1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #include <cluster/masklog.h>
39 #include "blockcheck.h"
42 #include "extent_map.h"
43 #include "heartbeat.h"
46 #include "localalloc.h"
53 #include "buffer_head_io.h"
54 #include "ocfs2_trace.h"
56 DEFINE_SPINLOCK(trans_inc_lock
);
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60 static int ocfs2_force_read_journal(struct inode
*inode
);
61 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
62 int node_num
, int slot_num
);
63 static int __ocfs2_recovery_thread(void *arg
);
64 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
67 int dirty
, int replayed
);
68 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
70 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
72 static int ocfs2_commit_thread(void *arg
);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
75 struct ocfs2_dinode
*la_dinode
,
76 struct ocfs2_dinode
*tl_dinode
,
77 struct ocfs2_quota_recovery
*qrec
);
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
81 return __ocfs2_wait_on_mount(osb
, 0);
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
86 return __ocfs2_wait_on_mount(osb
, 1);
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
94 enum ocfs2_replay_state
{
95 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE
/* Replay was already queued */
100 struct ocfs2_replay_map
{
101 unsigned int rm_slots
;
102 enum ocfs2_replay_state rm_state
;
103 unsigned char rm_replay_slots
[0];
106 void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
108 if (!osb
->replay_map
)
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
115 osb
->replay_map
->rm_state
= state
;
118 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
120 struct ocfs2_replay_map
*replay_map
;
123 /* If replay map is already set, we don't do it again */
127 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
128 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
135 spin_lock(&osb
->osb_lock
);
137 replay_map
->rm_slots
= osb
->max_slots
;
138 replay_map
->rm_state
= REPLAY_UNNEEDED
;
140 /* set rm_replay_slots for offline slot(s) */
141 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
142 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
143 replay_map
->rm_replay_slots
[i
] = 1;
146 osb
->replay_map
= replay_map
;
147 spin_unlock(&osb
->osb_lock
);
151 void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
)
153 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
159 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
162 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
163 if (replay_map
->rm_replay_slots
[i
])
164 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
166 replay_map
->rm_state
= REPLAY_DONE
;
169 void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
171 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
173 if (!osb
->replay_map
)
177 osb
->replay_map
= NULL
;
180 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
182 struct ocfs2_recovery_map
*rm
;
184 mutex_init(&osb
->recovery_lock
);
185 osb
->disable_recovery
= 0;
186 osb
->recovery_thread_task
= NULL
;
187 init_waitqueue_head(&osb
->recovery_event
);
189 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
190 osb
->max_slots
* sizeof(unsigned int),
197 rm
->rm_entries
= (unsigned int *)((char *)rm
+
198 sizeof(struct ocfs2_recovery_map
));
199 osb
->recovery_map
= rm
;
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
207 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
210 return osb
->recovery_thread_task
!= NULL
;
213 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
215 struct ocfs2_recovery_map
*rm
;
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb
->recovery_lock
);
220 osb
->disable_recovery
= 1;
221 mutex_unlock(&osb
->recovery_lock
);
222 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
227 flush_workqueue(ocfs2_wq
);
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
233 rm
= osb
->recovery_map
;
234 /* XXX: Should we bug if there are dirty entries? */
239 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
240 unsigned int node_num
)
243 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
245 assert_spin_locked(&osb
->osb_lock
);
247 for (i
= 0; i
< rm
->rm_used
; i
++) {
248 if (rm
->rm_entries
[i
] == node_num
)
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
257 unsigned int node_num
)
259 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
261 spin_lock(&osb
->osb_lock
);
262 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
263 spin_unlock(&osb
->osb_lock
);
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
270 rm
->rm_entries
[rm
->rm_used
] = node_num
;
272 spin_unlock(&osb
->osb_lock
);
277 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
278 unsigned int node_num
)
281 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
283 spin_lock(&osb
->osb_lock
);
285 for (i
= 0; i
< rm
->rm_used
; i
++) {
286 if (rm
->rm_entries
[i
] == node_num
)
290 if (i
< rm
->rm_used
) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
293 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
297 spin_unlock(&osb
->osb_lock
);
300 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
303 unsigned int flushed
;
304 struct ocfs2_journal
*journal
= NULL
;
306 journal
= osb
->journal
;
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal
->j_trans_barrier
);
311 flushed
= atomic_read(&journal
->j_num_trans
);
312 trace_ocfs2_commit_cache_begin(flushed
);
314 up_write(&journal
->j_trans_barrier
);
318 jbd2_journal_lock_updates(journal
->j_journal
);
319 status
= jbd2_journal_flush(journal
->j_journal
);
320 jbd2_journal_unlock_updates(journal
->j_journal
);
322 up_write(&journal
->j_trans_barrier
);
327 ocfs2_inc_trans_id(journal
);
329 flushed
= atomic_read(&journal
->j_num_trans
);
330 atomic_set(&journal
->j_num_trans
, 0);
331 up_write(&journal
->j_trans_barrier
);
333 trace_ocfs2_commit_cache_end(journal
->j_trans_id
, flushed
);
335 ocfs2_wake_downconvert_thread(osb
);
336 wake_up(&journal
->j_checkpointed
);
341 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
343 journal_t
*journal
= osb
->journal
->j_journal
;
346 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
348 if (ocfs2_is_hard_readonly(osb
))
349 return ERR_PTR(-EROFS
);
351 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
352 BUG_ON(max_buffs
<= 0);
354 /* Nested transaction? Just return the handle... */
355 if (journal_current_handle())
356 return jbd2_journal_start(journal
, max_buffs
);
358 sb_start_intwrite(osb
->sb
);
360 down_read(&osb
->journal
->j_trans_barrier
);
362 handle
= jbd2_journal_start(journal
, max_buffs
);
363 if (IS_ERR(handle
)) {
364 up_read(&osb
->journal
->j_trans_barrier
);
365 sb_end_intwrite(osb
->sb
);
367 mlog_errno(PTR_ERR(handle
));
369 if (is_journal_aborted(journal
)) {
370 ocfs2_abort(osb
->sb
, "Detected aborted journal");
371 handle
= ERR_PTR(-EROFS
);
374 if (!ocfs2_mount_local(osb
))
375 atomic_inc(&(osb
->journal
->j_num_trans
));
381 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
385 struct ocfs2_journal
*journal
= osb
->journal
;
389 nested
= handle
->h_ref
> 1;
390 ret
= jbd2_journal_stop(handle
);
395 up_read(&journal
->j_trans_barrier
);
396 sb_end_intwrite(osb
->sb
);
403 * 'nblocks' is what you want to add to the current transaction.
405 * This might call jbd2_journal_restart() which will commit dirty buffers
406 * and then restart the transaction. Before calling
407 * ocfs2_extend_trans(), any changed blocks should have been
408 * dirtied. After calling it, all blocks which need to be changed must
409 * go through another set of journal_access/journal_dirty calls.
411 * WARNING: This will not release any semaphores or disk locks taken
412 * during the transaction, so make sure they were taken *before*
413 * start_trans or we'll have ordering deadlocks.
415 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
416 * good because transaction ids haven't yet been recorded on the
417 * cluster locks associated with this handle.
419 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
421 int status
, old_nblocks
;
429 old_nblocks
= handle
->h_buffer_credits
;
431 trace_ocfs2_extend_trans(old_nblocks
, nblocks
);
433 #ifdef CONFIG_OCFS2_DEBUG_FS
436 status
= jbd2_journal_extend(handle
, nblocks
);
444 trace_ocfs2_extend_trans_restart(old_nblocks
+ nblocks
);
445 status
= jbd2_journal_restart(handle
,
446 old_nblocks
+ nblocks
);
458 struct ocfs2_triggers
{
459 struct jbd2_buffer_trigger_type ot_triggers
;
463 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
465 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
468 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
469 struct buffer_head
*bh
,
470 void *data
, size_t size
)
472 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
475 * We aren't guaranteed to have the superblock here, so we
476 * must unconditionally compute the ecc data.
477 * __ocfs2_journal_access() will only set the triggers if
478 * metaecc is enabled.
480 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
484 * Quota blocks have their own trigger because the struct ocfs2_block_check
485 * offset depends on the blocksize.
487 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
488 struct buffer_head
*bh
,
489 void *data
, size_t size
)
491 struct ocfs2_disk_dqtrailer
*dqt
=
492 ocfs2_block_dqtrailer(size
, data
);
495 * We aren't guaranteed to have the superblock here, so we
496 * must unconditionally compute the ecc data.
497 * __ocfs2_journal_access() will only set the triggers if
498 * metaecc is enabled.
500 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
504 * Directory blocks also have their own trigger because the
505 * struct ocfs2_block_check offset depends on the blocksize.
507 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
508 struct buffer_head
*bh
,
509 void *data
, size_t size
)
511 struct ocfs2_dir_block_trailer
*trailer
=
512 ocfs2_dir_trailer_from_size(size
, data
);
515 * We aren't guaranteed to have the superblock here, so we
516 * must unconditionally compute the ecc data.
517 * __ocfs2_journal_access() will only set the triggers if
518 * metaecc is enabled.
520 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
523 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
524 struct buffer_head
*bh
)
527 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
528 "bh->b_blocknr = %llu\n",
530 (unsigned long long)bh
->b_blocknr
);
532 /* We aren't guaranteed to have the superblock here - but if we
533 * don't, it'll just crash. */
534 ocfs2_error(bh
->b_assoc_map
->host
->i_sb
,
535 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
538 static struct ocfs2_triggers di_triggers
= {
540 .t_frozen
= ocfs2_frozen_trigger
,
541 .t_abort
= ocfs2_abort_trigger
,
543 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
546 static struct ocfs2_triggers eb_triggers
= {
548 .t_frozen
= ocfs2_frozen_trigger
,
549 .t_abort
= ocfs2_abort_trigger
,
551 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
554 static struct ocfs2_triggers rb_triggers
= {
556 .t_frozen
= ocfs2_frozen_trigger
,
557 .t_abort
= ocfs2_abort_trigger
,
559 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
562 static struct ocfs2_triggers gd_triggers
= {
564 .t_frozen
= ocfs2_frozen_trigger
,
565 .t_abort
= ocfs2_abort_trigger
,
567 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
570 static struct ocfs2_triggers db_triggers
= {
572 .t_frozen
= ocfs2_db_frozen_trigger
,
573 .t_abort
= ocfs2_abort_trigger
,
577 static struct ocfs2_triggers xb_triggers
= {
579 .t_frozen
= ocfs2_frozen_trigger
,
580 .t_abort
= ocfs2_abort_trigger
,
582 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
585 static struct ocfs2_triggers dq_triggers
= {
587 .t_frozen
= ocfs2_dq_frozen_trigger
,
588 .t_abort
= ocfs2_abort_trigger
,
592 static struct ocfs2_triggers dr_triggers
= {
594 .t_frozen
= ocfs2_frozen_trigger
,
595 .t_abort
= ocfs2_abort_trigger
,
597 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
600 static struct ocfs2_triggers dl_triggers
= {
602 .t_frozen
= ocfs2_frozen_trigger
,
603 .t_abort
= ocfs2_abort_trigger
,
605 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
608 static int __ocfs2_journal_access(handle_t
*handle
,
609 struct ocfs2_caching_info
*ci
,
610 struct buffer_head
*bh
,
611 struct ocfs2_triggers
*triggers
,
615 struct ocfs2_super
*osb
=
616 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
618 BUG_ON(!ci
|| !ci
->ci_ops
);
622 trace_ocfs2_journal_access(
623 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
624 (unsigned long long)bh
->b_blocknr
, type
, bh
->b_size
);
626 /* we can safely remove this assertion after testing. */
627 if (!buffer_uptodate(bh
)) {
628 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
629 mlog(ML_ERROR
, "b_blocknr=%llu\n",
630 (unsigned long long)bh
->b_blocknr
);
634 /* Set the current transaction information on the ci so
635 * that the locking code knows whether it can drop it's locks
636 * on this ci or not. We're protected from the commit
637 * thread updating the current transaction id until
638 * ocfs2_commit_trans() because ocfs2_start_trans() took
639 * j_trans_barrier for us. */
640 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
642 ocfs2_metadata_cache_io_lock(ci
);
644 case OCFS2_JOURNAL_ACCESS_CREATE
:
645 case OCFS2_JOURNAL_ACCESS_WRITE
:
646 status
= jbd2_journal_get_write_access(handle
, bh
);
649 case OCFS2_JOURNAL_ACCESS_UNDO
:
650 status
= jbd2_journal_get_undo_access(handle
, bh
);
655 mlog(ML_ERROR
, "Unknown access type!\n");
657 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
658 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
659 ocfs2_metadata_cache_io_unlock(ci
);
662 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
668 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
669 struct buffer_head
*bh
, int type
)
671 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
674 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
675 struct buffer_head
*bh
, int type
)
677 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
680 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
681 struct buffer_head
*bh
, int type
)
683 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
687 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
688 struct buffer_head
*bh
, int type
)
690 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
693 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
694 struct buffer_head
*bh
, int type
)
696 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
699 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
700 struct buffer_head
*bh
, int type
)
702 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
705 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
706 struct buffer_head
*bh
, int type
)
708 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
711 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
712 struct buffer_head
*bh
, int type
)
714 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
717 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
718 struct buffer_head
*bh
, int type
)
720 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
723 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
724 struct buffer_head
*bh
, int type
)
726 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
729 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
733 trace_ocfs2_journal_dirty((unsigned long long)bh
->b_blocknr
);
735 status
= jbd2_journal_dirty_metadata(handle
, bh
);
739 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
741 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
743 journal_t
*journal
= osb
->journal
->j_journal
;
744 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
746 if (osb
->osb_commit_interval
)
747 commit_interval
= osb
->osb_commit_interval
;
749 write_lock(&journal
->j_state_lock
);
750 journal
->j_commit_interval
= commit_interval
;
751 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
752 journal
->j_flags
|= JBD2_BARRIER
;
754 journal
->j_flags
&= ~JBD2_BARRIER
;
755 write_unlock(&journal
->j_state_lock
);
758 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
761 struct inode
*inode
= NULL
; /* the journal inode */
762 journal_t
*j_journal
= NULL
;
763 struct ocfs2_dinode
*di
= NULL
;
764 struct buffer_head
*bh
= NULL
;
765 struct ocfs2_super
*osb
;
770 osb
= journal
->j_osb
;
772 /* already have the inode for our journal */
773 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
780 if (is_bad_inode(inode
)) {
781 mlog(ML_ERROR
, "access error (bad inode)\n");
788 SET_INODE_JOURNAL(inode
);
789 OCFS2_I(inode
)->ip_open_count
++;
791 /* Skip recovery waits here - journal inode metadata never
792 * changes in a live cluster so it can be considered an
793 * exception to the rule. */
794 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
796 if (status
!= -ERESTARTSYS
)
797 mlog(ML_ERROR
, "Could not get lock on journal!\n");
802 di
= (struct ocfs2_dinode
*)bh
->b_data
;
804 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
805 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
811 trace_ocfs2_journal_init(inode
->i_size
,
812 (unsigned long long)inode
->i_blocks
,
813 OCFS2_I(inode
)->ip_clusters
);
815 /* call the kernels journal init function now */
816 j_journal
= jbd2_journal_init_inode(inode
);
817 if (j_journal
== NULL
) {
818 mlog(ML_ERROR
, "Linux journal layer error\n");
823 trace_ocfs2_journal_init_maxlen(j_journal
->j_maxlen
);
825 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
826 OCFS2_JOURNAL_DIRTY_FL
);
828 journal
->j_journal
= j_journal
;
829 journal
->j_inode
= inode
;
832 ocfs2_set_journal_params(osb
);
834 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
840 ocfs2_inode_unlock(inode
, 1);
843 OCFS2_I(inode
)->ip_open_count
--;
851 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
853 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
856 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
858 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
861 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
862 int dirty
, int replayed
)
866 struct ocfs2_journal
*journal
= osb
->journal
;
867 struct buffer_head
*bh
= journal
->j_bh
;
868 struct ocfs2_dinode
*fe
;
870 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
872 /* The journal bh on the osb always comes from ocfs2_journal_init()
873 * and was validated there inside ocfs2_inode_lock_full(). It's a
874 * code bug if we mess it up. */
875 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
877 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
879 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
881 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
882 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
885 ocfs2_bump_recovery_generation(fe
);
887 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
888 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
896 * If the journal has been kmalloc'd it needs to be freed after this
899 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
901 struct ocfs2_journal
*journal
= NULL
;
903 struct inode
*inode
= NULL
;
904 int num_running_trans
= 0;
908 journal
= osb
->journal
;
912 inode
= journal
->j_inode
;
914 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
917 /* need to inc inode use count - jbd2_journal_destroy will iput. */
921 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
922 trace_ocfs2_journal_shutdown(num_running_trans
);
924 /* Do a commit_cache here. It will flush our journal, *and*
925 * release any locks that are still held.
926 * set the SHUTDOWN flag and release the trans lock.
927 * the commit thread will take the trans lock for us below. */
928 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
930 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
931 * drop the trans_lock (which we want to hold until we
932 * completely destroy the journal. */
933 if (osb
->commit_task
) {
934 /* Wait for the commit thread */
935 trace_ocfs2_journal_shutdown_wait(osb
->commit_task
);
936 kthread_stop(osb
->commit_task
);
937 osb
->commit_task
= NULL
;
940 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
942 if (ocfs2_mount_local(osb
)) {
943 jbd2_journal_lock_updates(journal
->j_journal
);
944 status
= jbd2_journal_flush(journal
->j_journal
);
945 jbd2_journal_unlock_updates(journal
->j_journal
);
952 * Do not toggle if flush was unsuccessful otherwise
953 * will leave dirty metadata in a "clean" journal
955 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
960 /* Shutdown the kernel journal system */
961 jbd2_journal_destroy(journal
->j_journal
);
962 journal
->j_journal
= NULL
;
964 OCFS2_I(inode
)->ip_open_count
--;
966 /* unlock our journal */
967 ocfs2_inode_unlock(inode
, 1);
969 brelse(journal
->j_bh
);
970 journal
->j_bh
= NULL
;
972 journal
->j_state
= OCFS2_JOURNAL_FREE
;
974 // up_write(&journal->j_trans_barrier);
980 static void ocfs2_clear_journal_error(struct super_block
*sb
,
986 olderr
= jbd2_journal_errno(journal
);
988 mlog(ML_ERROR
, "File system error %d recorded in "
989 "journal %u.\n", olderr
, slot
);
990 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
993 jbd2_journal_ack_err(journal
);
994 jbd2_journal_clear_err(journal
);
998 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1001 struct ocfs2_super
*osb
;
1005 osb
= journal
->j_osb
;
1007 status
= jbd2_journal_load(journal
->j_journal
);
1009 mlog(ML_ERROR
, "Failed to load journal!\n");
1013 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1015 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1021 /* Launch the commit thread */
1023 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1025 if (IS_ERR(osb
->commit_task
)) {
1026 status
= PTR_ERR(osb
->commit_task
);
1027 osb
->commit_task
= NULL
;
1028 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1029 "error=%d", status
);
1033 osb
->commit_task
= NULL
;
1040 /* 'full' flag tells us whether we clear out all blocks or if we just
1041 * mark the journal clean */
1042 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1048 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1054 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1062 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1065 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1067 spin_lock(&osb
->osb_lock
);
1068 empty
= (rm
->rm_used
== 0);
1069 spin_unlock(&osb
->osb_lock
);
1074 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1076 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1080 * JBD Might read a cached version of another nodes journal file. We
1081 * don't want this as this file changes often and we get no
1082 * notification on those changes. The only way to be sure that we've
1083 * got the most up to date version of those blocks then is to force
1084 * read them off disk. Just searching through the buffer cache won't
1085 * work as there may be pages backing this file which are still marked
1086 * up to date. We know things can't change on this file underneath us
1087 * as we have the lock by now :)
1089 static int ocfs2_force_read_journal(struct inode
*inode
)
1093 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1094 #define CONCURRENT_JOURNAL_FILL 32ULL
1095 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1097 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1099 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, inode
->i_size
);
1101 while (v_blkno
< num_blocks
) {
1102 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1103 &p_blkno
, &p_blocks
, NULL
);
1109 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1110 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1112 /* We are reading journal data which should not
1113 * be put in the uptodate cache */
1114 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1115 p_blkno
, p_blocks
, bhs
);
1121 for(i
= 0; i
< p_blocks
; i
++) {
1126 v_blkno
+= p_blocks
;
1130 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1135 struct ocfs2_la_recovery_item
{
1136 struct list_head lri_list
;
1138 struct ocfs2_dinode
*lri_la_dinode
;
1139 struct ocfs2_dinode
*lri_tl_dinode
;
1140 struct ocfs2_quota_recovery
*lri_qrec
;
1143 /* Does the second half of the recovery process. By this point, the
1144 * node is marked clean and can actually be considered recovered,
1145 * hence it's no longer in the recovery map, but there's still some
1146 * cleanup we can do which shouldn't happen within the recovery thread
1147 * as locking in that context becomes very difficult if we are to take
1148 * recovering nodes into account.
1150 * NOTE: This function can and will sleep on recovery of other nodes
1151 * during cluster locking, just like any other ocfs2 process.
1153 void ocfs2_complete_recovery(struct work_struct
*work
)
1156 struct ocfs2_journal
*journal
=
1157 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1158 struct ocfs2_super
*osb
= journal
->j_osb
;
1159 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1160 struct ocfs2_la_recovery_item
*item
, *n
;
1161 struct ocfs2_quota_recovery
*qrec
;
1162 LIST_HEAD(tmp_la_list
);
1164 trace_ocfs2_complete_recovery(
1165 (unsigned long long)OCFS2_I(journal
->j_inode
)->ip_blkno
);
1167 spin_lock(&journal
->j_lock
);
1168 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1169 spin_unlock(&journal
->j_lock
);
1171 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1172 list_del_init(&item
->lri_list
);
1174 ocfs2_wait_on_quotas(osb
);
1176 la_dinode
= item
->lri_la_dinode
;
1177 tl_dinode
= item
->lri_tl_dinode
;
1178 qrec
= item
->lri_qrec
;
1180 trace_ocfs2_complete_recovery_slot(item
->lri_slot
,
1181 la_dinode
? le64_to_cpu(la_dinode
->i_blkno
) : 0,
1182 tl_dinode
? le64_to_cpu(tl_dinode
->i_blkno
) : 0,
1186 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1195 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1203 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
1208 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1212 /* Recovery info is already freed now */
1218 trace_ocfs2_complete_recovery_end(ret
);
1221 /* NOTE: This function always eats your references to la_dinode and
1222 * tl_dinode, either manually on error, or by passing them to
1223 * ocfs2_complete_recovery */
1224 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1226 struct ocfs2_dinode
*la_dinode
,
1227 struct ocfs2_dinode
*tl_dinode
,
1228 struct ocfs2_quota_recovery
*qrec
)
1230 struct ocfs2_la_recovery_item
*item
;
1232 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1234 /* Though we wish to avoid it, we are in fact safe in
1235 * skipping local alloc cleanup as fsck.ocfs2 is more
1236 * than capable of reclaiming unused space. */
1244 ocfs2_free_quota_recovery(qrec
);
1246 mlog_errno(-ENOMEM
);
1250 INIT_LIST_HEAD(&item
->lri_list
);
1251 item
->lri_la_dinode
= la_dinode
;
1252 item
->lri_slot
= slot_num
;
1253 item
->lri_tl_dinode
= tl_dinode
;
1254 item
->lri_qrec
= qrec
;
1256 spin_lock(&journal
->j_lock
);
1257 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1258 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1259 spin_unlock(&journal
->j_lock
);
1262 /* Called by the mount code to queue recovery the last part of
1263 * recovery for it's own and offline slot(s). */
1264 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1266 struct ocfs2_journal
*journal
= osb
->journal
;
1268 if (ocfs2_is_hard_readonly(osb
))
1271 /* No need to queue up our truncate_log as regular cleanup will catch
1273 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1274 osb
->local_alloc_copy
, NULL
, NULL
);
1275 ocfs2_schedule_truncate_log_flush(osb
, 0);
1277 osb
->local_alloc_copy
= NULL
;
1280 /* queue to recover orphan slots for all offline slots */
1281 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1282 ocfs2_queue_replay_slots(osb
);
1283 ocfs2_free_replay_slots(osb
);
1286 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1288 if (osb
->quota_rec
) {
1289 ocfs2_queue_recovery_completion(osb
->journal
,
1294 osb
->quota_rec
= NULL
;
1298 static int __ocfs2_recovery_thread(void *arg
)
1300 int status
, node_num
, slot_num
;
1301 struct ocfs2_super
*osb
= arg
;
1302 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1303 int *rm_quota
= NULL
;
1304 int rm_quota_used
= 0, i
;
1305 struct ocfs2_quota_recovery
*qrec
;
1307 status
= ocfs2_wait_on_mount(osb
);
1312 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1318 status
= ocfs2_super_lock(osb
, 1);
1324 status
= ocfs2_compute_replay_slots(osb
);
1328 /* queue recovery for our own slot */
1329 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1332 spin_lock(&osb
->osb_lock
);
1333 while (rm
->rm_used
) {
1334 /* It's always safe to remove entry zero, as we won't
1335 * clear it until ocfs2_recover_node() has succeeded. */
1336 node_num
= rm
->rm_entries
[0];
1337 spin_unlock(&osb
->osb_lock
);
1338 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1339 trace_ocfs2_recovery_thread_node(node_num
, slot_num
);
1340 if (slot_num
== -ENOENT
) {
1345 /* It is a bit subtle with quota recovery. We cannot do it
1346 * immediately because we have to obtain cluster locks from
1347 * quota files and we also don't want to just skip it because
1348 * then quota usage would be out of sync until some node takes
1349 * the slot. So we remember which nodes need quota recovery
1350 * and when everything else is done, we recover quotas. */
1351 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1352 if (i
== rm_quota_used
)
1353 rm_quota
[rm_quota_used
++] = slot_num
;
1355 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1358 ocfs2_recovery_map_clear(osb
, node_num
);
1361 "Error %d recovering node %d on device (%u,%u)!\n",
1363 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1364 mlog(ML_ERROR
, "Volume requires unmount.\n");
1367 spin_lock(&osb
->osb_lock
);
1369 spin_unlock(&osb
->osb_lock
);
1370 trace_ocfs2_recovery_thread_end(status
);
1372 /* Refresh all journal recovery generations from disk */
1373 status
= ocfs2_check_journals_nolocks(osb
);
1374 status
= (status
== -EROFS
) ? 0 : status
;
1378 /* Now it is right time to recover quotas... We have to do this under
1379 * superblock lock so that no one can start using the slot (and crash)
1380 * before we recover it */
1381 for (i
= 0; i
< rm_quota_used
; i
++) {
1382 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1384 status
= PTR_ERR(qrec
);
1388 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1392 ocfs2_super_unlock(osb
, 1);
1394 /* queue recovery for offline slots */
1395 ocfs2_queue_replay_slots(osb
);
1398 mutex_lock(&osb
->recovery_lock
);
1399 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1400 mutex_unlock(&osb
->recovery_lock
);
1404 ocfs2_free_replay_slots(osb
);
1405 osb
->recovery_thread_task
= NULL
;
1406 mb(); /* sync with ocfs2_recovery_thread_running */
1407 wake_up(&osb
->recovery_event
);
1409 mutex_unlock(&osb
->recovery_lock
);
1414 /* no one is callint kthread_stop() for us so the kthread() api
1415 * requires that we call do_exit(). And it isn't exported, but
1416 * complete_and_exit() seems to be a minimal wrapper around it. */
1417 complete_and_exit(NULL
, status
);
1421 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1423 mutex_lock(&osb
->recovery_lock
);
1425 trace_ocfs2_recovery_thread(node_num
, osb
->node_num
,
1426 osb
->disable_recovery
, osb
->recovery_thread_task
,
1427 osb
->disable_recovery
?
1428 -1 : ocfs2_recovery_map_set(osb
, node_num
));
1430 if (osb
->disable_recovery
)
1433 if (osb
->recovery_thread_task
)
1436 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1438 if (IS_ERR(osb
->recovery_thread_task
)) {
1439 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1440 osb
->recovery_thread_task
= NULL
;
1444 mutex_unlock(&osb
->recovery_lock
);
1445 wake_up(&osb
->recovery_event
);
1448 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1450 struct buffer_head
**bh
,
1451 struct inode
**ret_inode
)
1453 int status
= -EACCES
;
1454 struct inode
*inode
= NULL
;
1456 BUG_ON(slot_num
>= osb
->max_slots
);
1458 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1460 if (!inode
|| is_bad_inode(inode
)) {
1464 SET_INODE_JOURNAL(inode
);
1466 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1476 if (status
|| !ret_inode
)
1484 /* Does the actual journal replay and marks the journal inode as
1485 * clean. Will only replay if the journal inode is marked dirty. */
1486 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1493 struct inode
*inode
= NULL
;
1494 struct ocfs2_dinode
*fe
;
1495 journal_t
*journal
= NULL
;
1496 struct buffer_head
*bh
= NULL
;
1499 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1505 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1506 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1511 * As the fs recovery is asynchronous, there is a small chance that
1512 * another node mounted (and recovered) the slot before the recovery
1513 * thread could get the lock. To handle that, we dirty read the journal
1514 * inode for that slot to get the recovery generation. If it is
1515 * different than what we expected, the slot has been recovered.
1516 * If not, it needs recovery.
1518 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1519 trace_ocfs2_replay_journal_recovered(slot_num
,
1520 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1521 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1526 /* Continue with recovery as the journal has not yet been recovered */
1528 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1530 trace_ocfs2_replay_journal_lock_err(status
);
1531 if (status
!= -ERESTARTSYS
)
1532 mlog(ML_ERROR
, "Could not lock journal!\n");
1537 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1539 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1540 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1542 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1543 trace_ocfs2_replay_journal_skip(node_num
);
1544 /* Refresh recovery generation for the slot */
1545 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1549 /* we need to run complete recovery for offline orphan slots */
1550 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1552 printk(KERN_NOTICE
"ocfs2: Begin replay journal (node %d, slot %d) on "\
1553 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1554 MINOR(osb
->sb
->s_dev
));
1556 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1558 status
= ocfs2_force_read_journal(inode
);
1564 journal
= jbd2_journal_init_inode(inode
);
1565 if (journal
== NULL
) {
1566 mlog(ML_ERROR
, "Linux journal layer error\n");
1571 status
= jbd2_journal_load(journal
);
1576 jbd2_journal_destroy(journal
);
1580 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1582 /* wipe the journal */
1583 jbd2_journal_lock_updates(journal
);
1584 status
= jbd2_journal_flush(journal
);
1585 jbd2_journal_unlock_updates(journal
);
1589 /* This will mark the node clean */
1590 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1591 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1592 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1594 /* Increment recovery generation to indicate successful recovery */
1595 ocfs2_bump_recovery_generation(fe
);
1596 osb
->slot_recovery_generations
[slot_num
] =
1597 ocfs2_get_recovery_generation(fe
);
1599 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1600 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1607 jbd2_journal_destroy(journal
);
1609 printk(KERN_NOTICE
"ocfs2: End replay journal (node %d, slot %d) on "\
1610 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1611 MINOR(osb
->sb
->s_dev
));
1613 /* drop the lock on this nodes journal */
1615 ocfs2_inode_unlock(inode
, 1);
1626 * Do the most important parts of node recovery:
1627 * - Replay it's journal
1628 * - Stamp a clean local allocator file
1629 * - Stamp a clean truncate log
1630 * - Mark the node clean
1632 * If this function completes without error, a node in OCFS2 can be
1633 * said to have been safely recovered. As a result, failure during the
1634 * second part of a nodes recovery process (local alloc recovery) is
1635 * far less concerning.
1637 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1638 int node_num
, int slot_num
)
1641 struct ocfs2_dinode
*la_copy
= NULL
;
1642 struct ocfs2_dinode
*tl_copy
= NULL
;
1644 trace_ocfs2_recover_node(node_num
, slot_num
, osb
->node_num
);
1646 /* Should not ever be called to recover ourselves -- in that
1647 * case we should've called ocfs2_journal_load instead. */
1648 BUG_ON(osb
->node_num
== node_num
);
1650 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1652 if (status
== -EBUSY
) {
1653 trace_ocfs2_recover_node_skip(slot_num
, node_num
);
1661 /* Stamp a clean local alloc file AFTER recovering the journal... */
1662 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1668 /* An error from begin_truncate_log_recovery is not
1669 * serious enough to warrant halting the rest of
1671 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1675 /* Likewise, this would be a strange but ultimately not so
1676 * harmful place to get an error... */
1677 status
= ocfs2_clear_slot(osb
, slot_num
);
1681 /* This will kfree the memory pointed to by la_copy and tl_copy */
1682 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1691 /* Test node liveness by trylocking his journal. If we get the lock,
1692 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1693 * still alive (we couldn't get the lock) and < 0 on error. */
1694 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1698 struct inode
*inode
= NULL
;
1700 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1702 if (inode
== NULL
) {
1703 mlog(ML_ERROR
, "access error\n");
1707 if (is_bad_inode(inode
)) {
1708 mlog(ML_ERROR
, "access error (bad inode)\n");
1714 SET_INODE_JOURNAL(inode
);
1716 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1717 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1719 if (status
!= -EAGAIN
)
1724 ocfs2_inode_unlock(inode
, 1);
1732 /* Call this underneath ocfs2_super_lock. It also assumes that the
1733 * slot info struct has been updated from disk. */
1734 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1736 unsigned int node_num
;
1739 struct buffer_head
*bh
= NULL
;
1740 struct ocfs2_dinode
*di
;
1742 /* This is called with the super block cluster lock, so we
1743 * know that the slot map can't change underneath us. */
1745 for (i
= 0; i
< osb
->max_slots
; i
++) {
1746 /* Read journal inode to get the recovery generation */
1747 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1752 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1753 gen
= ocfs2_get_recovery_generation(di
);
1757 spin_lock(&osb
->osb_lock
);
1758 osb
->slot_recovery_generations
[i
] = gen
;
1760 trace_ocfs2_mark_dead_nodes(i
,
1761 osb
->slot_recovery_generations
[i
]);
1763 if (i
== osb
->slot_num
) {
1764 spin_unlock(&osb
->osb_lock
);
1768 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1769 if (status
== -ENOENT
) {
1770 spin_unlock(&osb
->osb_lock
);
1774 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1775 spin_unlock(&osb
->osb_lock
);
1778 spin_unlock(&osb
->osb_lock
);
1780 /* Ok, we have a slot occupied by another node which
1781 * is not in the recovery map. We trylock his journal
1782 * file here to test if he's alive. */
1783 status
= ocfs2_trylock_journal(osb
, i
);
1785 /* Since we're called from mount, we know that
1786 * the recovery thread can't race us on
1787 * setting / checking the recovery bits. */
1788 ocfs2_recovery_thread(osb
, node_num
);
1789 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1801 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1802 * randomness to the timeout to minimize multple nodes firing the timer at the
1805 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1809 get_random_bytes(&time
, sizeof(time
));
1810 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1811 return msecs_to_jiffies(time
);
1815 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1816 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1817 * is done to catch any orphans that are left over in orphan directories.
1819 * It scans all slots, even ones that are in use. It does so to handle the
1820 * case described below:
1822 * Node 1 has an inode it was using. The dentry went away due to memory
1823 * pressure. Node 1 closes the inode, but it's on the free list. The node
1824 * has the open lock.
1825 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1826 * but node 1 has no dentry and doesn't get the message. It trylocks the
1827 * open lock, sees that another node has a PR, and does nothing.
1828 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1829 * open lock, sees the PR still, and does nothing.
1830 * Basically, we have to trigger an orphan iput on node 1. The only way
1831 * for this to happen is if node 1 runs node 2's orphan dir.
1833 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1834 * seconds. It gets an EX lock on os_lockres and checks sequence number
1835 * stored in LVB. If the sequence number has changed, it means some other
1836 * node has done the scan. This node skips the scan and tracks the
1837 * sequence number. If the sequence number didn't change, it means a scan
1838 * hasn't happened. The node queues a scan and increments the
1839 * sequence number in the LVB.
1841 void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1843 struct ocfs2_orphan_scan
*os
;
1847 os
= &osb
->osb_orphan_scan
;
1849 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1852 trace_ocfs2_queue_orphan_scan_begin(os
->os_count
, os
->os_seqno
,
1853 atomic_read(&os
->os_state
));
1855 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1857 if (status
!= -EAGAIN
)
1862 /* Do no queue the tasks if the volume is being umounted */
1863 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1866 if (os
->os_seqno
!= seqno
) {
1867 os
->os_seqno
= seqno
;
1871 for (i
= 0; i
< osb
->max_slots
; i
++)
1872 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1875 * We queued a recovery on orphan slots, increment the sequence
1876 * number and update LVB so other node will skip the scan for a while
1880 os
->os_scantime
= CURRENT_TIME
;
1882 ocfs2_orphan_scan_unlock(osb
, seqno
);
1884 trace_ocfs2_queue_orphan_scan_end(os
->os_count
, os
->os_seqno
,
1885 atomic_read(&os
->os_state
));
1889 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1890 void ocfs2_orphan_scan_work(struct work_struct
*work
)
1892 struct ocfs2_orphan_scan
*os
;
1893 struct ocfs2_super
*osb
;
1895 os
= container_of(work
, struct ocfs2_orphan_scan
,
1896 os_orphan_scan_work
.work
);
1899 mutex_lock(&os
->os_lock
);
1900 ocfs2_queue_orphan_scan(osb
);
1901 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1902 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1903 ocfs2_orphan_scan_timeout());
1904 mutex_unlock(&os
->os_lock
);
1907 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1909 struct ocfs2_orphan_scan
*os
;
1911 os
= &osb
->osb_orphan_scan
;
1912 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1913 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1914 mutex_lock(&os
->os_lock
);
1915 cancel_delayed_work(&os
->os_orphan_scan_work
);
1916 mutex_unlock(&os
->os_lock
);
1920 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1922 struct ocfs2_orphan_scan
*os
;
1924 os
= &osb
->osb_orphan_scan
;
1928 mutex_init(&os
->os_lock
);
1929 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
1932 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
1934 struct ocfs2_orphan_scan
*os
;
1936 os
= &osb
->osb_orphan_scan
;
1937 os
->os_scantime
= CURRENT_TIME
;
1938 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
1939 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1941 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
1942 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1943 ocfs2_orphan_scan_timeout());
1947 struct ocfs2_orphan_filldir_priv
{
1949 struct ocfs2_super
*osb
;
1952 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1953 loff_t pos
, u64 ino
, unsigned type
)
1955 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1958 if (name_len
== 1 && !strncmp(".", name
, 1))
1960 if (name_len
== 2 && !strncmp("..", name
, 2))
1963 /* Skip bad inodes so that recovery can continue */
1964 iter
= ocfs2_iget(p
->osb
, ino
,
1965 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
1969 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter
)->ip_blkno
);
1970 /* No locking is required for the next_orphan queue as there
1971 * is only ever a single process doing orphan recovery. */
1972 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
1978 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
1980 struct inode
**head
)
1983 struct inode
*orphan_dir_inode
= NULL
;
1984 struct ocfs2_orphan_filldir_priv priv
;
1990 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
1991 ORPHAN_DIR_SYSTEM_INODE
,
1993 if (!orphan_dir_inode
) {
1999 mutex_lock(&orphan_dir_inode
->i_mutex
);
2000 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2006 status
= ocfs2_dir_foreach(orphan_dir_inode
, &pos
, &priv
,
2007 ocfs2_orphan_filldir
);
2016 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2018 mutex_unlock(&orphan_dir_inode
->i_mutex
);
2019 iput(orphan_dir_inode
);
2023 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2028 spin_lock(&osb
->osb_lock
);
2029 ret
= !osb
->osb_orphan_wipes
[slot
];
2030 spin_unlock(&osb
->osb_lock
);
2034 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2037 spin_lock(&osb
->osb_lock
);
2038 /* Mark ourselves such that new processes in delete_inode()
2039 * know to quit early. */
2040 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2041 while (osb
->osb_orphan_wipes
[slot
]) {
2042 /* If any processes are already in the middle of an
2043 * orphan wipe on this dir, then we need to wait for
2045 spin_unlock(&osb
->osb_lock
);
2046 wait_event_interruptible(osb
->osb_wipe_event
,
2047 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2048 spin_lock(&osb
->osb_lock
);
2050 spin_unlock(&osb
->osb_lock
);
2053 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2056 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2060 * Orphan recovery. Each mounted node has it's own orphan dir which we
2061 * must run during recovery. Our strategy here is to build a list of
2062 * the inodes in the orphan dir and iget/iput them. The VFS does
2063 * (most) of the rest of the work.
2065 * Orphan recovery can happen at any time, not just mount so we have a
2066 * couple of extra considerations.
2068 * - We grab as many inodes as we can under the orphan dir lock -
2069 * doing iget() outside the orphan dir risks getting a reference on
2071 * - We must be sure not to deadlock with other processes on the
2072 * system wanting to run delete_inode(). This can happen when they go
2073 * to lock the orphan dir and the orphan recovery process attempts to
2074 * iget() inside the orphan dir lock. This can be avoided by
2075 * advertising our state to ocfs2_delete_inode().
2077 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2081 struct inode
*inode
= NULL
;
2083 struct ocfs2_inode_info
*oi
;
2085 trace_ocfs2_recover_orphans(slot
);
2087 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2088 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
2089 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2091 /* Error here should be noted, but we want to continue with as
2092 * many queued inodes as we've got. */
2097 oi
= OCFS2_I(inode
);
2098 trace_ocfs2_recover_orphans_iput(
2099 (unsigned long long)oi
->ip_blkno
);
2101 iter
= oi
->ip_next_orphan
;
2103 spin_lock(&oi
->ip_lock
);
2104 /* The remote delete code may have set these on the
2105 * assumption that the other node would wipe them
2106 * successfully. If they are still in the node's
2107 * orphan dir, we need to reset that state. */
2108 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
2110 /* Set the proper information to get us going into
2111 * ocfs2_delete_inode. */
2112 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2113 spin_unlock(&oi
->ip_lock
);
2123 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2125 /* This check is good because ocfs2 will wait on our recovery
2126 * thread before changing it to something other than MOUNTED
2128 wait_event(osb
->osb_mount_event
,
2129 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2130 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2131 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2133 /* If there's an error on mount, then we may never get to the
2134 * MOUNTED flag, but this is set right before
2135 * dismount_volume() so we can trust it. */
2136 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2137 trace_ocfs2_wait_on_mount(VOLUME_DISABLED
);
2138 mlog(0, "mount error, exiting!\n");
2145 static int ocfs2_commit_thread(void *arg
)
2148 struct ocfs2_super
*osb
= arg
;
2149 struct ocfs2_journal
*journal
= osb
->journal
;
2151 /* we can trust j_num_trans here because _should_stop() is only set in
2152 * shutdown and nobody other than ourselves should be able to start
2153 * transactions. committing on shutdown might take a few iterations
2154 * as final transactions put deleted inodes on the list */
2155 while (!(kthread_should_stop() &&
2156 atomic_read(&journal
->j_num_trans
) == 0)) {
2158 wait_event_interruptible(osb
->checkpoint_event
,
2159 atomic_read(&journal
->j_num_trans
)
2160 || kthread_should_stop());
2162 status
= ocfs2_commit_cache(osb
);
2166 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2168 "commit_thread: %u transactions pending on "
2170 atomic_read(&journal
->j_num_trans
));
2177 /* Reads all the journal inodes without taking any cluster locks. Used
2178 * for hard readonly access to determine whether any journal requires
2179 * recovery. Also used to refresh the recovery generation numbers after
2180 * a journal has been recovered by another node.
2182 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2186 struct buffer_head
*di_bh
= NULL
;
2187 struct ocfs2_dinode
*di
;
2188 int journal_dirty
= 0;
2190 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2191 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2197 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2199 osb
->slot_recovery_generations
[slot
] =
2200 ocfs2_get_recovery_generation(di
);
2202 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2203 OCFS2_JOURNAL_DIRTY_FL
)