_writeback_work
*work
= NULL
;
904 spin_lock_bh(&bdi
->wb_lock
);
905 if (!list_empty(&bdi
->work_list
)) {
906 work
= list_entry(bdi
->work_list
.next
,
907 struct wb_writeback_work
, list
);
908 list_del_init(&work
->list
);
910 spin_unlock_bh(&bdi
->wb_lock
);
915 * Add in the number of potentially dirty inodes, because each inode
916 * write can dirty pagecache in the underlying blockdev.
918 static unsigned long get_nr_dirty_pages(void)
920 return global_page_state(NR_FILE_DIRTY
) +
921 global_page_state(NR_UNSTABLE_NFS
) +
922 get_nr_dirty_inodes();
925 static long wb_check_background_flush(struct bdi_writeback
*wb
)
927 if (over_bground_thresh(wb
->bdi
)) {
929 struct wb_writeback_work work
= {
930 .nr_pages
= LONG_MAX
,
931 .sync_mode
= WB_SYNC_NONE
,
934 .reason
= WB_REASON_BACKGROUND
,
937 return wb_writeback(wb
, &work
);
943 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
945 unsigned long expired
;
949 * When set to zero, disable periodic writeback
951 if (!dirty_writeback_interval
)
954 expired
= wb
->last_old_flush
+
955 msecs_to_jiffies(dirty_writeback_interval
* 10);
956 if (time_before(jiffies
, expired
))
959 wb
->last_old_flush
= jiffies
;
960 nr_pages
= get_nr_dirty_pages();
963 struct wb_writeback_work work
= {
964 .nr_pages
= nr_pages
,
965 .sync_mode
= WB_SYNC_NONE
,
968 .reason
= WB_REASON_PERIODIC
,
971 return wb_writeback(wb
, &work
);
978 * Retrieve work items and do the writeback they describe
980 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
982 struct backing_dev_info
*bdi
= wb
->bdi
;
983 struct wb_writeback_work
*work
;
986 set_bit(BDI_writeback_running
, &wb
->bdi
->state
);
987 while ((work
= get_next_work_item(bdi
)) != NULL
) {
989 * Override sync mode, in case we must wait for completion
990 * because this thread is exiting now.
993 work
->sync_mode
= WB_SYNC_ALL
;
995 trace_writeback_exec(bdi
, work
);
997 wrote
+= wb_writeback(wb
, work
);
1000 * Notify the caller of completion if this is a synchronous
1001 * work item, otherwise just free it.
1004 complete(work
->done
);
1010 * Check for periodic writeback, kupdated() style
1012 wrote
+= wb_check_old_data_flush(wb
);
1013 wrote
+= wb_check_background_flush(wb
);
1014 clear_bit(BDI_writeback_running
, &wb
->bdi
->state
);
1020 * Handle writeback of dirty data for the device backed by this bdi. Also
1021 * wakes up periodically and does kupdated style flushing.
1023 int bdi_writeback_thread(void *data
)
1025 struct bdi_writeback
*wb
= data
;
1026 struct backing_dev_info
*bdi
= wb
->bdi
;
1029 current
->flags
|= PF_SWAPWRITE
;
1031 wb
->last_active
= jiffies
;
1034 * Our parent may run at a different priority, just set us to normal
1036 set_user_nice(current
, 0);
1038 trace_writeback_thread_start(bdi
);
1040 while (!kthread_freezable_should_stop(NULL
)) {
1042 * Remove own delayed wake-up timer, since we are already awake
1043 * and we'll take care of the preriodic write-back.
1045 del_timer(&wb
->wakeup_timer
);
1047 pages_written
= wb_do_writeback(wb
, 0);
1049 trace_writeback_pages_written(pages_written
);
1052 wb
->last_active
= jiffies
;
1054 set_current_state(TASK_INTERRUPTIBLE
);
1055 if (!list_empty(&bdi
->work_list
) || kthread_should_stop()) {
1056 __set_current_state(TASK_RUNNING
);
1060 if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
1061 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval
* 10));
1064 * We have nothing to do, so can go sleep without any
1065 * timeout and save power. When a work is queued or
1066 * something is made dirty - we will be woken up.
1072 /* Flush any work that raced with us exiting */
1073 if (!list_empty(&bdi
->work_list
))
1074 wb_do_writeback(wb
, 1);
1076 trace_writeback_thread_stop(bdi
);
1082 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1085 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1087 struct backing_dev_info
*bdi
;
1090 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1091 global_page_state(NR_UNSTABLE_NFS
);
1095 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1096 if (!bdi_has_dirty_io(bdi
))
1098 __bdi_start_writeback(bdi
, nr_pages
, false, reason
);
1103 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1105 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1106 struct dentry
*dentry
;
1107 const char *name
= "?";
1109 dentry
= d_find_alias(inode
);
1111 spin_lock(&dentry
->d_lock
);
1112 name
= (const char *) dentry
->d_name
.name
;
1115 "%s(%d): dirtied inode %lu (%s) on %s\n",
1116 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1117 name
, inode
->i_sb
->s_id
);
1119 spin_unlock(&dentry
->d_lock
);
1126 * __mark_inode_dirty - internal function
1127 * @inode: inode to mark
1128 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1129 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1130 * mark_inode_dirty_sync.
1132 * Put the inode on the super block's dirty list.
1134 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1135 * dirty list only if it is hashed or if it refers to a blockdev.
1136 * If it was not hashed, it will never be added to the dirty list
1137 * even if it is later hashed, as it will have been marked dirty already.
1139 * In short, make sure you hash any inodes _before_ you start marking
1142 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1143 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1144 * the kernel-internal blockdev inode represents the dirtying time of the
1145 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1146 * page->mapping->host, so the page-dirtying time is recorded in the internal
1149 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1151 struct super_block
*sb
= inode
->i_sb
;
1152 struct backing_dev_info
*bdi
= NULL
;
1155 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1156 * dirty the inode itself
1158 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1159 if (sb
->s_op
->dirty_inode
)
1160 sb
->s_op
->dirty_inode(inode
, flags
);
1164 * make sure that changes are seen by all cpus before we test i_state
1169 /* avoid the locking if we can */
1170 if ((inode
->i_state
& flags
) == flags
)
1173 if (unlikely(block_dump
))
1174 block_dump___mark_inode_dirty(inode
);
1176 spin_lock(&inode
->i_lock
);
1177 if ((inode
->i_state
& flags
) != flags
) {
1178 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1180 inode
->i_state
|= flags
;
1183 * If the inode is being synced, just update its dirty state.
1184 * The unlocker will place the inode on the appropriate
1185 * superblock list, based upon its state.
1187 if (inode
->i_state
& I_SYNC
)
1188 goto out_unlock_inode
;
1191 * Only add valid (hashed) inodes to the superblock's
1192 * dirty list. Add blockdev inodes as well.
1194 if (!S_ISBLK(inode
->i_mode
)) {
1195 if (inode_unhashed(inode
))
1196 goto out_unlock_inode
;
1198 if (inode
->i_state
& I_FREEING
)
1199 goto out_unlock_inode
;
1202 * If the inode was already on b_dirty/b_io/b_more_io, don't
1203 * reposition it (that would break b_dirty time-ordering).
1206 bool wakeup_bdi
= false;
1207 bdi
= inode_to_bdi(inode
);
1209 if (bdi_cap_writeback_dirty(bdi
)) {
1210 WARN(!test_bit(BDI_registered
, &bdi
->state
),
1211 "bdi-%s not registered\n", bdi
->name
);
1214 * If this is the first dirty inode for this
1215 * bdi, we have to wake-up the corresponding
1216 * bdi thread to make sure background
1217 * write-back happens later.
1219 if (!wb_has_dirty_io(&bdi
->wb
))
1223 spin_unlock(&inode
->i_lock
);
1224 spin_lock(&bdi
->wb
.list_lock
);
1225 inode
->dirtied_when
= jiffies
;
1226 list_move(&inode
->i_wb_list
, &bdi
->wb
.b_dirty
);
1227 spin_unlock(&bdi
->wb
.list_lock
);
1230 bdi_wakeup_thread_delayed(bdi
);
1235 spin_unlock(&inode
->i_lock
);
1238 EXPORT_SYMBOL(__mark_inode_dirty
);
1240 static void wait_sb_inodes(struct super_block
*sb
)
1242 struct inode
*inode
, *old_inode
= NULL
;
1245 * We need to be protected against the filesystem going from
1246 * r/o to r/w or vice versa.
1248 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1250 spin_lock(&inode_sb_list_lock
);
1253 * Data integrity sync. Must wait for all pages under writeback,
1254 * because there may have been pages dirtied before our sync
1255 * call, but which had writeout started before we write it out.
1256 * In which case, the inode may not be on the dirty list, but
1257 * we still have to wait for that writeout.
1259 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1260 struct address_space
*mapping
= inode
->i_mapping
;
1262 spin_lock(&inode
->i_lock
);
1263 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
1264 (mapping
->nrpages
== 0)) {
1265 spin_unlock(&inode
->i_lock
);
1269 spin_unlock(&inode
->i_lock
);
1270 spin_unlock(&inode_sb_list_lock
);
1273 * We hold a reference to 'inode' so it couldn't have been
1274 * removed from s_inodes list while we dropped the
1275 * inode_sb_list_lock. We cannot iput the inode now as we can
1276 * be holding the last reference and we cannot iput it under
1277 * inode_sb_list_lock. So we keep the reference and iput it
1283 filemap_fdatawait(mapping
);
1287 spin_lock(&inode_sb_list_lock
);
1289 spin_unlock(&inode_sb_list_lock
);
1294 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1295 * @sb: the superblock
1296 * @nr: the number of pages to write
1297 * @reason: reason why some writeback work initiated
1299 * Start writeback on some inodes on this super_block. No guarantees are made
1300 * on how many (if any) will be written, and this function does not wait
1301 * for IO completion of submitted IO.
1303 void writeback_inodes_sb_nr(struct super_block
*sb
,
1305 enum wb_reason reason
)
1307 DECLARE_COMPLETION_ONSTACK(done
);
1308 struct wb_writeback_work work
= {
1310 .sync_mode
= WB_SYNC_NONE
,
1311 .tagged_writepages
= 1,
1317 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1318 bdi_queue_work(sb
->s_bdi
, &work
);
1319 wait_for_completion(&done
);
1321 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
1324 * writeback_inodes_sb - writeback dirty inodes from given super_block
1325 * @sb: the superblock
1326 * @reason: reason why some writeback work was initiated
1328 * Start writeback on some inodes on this super_block. No guarantees are made
1329 * on how many (if any) will be written, and this function does not wait
1330 * for IO completion of submitted IO.
1332 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
1334 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
1336 EXPORT_SYMBOL(writeback_inodes_sb
);
1339 * writeback_inodes_sb_if_idle - start writeback if none underway
1340 * @sb: the superblock
1341 * @reason: reason why some writeback work was initiated
1343 * Invoke writeback_inodes_sb if no writeback is currently underway.
1344 * Returns 1 if writeback was started, 0 if not.
1346 int writeback_inodes_sb_if_idle(struct super_block
*sb
, enum wb_reason reason
)
1348 if (!writeback_in_progress(sb
->s_bdi
)) {
1349 down_read(&sb
->s_umount
);
1350 writeback_inodes_sb(sb
, reason
);
1351 up_read(&sb
->s_umount
);
1356 EXPORT_SYMBOL(writeback_inodes_sb_if_idle
);
1359 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1360 * @sb: the superblock
1361 * @nr: the number of pages to write
1362 * @reason: reason why some writeback work was initiated
1364 * Invoke writeback_inodes_sb if no writeback is currently underway.
1365 * Returns 1 if writeback was started, 0 if not.
1367 int writeback_inodes_sb_nr_if_idle(struct super_block
*sb
,
1369 enum wb_reason reason
)
1371 if (!writeback_in_progress(sb
->s_bdi
)) {
1372 down_read(&sb
->s_umount
);
1373 writeback_inodes_sb_nr(sb
, nr
, reason
);
1374 up_read(&sb
->s_umount
);
1379 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle
);
1382 * sync_inodes_sb - sync sb inode pages
1383 * @sb: the superblock
1385 * This function writes and waits on any dirty inode belonging to this
1388 void sync_inodes_sb(struct super_block
*sb
)
1390 DECLARE_COMPLETION_ONSTACK(done
);
1391 struct wb_writeback_work work
= {
1393 .sync_mode
= WB_SYNC_ALL
,
1394 .nr_pages
= LONG_MAX
,
1397 .reason
= WB_REASON_SYNC
,
1400 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1402 bdi_queue_work(sb
->s_bdi
, &work
);
1403 wait_for_completion(&done
);
1407 EXPORT_SYMBOL(sync_inodes_sb
);
1410 * write_inode_now - write an inode to disk
1411 * @inode: inode to write to disk
1412 * @sync: whether the write should be synchronous or not
1414 * This function commits an inode to disk immediately if it is dirty. This is
1415 * primarily needed by knfsd.
1417 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1419 int write_inode_now(struct inode
*inode
, int sync
)
1421 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1422 struct writeback_control wbc
= {
1423 .nr_to_write
= LONG_MAX
,
1424 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1426 .range_end
= LLONG_MAX
,
1429 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1430 wbc
.nr_to_write
= 0;
1433 return writeback_single_inode(inode
, wb
, &wbc
);
1435 EXPORT_SYMBOL(write_inode_now
);
1438 * sync_inode - write an inode and its pages to disk.
1439 * @inode: the inode to sync
1440 * @wbc: controls the writeback mode
1442 * sync_inode() will write an inode and its pages to disk. It will also
1443 * correctly update the inode on its superblock's dirty inode lists and will
1444 * update inode->i_state.
1446 * The caller must have a ref on the inode.
1448 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1450 return writeback_single_inode(inode
, &inode_to_bdi(inode
)->wb
, wbc
);
1452 EXPORT_SYMBOL(sync_inode
);
1455 * sync_inode_metadata - write an inode to disk
1456 * @inode: the inode to sync
1457 * @wait: wait for I/O to complete.
1459 * Write an inode to disk and adjust its dirty state after completion.
1461 * Note: only writes the actual inode, no associated data or other metadata.
1463 int sync_inode_metadata(struct inode
*inode
, int wait
)
1465 struct writeback_control wbc
= {
1466 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1467 .nr_to_write
= 0, /* metadata-only */
1470 return sync_inode(inode
, &wbc
);
1472 EXPORT_SYMBOL(sync_inode_metadata
);